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Abstract

Erlang on Adapteva's Parallella

Magnus LŒng

By connecting many simple general-purpose RISC CPUs with a Network-on-Chip
memory system, the Epiphany co-processor architecture provides promising
power-efficiency. This thesis presents ParallErlang, a modified Erlang Runtime System,
capable of running some actors on the Epiphany co-processor. The complete lack of
caches is dealt with by introducing an Epiphany backend to the HiPE Erlang compiler,
and a software implementation of an instruction cache. Memory system inconsistency
is dealt with by constructing a sequence of instructions with fence semantics, and
having HiPE inline this ÒfenceÓ where required. Finally, performance and
power-efficiency is measured and evaluated, and while no benchmark show any
improvement over an ARM Coretex-A9 CPU, benchmarks also indicate that should
overheads be possible to eliminate, an improvement of over two orders of magnitude
could be possible, bringing power-efficiency superior to the ARM.
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1 Background
Network-on-Chip (NoC) architectures[19] use asynchronous networks rather than
conventional buses to implement their memory systems. Memory requests and
responses are routed through the network to their destinations. They promise
improved power efficiency and scalability compared to the conventional memory
designs[18]. However, the lack of any central authority often implies they give
weaker ordering guarantees.

Adapteva’s Epiphany is a general-purpose manycore architecture designed
to push the performance per watt envelope by utilising many simple cores
connected by a NoC. At the time of its reveal, the 64-core Epiphany-IV bested
the most efficient GP-GPU on the market, Nvidia’s Kepler, in FLOPS/W. The
architecture is intended to be used as a coprocessor, like a GPU. But, unlike
a GPU, it is programmed using typical C code. However, programming it is
not exactly like programming a traditional CPU. The lack of a cache forces the
programmer to manually manage the locality of data in the small SRAM that
lies alongside each core.

Since this architecture provides such promising power efficiency, it is naturally
interesting to investigate the ability to use higher-level programming languages.
Actor programming languages, such as Erlang, where the units of concurrency,
called processes in the Erlang case, do not share data, seem like a good fit for this
architecture since the data locality problem is much simplified because of that.
This thesis presents an adaptation of the Erlang Runtime System (ERTS) that
runs on the Parallella development platform, and allows running Erlang processes
on the Epiphany. The next chapters will describe how the challenges of the
Epiphany platform were overcome and presents performance and power-efficiency
evaluation and comparison.

1.1 The Parallella
Adapteva’s Parallella (figure 1) is the Epiphany development platform used for
this project. It is a credit-card-sized computer on a chip, and uses a Zynq-7000
series ARM SoC, which contains a dual-core ARM Cortex-A9 CPU running at
667MHz[7], and configured with 32KB L1 data and instruction caches and a
512KB L2 cache[29], as well as some FPGA programmable logic. The board also
sports the 16-core Epiphany-III co-processor, running at 600MHz. Although
a model with the 64-core Epiphany-IV was designed, it never entered mass
production. The ARM CPU has a maximum power consumption of 3W, while
the Epiphany has a maximum power consumption of 2W [7, sec. 8.4].

The Epiphany architecture (figure 2) is notable not only due to its high power
efficiency, but also due to its use of a Network on Chip (NoC) memory system.
Instead of a single, or a hierarchy of, memory buses, Epiphany routs memory
transactions as packets through a grid-shaped network. The 32-bit addressable
memory space is divided into a 64 by 64 grid of 1MB sections, and each physical
core occupies one such section.

As the figure shows, there are actually three networks implementing the
memory system on the Epiphany. The first one, called the cmesh, carries write
transactions and replies to read transactions, but only those that are bound
between two cores on the same die, and is clocked the fastest of the three, at
one packet per CPU cycle. Since a packet can contain up to 64 bits of data,
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Figure 1: Adapteva’s Parallella

Figure 2: The Epiphany Arcitecture
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this yields a theoretical goodput of 38.4 Gbps per link [4, sec. 5.1]. The other
two networks are the rmesh, that carries load transactions, and the xmesh, that
carries write transactions and replies to read transactions that are bound for or
coming from outside the chip. These two networks are clocked at an eighth of
the rate of the cmesh.

The Parallella is also equipped with a 1GB RAM chip. We will refer to this
memory as DRAM, as that is the technology used to implement it. This will be
contrasted to the local memory beside each Epiphany core, which is of the type,
and will be referred to as, SRAM. rmesh and xmeshleave the Epiphany chip
through buses called e-link, one in each cardinal direction. On the Parallella, the
east e-link is connected to the FPGA in the Zync, which is typically programmed
to provide a memory controller mapping a section of the Epiphanys address
space to DRAM. This section is 32MB by default, and is referred to as the
shared memory region. The FPGA is also programmed to provide a mapping of
Epiphany local memory and memory-mapped registers into the ARMs physical
address space, which is how the Epiphany can be programmed and communicated
with.

1.2 Erlang and the Erlang Runtime System
Erlang is a functional, concurrent programming language. It is used to program
telephone switches and server software for banking systems, instant messaging
systems, and more. Erlang is designed for building scalable, fault-tolerant sytems,
and that purpose has guided much of the design of the language. In Erlang, the
units of concurrency do not share any state. For this reason, they are called
processes. As they do not share any state, one process crashing does not affect
another. However, if two Erlang processes are dependent in such a manner that
both of them should be restarted if one of them crashes, they can be linked

together. When a process crashes, all other processes linked to it will be sent
exit signals, causing them to also crash. This is desirable to make crash recovery
clean, leaving no process in a useless state. In order to communicate, Erlang
processes use message passing. A message can be any value, called terms, and
messages are added to the end of a receiving process’ mailbox. Pattern matching
is a central concept in Erlang which is found in many functional languages.
Patterns can not only be used to deconstruct values and to select one of several
code paths, for example in case-statements, but can also be used to receive

messages from the process’ mailbox out of order, if the first messages in the
mailbox matches none of the patterns in a receive statement.

Erlang is a managed language, it is compiled to a byte-code which runs on
the BEAM virtual machine, and its memory is managed and garbage collected
by the Erlang Runtime System. The bytecode is architecture-agnostic, and a
BEAM-file will run on any architecture the Erlang Runtime System has been
ported to, without recompiling. As Erlang processes do not share any data,
garbage collection is also isolated to a single process, and does not need to disturb
other processes. In order to support lightweight concurrency, the Erlang Runtime
System performs its own scheduling. Instead of creating a new thread every time
an Erlang process is started, there is a fixed number of scheduler threads, that
runs an Erlang process until it blocks or has exhausted its time-slice, and then
picks another waiting Erlang process to run.

Erlang terms are constructed from a fixed number of types. These include
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Listing 1: Example Erlang statistics module
- module(stats).

- export ( [ start_link/0, add_number/2, get_average/1 ] ).

start_link() ->
spawn_link (fun() -> loop(0, 0) end).

add_number(Server, Number) ->
Server ! { add, Number} ,
ok.

get_average(Server) ->
Server ! { get_avg, self () } ,
receive { avg, Avg} -> Avg end.

loop(Sum, Count) ->
receive

{ add, Number} ->
loop(Sum + Number, Count + 1);

{ get_avg, From} ->
From ! { avg, Sum / Count} ,
loop(Sum, Count)

end.

numbers, lists, tuples, process identifiers, binaries (binary data), and atoms. The
atoms are a type that can also be found in Prolog and Lisp, although they are
called “symbols” in Lisp. Atoms are a kind of strings, but with the additional
properties that they can be very efficiently compared for equality and that they
are space efficient. They achieve this by being “interned,” the text inside atoms
are stored in a table shared by all processes in the Runtime System, and all
atoms that are the same also share a single entry in the table. Thus, comparing
their entry numbers from this table is sufficient to compare equality between
two atoms.

In listing 1, an Erlang module, stats , provides an example of a concurrent
Erlang program. A process started by stats:start_link/0 keeps track of the
numbers sent to it with stats:add_number/2 , allowing their current average
to be queried at any time with stats:get_average/1 . This could be used in a
web server to count the average time taken to service a request, or in a telephone
exchange to count the average duration of a call. Note how variables are written
with an uppercase letter, atom literals with a lowercase letter, and tuples are
written using curly braces. start_link starts a new process by passing an
anonymous function to spawn_link , a builtin function that creates a new Erlang
process and links it to the current one. add_numbersends the number in an
Erlang message using the ! operator to a process identifier previously created
by start_link . get_average additionally includes its own process identifier,
from the self() function, so that the server knows where to send the response,
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and uses a receive statement to filter out messages starting with the atom avg,
so that other messages sent to the process that is calling get_average are not
accidentally received instead. The server loop is the tail-recursive loop function.
Using a receive statement, the two different messages from the two functions
above are expected, and are handled differently. Each clause of the receive
statement ends with a tail-recursive call to itself. That way, the server does not
stop, by returning from its main function, after a single message.

The atom table is not the only shared resource in the Erlang Runtime System.
There is also the module table, of all loaded modules, containing data literals,
the bytecode of the module, etc. There is the process table, which map process
identifiers to the Process Control Blocks (PCBs). The PCBs in turn keep all the
state of a process, its stack and heap, instruction pointer, and so on. Binaries,
the data type containing raw binary data, can also be shared between processes
if they are large enough. In this case, binaries are stored separately, with a
reference counter of how many processes have a reference to it. This speeds
up Erlang programs that process large amounts of data, as sending it from one
Erlang process to the next does not require copying it. There is also a process
registry. This feature is a global table mapping names, in atom form, to process
identifiers.

1.3 Related Work
There have been several other works on both alternative languages for the
Epiphany, and running high-level languages on co-processors and manycore
architectures. In this section, some of the most relevant works will be covered
and compared to what is presented in this thesis.

1.3.1 Compute-Focused Languages or Frameworks

Below, some related works that are focused on number-crunching are listed. This
contrasts with general-purpose solutions, such as the one this thesis will present,
by being more efficient, but more specialised. By necessity, host and accelerator
code cannot be written in the same language, although accelerator code might
be runnable on the host processor as well as an accelerator.

• OpenCL
A widely supported framework and C-based language. An implementation
for Epiphany is provided [1] by commercial actor Brown Deer Technology.

• Merge
Merge [22] is a framework and C++ Domain-Specific Language (DSL).
Provides scheduling between CPU and accelerators, spreading load to each
processor’s capability. Although superficially the compute kernels might
appear to be C++, the DSL is restrictive and prevents general-purpose
programming. There is no known implementation for Epiphany.

• OpenMP[5]
OpenMP is an API for parallelising sequential code written in C, C++,
or Fortran. The sequential code is annotated with directives as to how it
should be parallelised, and an OpenMP capable compiler will parallelise
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the code. It is typically used with Symmetric MultiProcessing systems and
computer clusters, although it does provide constructs [5, sec. 2.10] for util-
ising accelerators. Agathos, S. N., Papadogiannakis, A., and Dimakopoulos,
V. V. have created [8] an implementation for the Parallella.
While OpenMP does allow the programming of an accelerator in the same
language as its host, there is still significant complexity involved in making
larger programs run efficiently and race free.

• CAL[15]
CAL is an actor-based dataflow language. Dataflow languages express
computation as a series of transformations on pieces of data, called tokens.
CAL actors are composed statically, rather than created and destroyed
on-demand like Erlang actors. Although CAL is unquestionably a high-
level language, dataflow languages are not typically considered general-
purpose languages, and are generally used for parallel computation and
data processing. For example, the Moving Picture Experts Group (MPEG)
standardisation working group uses CAL for the reference implementations
of some of their video codecs[10].
A master’s thesis [25] by Mingkun, Y. adapted the C backend of the ORCC
CAL compiler to be used with the Epiphany architecture.

• Ambric Architecture and aJava[14]
Ambric is another manycore archtecture. Although it sports a commu-
nication mesh somewhat comparable to the Epiphany NoC, routing is
static, and it exposes an actor-centric message passing programming model
instead of a shared-memory one. Message-passing channels need to be
configured and allocated in advance. Notably, it can be programmed with
a high-level language called aJava, a custom actor-based dataflow language
with a syntax reminiscent of Java.
Gebrewanhid et al. [17] presents a CAL compiler that targets both general-
purpose CPUs, Epiphany, and Ambric chips by transpiling to C and aJava,
respectively.
A master’s thesis [23] by Lindström, J and Nanneson, S uses this compiler
to do Epiphany-accelerated MPEG-4 video encoding on the Parallella, but
struggles to achieve real-time speeds, or speedups over just using the ARM.

• Epiphany Python
Epiphany Python [12, 13], and its predecessor Epiphany Basic [11] are
toy languages that run on the Epiphany. They are noteworthy due to
how similar their runtime is to ParallErlang. They are dynamically typed
languages that are compiled to a byte-code by the ARM, and then loaded
into the shared memory, where they are executed by an interpreter on the
Epiphany. It uses a system call mechanism for some operations, such as
IO, string concatenation and math functions, which are executed on the
ARM. There are four scalar data types available; None (the unit type),
Boolean, Integer and Float. There are also strings and arrays of scalars.
Processes do not share memory, but communicate by synchronous message
passing. There is a mailbox for each (sender, receiver)-pair, which can
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contain a single scalar value. The sender waits until the receiver sets a flag
indicating it has received the sent value.
However, these languages are simplistic; activation records are statically
allocated, FORTRAN style, dynamic memory allocations are never freed,
there are no abstraction mechanisms beyond procedures, and no convenient
way of constructing more complex data structures. While they serve their
purpose as a convenient way of getting started with programming the
Parallella very well, they are not designed — or suitable — for large
general purpose programs.

1.3.2 General-Purpose-Focused Libraries

These works present libraries that try to simplify using the Epiphany architecture.
These are used together with the Epiphany SDK [6], which provides a copy
of GCC with an Epiphany backend and C and C++ frontends. A port of the
Newlib C standard library implementation is included, as is a library e-lib
which provides C APIs for most of the hardware functionalities on the Epiphany,
as well as implementations of barrier and mutex synchronisation primitives.
There’s also a library for use on the host processor called Epiphany Hardware
Abstraction Layer (e-hal ), it provides loading and running code on an Epiphany
co-processor, as well as abstracted access to the region of DRAM reserved for
use by the Epiphany, local memory, and registers of the Epiphany cores.

• ErlPiphany[2]
Erlang bindings for e-hal . Actors can be written in any programming
language that can target Epiphany and output an executable file. Erlang
is not such a language. By necessity low-level, because of the design of
the e-hal . For example, data has to be serialised into binary before it
can be sent to (or received from) the Epiphany. The current version of
ErlPiphany even requires programs to know the exact absolute memory
address for any buffer they want to read from or write to.

• MPI
MPI is a generic message-passing system for use with parallel computers,
and is very commonly used on clusters and supercomputers. Richie et al [26]
provides an efficient implementation of MPI on the Epiphany architecture.

1.4 Outline
In section 2, “Problem & Project,” the task and expected challenges of this
project will be briefly laid out, and in section 3, “Method,” how these challenges
were intended to be overcome will be discussed.

In section 4, “A Snapshot View of ParallErlang,” we will see how the imple-
mentation looks at the current time, whereas section 5, “Solutions,” will talk
in much more detail about how each challenge was solved, and the reasoning
behind any major technical decisions.

Finally, some benchmarks trying to gauge the effectiveness of my implementa-
tion and optimisations will be presented in section 6, “Results,” and a discussion
of these, as well as the entire project, in section 7, “Discussion.”
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2 Problem & Project
The Epiphany is configured as an accelerator. It lacks an operating system and
the facilities required to run the Erlang Runtime System. Instead, it is intended
to receive these facilities from a host processor, an ARM in the Parallella, that
runs a typical operating system. As such, it is fundamentally different from
anything Erlang has been run on previously, a simple port of the Erlang Runtime
System would not work, as it requires the facilities provided by an operating
system to run. Running Erlang on an accelerator with a different ISA than its
host is a task that has never been attempted before.

A major challenge is to overcome the resource constraints of the Epiphany
cores. They are not intended to run big, general purpose programs like the
Erlang Runtime System and overcoming these constraints will be critical to the
performance of Erlang on Epiphany.

3 Method
3.1 Establishing the Programming Model
In order to solve the problem of not being able to run the Erlang Runtime System
in its entirety on the Epiphany, we modified it into a Master-Slave architecture

(see Figure 3). The slaves run a stripped down version of the Erlang VM, BEAM,
on the Epiphany cores. The master runs on the ARM and submits processes to
the slaves. A communication channel is established between the master and the
slaves, allowing the master to provide any service to the slaves that they cannot
supply themselves.

3.2 Optimising for Performance
However, even a stripped down Erlang VM will not fit comfortably on the
Epiphany. In particular, we found that just the main loop of the BEAM
emulator compiled to almost 50KB of Epiphany machine code, more than there
is memory local to each core. There are a number of solutions to this problem.

BEAM could be modified to have fewer instructions, diverging in code and
instruction set from the VM in the master runtime system. However, the
loader, that converts BEAM bytecode to threaded code, would have to be
duplicated and rewritten to generate code for this new VM, which is a significant
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undertaking, even disregarding the reduction in code maintainability that comes
from duplicating and slightly modifying several modules of the runtime.

Another solution would be to rely on a software implementation of an
instruction cache. Since one is provided by the Epiphany SDK [9], it would seem
an easy solution. However, in order for the BEAM emulator to benefit from it, it
must actually fit in the cache. That means that it has to be broken into several
procedures, representing a big change in structure that does not only hamper
code reuse, but also register allocation of the variables in the emulator, making
it perform worse. It would thus require a significant restructuring of BEAM.

Another solution is to add an Epiphany backend to HiPE[20, 21, 27, 24],
the native code compiler in the Erlang Runtime System. If the Erlang code is
compiled to machine code, there is no need to fit BEAM into the local memory
at all. Instead, only the native code of the Erlang modules in use would need to
be in local memory.

The solution we picked was to add an Epiphany backend to HiPE. Since most
of the code required for its implementation can be done in Erlang, the burden of
implementation is not estimated to be larger than any of the other solutions. It
also does not lead to code duplication and bloat in the runtime system, which
makes it a much more maintainable solution. Finally, we estimated that this will
save the most amount of local memory, since there is no need to store threaded
code as well as the machine code implementing an emulator. Instead, all that
local memory can be used to store native code of Erlang modules.

4 A Snapshot View of ParallErlang
Largely, the system as implemented is very much structured as it was planned to.
BEAM was ported to run on the Epiphany, Erlang processes can be spawned to
run on the Epiphany with the epiphany: spawn/1 built-in, and they get regular
PIDs and can be communicated with just like any other process. BEAM on
the Epiphany performs most operations that require modifying global state by
issuing system calls to the Erlang Runtime System on the ARM. Indeed, most
of the memory address space that can be accessed by the Epiphany is managed
by the ARM, as shown in Figure 4. There are no schedulers running on the
Epiphany. Two Erlang processes can thus not time-share on a single Epiphany
core, so once all cores are busy, further calls to epiphany: spawn/1 will crash
with a system_limit exception. The number of cores available can be discovered
with epiphany:count/0 .

In Listing 2, we can see an adaptation of the example program from before
(Listing 1) adapted for ParallErlang. Note that only start_link had to change.

15



Listing 2: Erlang statistics module, using ParallErlang
- module(stats).

- export ( [ start_link/0, add_number/2, get_average/1 ] ).

start_link() ->
Fun = fun() -> loop(0, 0) end,
try epiphany: spawn_link (Fun)
catch error :system_limit -> spawn_link (Fun)
end.

add_number(Server, Number) ->
Server ! { add, Number} ,
ok.

get_average(Server) ->
Server ! { get_avg, self () } ,
receive { avg, Avg} -> Avg end.

loop(Sum, Count) ->
receive

{ add, Number} ->
loop(Sum + Number, Count + 1);

{ get_avg, From} ->
From ! { avg, Sum / Count} ,
loop(Sum, Count)

end.
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In this example, we deal with running out of free Epiphany cores by falling back
to running the processes on the host processor. Of course, we might want to
rewrite the program so that a single process can keep track of multiple sets of
numbers, or we might not want to handle the system_limit crash, if we are not
going to spawn more processes than there are cores. In that case, letting the
program crash when running out would make sure such a condition would not
go unnoticed.

A HiPE backend is also available, usable by passing the { hipe, { target,
epiphany }} flag to the compiler. As a first effort to deal with the memory
latency problem, there is a simple software implementation of an instruction
cache. Any code compiled with HiPE is eligible to be cached, and a function will
be cached by a core once it has been called a certain number of times by that
core. Eviction only happens when a process dies, and at that point all cached
functions are cleared. The call counters, however, are not, so the next time that
core calls that function, it will be immediately cached again. Figure 5 illustrates
how the memory local to each core is utilised.

5 Solutions
5.1 Establishing the Programming Model
The initial part of the project was to get a stripped down version of the BEAM
emulator to run on the Epiphany. The ERTS build system was configured to
target the Epiphany, and parts of the runtime system that required external
dependencies were torn out. In turn, parts of the system that depended on the
torn out modules were also discarded. In the case they were required by the
emulator itself, or another critical part of the system, they were instead stubbed
out so they compiled, to be touched up later.

5.1.1 Adding SMP Support

When building without SMP support, the Erlang runtime system stores a lot of
information about the currently running process in static memory, and would
require intrusive refactoring to allow running multiple instances of BEAM in the
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same memory space without SMP. Thus, everything that is required to build
the SMP-enabled emulator is needed. For example, several threading primitives;
atomic memory operations, spinlocks, and thread-local storage, are required.

While thread-local storage is easy to provide when threads are cores and
cores can be numbered, spinlocks are trickier since the ones provided by the
Epiphany API only work in SRAM, but the APIs requires their representations
to be embeddable in structures that may be DRAM-allocated. The solution
we implemented is to dynamically allocate native spinlocks from a fixed pool,
representing them as the coordinates of and indices into this pool.

Another operation that is tricky to provide is the memory barrier. While
access to local memory is sequentially consistent by default, accesses going over
the mesh network only promises the bare-minimum level of consistency. There
are no fence instructions or other ways to force sequentially consistent behaviour.
The only synchronisation mechanisms provided are the spinlock and barrier
primitives. The spinlocks will not help as they only protect resources on the core
they are located on and can’t be used in DRAM, and the barriers require all
cores to issue them before any core may complete the barrier operation, which
makes it impossible to use them to provide a memory barrier operation.

If we relax the requirements on the memory barrier operation to only protect
DRAM and make a couple of assumptions about the behaviour of the Epiphany
memory system, we can construct a sequence of instructions implements that
operation. Assume that

1. All memory accesses that take the same route through the mesh network

are strictly ordered.

As mentioned in Section 1.1, there are three mesh networks. One for writes
within a core, one for writes to off-chip resources, such as DRAM, and one
for reads. The manual documents [4, sec. 4.2, p. 20] that writes destined
for the same core are strictly ordered, as are reads destined for the same
core. It is thus reasonable to assume messages on the same mesh network,
taking the same route, cannot overtake each other.

2. All available DRAM is accessed through the same outbound bus.

There are for busses available, east, west, north, and south. On the
currently available Parallella boards, all DRAM is on the east bus, and
this assumption is true.

3. A read following a write to the same address will not finish until the write

has become visible to all other cores.

Since the architecture does not speculate execution, it has no need for a
write buffer. It is thus reasonable to assume a core does not keep track
of the writes it has in flight, especially since there are no documented or
programmer-accessible acknowledgement messages in the mesh network.
However, the manual does promise that “Load operations using data
previously written use the updated values.” [4, sec. 4.2, p. 19] The most
reasonable assumption about the implementation of such a guarantee is
that read messages are not allowed to overtake write messages in the mesh
routers if they are from the same core, and bound for the same memory
address, ignoring the lowest three address bits and the size of the operation.
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In that case assumption 3 is true, as long as the destination does not buffer
writes and short-circuits loads from its write buffer.

Then the following sequence will have full barrier semantics:

R0 := load barrier
R0 := R0 + 1
store barrier, R0

label:
R1 := load barrier
bne R0, R1, label

The branch is used to force the load to be ordered before any instructions
following the barrier, according to the following guarantee from the architecture
reference manual: “Load operations complete before the returned data is used
by a subsequent instruction.” [4, sec. 4.2, p. 19]

Additionally, atomic operations are also required. The Epiphany architecture
only provides test-and-set, and it only works against SRAM. To provide these
operations, we will have to guard the data with a mutex, but as the Erlang
Threading APIs do not require users to deallocate atomic integers, though well-
behaved code always calls atomic_init first, the scheme used for the spinlocks is
not usable as-is, because that would eventually lead to running out of spinlocks.
Instead, we use a mutex construction that only requires atomic reads and writes,
and strong memory ordering guarantees: Peterson’s algorithm for n processes[3,
sec. 2.1.4, p. 22].

Problems and Solutions When all dependencies for SMP were resolved, a
strange behaviour appeared. Static data that was initialised during startup was
sometimes going back to zeroed state. It turned out to be a result of the hacky
way the Epiphany toolchain implements the zero-initialised section; rather than
having the loader zero this memory region, the C runtime initialisation code
zeroes this section at program startup. The problem with this is that when
running the same program on multiple cores, one core might have finished this
step and jumped to void main(), while another is still zeroing it, leading to
the strange behaviour observed. The solution was to introduce a barrier at the
start of the program, delaying data structure initialisation until all cores have
completed C runtime initialisation.

Furthermore, it turned out that placing the stack in DRAM, as done by the
“legacy” linker script that is part of the Epiphany SDK, caused all of the stacks
to end up at the same address. The simplest solution to the problem was to
modify the linker script to place the stack in SRAM instead.

A problem with placing the C heap in DRAM was also found. Although
newlib libc has interface points for an architecture to provide locking routines to
guard the heap, the Epiphany SDK elects not to use them. Thus, concurrent
allocations from multiple cores sometimes produced the same memory address,
causing subtle errors as Erlang processes had their state overlaid with other
processes’ state. As moving the heap to SRAM was not feasible, and it was
desired to keep ParallErlang using an unmodified SDK, the problem was solved
by introducing wrappers around the malloc family that guarded all calls with
a mutex. Since it was not feasible to modify each call to malloc to call these
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wrappers instead, macros malloc , realloc and free were introduced in the
global include file sys.h that resolved to the name of their wrapper counterparts.

5.1.2 Plugging into ARM ERTS

Once the runtime compiled and ran some trivial hand-crafted threaded code,
the next phase was to host it from within an ERTS process on the host. This
instance of the ERTS will be referred to as the master, as opposed to the instance
that is running on the Epiphany, which will be referred to as the slave. The
address space observed by the Epiphany was mapped in at the same address in
the Erlang process on the ARM. Addresses to exported symbols in the Epiphany
binary are extracted with objdump and written to a header file slave_syms.h .
This way, many of the tables required to run BEAM could be maintained from
the master, and the only code that would need to remain in the slave was the code
to read them. A new simple single free-list memory allocator, slave_alloc , was
introduced to manage shared memory. It was plugged in to the ERTS allocator
framework, which allows moving data to use this allocator by just modifying
the allocator type declarations in erl_alloc.types , without touching any code
that actually does the allocations. The shared memory allocator does not use
the built-in memory allocator alloc_util . In order to combat fragmentation, it
keeps the list of free blocks sorted by memory addresses, and allocates short-lived
classes of allocations at the lowest possible address and long-lived allocations at
the highest.

The atom table was moved to shared memory by using dynamic allocation for
the table. The slave is initialised by just updating the table pointer in the slave
data section (the address of which is acquired via slave_syms.h ). slave_alloc
was modified to forward requests to a fallback allocator in the case that no slave
is connected, so that the allocation would work in either case, and automatically
place the table in the right location in memory. The slave is only allowed a single
operation on the atom table, the only operation that is not guarded by any locks,
namely to look up an atom by number. Luckily, that is the only operation that
BEAM itself requires (some built-in functions, such as erlang:list_to_atom/1 ,
which create new atoms, require more).

The module table contains all currently loaded Erlang modules. A new C
module slave_module was introduced to manage the module table used by the
slave. The utility modules hash and index were generalised to work with a
hash table in shared memory, accessed by different architectures. For example,
accessor functions that take the hash function as a parameter, rather than using
the function pointer stored in the table, were introduced.

The export table contains entries for all mentioned external functions (module-
name-arity-pairs) with a pointer to its entry-point, or a stub that calls the error
handler, should the export not be loaded (or not exist). Since some Erlang terms,
namely external funs, terms on the form fun Mod:Name/Arity , contain pointers
to export entries, they have to be understandable by both master and slave.
They were extended with a second copy of all their fields. Some preprocessor
magic makes each runtime call the field it is supposed to use address , whereas
the other will be named slave_address or master_address . This way, little
existing code needs to change to accommodate this extension. The table and
its entries was moved to shared memory, falling back to its original memory
allocator with the same mechanism introduced for the atom table.
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Figure 6: Some tables are shared between ARM and Epiphany instances. The
loader on ARM populates all of them.

Access to the module and export table, amongst others, needs synchronisation
so that the VM does not intermediary states during hot code loading and upgrades.
However, since access to these tables is very frequent, a unique mechanism called
code_ix guards these tables without having readers grabbing mutexes or even
memory barriers. Every table guarded by code_ix contain three copies of itself,
although some of them might be empty most of the time. The active code

index, or code_ix , is a number between 0 and 2, and decides which of these
tables that should be read. When code is loaded or modified, the staging code

index is assigned to code_ix + 1 ( mod 3) and the contents of all active tables
is copied into the staging tables. Then, code loading proceeds, changing the
contents of the staging copies. When loading is complete, the loader waits until
all participating threads have passed a checkpoint known as thread progress,
which means they have issued a memory barrier (and thus are guaranteed to not
see stale data from their caches). At that point, code_ix is updated atomically
to the staging index, and the code update “transaction” has been committed.
To extend this scheme to the Epiphany cores, a copy of code_ix was placed in
shared memory, and is assigned whenever code_ix changes. As the Epiphany
cores have strictly ordered read accesses, they do not need to participate in the
thread progress scheme in order for this synchronisation to work.

Figure 6 illustrates some of the tables used by the BEAM VM, and that
the export and atom tables are shared by ARM and Epiphany, whereas they
have their own module tables. The BEAM loader, which runs on the ARM,
populates all of these tables. In order to do so, it needed to be modified to also
be able to generate threaded code for the slave emulator. The BEAM loader
module (beam_load.c) was parameterised on a new type, LoaderTarget , which
contains pointers to the opcode tables, the functions used to modify the module
tables, offset of the address field in the export entry to use, etc.

In order to feed that code to the slave runtime and to retrieve the opcode
table (since it is generated at runtime), a communication channel had to be
devised. Communication between the two runtime systems is facilitated through
FIFO-buffers in DRAM, where the systems can leave asynchronous messages for
each other. There are two FIFO buffers per Epiphany core, one in each direction.
In addition, the slave runtime system can perform synchronous syscalls to the
master runtime system when it needs assistance before it can proceed. On system
startup, the first Epiphany core goes through selected parts of ERTS startup,
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sending a SETUPmessage containing the opcode and built-in function tables. It
then signals the other cores in the workgroup to proceed. All cores enter the
scheduler loop which performs a READYsyscall, which is a request for a process
to run. The syscall returns when Erlang code calls the epiphany:spawn family
of functions.

Before processes can be spawned on the Epiphany, there is some setup that
is required. When Erlang code calls unloaded modules, the aforementioned stub
code redirects execution to a special module called error_handler . This module
thus has to be loaded before code can be spawned on the Epiphany. In the master
runtime system, error_handler is loaded by the module init , which in turn
is compiled in to the runtime system, and is loaded during startup. Epiphany
does not run init , however. Instead, an Erlang process epiphany_server was
introduced, which is started as part of the kernel application, and calls the
code module to load the minimal set of modules required to do on-demand
code loading. In order to avoid races when spawning Epiphany processes during
startup, the epiphany:spawn functions call epiphany_server to get a go-ahead
before actually spawning anything.

However, error_handler requires some built-in functions that were stubbed
out, such as erlang:whereis/1 and erlang:send/2 . Since moving tables that
require locks to read to shared memory is undesirable, since it would either
require a syscall to lock from the Epiphany, negating most benefits, or require
more complex locking algorithms that would slow down operation of the ARM,
even when no Epiphany cores are running, and sometimes involve the ARM
busy-waiting on the Epiphany, a new approach was needed. A new syscall called
BIF was introduced, which copies process state from the process struct on the
slave to the process struct on the master, calles the built-in function from the
thread that is serving the syscalls, and then copies back the process state and
returns. This method is also used to implement erlang:send/2 and several
other built-in functions, such as erlang:monitor/2 , needed to print text with
the io module. Although we would like message passing to be asynchronous,
only the case of messaging a PID is without synchronous error conditions that
can’t easily be checked from the Epiphany. As a future improvement, that
particular case can be made asynchronous.

Receiving messages is a more complicated story. In BEAM, messages are
delivered directly into the heap of suspended processes. In particular, the heap
is protected by the process main lock, which is held by schedulers running the
process. Processes running on the Epiphany are technically always scheduled,
but the main lock (in the Process struct on the ARM) is not held, to prevent
deadlocks. Instead, the message passing code tests if the recipient is a slave
process, and goes into the fallback case for when the process is already running,
which is to allocate a standalone heap, a so called heap fragment, to hold the
message, and then calls some ParallErlang-specific code for the delivery. It is
delivered as a FIFO message, and is linked into the inbox of the process on
receipt, just like it would on the ARM. When BEAM dequeues the message, it
copies the message to heap, and rather than freeing it with its local dynamic
memory allocator, it sends a FREE-message back to the ARM.

That is, however, not all required to do on-demand code loading on the
Epiphany. The module that does the heavy lifting when error_handler is
called is code_server , which runs on the ARM. Since code is not loaded for the
Epipahany automatically when code is loaded for the ARM, code_server needs
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Figure 7: Master-Slave communication when running a simple example process
on the Epiphany.

knowledge of how code is loaded onto the Epiphany. The invariants that all
modules loaded on the Epiphany are also loaded on the ARM, and are the same
version, are responsibilities of code_server . To enforce the second invariant,
code_server now keeps in memory a copy of the byte code files that it has
loaded on ARM, but not yet on Epiphany.

In Figure 7, we can see an example of the communication that happens when
running a simple process on the Epiphany. Three threads of execution are drawn.
To the left, we have one of the normal scheduler threads on the ARM, in the
middle, we have the commander thread, which is the thread running on the
ARM that polls for and serves system calls and messages from the slave. On the
right, we have an Epiphany core. After system startup, the slave is permanently
blocked in a READYsyscall that never returns. Once epiphany:spawn is called,
the syscall is completed. Note how completion of the system call happens from
the scheduler thread, rather than going via the commander thread. Later, the
Erlang program running on the ARM decides to send a message to the process
on the Epiphany, which uses the MESSAGEmessage. After copying it to its own
heap, the slave replies with a FREEmessage. Finally, the Erlang process on the
slave replies with a message using the BIF system call, and then terminates.

23



5.1.3 Adding Features Required by More Complex Programs

With dynamic code loading in place, it was now easy to test more complex
programs, which in turn uncovered more missing features. Exceptions, for
example, required some touch-ups to work. There is a table of exception handler
continuation pointers. That table was duplicated in shared memory, so the
Epiphany can reach it. Additionally, the table that maps BEAM instruction
pointers to function names, used to construct back-traces when no exception
handler is found, also needed a touch-up. The table was given a duplicate in
shared memory, reusing the same module to maintain both. This made sense
since ARM and Epiphany can not execute each others’ BEAM code, so each
module loaded need only be inserted into one of these tables. In order for the
loader to insert into the correct table, a pointer to the function that inserts into
this table was added to the LoaderTarget structure. Another complexity comes
from that purging modules from the range tables does not use code_ix . Instead,
atomic instructions are used to set the length of those functions to 0, to be
deleted from the table next time new code is staged, which does use code_ix for
consistency. Luckily reads from the Epiphany are already atomic, and so some
simple pre-processor conditionals pick the atomic integer type when compiling
for ARM, but just a regular integer when compiling for the Epiphany.

Another feature necessary for more complex programs is garbage collection.
To do this, a new syscall GCwas introduced. The functionality in the BIF syscall
that copies process state between ARM and Epiphany was extracted to its
own module slave_state , which could be reused for the implementation for
the GCsyscall, making it, and the erts_garbage_collect entry point to the
garbage collector on the Epiphany, very simple. The garbage collector itself
required some generalisation so that it would use the correct memory allocator
for the heaps, and not accidentally move the heap of an Epiphany process into
memory the Epiphany can’t address. The logic to detect slave processes was
introduced to erl_process.h as macros, as to minimise the amount of garbage
collection-unrelated logic in the garbage collector.

Many Erlang terms contain pointers to reference-counted data. The first
kind of term of this type that was required was the external fun. As mentioned
in the previous section, these contain pointers to entries in the export table. In
order to construct these in BEAM, we need to be able to increment the reference
counters on the table entries. We also need the ability to decrement them when
an external fun is received in a message, after the message has been copied to
heap (which implies an increment of the reference counter), when we are freeing
the heap fragment. This is done on the slave instead of being included in the
FREEsyscall, because it is closer to what happens on the ARM and allows more
code reuse.

However, even though Epiphany has a sufficiently coherent view of shared
DRAM, and its word-sized reads and writes are atomic, it is incapable of
operations such as atomic increment and decrement. Instead, we implement
these operations as asynchronous messages to the ARM, to be executed there.
Since we don’t stop and wait for completion (indeed, in that case we would just
use a syscall instead), this introduces an ordering requirement between messages
and syscalls. Specifically, we must serve all messages from a particular core
before we serve a syscall from that core. Otherwise, that syscall might cause a
decrement of a reference counter, say, because of a garbage collection, that has

24



an increment pending in a message, causing an incorrect release of that resource.
Something else that did not just work was timeouts, when a process on the

epiphany wants to sleep for a certain number of milliseconds, possibly cancelling
the timeout before it expires, for example, when waiting for a message in a
receive statement. These are implemented through inserting a callback in the
runtime-global timer wheel, which wakes the process and reinserts it into a
scheduler run queue. For the Epiphany, we introduced a new message TIMER
that can set and cancel a timeout timer. If the timer expires without a TIMER
message to cancel it, a TIMEOUTmessage is sent back to the Epiphany, where the
process is awoken. In order to avoid race conditions, each timeout is associated
with an integer identifier. Upon receipt of a TIMEOUTmessage, the Epiphany
first checks that the identifier is associated with the timeout it created last, and
that the timeout has not been cancelled.

5.1.4 Attempts at Idling Cores Waiting for Messages

A task that turned out surprisingly difficult was to construct the Event syn-
chronisation primitive using the IDLE Epiphany instruction that places a core
in an interruptable sleep. This is desirable to keep cores that are waiting for
something from causing unnecessary memory load and power draw. A first
approach seemed promising in the functional simulator, but turned out not to
work on real hardware. An additional five different approaches were attempted,
all of which turned out to be racy in implementation without any obvious reasons
for their failure.

The first approach was to use the FSTATUSspecial register, which allows
writing both the IDLE flag and the uninterruptable flag. Using it, both the IDLE
flag and the uninterruptable flag can be cleared as a single operation, atomic
w.r.t. interrupts. If this operation would actually make the core interruptable
and either put the core to sleep, or immediately handle a pending interrupt, it
could have been used to implement the wait operation. For examle, by checking
the flag of the Event in uninterruptable mode, and then using said idle-and-
enable-interrupts operation. However, it turned out that writing the IDLE flag
does not cause the real hardware to suspend; execution just continues as if
nothing has happened.

The first attempt that seemed to work used a very simple interface. On the
Epiphany, only two methods were available:

void slave_event_clear(void) Called before checking the inbox FIFO for
messages. Clears the Event of the current core.

void slave_event_wait(void) Called after checking the inbox FIFO for mes-
sages and finding nothing. Waits on the Event of the current core.

On the ARM, there was only one method:

void slave_event_set(int core_index) Issues a store-store memory barrier,
ensuring the FIFO update is visible, and then sets the Event of the core
with the given index.

These primitives were used in the following way:

/* Process sleep loop on the Epiphany */
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while (1) {
slave_event_clear();
check_for_messages();
if (was_awoken_by_any_message()) break ;
slave_event_wait();

}

/* Syscall wait loop on the Epiphany */
while (1) {

slave_event_clear();
if (syscall_finished()) break ;
slave_event_wait();

}

/* On the ARM */
write_fifo_or_complete_syscall(core_index);
slave_event_set(core_index);

The mechanism by which this first attempt sets the event was to interrupt the
Epiphany, and inside the interrupt handler replace the IDLE instruction in the
wait() method with a NOP. It was hypothesised that when interrupted during
wait() , the program counter would either be before the IDLE, and it would
be flushed from the pipeline because of the interrupt, and re-decoded after the
interrupt returns, or the IDLEwould have put the core to sleep, to be immediately
awoken by the incoming interrupt. While this approach performed as expected
during initial testing, running longer, more complex programs sometimes ended
up deadlocking with a core blocking in wait() , while also having a message
waiting in its FIFO. Since no bugs could be found in the implementation of the
Event, it was assumed that the problem lay in how the Event was used. Since the
Event was used to wait for syscall completion in addition to waiting for messages,
there was a hypothetical case that could misuse the Event. Because messages
were processed inside the sleep loop, it was thought that during processing of a
message, a syscall might happen, clearing the event in the process. This does
not only seem to not be the case, retroactively, but, if used as written above,
the event would always be set after a syscall, since the wait() function does
not clear it. Nevertheless, the API of the subsequent attempts was extended to
allow for multiple Events, even though there is no way to attach an argument,
indicating the Event we wish to set, to Epiphany interrupts.

The solution was to design the API around an abstract stack of Events,
where the set() operation now sets all the Events on the stack. The interface
that all the subsequent implementations shared, was the following:

void slave_event_push(void) Called before checking the inbox FIFO for
messages or starting a syscall. Pushes a clear event on the top of the Event
stack.

void slave_event_clear(void) Called before rechecking the inbox FIFO for
further messages. Clears the topmost Event on the Event stack.

void slave_event_pop(void) Called after exiting a wait loop. Pops the top-
most Event off of the stack.
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void slave_event_wait_pop(void) Waits on the topmost Event on the stack,
and then pops it.

void slave_event_set(int core_index) Issues a store-store memory barrier,
ensuring the FIFO update is visible, and then sets all the Events in the
Event stack of the core with the given index.

These primitives were used in the following way:

/* Process sleep loop on the Epiphany */
while (1) {

slave_event_push();
do {

slave_event_clear();
check_for_messages();

} while (any_message_was_found());
if (was_awoken_by_any_message()) break ;
slave_event_wait_pop();

}
slave_event_pop();
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/* Syscall wait loop on the Epiphany */
while (1) {

slave_event_push();
if (syscall_finished()) break ;
slave_event_wait_pop();

}
slave_event_pop();

/* On the ARM */
write_fifo_or_complete_syscall(core_index);
slave_event_set(core_index);

The second attempt tried to use the same mechanism as the first. The events
were represented as three-instruction functions, stored on a statically allocated
stack, which is called to wait on it:

idle ;; 01b2 ;; nop when set
rts ;; 194f 0402
nop ;; 01a2 ;; pads to a multiple of 4

To push and pop, a pointer is incremented or decremented. The interrupt
handler simply loops over the stack, setting all IDLE instructions to NOPs.

When this attempt turned out not to work, yet another approach was taken.
The event was still represented by the same three-instruction function, but
instead of keeping an actual stack of them, there was just one, and the stack
was represented by two integers set and top. When set ≥ top, the event is set.
Since the information on whether the event is set or not is now duplicated,
the relaxation was chosen to allow the event to be set even when set < top ,
should a set() interrupt happen during clear() . In practice this meant that
the interrupt handler had to set set before modifying the Event, and clear() had
to clear the event before modifying set, and never setting set to anything less
than top − 1, as might happen if it did set := MIN(set, top − 1). This attempt
turned out equally fruitless to the previous one.

The fourth attempt was to use the same stack representation, but use the
Event representation from the first attempt, which was a C function where the
address of the IDLE instruction was exported using labels-as-values and then
modified as per before.

The fifth and final attempt was based on the assumption that the self-
modification of code made the Epiphany misbehave. Instead, the idea was to,
in the interrupt handler, change the interrupt return address to after the IDLE
instruction, should it be inside the wait() function. This way, set and top
could be the single representation of the state of the event, and wait() could say
if set < top then IDLE without being racy with the interrupt handler.

The reason that none of these methods worked could be some tricky bug
or misunderstanding in my implementation, that managed to survive all the
scrutiny and rewrites, or it could be that the IDLE instruction is not meant to
be used like we were attempting to, and the hardware implementation might be
inherently racy with interrupts arriving just as the processor is going idle.

There are approaches to reducing power draw and memory pressure without
IDLE-based Events. One is to use the hardware timers to sleep between polls
of FIFOs or syscall fields. Another is to use the TRAPinstruction. The TRAP
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instruction places the core in an uninterruptable halt state, and requires direct
access from an outside agent, in our case that would be the runtime system on the
ARM, to resume. It is obvious how this instruction would be used to power down
during syscalls. To wait for messages with this mechanism, we can introduce a
numbering of messages. Both master and slave would independently keep count
of how many messages they have sent and received, respectively. Then, we would
just introduce a syscall which is “wait until more than n messages have been
sent.” Using TRAPis likely the most power efficient of these approaches, as there
will be no extra power consumed by a periodic wakeup.

5.1.5 Supporting Binaries

The last Erlang data type to be implemented was the binary. In Erlang, a binary
is an immutable blob of binary data. Binaries are typically used to hold data
received from outside the system, such as from the network or filesystem. Since
large binaries are common, binaries larger than a threshold are stored outside
process heaps, avoiding expensive copying when sending them between processes.
These binaries use reference counting for their memory management.

Although we already had a way to touch reference counters, there was a
common pattern used with all the reference counted types:

if (refc_decrement_read(&binp -> refc) == 0) {
bin_free(binp);

}

This pattern is problematic because the refc_decrement_read function
could not be implemented asynchronously; the Epiphany needs to know the
post-decrement value of the reference counter before it can continue. To solve
this, a new reference counter operation, decfree, was introduced, transforming
the former into the latter:

refc_decfree(&binp -> refc, DECFREE_BIN, binp);

This operation can be easily implemented as an asynchronous message when
called on the Epiphany. By changing all the binary code to use this pattern, it
would work on both the ARM and the Epiphany.

However, in order to support all binary-related BEAM operations, the slave
also needs to allocate binaries. Since reference counted binaries should be alloc-
ated using the allocators on the master, a new syscall, called BIN, was introduced
that provided the bin_alloc() and bin_realloc() functions. Freeing was
already done through refc_decfree() .

Naturally, a binary has to be allocated in shared memory for the slave to be
able to read it. However, since it is common to keep large amounts of data in
binaries, it’s undesirable to just move all binaries to shared memory, since that
puts a severe restriction on their memory use. Instead, the slave should, before
it reads from a binary, check that it is located in shared memory, and if not,
use the BIN syscall to ask that the binary be migrated to shared memory. This
operation was introduced as a macro normalise_proc_bin , and inserted into
the macros ERTS_GET_BINARY_BYTESand binary_bytes , that are used to access
the contents of binaries, so that most code would work without change. On
the master normalise_proc_bin is only a pointer cast. It’s called _proc _bin
because the pointer resides in a structure on the Erlang process heap called a
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Process Binary, that is a node in the linked list of reference counted resources
that are referenced from the process. normalise_proc_bin actually alters this
pointer so that migration only needs to happen once.

Once a binary has been migrated, the address of the copy is stored in a field
otherp , so that if migration is requested multiple times, possibly by different
slave cores, only a single copy will ever be returned. To make it work with
multiple cores serving syscalls, even though there’s only one thread doing that
currently, an atomic compare-and-exchange is used to set otherp , guaranteeing
that the latecomer will notice, free its copy, and return the first one.

Because binaries in master memory now hold references to binaries in shared
memory, these might persist even as the last reference from the slave is lost.
Additionally, should a slave process send a migrated binary back, a master
process will also hold it alive. These issues waste precious shared memory, but
are difficult to address. Were migrated binaries to hold a pointer to the master
binary they came from, so that binaries may “migrate back”, there would be a
reference cycle, preventing reference counting from working safely.

5.2 Optimising for Performance
The first step in trying to fit Erlang code in SRAM was the implementation of a
HiPE backend targeting the Epiphany architecture.

5.2.1 Writing the HiPE Backend

Since the Epiphany is quite reminiscent of ARM, writing the backend was a
relatively straight-forward task. Some design decisions were nevertheless made
differently. Loads of link-time immediates into registers are represented as
two different instructions in the Epiphany backend. This allows for accurate
instruction re-scheduling, in order to prevent stalls in the interlocked pipeline,
although it was not implemented during the timeframe of the project. The
selection of calling convention, in particular which registers are “fixed,” always
containing some of the state of the process, such as PCB, heap, and stack
pointers, were made to maximise the use of halfword-wide instructions, in order
to minimise code size. Halfword instructions can only use the first eight registers.
Because HiPE does not have any callee-saved registers in its calling conventions
and because none of its register allocators (discounting the LLVM backend) does
range splitting, access to locals on the stack is very common. Thus, the stack
pointer was fixed to r6 . Since heap allocation is common in Erlang code, the
heap pointer was fixed to r7 . In the calling convention we also require the FPU
mode to be set to “signed integer” on function entry and exit. Because Erlang
only exposes 64-bit floating point operations, we have no use for the 32-bit
floating point of the Epiphany. This choice allows us to do integer multiplication
without the long save and restore sequences the C compiler emits.

However, because multiplication must never truncate in case of overflow in
Erlang, the multiplication instruction is less useful than expected. On Epiphany,
the multiplication instruction does not set any flags on overflow, so in order
to detect overflow accurately, 64-bit multiplication must be simulated and the
result should be tested for overflow. An initial implementation attempted
to over-approximate the overflow condition by testing that the upper half of
both operands was zero, but that implementation was plagued by bugs. The
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implementation in ParallErlang now takes a simpler route and does not inline
the Õ*Õ/2 operator at all, deferring to the same C implementation as BEAM
uses to do the multiplication. A similar complication exists for addition and
subtraction, too. Fortunately, the overflow flag does exist for those operators,
there just is no instruction that branches when signed overflow happens. Instead,
the following sequence is emitted to do addition and then test the overflow flag
accessible through the seventh bit of the status special register.

add r0, r1, r2
movfs r3, status
lsl r3, r3, #(31 - 7)
ble overflow

In order to support access to binaries, HiPE code also needs to call the
function normalise_proc_bin . Luckily, there is an equivalent to the mac-
ros ERTS_GET_BINARY_BYTESand binary_bytes in the HiPE code generator;
hipe_rtl_binary_match:get_base/2 . normalise_proc_bin was introduced
as a primop bs_normalise_pb , and, when targeting a slave, is called in the code
generated by hipe_rtl_binary_match:get_base/2 .

5.2.2 Implementing Epiphany Support in the HiPE Runtime System

In order to actually run the code produced by the Epiphany backend, target-
specific parts of the HiPE runtime system, such as relocation patching, had to
be implemented for Epiphany. In addition, some restructuring was required to
be able to target two architectures at the same time. Built-in functions that are
used by the HiPE loader (Erlang module hipe_unified_loader ) that needed it
were parameterised on mode, an atom, either master or slave . Since BIFs may
only have up to 3 arguments, some of them needed their arguments clumped
into tuples to fit.

Some parts of HiPE also needed tweaking to support running in slave mode.
When HiPE needs to increment a reference counter, it just calls the threading
library’s increment function for atomic integers, since they have for a long time
been the same operation but with ParallErlangs changes to how reference counters
are modified, that is no longer true. The HiPE primitive operation atomic_inc
was renamed refc_inc , and now calls the proper function to increment reference
counters on either master or slave.

HiPE knows the layout of internal runtime data structures through an auto-
generated header file hipe_literals.hrl , which in turn defines macros that
query a built-in function to retrieve values current to the emulator it is running
on. For example one macro defined in this file is:
-define(P_HP, hipe_bifs:get_rts_param(22)).

Since these offsets may differ between master and slave runtimes, this BIF
needed to be parameterised on the runtime system that is targeted, preferrably
without adding arguments to all of these macros since that would mean big
changes to a lot of modules all over HiPE. Luckily, HiPE keeps its target in
process dictionary already, so another key hipe_target_rts was added, and
the above macro was updated as follows:
-define(P_HP, hipe_bifs:get_rts_param(

22, get (hipe_target_rts))).
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5.2.3 Working Around Epiphany Memory Bugs

A problem appeared that behaved very much like a compiler bug, but when
debugged, turned out to be caused by code sequences that saved a value to stack
(which was stored in DRAM), and very quickly restoring that value. The restore
would not return the value saved, but an older, stale, value. In essence, the
architecture was not providing the basic memory consistency promised by its
manual. We had previously observed this problem in C code too, but since the
C stack was placed in SRAM, it was never frequent enough to reveal its cause.

As a workaround, the HiPE stack was relocated to SRAM too. This means
that any code that is HiPE-compiled has a hard limit on the recursion depth it can
use before running out of stack, like a C program would. As a future extension,
the HiPE stack could be segmented, storing the currently used segments in
SRAM and the higher up segments in DRAM. This would allow recursion as
deep as would fit into DRAM, as is expected of an Erlang runtime.

However, as the earlier C problems showed, just moving the stack will not
completely fix this problem. For C, we can force an optimisation (-fgcse-las )
that detects store-load pairs to the same address, and omits the load. This is far
from a perfect workaround since the optimisation can’t see past function call
boundaries (unless they are inlined), but it does fix all previously observed bugs
caused by this behaviour.

As for HiPE-compiled code, the workaround will be more complex. A store
followed by a function call or return and then a load is very common behaviour
in such code, so adding the above optimisation to HiPE is not expected to fix
the problem, especially not once some HiPE code runs from SRAM. Instead,
we find that, with some adjustments to the assumptions, the memory barrier
construction from Section 5.1.1 still work in practice and does guarantee the
new value back from heap loads. So, assumption 3 is adjusted as follows:

3. A read following a write to the same address will not return the new value

until it has become visible to all other cores.

Now, the loop in the barrier sequence becomes useful as more than just a way
to introduce a use of the loaded value. We now expect the branch to be taken in
some cases. It also becomes important for the correct functioning of the barrier
that the new value written is different from what is already stored in memory.

To make HiPE safe under these conditions, we have HiPE-compiled code
issue a barrier whenever it constructs something on or modifies the heap. Since
this is a common occurrence, we inline this operation. Additionally, we place
the barrier value in the PCB, reachable by offsetting the PCB pointer which is
already reserved to a register, P. We also reserve register r33 to hold the current
value of the barrier, naming it HFV, shortening the sequence by one instruction.
In assembly, it becomes:

add HFV, HFV, 1
str HFV, (P, #P_HEAP_FENCE)

retry:
ldr tmp, (P, #P_HEAP_FENCE)
sub tmp, tmp, HFV
bne retry
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5.2.4 Implementing a Software Instruction Cache

It is expected, because of how the architecture is designed, that a lot of potential
performance is lost by running code from DRAM. However, with a HiPE backend
for Epiphany, we can now adjust the linking of that machine code as we see fit,
including directing function calls through a dispatch table with an entry per core
that allows us cache functions in SRAM; essentially implementing a software
instruction cache.

As a first step, the portion of the linker that is implemented in Erlang, in
a module called hipe_unified_loader , was refactored so that functions were
linked individually. This allowed for, in the HiPE runtime system, placing all
trampolines next to the function code, creating a unit of position-independent
code. The trampolines, which use absolute addressing, were typically emitted
when a branch from the HiPE-compiled code, using relative addressing, could
not reach its target. Now, trampolines are unconditionally emitted for each
target, since any relative branches out of a function would prevent that function
code from being copied somewhere else.

Next, an optional interface-point was introduced for HiPE targets to generate
trampolines and dispatch-tables, also associating them with the stack descriptors
belonging to the function. The feature is exposed to the loader as a builtin
hipe_bifs:cache_insert/2 . The entry emitted looks like this:
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struct fun_entrypoint {
UWord code[ 4] ;
void *cold_address;
Uint size;
struct sdesc **sdescs;
Uint sdesc_count;
struct {

void *address;
Sint count;

} table [] ;
} ;

The field table is the dispatch table, and initially, each entry points to an
assembly routine hipe_cold_call . code is the actual trampoline. It loads the
address of table into an unused register, and then jumps to the address entry
corresponding to the core it is running on. On Epiphany, it looks like this:

mov r12, %low(ADDRESS_OF_TABLE)
movt r12, %high(ADDRESS_OF_TABLE)
ldr r0, [ r12, COREIX]
jr.l r0

COREIXis added as yet another reserved register, r34 , permanently containing
the index of the current core, times eight. r12 is chosen to contain the dispatch
table address since it is the intra-procedure scratch register in the C calling
convention, but any caller-save register not used for argument passing could be
used in its stead.

hipe_cold_call uses the address of table in r12 to find the other fields in
struct fun_entrypoint . It increments the count for the current core. Should
it exceed a hard-coded threshold, and there is also enough remaining space in
the cache, it will call a C routine to perform caching. Otherwise, it jumps to
cold_address .

The caching routine receives the address of table and the value of COREIX
as arguments. It allocates space in the cache by subtracting from the field
containing the amount of remaining space, and copies the function code into the
cache. It also appends an entry to a table of cached functions on the particular
core. Finally, it updates the dispatch table to point to the copy of the function
in the cache, performs a fence, and returns the new address.

For simplicity, eviction only happens when an Erlang process terminates.
Because of that, eviction needs only reset the dispatch tables and counters
modified. Otherwise, eviction would either require a stack walk to touch up any
return addresses pointing to the code that is being evicted, cached entries to be
reference-counted, or return addresses also redirected through dispatch-tables
too; increasing complexity and the amount of DRAM-accesses performed by hot
code.

As for other stack walks, such as for exception handling and garbage collection,
the return addresses to hot code will not be found in the global hash table of
return addresses, nor could they be inserted, since the table is shared by all cores.
Instead, the routine that makes stack descriptor lookups was extended to, if
nothing is found in the hash table, perform a binary search over the core-specific
table of cached functions to find the correct function, and then compute the
corresponding cold return address to look for instead.
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6 Results
In order to measure the performance of ParallErlang, as well as the benefits of
our optimisations, we have adapted a set of benchmarks from the Computer
Language Benchmarks Game[16] to use the Epiphany. Additionally, a custom
benchmark was written doing simple blocked parallel matrix multiplication of
lists-of-lists-of-integers. Integer math was used since floating-point math is a
weak point of the Erlang Runtime System, Epiphany lacks hardware support for
double precision floating-point math (and so the same C routine will be used
from both BEAM and HiPE), and another benchmark (mandelbrot) already
covers floating-point math. The input sizes to the benchmarks were tuned to
make them finish in reasonable time on the Epiphany. The matrix multiplication
benchmark additionally had the values in the input matrices tuned down to
decrease the amount of bignums in the output, and it had the block size tuned
to maximise performance on the Epiphany. Sources of the benchmarks can be
found in Appendix A.

We use a benchmarking script (See Appendix A.5.1) that makes sure all
required modules are loaded, and all Epiphany-related startup has happened
before running the benchmarks. It also allows benchmarks to pre-generate
data (such as the matrices to be multiplied) before the measurements are taken.
Each benchmark is run ten times and the runtime is recorded. Additionally, we
record the total number of reductions, the number of Erlang function calls, when
running on the ARM. For processes running on the Epiphany, we instead capture
the results of three performance counters; total cycles, cycles spent stalling
for instruction fetches, and cycles spent stalling for data fetches. However,
since only two performance counters can be used at a time, we use the first
one for total cycle count, and interleave the other one between fetch and load
stalls. The fraction of cycles spent in the chosen type of stall is the number
recorded. Thus, there are only five samples of those two measurements. In
order to make these measurements, the performance counters were exposed as
a builtin epiphany:timers/2 , and the runtime system was adjusted to pause
these counters while a process is waiting for system call completion or messages.

We run this benchmark script both on BEAM-files that have not been
compiled with HiPE (and should reflect the performance prior to adding the
HiPE backend) as well as files that have. Additionally, we also run them on the
branch where the software caching is implemented. ARM results are included for
this branch too since the alteration to HiPE-code loading might affect the results.
An important point to note about the benchmarks of the software caching is that
the call counts are not cleared between samples. Since the number of previous
calls required to qualify a function for being cached is four, the number of cached
functions increases after the first four samples, as all functions that are eligible
are now cached. These results are displayed in Figures 8 and 9.

Additionally, the benchmarks that can pick a number of cores to use without
altering the workload size are also measured on all power-of-2 numbers of cores
to measure how well the benchmarks and the implementations scale. This
benchmark was ran ten times on the ARM, but only twice on the Epiphany,
because of how long-running it was. These results are displayed in Figures 10,
11, 12, 13, and 14.

Finally, energy efficiency estimations, based on the maximum rated power
consumptions (as listed in Section 1.1) of the respective processors, in Erlang
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(a) Runtime of benchmarks on ARM

benchmark µtime (s) ! time µreds ! reds
binarytrees 0.12 3.62 · 10−3 8.25 · 105 588.14
mandelbrot 0.12 4.39 · 10−3 1.09 · 105 543.83

matmul 0.29 1.7 · 10−2 1.53 · 106 9,358.66
fannkuchredux 0.15 7.52 · 10−3 7.82 · 105 483.58

(b) Runtime and reductions consumed on ARM (BEAM)

benchmark µtime (s) ! time µreds ! reds
binarytrees 6.44 · 10−2 3.65 · 10−3 8.25 · 105 24.22
mandelbrot 9.6 · 10−2 2.8 · 10−3 1.11 · 105 663.08

matmul 0.19 1.63 · 10−2 1.51 · 106 15,216.87
fannkuchredux 7.9 · 10−2 1.62 · 10−3 5.77 · 105 692.35

(c) Runtime and reductions consumed on ARM (HiPE)

benchmark µtime (s) ! time µreds ! reds
binarytrees 6.56 · 10−2 3.43 · 10−3 8.25 · 105 80.44
mandelbrot 0.1 4.88 · 10−3 1.1 · 105 433.08

matmul 0.19 1.68 · 10−2 1.5 · 106 21,478.89
fannkuchredux 8.24 · 10−2 5.05 · 10−3 5.77 · 105 579.4

(d) Runtime and reductions consumed on ARM (HiPE w/ Caching)

Figure 8: Performance data running four benchmarks on ARM, noting means
and standard deviations
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(a) Runtime of benchmarks on Epiphany

benchmark µtime (s) ! time µcycles ! cycles
binarytrees 39.01 0.23 5.34 · 1010 1.88 · 108

mandelbrot 27.35 0.3 2.27 · 1011 1.58 · 108

matmul 11.81 4.73 · 10−2 1.07 · 1011 1.47 · 108

fannkuchredux 14.18 5.68 · 10−2 5.9 · 1010 4.94 · 107

benchmark µfstall ! fstall µlstall ! lstall
binarytrees 0.81 3.42 · 10−3 0.29 3.46 · 10−4

mandelbrot 0.93 5.33 · 10−5 6.13 · 10−2 2.19 · 10−5

matmul 0.78 3.31 · 10−4 0.26 2.1 · 10−4

fannkuchredux 0.73 3.19 · 10−4 0.33 2.02 · 10−4

(b) Runtimes, total CPU-cycles, fraction of cycles stalling for instructions, and

fraction of cycles stalling for data on Epiphany (BEAM)

benchmark µtime (s) ! time µcycles ! cycles
binarytrees 10.55 5.3 · 10−2 1.77 · 1010 5.96 · 107

mandelbrot 23.61 2.97 · 10−2 2.12 · 1011 1.33 · 108

matmul 6.52 0.1 5.57 · 1010 3.07 · 108

fannkuchredux 7.57 2.43 · 10−2 3.18 · 1010 8.29 · 106

benchmark µfstall ! fstall µlstall ! lstall
binarytrees 0.84 2.19 · 10−3 0.16 5.77 · 10−4

mandelbrot 0.94 4.69 · 10−5 3.74 · 10−2 1.26 · 10−5

matmul 0.84 8.57 · 10−4 0.16 1.9 · 10−4

fannkuchredux 0.82 8.26 · 10−5 0.23 3.75 · 10−5

(c) Runtimes, total CPU-cycles, fraction of cycles stalling for instructions, and

fraction of cycles stalling for data on Epiphany (HiPE)
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benchmark µtime (s) ! time µcycles ! cycles
binarytrees 6.58 6.61 · 10−2 6.34 · 107 2.61 · 107

mandelbrot 23.13 4.54 · 10−2 1.03 · 108 1.24 · 108

matmul 4.93 7.89 · 10−2 5.86 · 107 2.8 · 107

fannkuchredux 7.4 3.98 · 10−2 2.23 · 108 3.07 · 107

benchmark µfstall ! fstall µlstall ! lstall
binarytrees 0.91 1.14 · 10−2 0.12 1.78 · 10−2

mandelbrot 0.91 4.7 · 10−3 9.5 · 10−2 3.07 · 10−2

matmul 0.91 6.66 · 10−3 0.12 2.95 · 10−2

fannkuchredux 0.83 3.31 · 10−3 0.2 6.72 · 10−3

(d) Runtimes, total CPU-cycles, fraction of cycles stalling for instructions,

and fraction of cycles stalling for data on Epiphany (HiPE w/ Caching)

Figure 9: Performance data running four benchmarks on Epiphany, noting means
and standard deviations
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Figure 10: Strong scaling of benchmarks on ARM (BEAM)

ARM (HiPE) Epiphany (Caching)
benchmark reds/s reds/J reds/s reds/J
binarytrees 1.27 · 107 4.27 · 106 1.25 · 105 62,656.1
mandelbrot 1.16 · 106 3.85 · 105 4,797.5 2,398.7

matmul 8.05 · 106 2.68 · 106 3.05 · 105 1.53 · 105

fannkuchredux 7.31 · 106 2.44 · 106 78,036.6 39,018.3

Table 1: Energy efficiency in Erlang function calls (reductions) per second and
Joule when running the benchmarks on ARM and Epiphany
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Figure 11: Strong scaling of benchmarks on ARM (HiPE)
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Figure 12: Strong scaling of benchmarks on Epiphany (BEAM)
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Figure 13: Strong scaling of benchmarks on Epiphany (HiPE)
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Figure 14: Strong scaling of benchmarks on Epiphany (HiPE w/ Caching)
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reductions (function calls) per Joule of electrical energy are shown in Table 1.
Because of bugs in ParallErlang, the number of reductions reported for processes
running on the Epiphany are inaccurate. As the benchmarks run the same
code on Epiphany and ARM, the reasonable assumption that the benchmarks
consumed the same number of reductions on both processors was made.

7 Discussion
7.1 Performance
As we can see in Figure 9a, the use of HiPE with our Epiphany backend radically
increases the performance of ParallErlang. We also see that the introduction of
the software cache further increases performance, although by a smaller amount.

One immediate observation is how poorly ParallErlang performs on Epiphany
when compared to ERTS on the modest ARM on the Parallella. If we compare
the runtimes on Epiphany using HiPE with software caching (Figure 9d) with the
ones on ARM using HiPE (Figure 8c), we note that binarytrees takes 100 times
as long running on the Epiphany as it did on the ARM. Since the benchmark
contains a large sequential section, it was expected to run significantly slower on
the Epiphany. However, even the matmul benchmark, which is not only fully
parallelised, but also tuned to run optimally on the Epiphany, runs 25 times
slower than on the ARM. Although not unexpected, it is still striking, especially
compared to the numbers of super-optimised close-to-theoretical-optimum C
benchmarks like the scalable matrix multiplication algorithm for Epiphany that
Adapteva published[28].

Another point to note is the performance gained by the introduction of
software caching. Looking at Figure 9, we see that the performance gain was
33% in the binarytrees benchmark, and even less in the others, raises the question
on whether the assumption that running code from shared memory was the
primary bottleneck was wrong, or if the time spent in the runtime system, which
is never cached, was simply underestimated. The mandelbrot and fannkuchredux
benchmarks are the two benchmarks out of the four that call a built-in function as
part of their innermost loops, and that seems to correspond with very marginal
gains from the software instruction cache. In order to answer the question
of why the performance gains are not larger, the performance counters that
measure numbers of cycles wasted on stalling for DRAM accesses were added
to the benchmark (Table 1). Interestingly, and counter to intuition given the
descriptions of the performance counters, several of the benchmarks show the
two stall counters summing to more than the total number of cycles. Curiously,
this is most pronounced when using BEAM. There are a couple of possible
explanations for this:

a) The result is a random error. This seems unlikely, since the sum is more
than 10 standard deviations greater than 1 in the binarytrees on BEAM
case.

b) There is a systematic error in the benchmarks, since the two counters
were not sampled simultaneously. The only known systematic error is the
lack of call-count reset in the software cache. That implies that the error
should only be present when the software cache is enabled. However, in the
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results, the error is not only similar between the HiPE and Caching cases,
but also it is the greatest using BEAM. This is thus a poor explanation.

c) The “stall for external instruction fetch” (fstall) counter does not only
increment when the core has to be fully stalled to await an instruction
fetch, but also when the decoder only has one instruction to consider,
instead of the maximum current dispatch, two. Additionally, since a “stall
for external load” (lstall) does stall the entire core, and thus provides a
window for the instruction fetch to catch up, it is curious why the fstall
counter would be increased in that case.
In this case, the fstall number will be inflated, and it is hard to tell by how
much. It would, however, still be a lower bound on the number of cycles
spent executing code from external memory.

Assuming the most reasonable explanation, c, it is notable how large fstall is
in all the benchmarks on the software caching branch. It is clear that there is
hot code that is never cached in any of the benchmarks. Thus, an explanation
to the poor increase in performance could be that the time spent executing
(HiPE-compiled) Erlang code was over-estimated, and that there are hot-spots
elsewhere, presumably in C code, that require either static allocation to SRAM,
or to be included in the software caching solution.

Another very striking result is the cycle counters (Figures 9c and 9d). With
the introduction of the software cache, the number of cycles spent on the Epiphany
falls by 2-3 orders of magnitude in all benchmarks, which is dramatically different
from the reductions in wall-clock time. This might indicate errors in how the
performance counters were measured, or, it might indicate that there is some
other bottle-neck that is causing the Epiphany cores to spend most of their
time idling. One guess as to what that would be is the system call latency, due
to the lack of interrupts. Since all the benchmarks do heap allocation in their
inner loops (it is true of mandelbrot because floats are boxed), it is reasonable
to expect that they require frequent garbage collections. It is feasible that the
majority of time is spent waiting for the ARM to wake up and garbage collect
all the heaps. Since it would be quite possible to do garbage collections from the
Epiphany, as long as the heap does not need to be enlarged, further experiments
are needed to investigate the reason for these results.

Note also the high standard deviations in the cycles measurements when
using software caching. This is most likely explained by the lack of call-count
resets, as after four samples, the benchmarks change with more functions are
being inserted into the cache.

We can see in Figure 8, although it is within margin for error in the individual
benchmarks, that there might be a very slight performance regression for ARM
in the caching branch. This is not unsurprising considering that functions from
the same module have been forced to call each other via trampolines, and risk
being loaded far apart, missing out on cache locality benefits.

The matmul benchmark show the least difference between ARM and Epiphany,
and additionally show poor scaling on the ARM (Figure 11). This is likely due to
the block size being tuned lower than optimal for something with a few fast cores;
and should the block size have been tuned to the different targets individually,
the performance difference would likely be similar to that exhibited by the other
benchmarks.
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The energy efficiency estimations (Table 1) confirm that there is still work
to do before ParallErlang can make use of the energy efficiency improvements
brought by the Epiphany architecture. Since the two processors have roughly the
same rated power draw (3W for the ARM vs 2W for the Epiphany), this was not
very surprising given the run times. However, there are several points that needs
to be considered when comparing these numbers. First, two of the benchmarks,
binarytrees and fannkuchredux, do not load all 16 cores for the duration of the
benchmark, which skews the results since those cores are still counted as if they
were operating at full power. Second, the Epiphany-III is manufactured using
a 65nm semiconductor manufacturing process, which is inherently less energy
efficient than the 22nm process used for the Zync.

7.2 Future work
The software instruction cache for HiPE needs to be finished. In addition
to addressing the regressions it causes, HiPE should also be adjusted so that
recursive calls can be call-counted. This is the primary reason that caching
thresholds are so small (such as 4) in the current prototype, and by increasing it,
bigger programs should be able to take advantage of it without the cache filling
up with rarely called functions.

Another task that is overdue is to implement idle waiting using TRAPas
detailed in the end of Section 5.1.4. As the reason for this work was energy
efficiency, such an easy and important improvement as not having cores busy-
waiting at full power when they are unused should be prioritised.

As the results seem to indicate that a large proportion of time is spent
executing code from external memory, even when using the software instruction
cache, a profiler should be introduced that can reveal such hot-spots, allowing
moving them to local memory.

The HiPE stack should be segmented, with only the top segments stored in
local memory. This would allow the amount of local memory used by the HiPE
stack to be decreased, freeing up this precious resource to be used elsewhere.

Another obvious improvement is to use local memory for the heaps of Erlang
processes, especially when local memory is freed up from the HiPE stack seg-
menting. Presumably, once slowdowns due to instruction fetch from external
memory is dealt with, the bottleneck is going to become external data fetches
instead. Of course, it is not acceptable to impose a strict maximum heap size on
Erlang programs, so the heaps must be allowed to outgrow the local memory. A
suggestion would be to first expel the long-lived heap to shared memory, and
later, if required, also the nursery, possibly repurposing that memory for other
uses, such as more software cache. Also, minor collections should be done from
the Epiphany, at least while the heap lives in local memory.

7.2.1 What Can Be Done With a Newer Model Epiphany

It is expected that a newer model Epiphany would have more cores than existing
models. In such a scenario, the effort to move all hot code and data to local
memory becomes even more important, as the bandwidth to shared memory will
only increase by the square root of the number of cores, at best. Thus, when
increasing the number of cores, there will be a point where memory bandwidth
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becomes the main bottleneck, and performance will scale much worse than
linearly from that point.

However, it is not unreasonable to guess that such a model also will come
with more local memory. As such it will probably be required to continue the
effort of efficient local memory usage and moving of hot memory locations to
local memory in order to make full use of such a model.

7.2.2 What Does It Take to Extend to Another Co-processor

In ParallErlang, there are several assumptions made about the co-processor.
It is assumed that it is of the same word size as the host. It is assumed that
there is (at least the illusion of) some shared memory that both cores can access
in a cache-coherent manner. This memory must be mappable into the host’s
ERTS process’ memory space at the same address it is visible to the co-processor
at. These assumptions allow the host and co-processor to use the same term
format, removing the need for any conversions. It is also assumed that there is
a fully-featured C compiler, and for performance’s sake, it should support the
GCC extension labels as values, so that the directly threaded BEAM can be
used. If it does not, some extra tweaking to the loader might be required to emit
the correct byte code.

Except for these assumptions, there is not too much of ParallErlang that
is Epiphany-specific. The code that sets up the co-processor and memory
mapping needs to be adjusted to extend to another co-processor, as does the
code that implements system calls. There are some functions that determine
whether a memory address is in shared memory, and whether it belongs to
the co-processor heap, that do need touch up. Also, there is some debugging
code that isn’t required to use ParallErlang, but is nevertheless useful, such
as void epiphany_backtrace() , that is Epiphany specific. Finally, all the
typical requirements of an ERTS port apply. In particular, an implementation
of Ethreads need to be provided since co-processors tend to lack Pthreads. The
shim that implements the atomics API on Epiphany can be reused for any
architecture with some code changes.

7.3 Conclusions
Although power-efficiency is not yet en par with ARM CPUs, the benchmarks
seems to indicate that there might still be plenty of untapped performance. Ad-
ditionally, bringing the Epiphany to a comparable semiconductor manufacturing
process would be expected to narrow the performance gap.

All-in-all the project could be considered a success. The system works and
exceeds initial expectations of compatibility, although the limitation on the
number of concurrent processes on the Epiphany makes porting a program to
ParallErlang far from a push-button exercise.

We’ve now seen how it is possible to port a high-level language to a co-
processor in a way that abstracts most of the complexities of programming such
a processor from the programmer, and allows them to reuse existing code on
more power-efficient architectures.
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Appendices
A Benchmark Sources
Benchmarks binarytrees, matmul, and fannkuchredux are copyright © their
respective authors, and are provided under the Revised BSD license. For brevity,
the license is included here once, rather than in the respective source code
listings.
Revised BSD license

Copyright © 2004-2008 Brent Fulgham, 2005-2015 Isaac Gouy

All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the name of "The!Computer!Language!Benchmarks!Game"
nor the name of "The!Computer!Language!Shootout!
Benchmarks" nor the names of its contributors may be used
to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS!IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.1 Binarytrees

% The following benchmark is based on an entry in
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% The Computer Language Benchmarks Game
% http://benchmarksgame.alioth.debian.org/
%
% contributed by Isaac Gouy (Erlang novice)
% parallelized by Kevin Scaldeferri
%% Copyright © 2004-2008 Brent Fulgham, 2005-2015 Isaac Gouy

- module(binarytrees).
- export ( [ prepare/0, bench/1, main/1 ] ).
- export ( [ depth/2 ] ).

-define(Min,4).

prepare() ->
{nil , [ colib, timer, lists, io ]} .

bench(nil ) ->
main( [ "10" ] ).

main( [ Arg] ) ->
N = list_to_integer (Arg),
Max = lists:max( [ ?Min+2,N] ),

Stretch = Max + 1,
io:fwrite("stretch!tree!of!depth!~w\t!check:!~w~n",

[ Stretch, itemCheck(bottomUp(0,Stretch)) ] ),

LongLivedTree = bottomUp(0,Max),
depthLoop(?Min,Max),

io:fwrite("long!lived!tree!of!depth!~w\t!check:!~w~n",
[ Max, itemCheck(LongLivedTree) ] ),

ok.

depthLoop(D,M) ->
Results = colib:pmap( { ?MODULE, depth} , [ M] , lists:seq(D, M,

2)),
lists:foreach( fun (Result) ->

io:fwrite("~w\t!trees!of!depth!~w\t!
check:!~w~n", Result)

end,
Results).

depth(D,M) ->
N = 1 bsl (M-D + ?Min),
[ 2*N, D, sumLoop(N,D,0) ] .

sumLoop(0,_,Sum) -> Sum;
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sumLoop(N,D,Sum)->
sumLoop(N-1,D, Sum + itemCheck(bottomUp(N,D)) +

itemCheck(bottomUp(-N,D))).

bottomUp(I,0) -> { I, nil , nil} ;
bottomUp(I,D) -> { I, bottomUp(2*I-1,D-1), bottomUp(2*I,D-1) } .

itemCheck( nil ) -> 0;
itemCheck( { I,Left,Right } ) ->

I + itemCheck(Left) - itemCheck(Right).

A.2 Mandelbrot

% The following test is based on an entry in
% The Computer Language Benchmarks Game
% http://benchmarksgame.alioth.debian.org/
%% Contributed by Johan Karlsson based on Fredrik SvahnÕs

mandelbrot program
%% Copyright © 2004-2008 Brent Fulgham, 2005-2015 Isaac Gouy

- module(mandelbrot).
- export ( [ prepare/0, bench/1, bench/2 ] ).
-define(LIM_SQR, 4.0).
-define(ITER, 50).
-define(SR, -1.5).
-define(SI, -1).

-define(DEFAULT_WORKERS, 16).

prepare() -> {nil , [ lists ]} .

bench(nil ) -> bench(nil , ?DEFAULT_WORKERS).
bench(nil , NoWorkers) ->

main( [ "64" ] , NoWorkers).

main( [ Arg] , NoWorkers) ->
N = list_to_integer (Arg),
Jobs = lists:seq(0, N-1),
Self = self (),
Row =fun (Y) -> Self ! { Y, row(N-1, 0, ?SI+Y*2/N, N, 0, [] ,

7) } end,
spawn_link( fun () -> workserver_entry(Row, Jobs, NoWorkers)

end),
[ "P4\n", Arg, "!", Arg, "\n" ] ++ [receive { Job, C} -> C end

|| Job <- Jobs ] .

workserver_entry(Fun, Jobs, NoWorkers) ->
Self = self (),
{ Spawn, _Count} = colib:spawn_and_count(),
Workers = [ Spawn(fun () -> worker(Fun, Self) end)
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|| _ <- lists:seq(1,NoWorkers) ] ,
workserver(Workers, Jobs).

workserver(Workers, [ Job|Jobs ] ) ->
receive { get_job, Worker } ->

Worker ! { job, Job } ,
workserver(Workers, Jobs)

end;
workserver(Workers, [] ) ->

lists:foreach( fun (W)-> W! stop end, Workers).

worker(Fun, Jobserver) ->
Jobserver ! { get_job, self () } ,
receive

stop -> ok ;
{ job, Job } ->

Fun(Job),
worker(Fun, Jobserver)

end.

%% Iterate over a row, collect bits, bytes and finally print the
row

row(X,X, _, _, Bits, Bytes, C) ->
case C of

7 -> lists:reverse(Bytes);
C -> lists:reverse( [ Bits bsl (C+1) | Bytes ] )

end;

row(M,X, Y2, N, Bits, Bytes, 0) ->
row(M,X+1, Y2, N, 0, [ Bits bsl 1 + m(?ITER, ?SR+(X+X)/N, Y2)

| Bytes ] , 7);

row(M,X, Y2, N, Bits, Bytes, BitC) ->
row(M,X+1, Y2, N, Bits bsl 1 + m(?ITER, ?SR+(X+X)/N, Y2),

Bytes, BitC-1).

%Mandelbrot algorithm
m(Iter, CR,CI) -> m(Iter - 1, CR, CI, CR, CI).

m(Iter, R, I, CR, CI) when is_float(R), is_float(I),
is_float(CR), is_float(CI) ->
case R*R+I*I > ?LIM_SQRof

false when Iter > 0 -> m(Iter-1, R*R-I*I+CR, 2*R*I+CI,
CR, CI);

false -> 1;
true -> 0

end.

A.3 Matmul
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- module(matmul).

- export ( [ prepare/0, bench/1, bench/2, test/1, mul/3 ] ).

-define(SUBSIZE, 4).
-define(ROWS, 96).
-define(COLS, 96).

prepare() ->
Pregen = { matgen(), matgen() } ,
{ Pregen, [ ?MODULE, lists, epiphany, epiphany_server ]} .

bench(Pregen) -> bench(Pregen, 16).
bench({ A, B} , NoWorkers) ->

mul(A, B, NoWorkers).

- type matrix(Of) :: [[ Of]] .
- type matrix() :: matrix( integer ()).

test(N) ->
{ A, B} = { matgen(), matgen() } ,
{ Time, Res} = timer:tc( fun () -> mul(A, B, N) end),
case mul_seq(A, B) of

Res -> Time;
Correct -> { badmatch, Res, Correct }

end.

%% @doc Multiply matrices A and B using N workers
mul(A, B, N) ->

Workers = fork(N),
try

As = split_rows(A, [] ),
Bs = split_cols(B, [] ),
do_mul(As, As, Bs, Workers, Workers, [[]] )

after join(Workers)
end.

- spec do_mul([ matrix() ] , [ matrix() ] , [ matrix() ] , [pid () ] ,
[pid () ] ,

matrix( reference ())) -> matrix().
do_mul([] , _AllAs, [ _] , _Workers, _AllWorkers, Acc) ->

collect(Acc, [[]] );
do_mul([] , AllAs, [ _B|Bs] , Workers, AllWorkers, Acc) ->

do_mul(AllAs, AllAs, Bs, Workers, AllWorkers, [[] |Acc ] );
do_mul(As, AllAs, Bs, [] , AllWorkers, Acc) ->

do_mul(As, AllAs, Bs, AllWorkers, AllWorkers, Acc);
do_mul([ A|As] , AllAs, [ B|_] =Bs, [ Worker|Workers ] , AllWorkers,

[ Acc|Accs] ) ->
Ref = make_ref(),
Worker ! { mul, self (), Ref, A, B } ,
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do_mul(As, AllAs, Bs, Workers, AllWorkers, [[ Ref|Acc ] |Accs ] ).

- spec collect(matrix( reference ()), matrix(matrix())) -> matrix().
collect( [[]] , Acc) -> merge(Acc);
collect( [[] |Col ] , Acc) -> collect(Col, [[] |Acc ] );
collect( [[ Ref|Row] |Col ] , [ A|Acc] ) ->

receive { Ref, Mat } ->
collect( [ Row|Col] , [[ Mat|A] |Acc ] )

end.

%% @doc Flattens a MxN matrix of KxK matrices into a MKxNK
matrix.

- spec merge(matrix(matrix())) -> matrix().
merge([[] |_ ] ) -> [] ;
merge(Mat) ->

Heads = [hd (Row) || Row <- Mat] ,
Tails = [tl (Row) || Row <- Mat] ,
merge_row(Heads, [] ) ++ merge(Tails).

- spec merge_row([ matrix() ] , matrix()) -> matrix().
merge_row([[] |_ ] , Acc) -> lists:reverse(Acc);
merge_row(Row, Acc) ->

Heads = [hd (Mat) || Mat <- Row ] ,
Tails = [tl (Mat) || Mat <- Row ] ,
MergedRow = lists:append(Heads),
merge_row(Tails, [ MergedRow | Acc] ).

- spec fork( integer ()) -> [pid () ] .
fork(N) ->

{ Spawn, _Count} = colib:spawn_and_count(),
[ Spawn(fun worker_loop/0) || _ <- lists:seq(1, N) ] .

join(Workers) ->
Refs = [ monitor(process, W) || W <- Workers ] ,
lists:foreach( fun (W) -> W! stop end, Workers),
lists:foreach( fun (R) -> receive { ÕDOWNÕ, R, _, _, _} -> ok

end end, Refs).

worker_loop() ->
receive

stop -> ok ;
{ mul, From, Ref, A, B } ->

From ! { Ref, mul_seq(A, B) } ,
worker_loop()

end.

%% Multiplies two matrices
- spec mul_seq(matrix(), matrix()) -> matrix().
mul_seq(ARows, B) ->

BCols = transpose(B),
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[[ mul_strips(ARow, BCol) || BCol <- BCols ]
|| ARow <- ARows] .

mul_strips(A, B) -> mul_strips(A, B, 0).
mul_strips( [] , [] , Acc) -> Acc;
mul_strips( [ A|As] , [ B|Bs] , Acc) ->

mul_strips(As, Bs, A*B + Acc).

- spec transpose(matrix()) -> matrix().
transpose( [[] |_ ] ) -> [] ;
transpose(Mat) ->

Heads = [hd (Row) || Row <- Mat] ,
Tails = [tl (Row) || Row <- Mat] ,
[ Heads | transpose(Tails) ] .

- spec matgen() -> matrix().
matgen() ->

random:seed(now()),
[[ random:uniform(3) || _Col <- lists:seq(1, ?COLS) ]
|| _Row <- lists:seq(1, ?ROWS) ] .

%% @doc Cuts a (M*?SUBSIZE)xN matrix into M ?SUBSIZExN matrices.
- spec split_rows(matrix(), [ matrix() ] ) -> [ matrix() ] .
split_rows( [] , Acc) -> lists:reverse(Acc);
split_rows(Mat, Acc) ->

{ Row, Rest} = lists:split(?SUBSIZE, Mat),
split_rows(Rest, [ Row|Acc] ).

%% @doc Cuts a Mx(N*?SUBSIZE) matrix into N Mx?SUBSIZE matrices.
- spec split_cols(matrix(), [ matrix() ] ) -> [ matrix() ] .
split_cols( [[] |_ ] , Acc) -> lists:reverse(Acc);
split_cols(Mat, Acc) ->

Tuples = [ lists:split(?SUBSIZE, Row) || Row <- Mat ] ,
Col = [ Row || { Row, _Rest} <- Tuples ] ,
Rest = [ Rest || { _Row, Rest} <- Tuples ] ,
split_cols(Rest, [ Col|Acc ] ).

A.4 Fannkuchredux

% The following test is based on an entry in
% The Computer Language Benchmarks Game
% http://benchmarksgame.alioth.debian.org/
%%
%% Contributed by : Alkis Gotovos and Maria Christakis, 13 Nov

2010
%% Copyright © 2004-2008 Brent Fulgham, 2005-2015 Isaac Gouy

- module(fannkuchredux).

- export ( [ prepare/0, bench/1, main/1 ] ).
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prepare() -> {nil , [ ?MODULE, lists, epiphany, epiphany_server ]} .

bench(nil ) ->
main(8).

main( [ Arg] ) ->
main( list_to_integer (Arg)),
halt (0);

main(N) when N > 0 ->
{ MaxFlips, Checksum} =

case N of
1 -> { 0, 0 } ;
_Other ->

Chunk = fact(N - 1),
divide(0, N, lists:seq(1, N), Chunk),
join(N, 0, 0)

end,
io:format("~p~nPfannkuchen(~p)!=!~p~n", [ Checksum, N,

MaxFlips ] ),
{ MaxFlips, Checksum} .

divide(N, N, _L, _C) -> ok ;
divide(N, MaxN, [ H|T] = List, Chunk) ->

Self = self (),
{ Spawn, _Count} = colib:spawn_and_count(),
Fun = fun () ->

work(N, List, N * Chunk, (N + 1) * Chunk, MaxN, 0,
0, Self)

end,
Spawn(Fun),
divide(N + 1, MaxN, T ++ [ H] , Chunk).

join(0, MaxFlips, Checksum) -> { MaxFlips, Checksum} ;
join(N, MaxFlips, Checksum) ->

receive
{ Flips, Sum } -> join(N - 1, max(MaxFlips, Flips),

Checksum + Sum)
end.

work(_P, _L, Index, Index, _R, MaxFlips, Checksum, Target) ->
Target ! { MaxFlips, Checksum} ;

work(Proc, List, Index, MaxIndex, R, MaxFlips, Checksum, Target)
->
reset(R),
{ Flips, Sum } = flip_sum(Index, List),
NewFlips = max(Flips, MaxFlips),
NewSum = Checksum + Sum,
{ NewList, NewR} = next(Proc, List, 1),
work(Proc, NewList, Index + 1, MaxIndex, NewR, NewFlips,
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NewSum, Target).

next(Proc, List, R) ->
NewList = next_aux(R, List),
case put (R, get (R) - 1) of

1 -> next(Proc, NewList, R + 1);
_Other -> { NewList, R }

end.

next_aux(1, [ E1, E2|T] ) -> [ E2, E1|T] ;
next_aux(2, [ E1, E2, E3|T ] ) -> [ E2, E3, E1|T ] ;
next_aux(3, [ E1, E2, E3, E4|T ] ) -> [ E2, E3, E4, E1|T ] ;
next_aux(R, [ H|T] ) ->

{ Front, Back } = lists:split(R, T),
Front ++ [ H] ++ Back.

flip_sum(Index, List) ->
Flips = flip(List, 0),
Sum =

case Index band 1 of
0 -> Flips;
1 -> -Flips

end,
{ Flips, Sum } .

flip( [ 1|_T] , N) ->
N;

flip( [ 2, E1|T ] , N) ->
flip( [ E1, 2|T ] , N + 1);

flip( [ 3, E1, E2|T ] , N) ->
flip( [ E2, E1, 3|T ] , N + 1);

flip( [ 4, E1, E2, E3|T ] , N) ->
flip( [ E3, E2, E1, 4|T ] , N + 1);

flip( [ 5, E1, E2, E3, E4|T ] , N) ->
flip( [ E4, E3, E2, E1, 5|T ] , N + 1);

flip( [ 6, E1, E2, E3, E4, E5|T ] , N) ->
flip( [ E5, E4, E3, E2, E1, 6|T ] , N + 1);

flip( [ 7, E1, E2, E3, E4, E5, E6|T ] , N) ->
flip( [ E6, E5, E4, E3, E2, E1, 7|T ] , N + 1);

flip( [ 8, E1, E2, E3, E4, E5, E6, E7|T ] , N) ->
flip( [ E7, E6, E5, E4, E3, E2, E1, 8|T ] , N + 1);

flip( [ 9, E1, E2, E3, E4, E5, E6, E7, E8|T ] , N) ->
flip( [ E8, E7, E6, E5, E4, E3, E2, E1, 9|T ] , N + 1);

flip( [ 10, E1, E2, E3, E4, E5, E6, E7, E8, E9|T ] , N) ->
flip( [ E9, E8, E7, E6, E5, E4, E3, E2, E1, 10|T ] , N + 1);

flip( [ 11, E1, E2, E3, E4, E5, E6, E7, E8, E9, E10|T ] , N) ->
flip( [ E10, E9, E8, E7, E6, E5, E4, E3, E2, E1, 11|T ] , N + 1);

flip( [ 12, E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11|T ] , N) ->
flip( [ E11, E10, E9, E8, E7, E6, E5, E4, E3, E2, E1, 12|T ] , N

+ 1);
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flip( [ H|_T] = List, N) ->
{ First, Last } = lists:split(H, List),
flip(lists:reverse(First) ++ Last, N + 1).

reset(1) -> ok ;
reset(N) -> put (N - 1, N), reset(N - 1).

fact(1) -> 1;
fact(N) -> N * fact(N - 1).

A.5 Utility and Harness Scripts
A.5.1 Driver

The driver module was the benchmarking harness.
- module(driver).

- export ( [ run/1, scaling/1 ] ).

-define(SAMPLES, 10).
-define(US_PER_S, 1000000).

-define(STATS_FORMAT,
"\t~p\t~p\t~p\t~p\t~p\t~p\t~p\t~p\t~p\t~p").

-define(STATS_HEADERS,[time , time_sd, reds, reds_sd,
cycles, cycles_sd,
fetch_stall, fs_sd, load_stall, ls_sd ] ).

-define(STATS_PATTERN,{ Time, TimeSd, Reds, RedsSd, Cycles,
CyclesSd, Zero, ZeroSd, One, OneSd} ).

-define(STATS_FMTARGS,[ Time, TimeSd, Reds, RedsSd, Cycles,
CyclesSd, Zero, ZeroSd, One, OneSd] ).

run( [ Outfile|Benchmarks ] ) ->
case epiphany:state() of

booting ->
timer:sleep(100),
run( [ Outfile|Benchmarks ] );

_ ->
{ok , IoDev }

= file:open( atom_to_list (Outfile), [ write ] ),
io:format(IoDev, "~p" ?STATS_FORMAT "\n",

[ benchmark | ?STATS_HEADERS] ),
io:format("~p" ?STATS_FORMAT "\n",

[ benchmark | ?STATS_HEADERS] ),
try run(IoDev, Benchmarks)
after

ok = file:close(IoDev),
erlang: halt ()

end
end.
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run(_IoDev, [] ) -> ok ;
run(IoDev, Benchmark) when is_atom(Benchmark) ->

Pregen = prepare(Benchmark),
?STATS_PATTERN = bench(Benchmark,[ Pregen] , ?SAMPLES),
io:format(IoDev, "~p" ?STATS_FORMAT "\n",

[ Benchmark | ?STATS_FMTARGS] ),
io:format("~p" ?STATS_FORMAT "\n",

[ Benchmark | ?STATS_FMTARGS] ),
ok;

run(IoDev, [ Benchmark|Benchmarks] ) ->
run(IoDev, Benchmark),
run(IoDev, Benchmarks).

scaling( [ Outfile|Benchmarks ] ) ->
case epiphany:state() of

booting ->
timer:sleep(100),
scaling( [ Outfile|Benchmarks ] );

_ ->
{ok , IoDev }

= file:open( atom_to_list (Outfile), [ write ] ),
io:format(IoDev, "~p\t~p" ?STATS_FORMAT "\n",

[ benchmark, cores | ?STATS_HEADERS] ),
io:format("~p\t~p" ?STATS_FORMAT "\n",

[ benchmark, cores | ?STATS_HEADERS] ),
try scaling(IoDev, Benchmarks)
after

ok = file:close(IoDev),
erlang: halt ()

end
end.

scaling(_IoDev, [] ) -> ok ;
scaling(IoDev, [ Benchmark|Benchmarks] ) ->

{ _Spawn, Count} = colib:spawn_and_count(),
Pregen = prepare(Benchmark),
scaling(IoDev, Benchmark, Pregen, Count),
scaling(IoDev, Benchmarks).

scaling(_IoDev, _Benchmark, _Pregen, 0) -> ok ;
scaling(IoDev, Benchmark, Pregen, Cores) ->

?STATS_PATTERN = bench(Benchmark,[ Pregen, Cores ] , ?SAMPLES),
io:format(IoDev, "~p\t~p" ?STATS_FORMAT "\n",

[ Benchmark, Cores | ?STATS_FMTARGS] ),
io:format("~p\t~p" ?STATS_FORMAT "\n",

[ Benchmark, Cores | ?STATS_FMTARGS] ),
scaling(IoDev, Benchmark, Pregen, Cores div 2).

prepare(Benchmark) ->
{ Pregen, Modules0} = Benchmark:prepare(),
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Modules = [ Benchmark, epiphany, epiphany_server | Modules0 ] ,
Spawn =
case epiphany:state() of

offline ->
lists:foreach( fun code:ensure_loaded/1, Modules),
fun erlang: spawn/1;

online ->
lists:foreach( fun code:ensure_loaded_epiphany/1,

Modules),
fun epiphany: spawn/1

end,
%% Roundtrip to ensure everything is ready before we start
%% measuring
Self = self (),
Spawn(fun () -> Self ! ready end),
receive ready -> ok after 10000 -> error (timeout) end,
Pregen.

bench(Benchmark, Args, Samples) ->
{ Times, Reds, Cycles, FetchStalls, LoadStalls }

= bench(Benchmark, Args, [] , [] , [] , [] , [] , Samples),
{ avg(Times) / ?US_PER_S,
stdev(Times) / ?US_PER_S,
avg(Reds),
stdev(Reds),
avg(Cycles),
stdev(Cycles),
case FetchStalls of nan -> nan; _ -> avg(FetchStalls) end,
case FetchStalls of nan -> nan; _ -> stdev(FetchStalls) end,
case LoadStalls of nan -> nan; _ -> avg(LoadStalls) end,
case LoadStalls of nan -> nan; _ -> stdev(LoadStalls) end}.

avg( [] ) -> nan;
avg(List) -> lists:sum(List) / length (List).

stdev( [] ) -> nan;
stdev( [ _] ) -> nan;
stdev(List) ->

Len = length (List),
Mean = lists:sum(List) / Len,
math:sqrt(lists:sum( [ (X-Mean)*(X-Mean) || X<-List ] )

/ (Len - 1)).

bench(_Benchmark, _Args, Times, Reds, Cycles, FetchStalls,
LoadStalls, 0) ->
{ Times, Reds, Cycles, FetchStalls, LoadStalls } ;

bench(Benchmark, Args, Times, Reds, Cycles, FetchStalls0,
LoadStalls0, Samples) when Samples > 0 ->
case Samples rem 2 of

1 -> colib:select_timers(clk, ext_fetch_stalls);
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0 -> colib:select_timers(clk, ext_load_stalls)
end,
timer:sleep(50),
_ = colib:poll_stats(),
{ Time, _} = timer:tc(Benchmark, bench, Args),
{ Zero, One, Red} = colib:poll_stats(),
Quotient = case Zero of 0 -> nan; _ -> One / Zero end,
io:format("~p!samples!of!~p!remaining:!~p!s,!reds:!~p,!T0:!

~p,!T1:!~p\n",
[ Samples - 1,
Benchmark, Time / ?US_PER_S,
Red, Zero, One] ),

{ FetchStalls, LoadStalls } =
case Samples rem 2 of

_ when Quotient =:= nan -> { nan, nan} ;
1 -> {[ Quotient | FetchStalls0 ] , LoadStalls0 } ;
0 -> { FetchStalls0, [ Quotient | LoadStalls0 ]}

end,
bench(Benchmark, Args, [ Time | Times] , [ Red | Reds] ,

[ Zero | Cycles ] , FetchStalls, LoadStalls, Samples - 1).

A.5.2 Colib

The colib module provided reusable concurrency abstractions, as well as wrappers
for the spawn functions that collects the desired statistics.

- module(colib).

- export ( [ pmap/2, pmap/3, %% pforeach/2,
spawn_and_count/0,
poll_stats/0, select_timers/2 ] ).

pmap(Fun, List) ->
Collector = self (),
Indices = lists:seq(0, length (List)-1),
Jobs = lists:zip(Indices, List),
Work = fun ( { Ix, El } ) -> Collector ! { Ix, Fun(El) } end,
spawn_link( fun () -> pforeach(Work, Jobs) end),
[receive { Ix, El } -> El end || Ix <- Indices ] .

pmap({ M, F} , [] , List) -> pmap(fun M:F/1, List);
pmap({ M, F} , [ A] , List) -> pmap(fun (E) -> M:F(E, A) end, List);
pmap({ M, F} , Extra, List) ->

pmap(fun (E) -> erlang: apply (M, F, [ E|Extra ] ) end, List);
pmap(Fun, [] , List) -> pmap(Fun, List);
pmap(Fun, [ A] , List) -> pmap(fun (E) -> Fun(E, A) end, List);
pmap(Fun, Extra, List) ->

pmap(fun (E) -> erlang: apply (Fun, [ E|Extra ] ) end, List).

%% Does not wait for completion

60



pforeach(Fun, Jobs) ->
Self = self (),
{ Spawn, Count} = spawn_and_count(),
Workers = [ Spawn(fun () -> worker(Fun, Self) end)

|| _ <- lists:seq(1,Count) ] ,
workserver(Workers, Jobs).

workserver(Workers, [ Job|Jobs ] ) ->
receive { get_job, Worker } ->

Worker ! { job, Job } ,
workserver(Workers, Jobs)

end;
workserver(Workers, [] ) ->

lists:foreach( fun (W)-> W! stop end, Workers).

worker(Fun, Jobserver) ->
Jobserver ! { get_job, self () } ,
receive

stop -> ok ;
{ job, Job } ->

Fun(Job),
worker(Fun, Jobserver)

end.

spawn_and_count() ->
case try epiphany:state() catch error :undef -> offline end of

offline ->
{fun regular_spawn_link/1,
erlang:system_info(schedulers_online) } ;

booting ->
timer:sleep(100),
spawn_and_count();

_ ->
start_server(),
{fun epiphany_spawn_link/1, epiphany:count() }

end.

start_server() ->
case whereis (colib_server) of

undefined ->
{ Self, ReportRef } = {self (), make_ref() } ,
{ Pid, MonRef} =

spawn_monitor(
fun () -> server_entry(Self, ReportRef) end),

receive
ReportRef ->

demonitor(MonRef, [ flush ] ),
Pid;

{ ÕDOWNÕ, MonRef, _, _, Reason} ->
case whereis (colib_server) of
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undefined -> error (Reason);
Pid2 -> Pid2

end
end;

Pid -> Pid
end.

-record(state, { zero_sum = 0, one_sum = 0, red_sum = 0,
processes = []} ).

server_entry(Report, Ref) ->
register (colib_server, self ()),
Report ! Ref,
server_loop(#state {} ).

server_loop(State0 = #state {processes = Processes} ) ->
receive

{ spawned, Pid} ->
monitor(process, Pid),
server_loop(State0#state {processes =

[ Pid|Processes ]} );
{ died, Pid, Stats } ->

server_loop(server_handle_died(Pid, Stats, State0));
{ ÕDOWNÕ, _, process, Pid, Abnormal}

when Abnormal =/= normal ->
server_loop(State0#state {processes =

lists:delete(Pid, Processes) } );
{ poll, Asker, Ref } ->

State = #state { zero_sum=ZeroSum, one_sum=OneSum,
red_sum=RedSum}
= server_poll_loop(State0),

Asker ! { Ref, { ZeroSum, OneSum, RedSum}} ,
server_loop(State#state { zero_sum = 0, one_sum = 0,

red_sum = 0} );
_Other ->

server_loop(State0)
end.

server_poll_loop(State = #state {processes = []} ) -> State;
server_poll_loop(State = #state {processes = Processes} ) ->

receive
{ died, Pid, Stats } ->

server_poll_loop(server_handle_died(Pid, Stats,
State));

{ ÕDOWNÕ, _, process, Pid, Abnormal}
when Abnormal =/= normal ->

server_poll_loop(State#state {processes =
lists:delete(Pid, Processes) } )

end.
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server_handle_died(Pid, { Zero, One, Reds} ,
State = #state { zero_sum = ZeroSum,

one_sum = OneSum,
red_sum = RedSum,
processes = Processes} ) ->

State#state { zero_sum = ZeroSum + Zero,
one_sum = OneSum + One,
red_sum = RedSum + Reds,
processes = lists:delete(Pid, Processes) } .

- spec poll_stats() -> {integer (), integer (), integer () } .
poll_stats() ->

start_server() ! { poll, self (), Ref = make_ref() } ,
receive { Ref, Answer} -> Answer end.

select_timers(ZeroTimer, OneTimer) ->
application:set_env(colib, timers, { ZeroTimer, OneTimer} ).

regular_spawn_link(Fun) ->
spawn_link(

fun () ->
colib_server ! { spawned, self () } ,
try

Fun()
after

{ reductions, Reds }
= process_info( self (), reductions),

colib_server ! { died, self (), { 0, 0, Reds }}
end

end).

epiphany_spawn_link(Fun) ->
epiphany:spawn_link(

fun () ->
colib_server ! { spawned, self () } ,
{ ZeroConf, OneConf} = application:get_env(colib,

timers, { off, off } ),
_ = epiphany:timers(ZeroConf, OneConf),
try

Fun()
after

{ Zero, One} = epiphany:timers(off, off),
{ reductions, Reds }

= process_info( self (), reductions),
colib_server

! { died, self (), { Zero, One, Reds}}
end

end).
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