
Greedy Universal Dependency Parsing with Right Singular Word Vectors

Ali Basirat, Joakim Nivre

Department of Linguistics and Philology

Uppsala University

{ali.basirat,joakim.nivre}@lingfil.uu.se

Abstract

A set of continuous feature vectors formed by right singular vectors of a transformed co-occurrence matrix are used with the

Stanford neural dependency parser to train parsing models for a limited number of languages in the corpus of universal depen-

dencies. We show that the feature vector can help the parser to remain greedy and be as accurate as (or even more accurate than)

some other greedy and non-greedy parsers.

1. Introduction

Greedy transition-based dependency parsing is appealing

thanks to its efficiency, deriving a parse tree for a sen-

tence in linear time using a discriminative classifier. A ma-

jor drawback to this approach of parsing is the too early

choices made by the greedy parsers at each step of the

parsing algorithm which usually lead to some local optima.

This problem can be enhanced by providing the classifier

with more informative features about the contextual envi-

ronment of words to help the parser to make a better deci-

sion at each step of parsing. Chen and Manning (2014) pro-

pose to use distributional representation of words as feature

vectors in a 3-layered feed-forward neural network which

functions as the core classifier in a transition-based depen-

dency parser, known as Stanford neural dependency parser.

These feature vectors, also known as word vectors, are so

distributed in a high dimensional space that the similarities

between vectors mirror the syntactic and semantic similari-

ties between words (Sahlgren, 2006).

The successful applications of the word vectors in the

natural language processing tasks (e.g., (Collobert et al.,

2011; Chen and Manning, 2014; Dyer et al., 2015)) en-

courage many researchers to extract more qualified word

vectors (Mikolov et al., 2013; Pennington et al., 2014; Le-

bret and Collobert, 2014). In this paper we propose to ex-

tract word vectors from right singular vectors of a matrix

returned by a transformation function that takes a proba-

bility co-occurrence matrix as input and expand the data

massed around zero.

Using these word vectors with Stanford neural depen-

dency parser, we trained different parsing models over En-

glish, Persian, and Swedish parts of the corpus of universal

dependencies (Nivre et al., 2016). We show that the word

vectors can result in parsing models which are more accu-

rate than some other greedy and non-greedy parsers.

2. Transition-Based Dependency Parsing

A greedy transition-based dependency parser aims to de-

rive a parse tree from a sentence by predicting a sequence

of transitions between a set of configurations. The process

of parsing starts from an initial configuration and ends with

some terminal configurations. A configuration consists of

a stack Σ to store partially processed nodes, a buffer B to

store unprocessed nodes in the input sentence, and a set of

partial parse trees A associated with the processed nodes.

Nodes are positive integers corresponding to the linear po-

sition of the words in the input sentence and one extra ar-

tificial root node 0. The transitions between configurations

are controlled by a discriminative classifier which is trained

on a history-based feature model combining features of the

partially built dependency tree and attributes of input to-

kens.

The arc-standard algorithm (Nivre, 2004) is among the

many different algorithms proposed for moving between

configurations. The algorithm starts with the initial config-

uration in which all words are in B, Σ is empty, andA holds

0. It uses three actions Shift, Right-Arc, and Left-Arc for

transition between the configurations and to build the parse

tree. Shift pushes the head node in the buffer into the stack

unconditionally. The two actions Left-Arc and Right-Arc

are used to build left and right dependencies, respectively,

and are restricted by the fact that the final dependency tree

has to be rooted at node 0.

3. Stanford Dependency Parser

Stanford dependency parser is an arc-standard system with

a feed-forward neural-network as its classifier. The neu-

ral network consists of three layers: An input layer con-

nects the network to a configuration through 3 real-valued

vectors representing words, POS-tags and dependency re-

lations. The vectors that represent POS-tags and depen-

dency relations are initialized randomly but those that rep-

resent words are initialized by word vectors systematically

extracted from a corpus. Each of these vectors is inde-

pendently connected to the hidden layer of the network

through three distinct weight matrices. A cube activation

function is used in the hidden layer to model the interac-

tions between the elements of the vectors. The activation

function resembles a third degree polynomial kernel that

enables the network to take different combinations of vec-

tor elements into consideration. The output layer generates

probabilities for decisions between different actions in the

arc-standard system. The network is trained by the stan-

dard back-propagation algorithm that updates both network

weights and vectors used in the input layer.



4. Word Vectors

Following Lebret and Collobert (2014), we propose to ex-

tract word vectors from a co-occurrence matrix as follows.

First we build a co-occurrence matrix C from a text. The

element Ci,j is a maximum likelihood estimation of the

probability of seeing word wj in the context of word wi,

(i.e., Ci,j = p(wj |wi). It results in a sparse matrix whose

data are massed around zero because of the disproportional

contribution of the high frequency words in estimating the

co-occurrence probabilities. Each column of C can be seen

as a vector in a high-dimensional space whose dimensions

correspond to the context words. In practice, we need to re-

duce the dimensionality of these vectors. This can be done

by standard methods of dimensionality reduction such as

principal component analysis, but the high density of data

around zero and the presence of a small number of data

points far from the data mass can lead to some meaningless

discrepancies between word vectors.

In order to have a better representation of the data we ex-

pand the probability values in C by skewing the data mass

from zero toward one. This can be done by applying any

monotonically increasing concave function that magnifies

small numbers in its domain while preserving the given or-

der. Commonly used transformation functions with these

characteristics are the logarithm function, the hyperbolic

tangent, the power transformation, and the Box-cox trans-

formation with some specific parameters. After applying f

on C we centre the column vectors in f(C) around their

mean and build the word vectors as below:

Υ = γVT
n,k (1)

where Υ is a set of k dimensional word vectors associated

with n words, VT
n,k is the matrix of first k right singular

vectors of f(C), and γ = λ
√
n− 1 is a constant factor

to scale the unbounded data in the word vectors. In the

following, we will refer to our model as RSV, standing for

Right Singular word Vector.

5. Experimental Setting

We set the RSV parameters as follows:

• transformation function: f = 7
√
x

• number of dimensions in word vectors: 100

The Stanford neural parser in all of our experiments is used

with 400 hidden units and maximum 20 000 training iter-

ations. These parameters are chosen on the basis of our

previous experiments on Wall Street Journal (Marcus et al.,

1993). The transformation function has been chosen among

many other transformation functions such as tanh, coxbox,

and log. We have also tested word vectors with different

dimensions and selected the best one.

We use the following corpora to extract word vectors for

English, Persian, and Swedish. The English corpus con-

sists of raw sentences in Wall Street Journal (WSJ) (Mar-

cus et al., 1993), English Wikicorpus,1 Thomson Reuters

1http://www.cs.upc.edu/˜nlp/wikicorpus

Text Research Collection (TRC2),2 English Wikipedia cor-

pus,3 and the Linguistic Data Consortium (LDC) English

corpus.4 We concatenate all the corpora and split the sen-

tences by the OpenNLP sentence splitting tool.5 Text tok-

enization is performed by Stanford tokenizer.6 Word vec-

tors for Persian are extracted from the Hamshahri Corpus

(AleAhmad et al., 2009), Tehran Monolingual Corpus,7

and Farsi Wikipedia download from Wikipedia Monolin-

gual Corpora.8 The Persian text normalizer tool (Seraji,

2015) is used for sentence splitting and tokenization.9 Word

vectors for Swedish are extracted from Swedish Wikipedia

available at Wikipedia Monolingual Corpora, Swedish web

news corpora (2001-2013) and Swedish Wikipedia corpus

collected by Språk-banken.10 The OpenNLP sentence split-

ter and tokenizer are used for normalizing the corpora.

We replace all numbers with a special token NUMBER

in all corpora and convert the uppercase letters to corre-

sponding lowercase forms in English and Swedish. Word

vectors are extracted only for the unique words appearing at

least 100 times. The 10 000 most frequent words are used

as context words in the co-occurrence matrix. Table 1 rep-

resents some statistics of the corpora.

#Tokens #W ≥ 1 #W ≥ 100 #Sents

English 8× 109 14 462 600 404 427 4× 108

Persian 4× 108 1 926 233 60 718 1× 107

Swedish 6× 108 5 437 176 174 538 5× 107

Table 1: Size of the corpora from which word vectors are

extracted; #Tokens: total number of tokens; #W≥k: num-

ber of unique words appearing at least k times in the cor-

pora; #Sents: number of sentences.

The word vectors are evaluated with respect to their con-

tribution to the accuracy of parsing models trained with

them. The parsing models are trained on the English, Per-

sian, and Swedish parts of the corpus of universal depen-

dencies (Nivre et al., 2016) version 1.2 using Stanford neu-

ral dependency parser with gold part-of-speech tags.

The experiments have been performed on Linux 3.10
running on 8 Intel Xeon 2.40 GHz processors and 100
GB main memory. Octave 4.0.0 enabled with 64 bit in-

dexing is used to build the co-occurrence matrix and to ex-

tract word vectors from it. The parsing models are trained

with 4 threads.

2
http://about.reuters.com/

researchandstandards/corpus
3
https://dumps.wikimedia.org/enwiki/

4
https://www.ldc.upenn.edu

5
http://opennlp.apache.org

6http://nlp.stanford.edu
7
http://ece.ut.ac.ir/system/files/NLP/

Resources/TMC2.rar
8
http://linguatools.org/tools/corpora/

wikipedia-monolingual-corpora
9
http://stp.lingfil.uu.se/˜mojgan/preper.

html
10
https://spraakbanken.gu.se/eng/

resources/corpus



6. Results

Table 2 shows the results we obtained from the parsing

models trained on the corpus of universal dependencies us-

ing Stanford neural dependency parser with RSV word vec-

tors.

Development set Test set

UAS LAS UAS LAS

English 88.5 85.9 87.6 84.9
Persian 85.7 82.8 85.4 82.4
Swedish 83.4 79.4 86.2 82.5

Table 2: The accuracy of the Stanford neural dependency

parser trained with RSV word vectors on the corpus of uni-

versal dependencies

We compare our results with the results reported for

MaltParser (Nivre et al., 2006) and Parsito by

Straka et al. (2015). MaltParser is a greedy transition-

based dependency parser which uses a liblinear model as its

core classifier. Parsito is a transition-based dependency

parser inspired by the Stanford neural dependency parser

(Chen and Manning, 2014). It added two main items to the

original parser: first is a search-based oracle similar to a

dynamic oracle and second is the set of morphological fea-

tures provided by the corpus of universal dependencies. It

also replaces the cube activation function used in the Stan-

ford parser with the tanh function.

Table 3 summarizes the results. All the parsing mod-

els are trained with the arc-standard system (Nivre, 2004).

The Parsito results are for both the static oracle (Parsito-

St) and the search-based oracle (Parsito-Sr). As shown in

all cases the parsing models trained with Stanford neural

dependency parser and RSV (Stanford-RSV) are more ac-

curate than the other parsing models. The superiority of

the results obtained from Stanford-RSV to the Parsito-Sr

shows the importance of word vectors in dependency pars-

ing in comparison with adding more features to the parser

or performing the search-based oracle.

Parsito-St Parsito-Sr MaltParser Stanford-RSV

UAS UAS UAS UAS

LAS LAS LAS LAS

English
86.7 87.4 86.3 87.6
84.2 84.7 82.9 84.9

Persian
83.8 84.5 80.8 85.4
80.2 81.1 77.2 82.4

Swedish
85.3 85.9 84.7 86.2
81.4 82.3 80.3 82.5

Table 3: Accuracy of dependency parsing. Parsito-St and

Parsito-Sr refer to the Parsito models trained with static

oracle and search-based oracle.

7. Conclusion

Distributional representations of words, called word vec-

tors, have shown great improvements in a variety of natural

language processing tasks. In this paper, we have proposed

to use a set of word vectors formed by right singular vectors

of a co-occurrence matrix that is transformed by a 7th-root

transformation function. Our experiments on the corpus of

universal dependencies show that the word vectors are well

qualified to model the dependency relations in the corpus.

Using the Stanford neural dependency parser with a large

enough hidden layer, our word vectors result in some pars-

ing models for English, Persian, and Swedish which are

more accurate than other popular transition-based depen-

dency parsers designed with the arc-standard system.

References

Abolfazl AleAhmad, Hadi Amiri, Ehsan Darrudi, Masoud

Rahgozar, and Farhad Oroumchian. 2009. Hamshahri:

A standard persian text collection. Knowledge-Based

Systems, 22(5):382–387.

Danqi Chen and Christopher Manning. 2014. A fast and

accurate dependency parser using neural networks. In

Proceedings of the 2014 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP), pages

740–750.

Ronan Collobert, Jason Weston, Léon Bottou, Michael

Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.

Natural language processing (almost) from scratch. The

Journal of Machine Learning Research, 12:2493–2537.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin

Matthews, and Noah A. Smith. 2015. Transition-based

dependeny parsing with stack long short-term memory.

In Proceedings of the 53rd Annual Meeting of the As-

sociation for Computational Linguistics (ACL) and the

7th International Joint Conference on Natural Language

Processing, pages 334–343, July.

Rémi Lebret and Ronan Collobert. 2014. Word embed-

dings through hellinger pca. In Proceedings of the 14th

Conference of the European Chapter of the Association

for Computational Linguistics, pages 482–490, Gothen-

burg, Sweden, April. Association for Computational Lin-

guistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann

Marcinkiewicz. 1993. Building a large annotated corpus

of English: The Penn treebank. Computational Linguis-

tics - Special issue on using large corpora, 19(2):313 –

330, June.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey

Dean. 2013. Efficient estimation of word representa-

tions in vector space. In Proceedings of Workshop at

ICLR.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-

parser: A data-driven parser-generator for dependency

parsing. In Proceedings of the 5th International Con-

ference on Language Resources and Evaluation (LREC),

pages 2216–2219.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-

ter, Yoav Goldberg, Jan Hajic, Christopher D Manning,

Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia

Silveira, et al. 2016. Universal dependencies v1: A mul-

tilingual treebank collection. In Proceedings of the 10th

International Conference on Language Resources and

Evaluation (LREC 2016).

Joakim Nivre. 2004. Incrementality in deterministic de-

pendency parsing. In Proceedings of the Workshop on

Incremental Parsing: Bringing Engineering and Cogni-



tion Together, pages 50–57. Association for Computa-

tional Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D

Manning. 2014. Glove: Global vectors for word rep-

resentation. In EMNLP, volume 14, pages 1532–1543.

Magnus Sahlgren. 2006. The Word-space model. Ph.D.

thesis, Stockholm University.

Mojgan Seraji. 2015. Morphosyntactic Corpora and Tools

for Persian. Ph.D. thesis, Uppsala University.

Milan Straka, Jan Hajic, Jana Straková, and Jan Hajic jr.

2015. Parsing universal dependency treebanks using

neural networks and search-based oracle. In Interna-

tional Workshop on Treebanks and Linguistic Theories

(TLT14), pages 208–220.


