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Abstract

A comparative validation of the human variant
simulator SIMdrom

Sofia Ånäs

The past decade’s progress in next generation sequencing has drastically decreased
the price of whole genome and exome sequencing, making it available as a clinical tool
for diagnosing patients with genetic disease. However, finding a disease-causing
mutation among millions of non-pathogenic variants in a patient’s genome, is not an
easy task. Therefore, algorithms for finding variants relevant for clinicians to
investigate more closely are needed and constantly developed. To test these
algorithms a software called SIMdrom has been developed to simulate test data. In
this project, the simulated data is validated through comparison to real genetic data to
ensure that it is suitable to use as test data. Through ensuring the data’s reliability and
finding possible improvements, the development of algorithms for finding
disease-causing mutations can be facilitated. This in-turn could lead to better
diagnosing-possibilities for clinicians. When visualizing simulated data together with
real genomes using principal components analysis, it clusters near it’s real
counterpart. This shows that the simulated data resembles the real genomes.
Simulated exomes also performed well when used as a part in one of three training
sets for the classifier in the Prioritization of Exome Data by Image Analysis study.
Here they perform second best after an in-house data set consisting of real exomes.
To conclude, the SIMdrom simulated data performs well in both parts of this project.
Additional tests of its validity should include testing against larger real data sets, an
improvement possibility could be to implement a simulation option for spiking in
noise.
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Alles hat ein Ende,  
nur die Wurst hat zwei 

(Allt har ett slut, bara korven har två) 
Tyskt talesätt 

Till mamma, pappa, mormor och farmor.
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Sammanfattning 
DNA är receptet som styr hur allt liv på jorden ser ut och fungerar, men även delvis vilka 
sjukdomar en organism riskerar att utveckla. Hos oss människor består arvsmassan av 23 
kromosompar. Eftersom människor är diploida organismer betyder det att nästan alla våra 
gener finns i två kopior, även kallade alleler, med undantag för dem som ligger på 
könskromosomerna (där män har en kopia av X- och en av Y-kromosomen, medan kvinnor 
har två kopior av X-kromosomen). Vilken uppsättning av gener vi har beror på vad vi ärver 
från våra föräldrar. Denna uppsättning kallas genotyp och kan vara antingen homozygot om 
de två allelerna är likadana till exempel AA eller aa medan den kallas heterozygot om 
allelerna är olika, vilket i detta fall skulle vara Aa. Dessa alleler existerar i olika frekvenser 
inom olika populationer, där vissa kan vara vanligare än andra. Vissa alleler kan vara 
sjukdomsalstrande på så vis att de förstör, förändrar eller på annat sätt påverkar en funktion i 
kroppen till något negativt. Dessa allelvarianter kallas mutationer och ger alltså upphov till 
genetiska sjukdomar. 

För att hitta vilken eller vilka mutationer hos patienter med genetiska sjukdomar som gett 
upphov till sjukdomen, brukar man idag ofta undersöka hela patientens genom eller exom. Att 
undersöka genomet innebär att läsa av, sekvensera, hela arvsmassan. En undersökning av 
exomet innebär däremot att endast sekvensera den del av arvsmassan som består av gener som 
kodar för proteiner, och därmed anses ha en direkt funktion i kroppen. Exomet utgör enbart 
ungefär 2% av den totala arvsmassan, men kan ändå innehålla uppemot 50 000 varianter! Det 
innebär alltså att det är frågan om en mycket stor informationsmängd som ska undersökas. 
Även om endast ovanliga allelvarianter tas med i utredningen är de för många för att enkelt 
kunna ögnas igenom och hitta dem som kan orsaka en sjukdom.  

Här kan algoritmer, som utvecklats för att sålla bort troligtvis ofarliga varianter och prioritera 
dem som anses riskabla, vara av stor nytta. Dessa algoritmer kan ta in en mängd information i 
beräkningen för att räkna ut vilka varianter som skulle kunna orsaka skadliga förändringar hos 
en människa medan andra varianter kanske inte alls behöver vara farliga. För att vara säker på 
att dessa algoritmer fungerar som de ska och faktiskt hittar de varianter som eftersöks behöver 
de testköras på data som liknar den riktiga datamängden, men där den sökta mutationen är 
känd. På så sätt är det möjligt att ta reda på om algoritmen kan hitta mutationen eller felaktigt 
sållar bort den och alltså behöver utvecklas och justeras ytterligare.  

I detta projekt testas och utvärderas programvaran SIMdrom som är utvecklad för att simulera 
genetiska data, i egenskap av genom och exom. Den simulerade datamängden kan användas 
som testdata för algoritmerna. Det är därför viktigt att veta att den simulerade datamängden 
liknar de riktiga data som algoritmerna sedan ska användas på. I det här projektet kommer den 
därför att jämföras med riktiga genetiska data i två olika steg, för att undersöka hur lämplig 
den är för det tänkta användningsområdet. Förhoppningen är att kunna säkerställa 
lämpligheten och i annat fall kunna föreslå utvecklingsmöjligheter för att förbättra den 
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simulerade datamängden. Detta för att algoritmerna i sin tur ska kunna testas på tillförlitliga 
data och på så sätt fortsätta utvecklas. Slutligen är syftet att dessa verktyg som algoritmerna är 
ska kunna hjälpa genetiker att korrekt diagnosticera sina patienter. 
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Abbreviations 
1KG 1000 Genomes Project 
AC allele counts 
AChemi allele count hemizygous 
AC allele count heterozygous 
AChom allele count homozygous 
AF allele frequency 
AFR African/African American 
AMR Latin American 
AN total number of alleles 
AUPRC area under precision-recall curve 
AUROC area under receiving operator characteristics curve 
BOQA Bayesian Ontology Query Algorithm 
CADD Combined Annotation Dependent Depletion 
DNA deoxyribonucleic acid 
EAS East Asian 
ExAC Exome Aggregation Consortium 
FIN Finnish 
GC genotype counts 
gnomAD Genome Aggregation Database 
HPO Human Phenotype Ontology 
IRN Iranian samples 
LD linkage disequilibrium 
NFE Non-Finnish European 
NGS next generation sequencing 
OMIM Online Mendelian Inheritance in Man 
OoA Out of Africa 
PCA principal components analysis 
PEDIA Prioritization of Exome Data by Image Analysis 
PRC precision-recall 
RefSeq Reference Sequence 
ROC receiving operator characteristics 
SNP single nucleotide polymorphism 
SVM support vector machine 
VCF variant call format 
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1 Introduction 
The next generation sequencing (NGS) era started a decade ago, somewhere in the middle of 
the 2000’s. Since then, sequencing technologies have continued to advance, leading to the 
construction of comprehensive references of the human genome and a severe cost-reduction 
in sequencing (Goodwin et al. 2016). Now, the low cost enables sequencing exomes and 
genomes with clinical purpose and has become a favourable tool for identifying causal 
variants in genetic disease (Goodwin et al. 2016, Bamshad et al. 2011). However, this is not 
an easy task as the human genome contains several millions of variants, most of which are not 
disease-causing. Even when sequencing exomes, the protein-coding part of the genome which 
represents less than 2% of the whole genome, between 20 000 and 50 000 variants are found 
(Gilissen et al. 2012). One of the first steps in reducing the number of possible variants is to 
exclude known variants through filtering them against e. g. a variant database. This reduces 
the number of possible variants with about 90%. Still, this leaves a lot of variants that need to 
be prioritized according to their relevance as causing of the patients disease (Gilissen et al. 
2012). Here, bioinformatics tools can be of great help. Algorithms for prioritizing the variants 
through integrating more information about them beyond their potential deleteriousness and 
rarity can reduce the number of possible causal variants (Smedley et al. 2015). 

To improve these tools and evaluate them, they need to be tested (benchmarked) on data with 
known diseases and mutations. Such data is typically a genome from a genetic database that is 
spiked with a known disease-causing mutation (Smedley et al. 2016). However, these are 
curated genomes and may be too “perfect” compared to exomes/genomes sequenced from 
patients. In an attempt to deal with this, a software called SIMdrom was developed for 
simulating genetic data to use for benchmarking, by the computational group at the Institute 
of Medical Genetics and Human Genetics at Charité in Berlin. This simulated genetic data 
was later recognized as a possible part in the Prioritization of Exome Data by Image Analysis 
(PEDIA) study, where there at the moment is a need for simulated exomes. 

1.1 Purpose 

The purpose of the project is to assess the reliability of the software SIMdrom, to find out 
how similar genomes sampled using SIMdrom are to real genomes (such as the 1000 
Genomes Project (1KG) genomes, The 1000 Genomes Project Consortium 2015). Since the 
simulated genomes are being used in other projects (such as benchmarking other tools) it is 
important to know how realistic they are. Through this validation, improvement possibilities 
of SIMdrom might be recognized which in turn can aid in the improvement of the tools for 
finding disease-causing mutations. For this validation two goals were set: 

1. Make a statistical validation of SIMdrom.� 
2. Compare different genetic training sets for the PEDIA study. 
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2 Background 
Humans are diploid organisms, which means our genome exists in two copies. These two 
versions of our DNA are distributed over 22 autosomal chromosome pairs, and one pair of sex 
chromosomes, the gonosomes, XX (female) or XY (male) (Holmquist & Wienberg 2001). 
Each part on a chromosome is called a locus, and each chromosomal pair share the same 
locus for a specific gene. However, the same locus on a chromosome pair may carry different 
bases, or sequences of bases. The different locus variants are called alleles and can occur at 
different frequencies across populations (The 1000 Genomes Project Consortium 2015). The 
genotype defines what set up of alleles the chromosome pair carries at a locus, and can be 
either homozygous or heterozygous. The homozygous genotype means that the chromosomes 
carry the same allele, and the heterozygous genotype carries two different alleles (Lam & 
Mueller 2001). When the genotype is expressed it affects the phenotype, which are the 
observable traits in an individual. Different genotypes at a locus can be connected to different 
phenotypes, hence the composition of alleles at a locus may decide what phenotype the 
individual displays (Scriver 2001). A phenotype can be everything from eye colour to a 
disease syndrome and can be caused by just one specific allele or several genotypes in 
combination with environmental factors (White & Rabago-Smith 2011, Bamshad et al. 2011, 
Manolio et al. 2008).  

To determine what variation of alleles and genotypes an individual carries, their sequenced 
exome or genome is compared to a reference sequence (Nielsen et al. 2011). The reference 
sequence is built from a consensus of several individual genomes (O’Leary et al. 2016). 
Alleles that differ from the reference allele at a locus are called variants. A typical human 
genome contains millions of variants, a few of these can be pathogenic and cause disease (The 
1000 Genomes Project Consortium 2015, Bamshad et al. 2011). To predict if a variant is 
deleterious many aspects must be taken into consideration, e. g. the region on the 
chromosome, is it in a gene, will it cause a change in the amino acid sequence etc. Therefore, 
algorithms developed to incorporate this information in assessing variants deleteriousness are 
very useful (Kircher et al. 2014). To find the causative mutation in a patient is still not an easy 
task as each exome can contain up to roughly 50 000 variants (Gilissen et al. 2012), hence 
more algorithms can be of help in prioritizing the affected genes (Smedley et al. 2015). 

2.1 Simulation of variants using SIMdrom 

In this project, the Java based software SIMdrom will be used to simulate human exomes, or 
more precisely variants in the human exome. As input it takes variant call format (VCF) files, 
a file format for storing variable positions across the genome along with a reference. The files 
consist of three parts, the first is meta-information about the file, second a header describing 
the different columns, and last all the variable positions and information about them (Danecek 
et al. 2011).  
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An example can be seen in Figure 1 below, displaying the three fields. Here, the site 234 on 
chromosome 1 has one reference allele G and one alternate allele T. The given information 
concerns the alternate allele, in this example it has a phred quality score of 30 and has passed 
all filters. The INFO column is a flexible field which can contain many different attributes 
describing the samples. In Figure 1, the INFO column contains information about the allele 
frequency (AF) of the alternate allele which is 0.25, and its allele count (AC) of 25 in a total 
of 100 alleles (AN) of the called genotypes in a population. The attributes defined in the 
INFO column must be explained in the meta-information field to be valid (Figure 1). There is 
also one sample present in the file (sample1) which is heterozygous at this position, it carries 
one reference allele and one alternate allele (0/1) (Danecek et al. 2011). In this project, the 
information about allele frequencies, allele counts and counts of genotypes will be of interest. 
With SIMdrom it is possible to use this information to sample a new VCF-file containing an 
individual with a sampled set of genotypes.  

##fileformat=VCFv4.2 

##FORMAT=<ID=GT,Number=1,Type=String,Description=”Genotype”> 

##INFO=<ID=AC,Number=A,Type=Integer,Description=”Allele count in genotypes, for each ALT allele, in the same order as listed”> 

##INFO=<ID=AF,Number=A,Type=Float,Description=”Allele frequency, for each ALT allele, in the same order as listed”> 

##INFO=<ID=AN,Number=1,Type=Integer,Description=”Total number of alleles in called genotypes”> 

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT sample1 

1 234 rs4567 G T 30 PASS AF=0.25;AC=25;AN=100 GT 0/1 

Figure 1. An example of a VCF file. The meta-information field marked ‘##’ describing the information in the file, the 
header marked ‘#’ describes all the ten columns, the second row is a data line containing information about a variant 
position.  

There are different ways to perform the simulation, depending on what output is desired and 
what input is available. In this project, three different variant databases are used, the 1KG 
(The 1000 Genomes Project Consortium 2015), Exome Aggregation Consortium (ExAC), and 
Genome Aggregation Database (gnomAD, Lek et al. 2016). All of them can be used as input 
for SIMdrom, with slightly different sampling techniques. The 1KG genomes are multiVCF-
files which means that each file contains genotype information about multiple samples. From 
these files, one possibility is to use SIMdrom to randomly pick one sample. The ExAC and 
gnomAD in contrast, do not contain any genotype information about the samples, however 
they contain allele frequencies for all the variants, also within different populations. From the 
allele frequencies, it is possible to sample genotypes using SIMdrom. 

The sampling of genotypes from allele frequencies utilizes the Hardy-Weinberg principle (eq. 
1 and 2) to be able to calculate the probabilities for the sample being homozygous for the 
reference or the alternate, or heterozygous. Eq. 1 describes the allele frequencies in a diploid 
population at a locus with two different alleles, p and q. Eq. 2 can be derived from squaring 
eq. 1, which then describes the genotype frequencies for homozygous reference (p2), 
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heterozygous (2pq) and homozygous alternate (q2). The Hardy-Weinberg principle describes 
genetic variation in a population at equilibrium, where the variation is constant between 
generations (Crow 1988). Therefore, to be able to use the principle the populations under 
investigation must be assumed to be at equilibrium. Under those assumptions, it is possible to 
calculate the frequencies of homozygous and heterozygous individuals in a population using 
eq. 1 and 2. If there are more than two alternate alleles at the same locus the equations are 
altered through adding the number of additional alleles to eq.1 before it is squared. For three 
possible alleles, there will be six possible genotypes, etc.  

! + # = 1  (eq. 1) 

!& + 2!# + #& = 1 (eq. 2) 

In SIMdrom, each of the calculated genotype frequencies are given an interval between zero 
and one, equivalent to their size (an example can be seen in Figure 2). The genotype is then 
determined by sampling a number between zero and one, e. g. if the random number x is 
larger than p2 but smaller than p2+2pq the resulting genotype is heterozygous (GT in Figure 
2). 

 

Figure 2. An example of the sampling of genotypes in SIMdrom. The sampling can be described as picking a 
random number between zero and one, where each genotype (GG, GT and TT) covers an interval corresponding 
their calculated or measured frequency in a population.  

Another sampling alternative for ExAC is to use the measured number of homozygous and 
heterozygous alleles (AChom, AChet, and AChemi if gonosome, in the ExAC INFO column), 
to calculate the real genotype frequencies in the population. This alternative gives a more 
exact relationship between the different genotypes within the population, since they are 
measured and not predicted through Hardy-Weinberg. Hence, an individual with genotypes 
sampled through homozygous and heterozygous counts could come closer to resembling the 
reality. In gnomAD the allele counts are replaced with genotype counts (GC in the gnomAD 
INFO column) which can be used in a similar way in SIMdrom. 

2.2 Validation of SIMdrom using PCA 

To investigate how close SIMdrom sampled genomes are to real genomes, the idea was to use 
a method described by Novembre et al. (2008). In their paper, genetic variance from different 
populations within Europe were visualized using a principal components analysis (PCA) 
software called smartpca (Patterson et al. 2006). Their theory was that genetic data contains 



 

6 

population specific differences even within Europe and that it can be visualized with PCA 
(Novembre et al. 2008).  

In this project, the method is used to visualize the difference between sampled and real data. 
The smartpca software is specially developed for analysing the variance in genetic data. Each 
individual in the data gets represented by a row i in a matrix M, and each genetic variant by a 
column j. The genotypes as they are described in the VCF-files, are translated into the number 
of reference alleles at that position (0, 1 or 2). An example of such a matrix can be seen in 
Figure 3, displaying three individuals and four variable positions, where individual 1 have one 
reference allele (heterozygous) at variant 1. After a normalization step, the PCA is performed 
through singular value decomposition of the matrix M (Patterson et al. 2006). After the 
analysis, the eigenvectors that describe the most of the variance between the data sets can be 
visualized in a plot. 

 variant 1 variant 2 variant 3 variant 4 

individual 1 1 1 0 2 

individual 2 1 2 0 0 

individual 3 1 2 1 2 

Figure 3. Genetic data turned into a matrix consisting of three individuals, four variable positions, and their 
genotypes 0, 1 or 2 representing the number of reference alleles at that position. 

2.3 Simulating exomes for the PEDIA study 

Another way of assessing the reliability of SIMdrom (and evaluate a possible area of 
application) is to see how the simulated data performs against real data in a project. The 
PEDIA study combines three different methods in monogenetic disease diagnosis, genotype, 
phenotype, and image analysis. The aim of the study is to make it easier to identify disease-
causing mutations.  

Figure 4. This is an example of a mask from Face2Gene 
representing a genetic syndrome. Displayed here is a 
mask for the Cornelia de Lange syndrome. 
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The image analysis is performed by an algorithm developed by Face2Gene (FDNA INC. 
2017). The algorithm takes a photo of the patient’s face as input and then compares 
biometrics from the patient’s face to so-called “masks” (Figure 4). The masks represent 
different syndromes, constructed from patients with a known diagnose. Through the 
comparison to the masks, the patient can be classified to possible syndromes. The syndromes 
are scored by the algorithm, where the one that best fits the patient’s facial measurements get 
the highest score.  

The phenotype prioritization is performed using three different algorithms; Feature match also 
by Face2Gene, Phenomizer, and Bayesian Ontology Query Algorithm (BOQA) (FDNA INC. 
2017, Köhler et al. 2009, Bauer et al. 2012). Using different ontology search methods, the 
algorithms prioritize diseases based on similarities to the described phenotypes of a patient. 
Given a set of Human Phenotype Onology (HPO) terms from a patient, the algorithms score 
possible diseases and their associated genes (Köhler et al. 2009, Bauer et al. 2012). The HPO 
is a controlled phenotype vocabulary for describing clinical abnormalities (Köhler et al. 
2017). The molecular prioritization of the exome is performed using Combined Annotation 
Dependent Depletion (CADD) which generates a score from the deleteriousness of the 
variants in the patient’s exome. The score represents how probable it is that a dysfunctionality 
of a gene is involved in a given phenotype (Kircher et al. 2014). 

In the PEDIA study the three methods, phenotype prioritization, gene prioritization, and 
image analysis (Figure 7), get represented as scores per gene. These scores are then used to 
build a feature vector for a support vector machine (SVM), a supervised machine learning 
model. Through training on solved cases, the SVM learns to calculate a decision boundary for 
classifying affected and unaffected genes (Cortes & Vapnik 1995).  

Figure 5. The different parts in the PEDIA study, used to build the feature vector for the classifier. 
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A current problem in the PEDIA study is the lack of exomes with known diagnosis, since 
most of the genetic data from patients consist of single-gene tests or cases from literature. 
Exomes with known diagnosis are needed for training and testing the classifier. Therefore, to 
generate more genetic data, 1KG genomes have been used as background to spike-in patients’ 
causal variants into (Figure 5). This data has then been used in the training set (together with 
the patient’s image and described phenotype), and the existing patients’ exomes in the test set.  

In this project, SIMdrom simulated exomes will be used in one of three training sets (Figure 
7) for the PEDIA classifier, as an evaluation of the training sets and to see how the simulated 
exomes perform against real data. 

3 Materials and method 

3.1 Goal 1 

In the first goal, the software smartpca was used to visualize differences between SIMdrom 
simulated exomes/genomes and real genomes from the 1000 Genomes Project. To document 
the method and to be able to run everything simultaneously the workflow management system 
Snakemake was used (Köster & Rahmann 2012). A complete documentation of the workflow 
for goal one can be found at https://github.com/sofiaanas/smartflow. 

3.1.1 Preparation 
In the preparation step, the ExAC exome database, the gnomAD genome database and 1KG 
genomes were downloaded from their respective databases 
(ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/ 2017-02-14, 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ 2017-04-06, 
https://storage.googleapis.com/gnomad-public/release-170228/vcf/genomes/ 2017-04-27). 
The analysis was divided into two parts, simulation of exomes using ExAC and simulation of 
exomes using gnomAD, both compared to real 1KG genomes but cut to different regions. For 
the ExAC analysis, the simulated exomes and real 1KG samples were filtered to regions with 
a selected coverage (regions with a depth of at least 20 in 80% of samples) in ExAC 
(ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/coverage/ 2017-04-12). In the 
gnomAD analysis, the simulated and real genome samples were filtered to regions covered in 
RefSeq 
(ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/H_sapiens/ARCHIVE/ANNOTATION_RELEA
SE.105/GFF/ 2017-04-26). The real samples were randomly hand-picked from the 1KG 
samples-list 
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/201306
06_sample_info.xlsx 2017-04-06) to match the populations simulated from ExAC and 
gnomAD, (Appendix A 1).  
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3.1.2 Simulation 
The SIMdrom simulation was performed in two different ways for each analysis (ExAC and 
gnomAD) to visualize differences between the simulation options. The ExAC exomes were 
simulated using the allele frequency (AF) for five different populations African/African 
American (AFR), Latin American (AMR), East Asian (EAS), Finnish (FIN), Non-Finnish 
European, (NFE), creating 50 exomes, ten from each population. The same populations were 
also simulated using the allele counts (AC) of homozygotes and heterozygotes. The gnomAD 
exomes were simulated using allele frequency too, for the same five populations resulting in 
50 exomes (ten of each population). In addition to that, another 50 exomes were simulated 
using the genotype counts (GC). In total 100 exomes were simulated from ExAC and 100 
from gnomAD. 

3.1.3 Analysis and visualization 
 To be able to compare the differences between the simulations and the real samples, the 
simulated files were merged with the real samples to perform the smartpca. The different 
simulation options (AF, AC, GC) within each analysis (ExAC, gnomAD) were merged first, 
with each other, second, with the real samples (Table 1), and third, with each other and the 
real samples (Table 2). This resulted in eight different analysis files which can be seen in 
Table 1 and Table 2. The files were then modified somewhat to be able to be used in later 
steps. New ID’s were assigned to the variants because some did not have a previous 
identification. As a result from the file-merging, genotypes homozygous for the reference 
appear encoded as ‘./.’, these were corrected to ‘0/0’. Regions considered to have linkage 
disequilibrium (LD) were pruned using PLINK (Purcell & Chang 2017, Chang et al. 2015), 
removing variants displaying correlations between genotype allele counts (using same settings 
as in Novembre et al. 2008, removing variants within every 50 single nucleotide 
polymorphism (SNP) displaying pairwise squared correlations greater than 80%). Otherwise 
LD can induce correlations in the nearby columns in the matrix, since nearby variants will 
display the same pattern (Patterson et al. 2006).  

Table 1. The files were merged before the smartpca analysis to be able to compare the different simulation options 
and their similarity to the real samples, therefore the merges seen in the table below were created. 
 

 

 

 

 

 ExAC AF gnomAD AF real 1KG (R) 

ExAC AC E:AF+AC X E:AC+R 

gnomAD GC X G:AF+GC G:GC+R 

real 1KG (R) E:AF+R G:AF+R X 
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Table 2. In addition to the merges above the most important merges were the ones where both the different simulation 
options and the real samples were present. The merges in the left column can be found in Table 1 

 

 

 

 

Smartpca takes a parameter file as input. This file contains the path to three files, the genotype 
file, the SNP file and the individuals file, and some parameters for the analysis. The genotype 
file contains all the genotypes encoded as in Figure 3, but each row represents a variant and 
each column an individual. The SNP file contains all the variants, their positions and their 
ID’s. Last, the individuals file contains all the individuals, their sex (in this project all 
displayed as unknown, U) and population labels. Examples of these files can be seen in 
Figure 6 below.  

2 2 1  1 234 rs305  AF_AFR_1 U AF_AFR 

0 2 2  1 789 rs860  AC_AMR_1 U AC_AMR 

1 1 1  1 1123 rs1194  HG00140 U R_NFE 

Figure 6. Displays examples of the genotype file (a), SNP file (b), and individuals file (c). 

The three files were created (for each analysis) through cutting and pasting columns together 
from the VCF-files. Finally, smartpca was run on the different analysis sets and the results 
were visualized using R. 

3.2 Goal 2 

In the second goal, SIMdrom simulated exomes were used to create the genetic base in a 
training set for the PEDIA classifier. The simulated exomes were a part in one of three 
training sets consisting of 203 exomes each (Figure 7). The other two sets were real genomes 
from the 1KG and real exomes from an in-house data set of healthy individuals of Iranian 
heritage (IRN). Later in the project more data was available both for the train and test sets. 
Then 320 exomes could be used as the genetic part in the training set (still consisting of 
simulated exomes from ExAC, 1KG genomes and IRN exomes, spiked-in with patients’ 
disease-causing variants) and 19 patient exomes were used in the test set. 

After training, the classifier was tested on the real patient data. The difference in performance 
of the classifier was analysed to see if any of the three training sets was a better fit to the real 
data.  

  

 real 1KG (R) 

E:AF+AC E:AF+AC+R 

G:AF+GC G:AF+GC+R 

a b c 
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3.2.1 Preparing and scoring the genetic data 
A workflow for using 1KG as the genetic base in a training set was already in place in the 
study, hence the use of ExAC and Iranian samples were implemented in that workflow as 
well. The download and preparation of the ExAC was performed as in goal one, except here 
filtered to RefSeq regions, so were also the Iranian samples. Additionally, the sets were 
filtered down to only contain rare variants, using a cut-off at allele frequency of maximum 
0.01.  

The reason for this is that only rare diseases are being studied, these are not caused by 
common variants, hence these can be discarded. Both sets were annotated using Jannovar, 
(Jäger et al. 2014). With SIMdrom first 203 and later 320 exomes were sampled from the 
ExAC NFE population’s homozygous and heterozygous allele counts (since this simulation 
option seemed to work better than using allele frequency, in goal one). Further, to be able to 
use the data sets in the training, known disease-causing mutations from patients were spiked-
into the otherwise healthy exomes. The sets were then filtered down to only include genes 
with clinical relevance using the Online Mendelian Inheritance in Man (OMIM) database 
(McKusick-Nathans Institute of Genetic Medicine 2017). This resulted in an average of 
around 300 genes per exome in the data sets. The deleteriousness of the variants was assessed 
by the CADD score. Since the classification is performed per gene, the maximum CADD 
score was used when more than one variant was present in a gene.  

3.2.2 Training, testing and cross-validation 
The genetic data with the CADD scores were then combined with the feature vector of the 
phenotype and image analysis scores. The feature vector for each training set then consists of 
all the five scores from the different algorithms (Figure 5), ordered per gene. 

Figure 7. Simplified workflow for the use and validation of three different 
genetic data sets in the training part of the PEDIA classifier. 
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A random forest classifier with a forest size of 100, was trained on the three different training 
sets, and tested on the set containing real patients’ exome data. Since there were few real 
patient exomes available in the PEDIA study at the moment (first only 18, later only 19), a 
cross-validation was implemented in addition to the training and testing. A stratified k-fold 
cross-validation was performed on the three sets containing 203 exomes each. The data was 
divided into 76 partitions, since there are 76 unique pathogenic disease-causing variants in the 
total data set. Every partition was validated exactly once, as a test set. The performance of the 
classifier on the different data sets was visualized and evaluated using receiver operating 
characteristics (ROC) curves and precision-recall (PRC) curves.  

4 Results 

4.1 Goal 1 

The results from smartpca were visualized in R, results from the analysis of the two sets, 
E:AF+AC+R (ExAC) and G:AF+GC+R (gnomAD), can be seen in Figure 8, Figure 9 and 
Figure 10 below. The first two principal components (PC1 and PC2) contain most of the 
variance in the data sets. Out of 138 eigenvalues in the ExAC analysis PC1 and PC2 represent 
around 4 and 2 percent of the variance (in their eigenvalues: 1 = 5.3 and 2 = 2.5). In the 
gnomAD analysis the two first PCs also represent 4 and 2 percent of the variance (in their 
eigenvalues 1 = 5.0 and 2 = 2.6, out of 118 eigenvalues in total). These PCs were therefore 
picked to visualize the data sets. Figure 8 displays the exomes simulated using the allele 
frequencies (AF). First, the five simulated populations by themselves (a) and then together 
with the real samples from the same populations (b).  
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Figure 8. The results from the ExAC analysis (set E:AF+AC+R) visualized using the two first principal components 
(PC1 and PC2). The simulated exomes (using allele frequencies, AF) are first visualized by themselves (a) and then 
together with their real counterpart (b), for the five different populations. 
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In the results from the first goal, the exomes simulated using allele frequency from ExAC, 
form four well separated population clusters (Figure 8 a). In the first principal component 
(PC1) the variance separates the AFR population from the four other populations, with the 
EAS population furthest away. This is expected since the AFR populations typically contain 
more variants than other populations (The 1000 Genomes Project Consortium 2015). This is 
also the case with the exomes simulated using allele frequencies from ExAC where the AFR 
exomes contain ~35500 variants, which is around 5500 more than the other populations. The 
FIN and NFE creates one cluster, the cause for this might be their similar number of variants 
(~29700 and ~29400) and the fact that these two populations also are geographically closest 
to each other. 

Another possible reason for the patterns is the out of Africa (OoA) model, where the modern-
day populations are thought to have emerged from Africa and migrated across the world. In 
addition, the event is thought to have been accompanied by a population bottleneck which 
means the modern-day populations have evolved from one small gene-pool (Campbell & 
Tishkoff 2008). This means that the similarities seen between the non-African populations 
(AMR, EAS, NFE and FIN) could be explained by their probable genetic similarities, as 
opposed to the AFR population. 

When the real samples are added to the figure (Figure 8 b) the pattern between the 
populations is preserved but minimized, and they cluster in the vicinity of their simulated 
counterpart. This points toward similarity between the simulated and the real genetic data. 
The only exception is the AFR samples. An explanation for this could be that they are from 
three different sub-populations within the AFR population (Appendix A 1). Hence, one 
possible reason is that there are differences in the number of variants also within the AFR 
population. This is also displayed by the real AMR samples, although not in the same ratio 
(The 1000 Genomes Project Consortium 2015). Another reason is that not only the number of 
variants differ between AFR sub-populations but that they also display genetic diversity due 
to population structure (Campbell & Tishkoff 2008). 

Figure 9. Results from the same analysis as in Figure 8. The two sets of NFE samples, simulated and real are displayed 
in a. In the b, NFE exomes simulated using homogenous and heterogeneous allele counts (AC) were added to the plot.  
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To be able to get a closer look at how one population varies between real and sampled sets, 
the two NFE populations were visualized on their own. In Figure 9 a, they can be seen as two 
distinct clusters. Exomes simulated using the homozygous and heterozygous allele counts 
(AC) from ExAC were added to the plot to be able to see differences between the two 
simulation options with respect to the real samples. As can be seen in Figure 9 b, they form a 
cluster closer to the real samples than the exomes simulated using allele frequency. 

It was expected that the simulation using the allele count might perform better, since using the 
actual counts of homozygous, heterozygous and hemizygous alleles might come closer to 
resembling the reality, than predicting them using the observed allele frequencies. This is 
because of the assumption that the population under investigation is in Hardy-Weinberg 
equilibrium. The assumptions state that the population must be large, of constant size, under 
no selective pressure, the mating must be random and that there are no new mutations. 
Deviations from Hardy-Weinberg could suggest that some of these assumptions are false 
(Crow 1988). One assumption that could be false is random-mating, which means that the 
populations could have internal population structure due to e. g. geographical separation, 
which in-turn could alter the genotype frequencies (Crow 1988) This can be seen in the paper 
by Novembre et al. 2008, where populations within Europe form clusters close to their 
geographical origin.  

The NFE populations simulated using gnomAD allele frequencies (AF) were also visualized 
together with the real NFE samples (Figure 10 a). In Figure 10 b, the exomes simulated using 
the genotype counts (GC) were added to the plot for the same reasons as with the ExAC 
analysis above. The results were similar (Figure 10 a), however the exomes simulated using 

Figure 10. The results from the gnomAD analysis visualized using the first two principal components (PC1 and PC2). 
In the left figure (a), the exomes simulated using AF are displayed together with the real genomes. In b, exomes 
simulated using genotype counts (GC) are added to the plot.  
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the genotype count from gnomAD did not perform much better than the ones simulated using 
allele frequency (Figure 10 b). 

4.2 Goal 2 

As in goal one, the results were visualized in R. The results from the cross-validation of the 
three different datasets, containing 203 exomes each, can be seen in the two figures below 
(Figure 11 a and b). The first figure (a) describes the receiver operating characteristics (ROC). 
This is a measure of how well the classifier discriminates between the two classes. The true 
positive rate (y axis) is the number of correctly called positives (true positives), in this case 
the affected genes, against the actual number of affected genes in the data set (true positives + 
false negatives). The false positive rate (x axis) on the other hand is the number of wrongly 
classified unaffected genes (false positives) against all the unaffected genes (true negatives + 
false positives) (Flach 2011). The ExAC data set has a slightly better area under the ROC 
curve (AUROC, 0.947) than the two other data sets 1KG and IRN (Figure 11 a). A value of 1 
is the highest, which means perfect discrimination between classes and 0.5 means that the 
classifier is guessing randomly (Flach 2011). Hence, the classifier trained and tested on the 
ExAC data set, performs slightly better in discriminating between affected and unaffected 
genes.  

The second figure (Figure 11 b) displays precision versus recall, a visualization of how 
precise the classifier is. Precision is calculated as the number of correctly classified affected 
genes against all the genes that are classified as affected (true positive + false positive). Recall 
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Figure 11.  The two plots, a and b, displays two different performance evaluations of the PEDIA classifier when 
performing a cross-validation on the three different data sets (ExAC, 1KG and IRN). The left figure (a) displays their 
receiving operator characteristics (ROC) curves and the right figure (b) displays their precision-recall (PRC) curves. 
In brackets are the area under the curve for the three data sets. 
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measures how many of all the affected genes the classifier recognizes, the fraction of true 
positives against true positive and false negative. The precision-recall curve is a good 
evaluation when there is an imbalance between the classes in the data set (Tax et al. 2009). 
This is the case in the PEDIA study where the positive class (affected genes) is much smaller 
than the negative (unaffected genes).  

In Figure 11 b, ExAC has a clearly better AUPRC (0.103) compared to the other two sets 
(1KG=0.026 and IRN=0.016). A better area here means that the classifier has a better balance 
between picking only affected genes and picking all the affected genes (Tax et al. 2009). The 
classifiers trained and tested on the IRN and 1KG data sets get really low AUPRC in this 
evaluation. In the case of the IRN, this was partly expected since the Iranian samples are real 
exomes. Therefore, more noise can exist in the data because of false calls. The 1KG samples 
on the other hand, are from a well annotated database and was thought to perform well. One 
reason for the 1KG to be unbalanced is that the 203 samples are randomly picked, which 
means that they most likely contain several different populations. This could be a difficulty in 
the cross-validation if the classifier is constantly trained and tested on different populations, 
making it difficult to find the affected genes due to population structure (Novembre et al. 
2008). The ExAC exomes are simulated from only one population, the NFE, which could 
make it easier for the classifier. What clinicians are interested in is which classifier correctly 
classifies the affected gene in the most cases, which means ranking the correct gene at first 
place. Here, only the 1KG has a peak towards the highest precision meaning it correctly 
ranked an affected gene at the first position (Figure 11 b). 

The same visualizations were performed for the results from the training on the simulated data 
using 203 exomes and testing on real data, and can be seen in Appendix B 2 and Appendix B 
1. The results from the training and testing of the classifier on the three different sets (ExAC, 
1KG and IRN) all display perfect curves. This is probably due to the small testing set (18 
patients) of real exomes. Since the test set is small (~8% of the total data set, 18+203), the 
results may be due to chance. The training set could contain the same affected genes or 
causative variants as the test set, which means the classifier has seen the data before. Hence, it 
is biased towards classifying those genes correctly. This could be adjusted through removing 
such data from the training set, to make sure that the test set consists of unseen data. Since the 
curves are identical, it is not possible to say if one of the training sets is a better fit to the real 
test data.  

Later in the project, more data was available making it possible to perform training on 320 
exomes spiked with patients’ causative mutations and training on 19 patient exomes. Also, the 
training set was controlled not to contain any of the genes in the test set. These results were 
visualized in the same way and can be seen in the figures. Here, it is possible to distinguish 
between the classifier trained on the three different sets. In the ROC evaluation, the IRN 
dataset perform better than the two other data sets, and has a slightly better AUROC (0.835). 
In the PRC evaluation, the ExAC correctly predicts the affected gene at the first rank in 
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around 25 percent of the cases. The IRN performs even better in predicting the correct 
affected gene in around 40 percent of the cases, it also has the best AUPRC (0.519).  

A reason why the IRN is performing better than both the other data sets might be that, as 
previously stated, the real Iranian exomes probably contains more noise. This might also be 
true for the real patient exomes, since when sequencing exomes for clinical purpose it is more 
important to keep possible disease-causing variants than to filter out false calls.  

5 Conclusions 
The purpose of this project was to assess the reliability of SIMdrom simulated genetic data, to 
find out how similar it is to real genetic data. The aim was to make sure that the simulated 
genetic data is valid to use in other projects, such as the PEDIA study and for benchmarking 
molecular prioritization tools.  

To further analyse the simulated exomes using smartpca, more real samples should be added 
since they seem to contain much internal variance. The other principal components (e. g. PC3 
and PC4) could be investigated more closely. To have more confidence in the results from the 
second goal, the cross-validation could be repeated multiple times until the results converge. 
From the results in goal two, the IRN data set seems to be the best fit to the real patient data 
set. The reason for this could be that even though it seemed to be valuable to train and test on 
the same population (as with the ExAC NFE population in the cross-validation), training and 
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Figure 12.  The two plots, a and b, displays two different performance evaluations of the PEDIA classifier when using 
the three different data sets (ExAC, 1KG and IRN) containing 320 exomes each as training sets and 19 real patient 
exomes as the test set. The left figure (a) displays their ROC curves and the right figure (b) their PRC curves. In 
brackets are the area under the curve for the three data sets. 
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testing on noise could be even more important. From the results in this project the best 
training set for the PEDIA classifier seems to be a data set containing noise, from the same 
population as the test set (the patient exomes). Still the test set is small (~8% of total data set), 
so to be sure that the results are not random, the classifier should be tested on a larger test set. 

The SIMdrom simulated exomes performs well in both parts of this project. Even though the 
results from the first goal indicates that they are not perfectly similar to the real 1KG 
genomes, the results in the second goal indicates that they could be similar enough. More 
options could be developed to also be able to spike-in noise into the simulated exomes, which 
might make it a better fit for the PEDIA study. Future tests of their validity should include to 
test them against more real patient exomes in the PEDIA study. Before they are tested against 
a large enough set of real patient exomes, it is not possible to say if they are a good fit as the 
simulated genetic part in training sets for the PEDIA study. 
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Appendix A 

 
 

 
  

ExAC gnomAD 1KG, real samples 

African/African American (AFR) AFR 

NA1920 (Kenya) 

NA19700 (African American, USA) 

NA18510 (Nigeria) 

Latin American (AMR) AMR 

HG01550 (Colombia) 

HG01970 (Peru) 

NA19720 (Mexican, USA) 

East Asian (EAS) EAS 

NA18620 (China) 

NA18940 (Japan) 

HG01600 (Vietnam) 

Finnish (FIN) FIN 

HG00310 (Finland) 

HG00190 (Finland) 

HG00280 (Finland) 

Non-Finnish European (NFE) NFE 

HG00140 (England and Scotland, UK) 

NA20510 (Italy) 

NA07000 (European, USA) 

Appendix A 1. The table describes the populations used from ExAC, gnomAD and the real samples picked from 
1KG. 
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Appendix B 
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Appendix B 1. The results from the PRC evaluation of the 
training and testing of the PEDIA classifier, for the same data sets 
as in Appendix B 2. 

Appendix B 2. The results from the ROC evaluation of the 
training (using the three data sets ExAC, 1KG and IRN) and 
testing (using real patient data) of the PEDIA classifier.  


