
UPTEC X 17 007

Examensarbete 30 hp
September 2017

Optimisation of Ad-hoc analysis
of an OLAP cube using SparkSQL

Milja Aho

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Optimisation of Ad-hoc analysis of an OLAP cube
using SparkSQL

Milja Aho

An Online Analytical Processing (OLAP) cube is a way to represent a
multidimensional database. The multidimensional database often uses a star
schema and populates it with the data from a relational database. The purpose of
using an OLAP cube is usually to find valuable insights in the data like trends or
unexpected data and is therefore often used within Business intelligence (BI).
Mondrian is a tool that handles OLAP cubes that uses the query language
MultiDimensional eXpressions (MDX) and translates it to SQL queries.
Apache Kylin is an engine that can be used with Apache Hadoop to create and
query OLAP cubes with an SQL interface. This thesis investigates whether the
engine Apache Spark running on a Hadoop cluster is suitable for analysing OLAP
cubes and what performance that can be expected. The Star Schema Benchmark
(SSB) has been used to provide Ad-Hoc queries and to create a large database
containing over 1.2 billion rows. This database was created in a cluster in the
Omicron office consisting of five worker nodes and one master node. Queries were
then sent to the database using Mondrian integrated into the BI platform Pentaho.
Amazon Web Services (AWS) has also been used to create clusters with 3, 6 and 15
slaves to see how the performance scales. Creating a cube in Apache Kylin on the
Omicron cluster was also tried, but was not possible due to the cluster running out
of memory. The results show that it took between 8.2 to 11.9 minutes to run the
MDX queries on the Omicron cluster. On both the Omicron cluster and the AWS
cluster, the SQL queries ran faster than the MDX queries. The AWS cluster ran the
queries faster than the Omicron cluster, even though fewer nodes were used. It was
also noted that the AWS cluster did not scale linearly, neither for the MDX nor the
SQL queries.

ISSN: 1401-2138, UPTEC X 17 007
Examinator: Jan Andersson
Ämnesgranskare: Andreas Hellander
Handledare: Kenneth Wrife

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	iii	

Populärvetenskaplig sammanfattning

Big	 Data	 är	 ett	 svårdefinierat	 begrepp	men	 kan	 beskrivas	 som	 en	 datamängd	

som	endast	kan	hanteras	med	hjälp	av	ett	flertal	datorer.	Ofta	sammanfattas	Big	

Data	som	data	av	stor	storlek,	olika	struktur,	mycket	brus	och	som	inkommer	i	

hög	hastighet.	Ett	sätt	att	hantera	Big	Data	är	genom	att	bearbeta	data	parallellt	

på	 flera	datorer.	Det	mest	använda	 ramverket	 för	detta	är	Apache	Hadoop	och	

det	 används	 genom	 att	 implementera	 det	 på	 ett	 kluster	 av	 datorer.	 	 Apache	

Spark,	Apache	Hive	och	Apache	Kylin	är	tre	komponenter	som	kan	installeras	på	

Hadoop	och	som	kan	användas	 för	att	analysera	data	på	klustret.	Amazon	Web	

Services	 (AWS)	 är	 en	 molntjänst	 som	 kan	 användas	 för	 att	 skapa	 ett	 kluster	

genom	att	allokera	resurser	genom	molnet.		

	

För	att	ett	företag	ska	kunna	analysera	och	presentera	information	om	sin	data	

används	ofta	Business	Intelligence(BI)-metoder.	Med	hjälp	av	dessa	kan	

information	som	kan	ligga	till	stöd	för	olika	typer	av	beslut	utvinnas.	On-Line	

Analytical	Processing	(OLAP)	används	ofta	inom	BI	eftersom	den	skapar	en	

multidimensionell	datamodell	som	är	optimal	att	använda	vid	just	analys	av	data.	

En	OLAP-kub	är	ett	sätt	att	representera	OLAP-data	och	i	denna	skapas	värden	

som	är	av	intresse	vid	en	analys.	Dessa	värden	kallas	för	measures	och	vanliga	

exempel	är	total	kostnad,	vinst	eller	försäljning	under	en	viss	tid.	Mondrian	är	ett	

verktyg	som	hanterar	OLAP-kuber	och	kan	implementeras	i	BI-plattformen	

Pentaho.	Genom	detta	verktyg	kan	frågor	ställas	i	frågespråket	MultiDimensional	

eXpressions	(MDX)	till	en	OLAP-kub.	Mondrian	översätter	MDX-frågorna	till	

SQL-frågor	som	sedan	skickas	till	antingen	en	relationell	databas	eller	till	en	

OLAP-databas.		

	

Det	 finns	ett	 flertal	prestandatest	som	tagits	 fram	för	att	utvärdera	prestandan	

på	databaser.	Star	schema	benchmark	(SSB)	är	ett	test	som	består	av	en	databas	

och	ett	flertal	Ad-hoc	frågor.	Databasen	har	ett	så	kallat	stjärnschemaformat	som	

ofta	används	av	OLAP-kuber.	

	iv	

	

I	 detta	 examensarbete	 har	 ett	 Ad-hoc-frågor	 i	 MDX	 ställts	 mot	 en	 OLAP-kub	

skapad	från	SSB-data	med	över	1,2	miljarder	rader.	Frågorna	har	skickades	från	

Pentaho	med	Mondrian	 som	motor	 till	 två	 typer	 av	 kluster:	 ett	 stationerat	 på	

Omicron	 Cetis	 kontor	 och	 3	 kluster	 på	 AWS	 av	 olika	 storlek.	 Prestandan	 har	

sedan	 jämförts	 med	 prestandan	 från	 SQL-frågor	 som	 skickats	 direkt	 till	

databasen	 utan	 att	 använda	 Pentaho.	 Även	 skalningen	 på	 AWS-klustren	

analyserades	 och	 två	 försök	 av	 att	 skapa	 en	 kub	 i	 Apache	 Kylin	 på	 Omicron-

klustret	gjordes.		

	

Resultaten	visade	att	det	tog	mellan	8,2	till	11,9	minuter	att	köra	MDX-frågorna	

på	Omicron-klustret	och	att	det	 gick	 snabbare	att	 köra	SQL-frågorna	direkt	 till	

databasen.	 Alla	 frågor	 kördes	 snabbare	 på	 samtliga	 AWS-kluster	 jämfört	 med	

Omicron-klustret,	 trots	 att	 färre	 noder	 användes.	 	 Varken	 SQL-frågorna	 eller	

MDX-frågorna	 skalade	 linjärt	 på	 AWS-klustren.	 Det	 gick	 inte	 att	 undersöka	

prestandan	av	Kylin	eftersom	Omicron-klustret	inte	hade	tillräckligt	med	minne	

för	att	kunna	skapa	kuben.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	v	

	vi	

Table of content

Abbreviations	...	1	
1.	Introduction	..	3	
1.1	 Purpose	...	4	

2.	Theory	...	6	
2.1	The	Hadoop	Ecosystem	..	6	
2.1.1	HDFS	..	6	
2.1.2	YARN	..	6	
2.1.3	MapReduce	...	7	

2.2	Apache	Spark	..	8	
2.3	Apache	Hive	...	10	
2.4	OLAP	..	11	
2.4.1	Star	schemas	and	Snowflake	schemas	...	11	
2.4.2	OLAP	Cube	..	12	

2.5	Mondrian	...	13	
2.6	OLAP	on	Hadoop	..	14	
2.6.1	Apache	Kylin	..	14	

2.7	SSB	benchmark	...	14	
2.8	Amazon	Web	Services	..	15	
2.8.1	Amazon	EMR	...	16	
2.8.1	Amazon	Redshift	...	16	

2.9	Scaling	...	16	
2.10	Previous	work	..	17	

3.	Method	...	19	
3.1	Cluster	setup	..	19	
3.1.1	The	Omicron	cluster	..	19	
3.1.2	The	AWS	cluster	...	19	

3.2	Data	..	20	
3.3	Queries	...	21	
3.5	Mondrian	in	Pentaho	..	22	
3.6	Running	the	queries	...	24	
3.7	Kylin	...	24	
3.8	System	benchmark	..	25	

4.	Results	..	26	
4.1	The	Omicron	Cluster	..	26	
4.2	The	AWS	clusters	...	26	
4.2.1	AWS	3	worker	nodes	...	27	
4.2.2	Aws	6	Worker	nodes	..	27	
4.2.5	AWS	15	worker	nodes	..	28	

4.3	Comparing	clusters	...	28	
4.3.1	Comparing	MDX	queries	..	29	
4.3.2	Comparing	SQL	queries	..	29	

4.4	Scalability	..	30	
4.5	Kylin	...	31	
4.6	System	benchmark	..	32	

5.	Discussion	...	33	
5.1	Omicron	cluster	vs.	AWS	clusters	...	33	

	vii	

5.2	Comparison	to	previous	work	..	33	
5.3	AWS	instance	types	...	34	
5.4	Database	..	34	
5.5	MDX	vs.	SQL	..	35	
5.6	Scaling	...	35	
5.7	Possibilities	with	Apache	Kylin	...	36	
5.8	Other	OLAP	options	..	36	

6.	Conclusion	..	38	
7.	References	..	40	
Appendix	A	–	MDX	queries	..	42	
Q1	MDX	...	42	
Q2	MDX	...	42	
Q3	MDX	...	42	
Q4	MDX	...	42	

Appendix	B	–	SQL	queries	...	42	
Q1	SQL	...	42	
Q2	SQL	...	43	
Q3	SQL	...	43	
Q4	SQL	...	43	

Appendix	C	–	Omicron	Cluster	performance	...	44	
Appendix	D	–	AWS	3	worker	nodes	performance	..	44	
Appendix	E	–	AWS	6	worker	nodes	performance	...	44	
Appendix	F	–	AWS	15	worker	nodes	performance	..	45	
Appendix	G	–	System	Benchmark	..	45	

	viii	

	1	

Abbreviations
BI	=	Business	Intelligence	

CDE	=	Community	Dashboard	Editor	

CPU	=	Central	Processor	Unit	

DAG	=	Directed	Acyclic	Graph	

GB	=	Gigabyte	

GiB	=	Gibibyte	

HDFS	=	Hadoop	Distributed	File	System	

HOLAP	=	Hybrid	OLAP	

I/O	=	Input	Output	

JDBC	=	Java	Database	Connectivity	

JNDI	=	Java	Naming	and	Directory	Interface	

JVM	=	Java	Virtual	Machine	

kB	=	Kilobyte	

MB	=	Megabyte	

MDX	=	MultiDimensional	eXpressions	

MOLAP	=	Multidimensional	OLAP	

OLAP	=	On-Line	Analytical	Processing	

OLTP=	On-Line	Transaction	Processing	

RAM	=	Random-access	memory	

RDD	=	Resilient	Distributed	Dataset	

ROLAP	=	Relational	OLAP	

SSB	=	Star	Schema	Benchmark	

SQL=	Structured	Query	Language		

YARN	=	Yet	Another	Resource	Negotiator	

	

	

	

	

	

	

	2	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	3	

1. Introduction
Due	 to	 the	 advances	 in	 technology,	 the	 amount	 of	 data	 being	 produced	 and	

stored	 is	 continuously	 increasing.	 However,	 computers	 do	 not	 have	 the	 same	

increase	 in	 performance	 and	 are	 not	 able	 to	 keep	 up.	 A	 way	 to	 tackle	 this	

problem	 is	 to	 use	 multiple	 computers	 to	 process	 data	 in	 parallel,	 instead	 of	

relying	on	the	performance	of	one	computer.		

	

The	Big	Data	concept	is	hard	to	define,	but	one	definition	can	be	seen	as	a	dataset	

that	 only	 can	 meet	 the	 service	 level	 agreements	 with	 the	 use	 of	 multiple	

computers	to	handle	and	store	the	data.	This	means	that	the	concept	depends	on	

the	 context,	making	 the	definition	hard	 to	grasp.	 (Wadkar,	 S.,	 Siddalingaiah,	M.	

and	Venner,	 J.,	 2014).	 The	 challenge	with	 handling	Big	Data	 is	 not	 only	 that	 it	

comes	in	large	volume,	but	also	that	the	data	often	has	different	structures,	that	

the	pace	of	the	data	flow	is	fast	and	continuous	and	because	there	often	is	bias	

and	noise	in	the	data.	These	characteristics	can	be	summarized	using	the	words	

Volume,	Variety,	Velocity	and	Veracity	and	are	called	the	four	V’s	of	Big	Data.		

	

Apache	Hadoop	 is	 the	most	well	known	Big	Data	Technology	Platform	and	 is	a	

framework	 that	 process	 large	 data	 amounts	 in	 parallel.	 Hadoop	 consist	 of	 an	

entire	 ecosystem	 of	 components	 and	 most	 of	 them	 are	 open	 source	 projects	

developed	 under	 Apache	 Software	 Foundations.	 A	 few	 examples	 of	 these	

components	 or	 frameworks	 are	 Hadoop	 Distributed	 File	 System	 (HDFS),	 Map	

Reduce,	 Apache	 Hive,	 Apache	 Spark	 and	 Apache	 Kylin	 (Mazumder,	 S.,	 2016).	

Amazon	Web	 Services	 is	 a	 cloud	 service	 that	 provides	 Hadoop	 clusters	where	

users	 can	 specify	 how	 many	 resources	 that	 are	 of	 interest	 and	 allocate	 them	

through	the	cloud	(Wadkar,	S.,	Siddalingaiah,	M.	and	Venner,	J.,	2014).	

	

OLAP	 is	 an	umbrella	 term	 for	 techniques	used	 for	 analysing	databases	 in	 real-

time.	The	purpose	of	the	method	is	usually	to	find	valuable	insights	in	the	data,	

like	 trends	 or	 unexpected	 data,	 and	 is	 often	 used	within	 Business	 intelligence.	

(Ordonez,	C.,	Chen,	Z.	and	García-García,	J.,	2011).	OLAP	uses	a	data	model	called	

multidimensional	 database	 that	 stores	 aggregated	 data	 and	 creates	 a	 simpler	

representation	of	the	data.	This	increases	the	performance	of	analysing	the	data	

	4	

and	 also	makes	 it	 easier	 to	maintain	 and	 understand.	 A	 way	 to	 represent	 the	

multidimensional	database	is	with	the	use	of	OLAP	cubes	that	organises	the	data	

into	a	 fact	 table	and	multiple	dimensions	 (Cuzzocrea,	A.,	Moussa,	R.	and	Xu,	G.,	

2013).	There	are	different	schema	types	that	can	be	used	 for	multidimensional	

databases.	The	 star	 schema	 is	 one	model	 that	 is	 often	used	 in	data	warehouse	

applications	(de	Albuquerque	Filho	et	al.	2013).	

	

SSB	 is	a	benchmark	 that	has	been	created	 to	measure	 the	performance	of	data	

warehouse	systems.	It	also	provides	generator	that	allows	the	user	to	generate	a	

database	in	star	schema	format.	The	size	of	the	generated	database	depends	on	a	

scaling	factor	specified	by	the	user	(de	Albuquerque	Filho	et	al.	2013).	

	

To	create	and	handle	an	OLAP	cube,	an	open	source	server	called	Mondrian	can	

be	 used.	 It	 is	 integrated	 into	 the	 BI	 software	 Pentaho	 and	 uses	 the	 query	

language	 MDX	 to	 send	 queries	 to	 a	 relational	 database.	 However,	 the	 ad-hoc	

queries	used	in	BI	are	usually	complex	and	if	the	cube	is	large,	it	will	require	a	lot	

of	 computational	 power.	 To	 increase	 the	 performance	 of	 the	 analysis,	 parallel	

processing	 and	 distributed	 file	 systems	 can	 be	 used	 (Cuzzocrea,	 A.,	Moussa,	 R.	

and	Xu,	G.,	2013).	

1.1 Purpose

This	 thesis	 investigates	 the	analysis	of	 ad-hoc	queries	on	OLAP	cubes	with	 the	

use	of	Apache	Spark	on	a	Hadoop	cluster.	The	goal	has	been	to	examine	whether	

Spark	 is	suitable	 for	analysis	of	OLAP	cubes	and	what	performance	that	can	be	

expected.		

	

This	work	will	mainly	be	performed	on	a	cluster	consisting	of	6	nodes	located	in	

the	Omicron	Ceti	office.	However,	to	be	able	to	see	how	the	performance	scales	

with	 the	 amount	 of	 nodes,	 clusters	 of	 different	 size	 created	 on	 Amazon	 Web	

Services	 will	 also	 be	 used.	 The	 Star	 Schema	 Benchmark	 will	 be	 used	 for	

generating	a	database	with	more	than	a	billion	rows.	

	

	5	

To	handle	the	cube,	Mondrian	integrated	into	Pentaho	is	to	be	used.	Pentaho	also	

have	a	Community	Dashboard	Editor	(CDE)	(Pentaho,	2017)	that	will	be	used	for	

sending	 MDX	 queries	 to	 Mondrian	 and	 to	 visualise	 the	 results.	 To	 be	 able	 to	

compare	how	the	BI	server	affects	the	performance,	the	same	queries	in	SQL	will	

also	be	sent	straight	 to	 the	database	on	the	cluster.	Furthermore,	Apache	Kylin	

will	be	examined	and	tested	for	OLAP	cube	analysis.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	6	

2. Theory

2.1 The Hadoop Ecosystem

Hadoop	is	one	of	the	most	popular	Big	Data	platforms	used	today.	It	is	an	open-

source	 software	 that	 has	 been	 developed	 since	 2002	 and	 enables	 storing	 and	

processing	of	Big	Data	in	a	distributed	manner	(Huang,	J.,	Zhang,	X.	and	Schwan,	

K.,	2015).	The	fact	 that	 it	 is	distributed	means	that	Hadoop	is	used	on	multiple	

nodes	in	a	cluster.	Hadoop	consists	of	a	number	of	components	where	HDFS	and	

MapReduce	are	 the	main	 frameworks	used	 for	 storing	and	processing	 the	data	

(Mazumder,	S.,	2016).	

	

2.1.1 HDFS
HDFS	 is	 a	 distributed	 file	 system	 and	 stores	 the	 data	 on	 several	 nodes	 in	 the	

cluster.	In	a	large	cluster	with	a	large	amount	of	nodes,	some	nodes	will	fail	every	

now	and	then.	However,	HDFS	prevents	data	being	lost	by	replicating	the	data	on	

multiple	nodes.	When	a	 file	 is	uploaded	 to	HDFS,	 the	 file	 is	 split	 into	blocks	of	

data.	This	is	done	using	slave	components	called	DataNodes	that	creates	blocks,	

replicates	them	and	stores	them.	For	HDFS	to	keep	track	of	what	data	is	stored	

where,	a	master	component	called	NameNode	is	used.	There	is	usually	only	one	

NameNode	 in	 a	 Hadoop	 cluster	 while	 there	 are	 multiple	 DataNodes	 getting	

instructions	from	the	NameNode	(Vohra,	Deepak,	2016).	

	

2.1.2 YARN
YARN,	or	MapReduce2,	is	a	framework	in	the	Hadoop	ecosystem	that	handles	the	

distributed	processing	of	the	data.	Since	HDFS	and	YARN	run	on	the	same	nodes,	

the	tasks	to	be	run	can	be	scheduled	as	efficiently	as	possible.	This	means	that	a	

task	is	run	on	the	same	node	where	the	data	to	be	used	is	stored	(Vohra,	Deepak,	

2016;	Apache	Hadoop,	Apache	Hadoop	YARN,	2017).	

	

There	are	two	components	in	YARN	that	handles	the	resource	allocation	and	that	

is	the	ResourceManager	and	the	NodeManager.	All	types	of	applications	sent	to	

Hadoop	 will	 be	 allocated	 a	 resource	 for	 processing.	 The	 ResourceManager	

	7	

running	on	the	master	node	will	schedule	this	allocation.		Each	slave	node	runs	a	

NodeManager	 that	 communicates	 with	 the	 ResourceManager	 and	 launches	

containers	 and	 monitors	 their	 status.	 A	 container	 is	 a	 specified	 amount	 of	

resources	that	is	allocated	on	the	cluster	in	terms	of	memory	and	virtual	cores.	

The	amount	of	resources	in	a	container	can	differ	and	a	NodeManager	can	have	

more	than	one	container	(Vohra,	Deepak,	2016;	Apache	Hadoop,	Apache	Hadoop	

YARN,	2017).	

	

When	 an	 application	 is	 sent	 to	 Hadoop,	 the	 ResourceManager	 will,	 via	 the	

NodeManager,	 create	 a	 container	 to	 run	 an	 ApplicationMaster.	 The	

ApplicationMaster	is	a	slave	daemon	and	will	manage	and	launch	the	tasks	in	the	

application.	 It	negotiates	with	the	ResourceManager	for	resources	and	with	the	

NodeManager	for	execution	of	tasks.	When	the	task	has	finished,	the	containers	

are	deallocated	and	can	be	used	for	running	another	task	(Vohra,	Deepak,	2016;	

Apache	Hadoop,	Apache	Hadoop	YARN,	2017).	

2.1.3 MapReduce
Map	and	Reduce	task	are	two	types	of	tasks	that	can	be	run	on	YARN	to	process	

data	 in	 parallel.	 The	Map	 interface	 represents	 the	 data	 as	 key/value	 pairs	 and	

performs	scalar	transformations	on	them.	After	grouping	the	result	from	Map	by	

the	different	keys,	an	array	of	all	values	associated	with	each	key	is	created	and	

sent	 to	 the	 Reduce	 interface.	 Reduce	 finally	 applies	 some	 operations	 on	 each	

array	and	 returns	 the	 results	 (Mazumder,	 S.,	 2016).	An	application	 that	 counts	

the	 amount	 of	 words	 in	 a	 text	 file	 can	 be	 seen	 as	 an	 example	 to	 get	 a	 better	

understanding	of	how	the	process	works.	Multiple	mappers	will	go	 through	all	

the	 words	 in	 the	 text	 file	 and	 give	 each	 word	 a	 key-value	 pair	 in	 this	 way:	

<<word>,	1>.	All	the	pairs	are	then	grouped	so	that	if	a	word	is	found	two	times	

in	a	text,	they	are	put	into	the	same	key-value	pair.	For	example,	 if	a	word	was	

found	2	times	in	a	text,	the	key-pair	would	be:	<<word>,	2>.	The	results	from	all	

mappers	 are	 then	 sent	 to	 the	 reducer	 that	 sums	 the	 values	 for	 all	 the	 words	

found	in	all	mappers	(Apache	Hadoop,	2017,	Mapreduce	tutorial).	

	

A	few	examples	of	components	that	can	run	on	HDFS	with	the	use	of	YARN	apart	

from	MapReduce	 are	 Spark,	 Flink	 and	 Storm.	When	 data	 comes	 in	 streams,	 in	

	8	

Real	 Time	 or	when	 iterative	 processing	 is	 needed,	Map	Reduce	 is	 not	 suitable	

(Mazumder,	S.,	2016).	This	is	because	MapReduce	has	to	read	and	write	from	the	

disk	 between	 every	 job.	 Instead,	 Spark	 that	 stores	 the	 intermediate	 data	 in	

memory	can	be	used	(Zaharia,	M.	et	al.	2010).	

2.2 Apache Spark

Spark	 is	 a	 Distributed	 Processing	 Engine	 that	 stores	 the	 data	 sets	 in-memory,	

which	is	called	Resilient	Distributed	Dataset	(RDD).		This	means	that	the	memory	

of	the	cluster	is	used	instead	of	being	dependent	of	the	distributed	file	system.	In	

addition,	the	distribution	of	data	and	the	parallelisation	of	operations	are	made	

automatically	 making	 Spark	 both	 easier	 to	 use	 and	 faster	 than	 MapReduce.	

However,	the	fault	tolerance	and	the	linear	scalability	for	the	two	frameworks	is	

the	 same.	 Spark	 core	 is	 the	 heart	 of	 Spark	 and	 makes	 the	 in-memory	 cluster	

computing	possible.	It	can	be	programmed	through	the	RDD	API,	which	comes	in	

multiple	languages	such	as	Scala,	Java,	Python	and	R	(Salloum,	S.	et	al.	2016).		

	

An	 RDD	 consists	 of	 data	 that	 is	 divided	 into	 chunks	 called	 partitions.	 Spark	

performs	 a	 collection	 of	 computations	 on	 the	 cluster	 and	 then	 returns	 the	

results.	These	computations	are	also	known	as	jobs	and	a	Spark	application	can	

launch	several	of	them.	The	job	is	first	split	into	DAGs,	which	consists	of	different	

stages	built	of	a	set	of	tasks.	The	tasks	are	parallel	operations	and	there	are	two	

types	 of	 them	 called	 transformations	 and	 actions.	 Transformation	 operations	

define	new	RDDs	and	are	deterministic	and	 lazily	evaluated,	which	means	 that	

they	 wont	 be	 computed	 before	 an	 action	 operation	 is	 called.	 There	 are	 two	

different	types	of	transformations	called	narrow	and	wide	transformations.	In	a	

narrow	transformation,	each	partition	of	the	child	RDD	only	uses	one	partition	of	

the	parent	RDD.	Map	and	filter	are	two	examples	of	narrow	transformations.	In	a	

wide	transformation	on	the	other	hand,	several	partitions	of	 the	child	RDD	use	

the	 same	 partition	 of	 the	 parent	 RDD.	 This	 means	 that	 wide	 transformations	

needs	 data	 to	 be	 shuffled	 across	 the	 cluster	which	 can	 be	 expensive	 since	 the	

data	 needs	 to	 be	 sorted	 and	 partioned	 again.	 Two	 examples	 of	 wide	

transformations	 are	 join	 and	 groupByKey.	 When	 data	 is	 shuffled	 in	 a	 wide	

	9	

transformation,	 a	 new	 stage	 is	 started	 since	 all	 previous	 tasks	 need	 to	 be	

completed	before	starting	the	shuffle.	Actions	are	operations	that	return	a	result	

and	 are	 therefore	 found	 in	 the	 end	 of	 each	 job.	When	 the	 action	 operation	 is	

called,	 all	 transformations	 are	 first	 executed,	 and	 then	 the	 action.	 Three	

examples	of	action	operations	are	count,	first	and	take.	As	stated	above,	each	job	

is	divided	into	stages.	The	amount	of	tasks	in	each	stage	depends	on	what	type	of	

operations	that	are	present	in	the	job.	(Salloum,	S.	et	al.	2016).	For	each	partition	

of	 the	RDD,	a	 task	 is	created	and	then	sent	 to	a	worker	node	(Zaharia,	M.	et	al.	

2010).	

	

When	an	application	 is	 run	 in	 Spark,	 five	 entities,	 namely	 a	 cluster	manager,	 a	

driver	 program,	 workers,	 executors	 and	 tasks,	 are	 needed.	 A	 cluster	 manager	

allocates	resources	over	the	different	applications	(Salloum,	S.	et	al.	2016).	Spark	

StandAlone	and	YARN	are	two	types	of	cluster	managers	(Apache	Spark,	2017).	

The	 driver	 program	 access	 Spark	 through	 a	 connection	 called	 SparkContext,	

which	 connects	 the	 driver	 program	with	 the	 cluster.	 The	worker	 provides	 the	

application	with	CPU,	storage	and	memory	and	each	worker	has	a	 JVM	process	

created	for	the	application	called	the	Executor.	The	smallest	units	of	work	that	an	

executor	is	given	are	tasks	and	when	the	action	operation	is	executed,	the	results	

are	returned	to	the	driver	program	(Salloum,	S.	et	al.	2016).	

	

An	overview	of	how	YARN	works	with	Spark	and	two	worker	nodes	can	be	seen	

in	figure	1.	

	10	

	
Figure	1		–	Shows	the	overview	of	a	cluster	using	YARN	as	a	cluster	manager	and	two	worker	nodes.	
Inspired	by	figure	1	in	Apache	Spark,	Cluster	Mode	Overview.	

	

SparkSQL	 is	 a	 library	 that	 can	 be	 built	 on	 top	 of	 Spark	 core	 and	 is	 used	 for	

processing	 structured	data	using	SQL.	This	 structured	data	 can	 for	example	be	

stored	 in	 a	 database,	 parquet	 files,	 CSV	 files	 or	 ORC	 files	 (Guller,	 M.,	 2015).	

Hadoop	has	a	similar	project	called	Apache	Hive,	which	transforms	SQL	queries	

into	Hadoop	MapReduce	jobs	(Lakhe,	B.,	2016).	

2.3 Apache Hive

Apache	Hive	is	a	system	used	for	data	warehousing	in	Hadoop.	It	uses	an	SQL	like	

language	called	HiveQL	to	create	databases	and	send	queries	that	are	translated	

into	 MapReduce	 jobs.	 Hive	 has	 a	 system	 catalog	 called	 Metastore	 where	 the	

metadata	of	Hive	tables	are	stored	in	a	relational	database	management	system.	

These	Hive	 tables	are	similar	 to	 tables	used	 in	 relational	databases	and	can	be	

either	internal	or	external.	The	difference	is	that	the	external	table	will	have	data	

stored	in	HDFS	or	some	other	directory,	while	the	internal	table	stores	the	data	

in	the	warehouse.	This	means	that	the	data	in	an	internal	table	will	be	lost	if	the	

table	 is	 dropped,	 while	 the	 data	 in	 an	 external	 table	 still	 will	 be	 stored	 in	 its	

original	 place	 if	 the	 table	 is	 dropped	 (Thusoo,	 A.	 et	 al.	 2009).	 	 There	 are	 two	

	11	

interfaces	to	interact	with	Hive	and	these	are	the	Command	Line	Interface	(CLI)	

and	 HiveServer2.	 Hiveserver2	 has	 a	 JDBC	 client	 called	 Beeline	 that	 is	

recommended	to	be	used	for	connecting	to	Hive	by	Hortonworks.	(Hortonworks,	

2017,	Comparing	Beeline	to	Hive	CLI).	

	

	SparkSQL	can	also	be	used	with	Beeline	 for	sending	queries	 to	Hive	tables	but	

uses	a	Spark	engine	instead	of	a	Hive	engine.	Furthermore,	a	Spark	JDBC/ODBC	

server	can	be	used	for	sending	queries	from	for	example	a	BI	tool	to	Spark	that	

then	send	the	queries	to	the	Hive	tables	(Guller,	M.,	2015).	

2.4 OLAP

In	many	businesses,	On-Line	Transaction	Processing	(OLTP)	databases	are	used	

for	storing	information	about	transactions,	employee	data	and	daily	operations.		

OLTP	 databases	 are	 relational	 databases	 and	 usually	 contain	 large	 amounts	 of	

tables	with	complex	relations.	 	This	makes	OLTP	databases	optimal	 for	 storing	

data	and	accurately	record	transactions	and	similar.	However,	trying	to	retrieve	

and	analyse	 this	data	will	 take	a	 lot	of	 time	and	be	computationally	expensive.		

An	 alternative	 to	 OLTP	 databases	 is	 using	 an	 Online	 Analytical	 Processing	

(OLAP)	database,	which	extracts	data	 from	 the	OLTP	database	and	 is	designed	

for	analysing	data.	The	OLAP	database	is	often	created	from	historical	data	since	

analysis	 of	 a	 constantly	 changing	 database	 is	 difficult	 (Microsoft Developer

Network, 2002). 	

2.4.1 Star schemas and Snowflake schemas
The	schema	structure	of	an	OLAP	database	differs	to	the	schema	used	in	an	OLTP	

database.	There	 are	 two	 types	 of	 schemas	 that	 are	 commonly	used	with	OLAP	

cubes,	 and	 these	 are	 called	 star	 schemas	 and	 snowflake	 schemas.	 	 They	 both	

consists	 of	 multiple	 dimension	 tables,	 a	 fact	 table	 and	 measure	 attributes.	

However,	the	snowflake	schema	is	a	more	complex,	normalised	version	of	a	star	

schema.	 The	 reason	 for	 this	 is	 because	 the	 snowflake	 schema	has	 a	 hierarchal	

relational	 structure	 while	 the	 star	 schema	 has	 a	 flat	 relational	 structure.	 This	

means	that	in	a	star	schema,	the	fact	table	is	directly	joined	to	all	the	dimensions,	

	12	

while	 the	 snowflake	 schema	 has	 dimensions	 that	 are	 only	 joined	 to	 other	

dimensions	(Yaghmaie,	M.,	Bertossi,	L.	and	Ariyan,	S.,	2012).	

	

In	 a	 star	 schema,	 the	 dimension	 tables	 contain	 facts	 about	 a	 certain	 area	 of	

interest.	Since	time	usually	is	a	factor	that	is	taken	into	consideration	during	data	

analysis,	it	is	very	common	to	use	a	time	dimension.	Other	common	dimensions	

are	 Product,	 location	 and	 customer	 (Microsoft	 Developer	Network,	 2002).	 The	

fact	table	is	the	central	table	that	connects	the	different	dimensions	with	the	use	

of	foreign	keys.	It	also	contains	measure	attributes	that	are	created	with	the	use	

of	 aggregations	 such	 as	 sum,	 count	 and	 averages.	 (Ordonez,	 C.,	 Chen,	 Z.	 and	

García-García,	J.,	2011).	A	few	examples	of	common	measure	attributes	are	total	

sales,	quantity,	discount	and	revenue.	Figure	2	shows	an	example	of	how	a	star	

schema	can	be	created	from	a	relational	schema.		

	
Figure	2	–	An	example	of	how	a	star	schema	can	be	created	from	a	relational	schema.	The	schema	on	
the	 left	 shows	 a	 relational	 schema	and	 the	 schema	on	 the	 right	 shows	 a	 star	 schema.	 Inspired	by	
figure	1	and	2	in	Microsoft	Developer	Network,	Just	What	Are	Cubes	Anyway?.	

2.4.2 OLAP Cube
An	 OLAP	 cube	 is	 a	 way	 to	 represent	 the	 data	 in	 an	 OLAP	 database.	 Each	

aggregation	function	defined	in	the	fact	table	is	calculated	for	all	the	facts	in	each	

	13	

dimension.	For	simplicity,	consider	a	star	schema	containing	only	one	measure	

attribute:	total	sales,	and	three	dimensions:	Date,	Product	and	Location.	The	cube	

will	then	calculate	the	total	amount	of	sales	for	each	date,	location	and	product.	

(Microsoft	Developer	Network,	2002).			

	

There	are	three	different	types	of	OLAP	engines	called:	multidimensional	OLAP	

(MOLAP),	relational	OLAP	(ROLAP)	and	Hybrid	OLAP	(HOLAP).		MOLAP	creates	

a	pre-computed	OLAP	cube	from	the	data	in	a	database	that	it	sends	queries	to,	

while	ROLAP	uses	the	data	stored	in	a	relational	database.	A	HOLAP	also	creates	

a	 cube	 but	 if	 it	 is	 needed,	 it	 can	 send	 queries	 straight	 to	 the	 database	 as	well	

(Kaser,	O.	and	Lemire,	D.,	2006).	

2.5 Mondrian

Mondrian	is	a	ROLAP	engine	used	for	handling	and	analysing	OLAP	cubes.	To	run	

the	engine,	a	server	is	needed	and	the	most	popular	business	analytics	server	is	

Pentaho.	To	be	able	to	make	an	analysis	using	Mondrian,	a	schema	defining	the	

OLAP	 cube	 is	 required	 as	 well	 as	 a	 JDCB	 connection	 to	 a	 relational	 database.	

Mondrian	 uses	 the	 query	 language	MDX	 that	 it	 transforms	 into	 simplified	 SQL	

queries	that	it	sends	to	the	database.	Figure	3	shows	how	Mondrian	works	with	

Pentaho	when	a	star	schema	is	defined.	A	user	will	use	the	interface	of	Pentaho	

to	 send	MDX	queries	 to	Mondrian.	Mondrian	will	 then	use	 the	predefined	 star	

schema	 to	 either	 return	data	 from	 the	 in-memory	 cache,	 or	 translate	 the	MDX	

query	to	SQL	queries.	The	SQL	queries	are	sent	to	the	database	and	the	results	

are	 first	 returned	 to	 Mondrian	 and	 then	 returned	 to	 Pentaho	 (Back,	 D.W.,	

Goodman,	N.	and	Hyde,	J.,	2013).	

	14	

	
	

Figure	 3	 –	 Shows	 an	 example	 of	 how	 the	 connection	 between	 Pentaho,	 Mondrian	 and	 the	 data	
warehouse	works.	 Inspired	by	 figure	1.9	 in	Mondrian	 In	Action	 –	Open	 source	business	 analytics,	
p.19.	

2.6 OLAP on Hadoop

There	are	several	options	for	creating	OLAP	cubes	in	Hadoop	without	using	any	

BI-tools.		A	few	examples	are	Apache	Lens	(Apache	Lens,	2016),	Druid,	Atscale,	

Kyvos	and	Apache	Kylin	(Hortonworks,	2015,	OLAP	in	Hadoop).		

2.6.1 Apache Kylin
Apache	Kylin	is	an	open	source	tool	with	an	SQL	interface	that	enables	analysis	

of	OLAP	cubes	on	Hadoop.	Kylin	prebuilds	MOLAP	cubes	where	the	aggregations	

for	all	dimensions	are	pre-computed	and	stored.	This	data	is	stored	into	Apache	

HBase	along	with	pre-joins	 that	 connect	 the	 fact	and	dimension	 tables.	Apache	

HBase	 is	a	non-relational	database	that	can	be	run	on	top	of	HDFS.	If	 there	are	

queries	 that	 cannot	 be	 sent	 to	 the	 cube,	Kylin	will	 send	 them	 to	 the	 relational	

database	instead.	This	makes	Kylin	a	HOLAP	engine.	Kylin	creates	the	cube	from	

data	in	a	Hive	table,	and	then	perform	MapReduce	jobs	to	build	the	cube	(Lakhe,	

B.,	 2016).	 In	 the	 latest	 version	 of	 Kylin,	 Spark	 can	 be	 used	 for	 creating	 of	 the	

cube.	However,	the	Spark	engine	is	currently	only	a	Beta	version	(Apache	Kylin,	

2017.		Build	Cube	with	Spark	(beta)).	

2.7 SSB benchmark

SSB	 consists	 of	 a	 number	 of	 ad-hoc	 queries	 that	 is	 meant	 for	 measuring	 the	

performance	of	a	database	built	of	data	in	star	schema	format.	It	is	based	on	the	

	15	

TPC-H	benchmark,	but	is	modified	into	a	star	schema	consisting	of	one	large	fact	

table	 called	 Lineorder	 and	 four	 dimensions	 called	 Customer,	 Part,	 Date	 and	

Supplier.	DBGEN	is	a	data	generator	that	generates	the	5	tables.	By	specifying	the	

scaling	 factor,	different	 sizes	of	 the	database	 can	be	generated.	The	5	 tables	of	

the	SSB	schema	can	be	seen	in	figure	4	where	the	arrows	demonstrate	how	the	

keys	 are	 related.	 There	 are	 6	 measures	 in	 the	 Lineorder	 table	 and	 these	 are:	

Quanity,	 ExtendendPrice,	 Discount,	 Revenue,	 Supplycost	 and	 Profit.	 (de	

Albuquerque	Filho	et	al.	2013).	

	
Figure	4	–	The	star	schema	produced	by	SSB	showing	the	fact	table	Lineorder	in	the	middle.	Inspired	
by	figure	3	in:	A	Review	of	Star	Schema	Benchmark,	p.	2.	

2.8 Amazon Web Services

Amazon	Web	Services	(AWS)	is	a	cloud	services	platform	that	for	example	can	be	

used	 for	 data	 computation	 and	 analysis,	 networking	 and	 the	 storing	 of	 data.	

There	are	several	cluster	platforms	that	can	be	used	through	AWS	and	these	are	

accessed	 though	 the	 Internet	 and	 uses	 pay-as-you-go	 pricing.	 This	means	 that	

you	do	 not	 have	 a	 contract,	 but	 pay	 for	 the	 devices	 you	 use	 at	 an	 hourly	 rate.	

When	 using	 amazon,	 instances	 with	 different	 amount	 of	 CPU,	 memory	 and	

storage	can	be	allocated.	More	resources	will	result	in	a	higher	hourly	rate.			

	16	

	

Three	 examples	 of	 different	 instance	 types	 are	 m3.xlarge,	 m4.10xlarge	 and	

r3.4xlarge	and	the	resources	available	on	these	can	be	seen	in	table	1.	

	
Table	1	–	Shows	the	available	resources	on	the	instance	types	m3.xlarge,	m4.10xlarge	and	r3.4xlarge	
on	an	AWS	cluster.	

Type	 vCPU	 Memory(GiB)	 Storage	(GB)	 Hourly	cost	($)	

m3.xlarge	 4	 15	 2x40	SSD	 0.315	

r3.4xlarge	 16	 122	 1x320	SSD	 1.6	

m4.10xlarge	 40	 160	 No	SSD	 2.4	

2.8.1 Amazon EMR

Amazon	EMR	(Elastic	map	reduce)	is	a	cluster	platform	that	is	used	for	analysis	

of	 large	 data	 amounts.	 To	 enable	 the	 processing	 of	 this	 data,	 frameworks	 like	

Apache	Hadoop,	Apache	Spark	and	Apache	Hive	is	available.	The	cluster	is	elastic	

and	 this	means	 that	 the	number	of	provisioned	Amazon	EC2	 instances	 in	 each	

cluster	can	be	scaled	dynamically	after	 the	users	need.	During	 the	cluster	start	

up,	 the	 user	 only	 needs	 to	 specify	 the	 amount	 of	 instances	 and	 which	

frameworks	that	are	of	interest.	Amazon	will	then	configure	the	cluster	after	the	

users	specifications	(Amazon	Web	Services,	2017,	Amazon	EMR).	

2.8.1 Amazon Redshift

Amazon	Redshift	is	a	data	warehouse	that	supports	parallel	processing	and	it	

stores	the	data	in	columns.	This	means	that	the	columns	in	a	table	is	divided	and	

distributed	into	multiple	compute	nodes.	Using	a	columnar	storage	means	that	

only	the	columns	used	in	the	query	is	analysed	which	can	reduce	the	amount	of	

data	that	needs	to	be	read	from	disk	and	stored	in	memory	(Amazon	Web	

Services,	2017,	Performance).	

2.9 Scaling

Scaling	 is	 a	 measure	 of	 how	 much	 time	 it	 takes	 for	 different	 amount	 of	

processors	to	execute	a	program.	The	time	it	takes	is	dependent	on	the	amount	

of	processors	and	the	amount	of	data	in	the	execution.	This	means	that	the	time	

	17	

can	be	seen	as	a	function:	𝑇𝑖𝑚𝑒 𝑝, 𝑥 	where	p	is	the	amount	of	processors	and	x	

the	size	of	the	problem.		Measuring	the	time	it	takes	for	one	processor	compared	

to	 multiple	 processors	 to	 execute	 a	 problem	 of	 a	 fixed	 size	 is	 called	 strong	

scaling.	Speedup	is	a	measure	of	how	much	a	problem	is	optimised	after	adding	

more	processors.	The	speedup	can	be	measured	in	terms	of	strong	scaling	and	it	

can	be	seen	in	formula	1.	Just	as	stated	above,	p	is	the	amount	of	processors	and	

x	the	size	of	the	problem.		

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑝, 𝑥 =
𝑡𝑖𝑚𝑒 1, 𝑥
𝑡𝑖𝑚𝑒 𝑝, 𝑥 (1)	

The	ideal	scaling	pattern	for	strong	scaling	is	a	linear	graph	when	the	numbers	of	

processors	are	plotted	against	the	speedup.	This	means	that	the	speedup	divided	

with	the	amounts	of	nodes	should	be	close	to	1	in	ideal	scaling	and	this	is	more	

known	as	linear	scaling	(Kim,	M.,	2012).		

	

Another	way	 to	 estimate	how	a	 system	scales	 is	 to	 look	 at	 the	 throughput	per	

node.	The	throughput	is	the	amount	of	data	being	processed	per	time	unit.	If	the	

throughput	 is	 measured	 in	 Mb/second,	 then	 dividing	 this	 with	 the	 amount	 of	

nodes	 used	 for	 the	 execution	 results	 in	 Mb/(second*node).	 	 If	 a	 system	 has	

perfect	 linear	 scaling,	 then	 the	 throughput	 per	 node	 should	 be	 the	 same	 for	

queries	ran	on	different	amount	of	nodes	(Schwartz,	B.,	2015).	

	

However,	 Gene	 Amdahl	 means	 that	 this	 perfect	 scaling	 cannot	 always	 be	

expected.	He	proposed	a	law	called	Amdahls	Law	that	states	that	a	problem	has	

two	parts:	one	 that	 is	optimisable	and	one	 that	 is	non-optimisable.	This	means	

that	 he	 claims	 that	 there	 is	 a	 fraction	 of	 a	 problem	 that	wont	 get	 a	 decreased	

execution	time,	regardless	of	the	amount	of	processors	involved	(Kim,	M.,	2012).	

2.10 Previous work

The	 SSB	 benchmark	 has	 been	 used	 and	 studied	 with	 Spark	 before.	 Benedikt	

Kämpgen	 and	 Andreas	Harth	 that	 translated	 the	 SSB	 benchmark	 queries	 from	

SQL	to	MDX	in	their	article	called	No	size	Fits	All	is	one	example.		They	compared	

the	performance	of	the	SSB	benchmark	using	both	SQL	and	MDX	with	Mondrian	

	18	

just	like	in	this	thesis.	The	results	that	they	obtained	for	each	query	can	be	seen	

in	table	2.	

	
Table	2	–	Shows	how	the	results	that	Benedikt	Kämpgen	and	Andreas	Harth	obtained	in	the	article	
No	size	Fits	All.	

Language	 Q1	 Q2	 Q3	 Q4	

MDX	 14.7s	 14.5s	 5.1s	 4.8s	

SQL	 15.47s	 15.4s	 5.3s	 5.0s	

	

The	database	was	in	their	case	stored	in	a	MySQL	database	and	the	database	only	

consisted	of	around	6	million	rows.	A	cluster	was	not	used	either,	but	a	computer	

with	a	CPU	of	16	cores	and	128GB	RAM.		

	

Another	 example	 is	 The	 Business	 Intelligence	 of	 Hadoop	 Benchmark	 that	 was	

released	 in	 2016.	 They	 also	 used	 the	 SSB	 benchmark	 to	 measure	 the	

performance	of	Spark	2.0.	However,	they	only	measured	the	performance	of	the	

original	SQL	queries	and	they	also	used	a	larger	database	consisting	of	more	than	

6	billion	rows.	The	results	can	be	seen	in	table	3.	
Table	3	–	Shows	how	the	results	that	AtScale	presented	in	their	article	The	Business	Intelligence	of	
Hadoop	Benchmark	when	measuring	the	performance	of	SQL	on	SSB.	

Language	 Q1	 Q2	 Q3	 Q4	

SQL	 11.0s	 10.6s	 30.3s	 13.2s	

	

The	 cluster	 used	 consisted	 of	 1	 master	 node,	 1	 gateway	 node	 and	 10	 worker	

nodes.	 Furthermore,	 each	 node	 had	 128G	 RAM,	 32	 CPU	 cores	 along	 with	

2x512Mb	SSD.	In	Spark,	70	workers	were	used	with	16	GB	memory	and	4	cores	

each.	The	data	format	used	was	Parquet.	

	

	

	19	

3. Method
A	number	of	 implementations	were	needed	 in	order	 to	be	able	 to	estimate	 the	

performance	 of	 ad-hoc	 queries	 on	 OLAP	 cubes	 with	 Spark.	 This	 included	 a	

cluster	 with	 the	 right	 configurations,	 data	 to	 populate	 the	 database	 with,	 a	

database	on	the	cluster,	an	engine	to	handle	the	OLAP	cube,	an	interface	where	

queries	are	specified	and	a	schema	defining	the	OLAP	cube.	Furthermore,	Kylin	

was	 implemented	 into	 Hadoop	 in	 order	 to	 try	 to	 create	 a	 ROLAP	 cube.	 Since	

different	hardware	has	been	used	on	the	different	clusters,	a	system	benchmark	

was	run	on	the	master	node	of	the	clusters.		

3.1 Cluster setup

Two	different	types	of	clusters	were	used	to	perform	the	work:	a	cluster	located	

in	the	Omicron	Ceti	office	and	offices	created	on	AWS.	The	purpose	of	using	the	

AWS	cluster	was	to	be	able	to	create	clusters	of	different	size.	This	is	because	by	

measuring	the	performance	on	different	sized	clusters,	it	is	possible	to	estimate	

the	scaling	of	the	performance.	

3.1.1 The Omicron cluster
The	 cluster	 in	 the	 Omicron	 Ceti	 office	 consists	 of	 6	 nodes	 where	 1	 node	 is	 a	

master	and	the	other	5	are	worker	nodes.	The	RAM	in	each	data	node	is	16	GB	

and	4	virtual	CPU	cores.	Hadoop	version	2.5.3.0	and	Hive	version	1.2.1000	have	

been	used.	 The	 Spark	 version	used	 on	 the	 cluster	was	 version	2.0.0.	However,	

when	running	and	Kylin,	Spark	with	version	1.6.3	was	used	as	 the	engine.	The	

version	of	Kylin	was	2.0.0.	

3.1.2 The AWS cluster
The	clusters	created	on	the	AWS	cloud	consisted	of	3	different	sizes.	The	clusters	

all	had	one	master	node	but	had	a	different	amount	of	name	nodes.	The	numbers	

of	 name	nodes	 in	 the	 three	 clusters	were	 3,	 6	 and	 15.	 Every	 node	was	 of	 size	

m3.xlarge	meaning	that	the	virtual	CPU	had	4	cores	and	that	the	RAM	was	15	GB.	

The	 software	 implemented	 on	 the	 clusters	 was	 Hadoop	 version	 2.7.3,	 Hive	

version	2.1.0	and	Spark	version	2.0.2.	

	20	

3.2 Data

There	 are	 several	 benchmarks	 that	 previously	 have	 been	 used	 for	 testing	 the	

performance	of	data	warehouses	such	as	TPC-H.	However,	the	database	used	in	

the	TPC-H	benchmark	 is	not	 in	 star	 schema	 format,	and	 is	not	 suitable	 for	 this	

kind	 of	 analysis	 where	 OLAP	 cubes	 are	 used.	 Therefore,	 the	 Star	 Schema	

benchmark	 (SSB),	which	 has	 been	 developed	 from	 the	 TPC-H	 benchmark,	was	

used	instead.		

	

It	was	decided	that	a	database	of	at	least	1	billion	rows	was	needed	to	be	able	to	

call	 the	task	a	Big	Data	problem.	 	Therefore,	the	scaling	factor	200	was	used	to	

create	 the	 database	 with	 SSB’s	 data	 generator	 DBGEN.	 This	 resulted	 in	 a	 fact	

table	of	more	than	1.2	billion	rows.	The	generator	returns	5	text	files	where	each	

file	contains	 the	 information	about	a	specific	 table.	The	size	and	 the	amount	of	

rows	of	each	table	can	be	seen	in	table	4.	

	
Table	4	–	Shows	the	file	size	and	the	amount	of	rows	in	each	of	the	tables	created	when	using	scaling	
factor	200	

Table	 File	size	 Rows	

Lineorder	 119	GB	 	 1	200	018	603	

Customer	 554	MB	 6	000	000	

Part	 133	MB	 1	600	000	

Supplier	 33	MB		 400000	

Dates	 225	kB	 2556	

	

Data	 files	 saved	 in	parquet	 format	will	 run	better	with	Spark	SQL	 than	normal	

text	 files.	 This	 is	 because	 parquet	 files	 use	 a	 compressed	 columnar	 storage	

format	(Ousterhout,	K.	et	al.	2015).		Therefore,	the	text	files	were	also	converted	

into	 parquet	 files	 and	 this	 took	 about	 6	 hours	 on	 the	 Omicron	 cluster.	 When	

running	the	SQL	queries	on	the	database	created	from	the	parquet	file	however,	

the	 queries	 took	 about	 2-3	 times	 longer	 to	 run.	 Furthermore,	 since	 the	 AWS	

cluster	 cost	 money	 every	 hour	 a	 cluster	 is	 up	 and	 running,	 it	 would	 be	more	

expensive	 to	create	parquet	 files	 from	the	generated	text	 files.	 It	was	 therefore	

decided	to	use	the	original	text	files.	

	21	

	

A	problem	with	DBGEN	is	that	it	creates	the	data	files	on	the	master	node.	This	

means	that	the	master	node	needs	to	have	storage	for	120	GB,	which	was	not	the	

case	on	the	master	node	on	the	AWS	cluster.	Therefore,	a	DBGEN	that	created	the	

tables	 straight	 into	 HDFS	 using	MapReduce	was	 used1.	 This	 created	 5	 folders,	

one	 for	 each	 table,	 with	 all	 the	 output	 data	 divided	 into	 smaller	 part	 files	 on	

HDFS.	All	files	were	by	default	compressed,	which	causes	problems	when	trying	

to	create	a	database	 from	the	data.	The	settings	were	 therefore	changed	 in	 the	

java	code	so	that	uncompressed	text	files	were	saved	on	HDFS	instead.		

3.3 Queries

The	SSB	benchmark	queries	consist	of	13	queries	 that	can	be	divided	 into	 four	

blocks	with	different	selectivity.	All	queries	are	originally	in	SQL	syntax,	but	have	

been	 translated	 into	MDX	queries	by	Benedikt	Kämpgen	and	Andreas	Harth	 in	

20132.		

	

The	 queries	 were	 first	 run	 against	 the	 database	 on	 the	 local	 cluster	 and	 the	

results	were	 inspected.	Unfortunately,	Pentaho	could	not	handle	casting	values	

as	“numeric”	and	a	syntax	error	was	therefore	returned	whenever	this	operation	

was	used.	There	was	also	one	MDX	query	that	started	“WITH	MEMBER”	instead	

of	“SELECT”	which	is	usually	used	and	also	returned	a	syntax	error.	Two	queries	

did	not	return	any	results	neither	when	running	it	through	Pentaho	using	MDX,	

nor	when	using	SQL	directly	on	the	database	using	Beeline.		

	

This	means	 that	only	 four	of	 the	13	MDX	queries	could	be	handled	by	Pentaho	

and	 returned	 results.	 Luckily,	 the	 queries	working	 belonged	 to	 the	 blocks	 that	

used	medium	and	high	dataset	complexity	and	volume.	All	four	working	queries	

can	 be	 found	 in	 both	 SQL	 and	 MDX	 syntax	 in	 Appendix	 A	 and	 B.	 In	 the	 SSB	

																																																								
1	https://github.com/electrum/ssb-dbgen	
2	http://people.aifb.kit.edu/bka/ssb-benchmark/	

	

	22	

benchmark,	 these	 queries	 are	 called	 Q2.2,	 Q2.3,	 Q4.2	 and	 Q4.3,	 but	 are	 for	

simplicity	called	Q1,	Q2,	Q3	and	Q4	here.			

	

Query	Q1	 and	Q2	make	 three	 JOIN	 operations,	 two	 GROUP	BY	 operations	 and	

two	FILTER	operations.	However,	Q2	is	more	selective	than	Q1.	Query	Q3	and	Q4	

on	the	other	hand	makes	four	JOIN	operations,	three	GROUP	BY	operations	and	

three	FILTERS	 and	Q4	 is	more	 selective	 than	Q3	 (The	business	 intelligence	on	

hadoop	benchmark,	2016).	

A	 database	 consisting	 of	 Hive	 tables	 was	 created	 with	 the	 use	 of	 Beeline.	 By	

specifying	 which	 port	 that	 Beeline	 should	 connect	 to,	 Hive	 or	 Spark	 could	 be	

used	as	the	engine.	Since	it	took	many	hours	to	produce	the	tables	with	DBGEN,	

external	 tables	 were	 chosen	 so	 that	 the	 data	would	 not	 be	 dropped	 if	 a	 table	

were.	 With	 Beeline,	 queries	 were	 easily	 sent	 to	 the	 database	 with	 SQL	 like	

syntax.	

3.5 Mondrian in Pentaho

It	 was	 already	 decided	 that	 the	 OLAP	 engine	 Mondrian	 was	 to	 be	 used	 for	

creating	and	handling	the	OLAP	cube.	However,	Mondrian	cannot	run	alone	and	

needs	 a	 server	 and	 in	 this	 case,	 the	 server	 Tomcat	 was	 used.	 Tomcat	 can	 be	

either	 run	 in	 standalone	 mode,	 or	 integrated	 into	 other	 webservers.	 Tomcat	

standalone	was	first	used	with	Pivot4j	as	the	Java	API.	However,	the	results	from	

the	queries	 came	 in	 too	 large	 sizes	 and	 could	 therefore	not	 be	 represented	by	

Pivot4j.	 Therefore,	 Tomcat	 integrated	 into	 Pentaho	 was	 used.	 The	 Pentaho	

server	was	running	from	my	personal	laptop.	

	

To	 be	 able	 to	 send	 queries	 from	 Pentaho	 to	 a	 cluster,	 a	 JDBC	 connection	 is	

needed.	Since	the	idea	was	to	send	queries	to	SparkSQL,	a	Spark	JDBC	connection	

needed	to	be	used.	However,	this	connection	was	not	working	in	Pentaho.	To	get	

the	 connection	 to	work,	 Pentaho’s	 data	 integration	 tool	 called	Kettle	was	 used	

since	it	is	simpler	than	Pentahos	platform	for	analysis.		A	Spark	JDBC	jar	file,	14	

	23	

other	jar	files	and	a	licence	file	were	downloaded	from	Simba3.	However,	for	the	

connection	to	be	successful,	only	four	of	these	14	jars	were	to	be	included	in	the	

setup.	These	four	jars	were:	hive_service.jar,	httpclient-4.13.jar,	libthrift-0.9.0.jar	

and	the	TCLIServiceClient.jar.	The	Spark	JDBC	jar,	the	licence	file	and	the	four	jar	

files	specified	above	were	put	 into	two	lib	folders	 in	Pentaho45.	Since	there	is	a	

charge	 to	 use	 the	 full	 version	 of	 Simba’s	 JDBC	 connectors,	 a	 trial	 version	was	

used.	 The	 difference	 was	 that	 the	 licence	 file	 was	 only	 available	 for	 a	 month.	

Therefore,	a	new	licence	was	simply	downloaded	when	the	 licence	ran	out	and	

put	in	the	two	lib	folders.	Another	configuration	needed	to	connect	to	the	cluster	

was	to	set	active.hadoop.configuration	=	hdp24	in	the	plugin.properties	file6.		

	

After	making	 these	 configurations,	 the	 IP	 address	 of	 the	 cluster	 was	 specified	

along	 with	 the	 connection	 port	 and	 the	 name	 of	 the	 database	 created	 on	 the	

cluster.	The	default	port	for	Spark	is	10015.	When	the	connection	was	successful,	

the	JDBC	connection	becomes	available	under	data	sources.	

	

For	Mondrian	 to	be	able	 to	create	an	OLAP	cube,	an	OLAP	schema	needs	 to	be	

specified.		This	is	done	using	an	XML	metadata	file	that	specifies	the	attributes	in	

the	fact	table	and	the	dimensions,	the	primary	keys	and	the	measures.	However,	

it	was	not	 possible	 to	 upload	 this	 file	 straight	 into	Pentaho.	 Instead,	Pentaho’s	

Mondrian	 Schema	 Workbench	 was	 used	 to	 publish	 the	 cube	 into	 Pentaho.		

Benedikt	Kämpgen	and	Andreas	Harth	present	an	XML	schema2	 that	 they	have	

used	to	create	an	SSB	OLAP	schema.	This	XML	file	was	used,	but	modified	using	

Schema	Workbench	so	 that	 it	corresponded	completely	 to	 the	SSB	database	on	

the	 cluster.	 After	 the	 schema	 was	 correctly	 specified,	 it	 was	 published	 to	

Pentaho.	When	published,	it	appeared	under	data	sources	in	Pentaho.	

	

																																																								
3	http://www.simba.com/product/spark-drivers-with-sql-connector/	
4	pentaho-server/pentaho-solutions/system/kettle/plugins/pentaho-big-data-

plugin/hadoop-configurations/hdp24/lib/	
5	pentaho-server/tomcat/webapps/pentaho/WEB-INF/lib/	

	
6	pentaho-server/pentaho-solutions/system/kettle/plugins/pentaho-big-data-
plugin/plugin.properties	

	24	

Since	Pivot4j	could	not	represent	the	amount	of	data	returned	by	the	queries,	the	

Pentaho	tool	“Analysis	Report”	was	to	be	used	instead.	However,	this	feature	was	

only	available	on	the	enterprise	edition	of	Pentaho,	and	the	community	edition	

was	 the	 one	 running	 on	my	 laptop.	 Luckliy,	 Omicron	 had	 Pentaho	 running	 in	

enterprise	 edition	 on	 an	 instance	 on	 AWS.	 The	MDX	 queries	 were	 run	 on	 the	

Analysis	Report	tool,	but	unfortunately,	it	could	not	represent	the	resulting	data	

either.		

	

CDE	was	the	tool	that	finally	managed	to	return	and	represent	the	data	form	the	

MDX	queries.	When	using	CDE,	a	datasource	type	needs	to	be	selected,	and	here,	

“mdx	over	mondrianJndi”	was	used.	 Since	 a	 JDBC	 connection	 already	has	been	

created,	only	a	JNDI	connection	is	needed	where	the	JDBC	connection	is	selected	

as	source.	A	Mondrian	schema	also	needs	to	be	specified,	and	the	one	published	

through	 Schema	 workbench	 was	 therefore	 used.	 The	 component	 chosen	 to	

represent	the	data	was	Table.	This	means	that	the	results	from	the	queries	were	

represented	in	a	table.		

3.6 Running the queries

Each	 query	was	 run	10	 times	 in	 order	 to	 provide	 a	 consistent	 result.	 The	 SQL	

queries	were	sent	to	the	database	using	Beeline.	The	MDX	queries	were	sent	to	

the	database	through	Pentaho’s	CDE.	In	order	to	prevent	Pentaho	from	caching,	

the	 server	was	 restarted	 between	 each	 run.	 Furthermore,	 the	 System	 Settings,	

Reporting	Metadata,	Global	Variables,	Mondrian	Schema	Cache,	Reporting	Data	

Cache	and	the	CDA	Cache	were	also	refreshed	between	each	run.	The	time	it	took	

for	each	query	 to	 run	was	observed	 from	 the	Spark	Application	master.	There,	

each	job	being	executed	was	shown	along	with	the	time	it	took	to	run	them.	

3.7 Kylin

Apache	Kylin	version	2.0	was	downloaded	and	installed	on	the	master	node	on	

the	Omicron	Cluster.	Two	different	sized	cubes	were	then	created	in	Kylin	with	

all	the	dimensions,	 joins,	and	measures	present	in	the	database.	The	large	cube	

was	 to	be	 created	 from	 the	SSB	database	used	 in	 the	benchmarking.	A	 smaller	

cube	was	also	to	be	made	from	an	SSB	database	of	around	6	million	rows.	In	the	

	25	

latest	version	of	Kylin,	the	user	can	build	the	cube	using	Spark	as	the	engine.	This	

feature	is	at	current	time	only	in	Beta	version.		

3.8 System benchmark

In	 order	 to	 compare	 performance	 the	 two	 cluster	 types	 properly	 and	 find	

possible	 bottlenecks,	 a	 system	 benchmark	 was	 run.	 The	 benchmark	 is	 called	

Sysbench	 and	 the	 performance	 of	 the	 CPU,	 reading	 and	 writing	 to	 RAM	 and	

Input/Output	(I/O)	reading	and	writing	was	measured.	The	commandos	used	for	

the	benchmark	can	be	seen	in	Appendix	G.	

	

	26	

4. Results
Each	query	in	SQL	and	MDX	was	run	10	times	and	the	results	from	each	run	can	

be	observed	in	Appendix	C,	D,	E	and	F.	In	the	following	sections,	only	the	average	

time	it	took	to	run	the	10	runs	is	shown.		

	

It	was	noted	that	 for	each	query,	regardless	of	 language,	 the	 last	partition	took	

much	longer	to	run	than	the	other	partitions.	

4.1 The Omicron Cluster

The	time	it	took	for	the	cluster	when	running	the	MDX	queries	from	Pentaho	and	

the	SQL	queries	from	Beeline	towards	the	SSB	database	on	the	cluster	placed	in	

the	Omicron	Ceti	office	can	be	observed	in	table	5.		
Table	5	–	Shows	the	time	it	took	to	run	the	four	queries	in	MDX	and	SQL	on	the	Omicron	cluster	

Query		 Language	 Average	 Time	
(s)	

Average	Time	
(min)	

Q1	 MDX	 712	 11.9	
Q2	 MDX	 675	 11.3	
Q3	 MDX	 493	 8.2	
Q4	 MDX	 516	 8.6	
	 	 	 	
Q1	 SQL	 642	 10.7	
Q2	 SQL	 647	 10.8	
Q3	 SQL	 412	 6.9	
Q4	 SQL	 422	 7.0	
	

It	can	be	noted	that	the	SQL	queries	run	a	bit	faster	than	the	MDX	queries.	How	
much	faster	the	SQL	queries	ran	can	be	seen	in	table	6.		
	
Table	6	 –	 Shows	 the	 time	difference	 in	 seconds	between	queries	 in	MDX	and	SQL	on	 the	Omicron	
cluster.	

	 Q1	 Q2	 Q3	 Q4	
Time	 difference	
(s)	

70	 28	 81	 94	

	

4.2 The AWS clusters

Three	different	sized	AWS	clusters	were	run.	The	first	one	had	3	worker	nodes,	

the	second	one	6	worker	nodes	and	the	final	one	15	worker	nodes.	

	27	

4.2.1 AWS 3 worker nodes
The	 average	 time	 it	 took	 to	 run	 the	MDX	 and	 SQL	queries	 on	 the	AWS	 cluster	

with	3	worker	nodes	are	shown	in	table	7.		

	
Table	7	–	Shows	the	time	it	took	to	run	the	four	queries	in	MDX	and	SQL	on	the	AWS	cluster	with	3	
worker	nodes	

Query	 Language	 Average	 Time	
(s)	

Average	 Time	
(min)	

Q1	 MDX	 499	 8.3	
Q2	 MDX	 491	 8.2	
Q3	 MDX	 396	 6.6	
Q4	 MDX	 418	 7.0	
	 	 	 	
Q1	 SQL	 437	 7.3	
Q2	 SQL	 434	 7.2	
Q3	 SQL	 362	 6.0	
Q4	 SQL	 363	 6.0	

	
The	SQL	queries	 ran	 faster	 than	 the	MDX	queries	and	how	much	 faster	 can	be	

seen	in	table	8.	
Table	8	–	Shows	the	time	difference	in	seconds	between	queries	in	MDX	and	SQL	on	the	AWS	cluster	
with	3	worker	nodes.		

	 Q1	 Q2	 Q3	 Q4	
Time	 difference	
(s)	

62	 57	 34	 55	

	

4.2.2 Aws 6 Worker nodes
In	table	9,	the	average	time	it	took	to	run	the	MDX	and	SQL	queries	on	the	AWS	

cluster	with	6	worker	nodes	can	be	observed.	

	
Table	9	–	Shows	the	time	it	took	to	run	the	four	queries	in	MDX	and	SQL	on	the	AWS	cluster	with	6	
worker	nodes.	

Query	 Language	 Average	 Time	
(s)	

Average	 time	
(min)	

Q1	 MDX	 299	 5.0	
Q2	 MDX	 305	 5.1	
Q3	 MDX	 260	 4.3	
Q4	 MDX	 265	 4.4	
	 	 	 	
Q1	 SQL	 233	 3.9	
Q2	 SQL	 248	 4.1	
Q3	 SQL	 198	 3.3	
Q4	 SQL	 209	 3.5	

	28	

	
Yet	again,	the	SQL	queries	run	faster	than	the	MDX	cluster.	How	much	faster	can	

be	seen	in	table	10.	
Table	10	–	Shows	the	time	difference	in	seconds	between	queries	in	MDX	and	SQL	on	the	AWS	cluster	
with	6	worker	nodes.		

	 Q1	 Q2	 Q3	 Q4	
Time	 difference	
(s)	

66	 57	 64	 56	

	

4.2.5 AWS 15 worker nodes
The	 average	 time	 it	 took	 to	 run	 the	MDX	 and	 SQL	queries	 on	 the	AWS	 cluster	

with	15	worker	nodes	can	be	seen	in	table	11.		

	
Table	11–	Shows	the	time	it	took	to	run	the	four	queries	in	MDX	and	SQL	on	the	AWS	cluster	with	15	
worker	nodes	

Query	 Language	 Average	 Time	
(s)	

Average	 Time	
(min)	

Q1	 MDX	 153	 2.5	
Q2	 MDX	 148	 2.5	
Q3	 MDX	 154	 2.6	
Q4	 MDX	 166	 2.8	
	 	 	 	
Q1	 SQL	 108	 1.8	
Q2	 SQL	 111	 1.9	
Q3	 SQL	 89	 1.5	
Q4	 SQL	 86	 1.4	
	

In	table	12,	the	difference	in	time	it	took	to	run	the	queries	in	SQL	and	MDX	can	

be	seen.	It	can	be	observed	that	the	SQL	queries	ran	faster	than	the	MDX	queries.	
Table	12–	Shows	the	time	difference	in	seconds	between	queries	in	MDX	and	SQL	on	the	AWS	cluster	
with	15	worker	nodes.		

	 Q1	 Q2	 Q3	 Q4	
Time	 difference	
(s)	

45	 37	 65	 80	

4.3 Comparing clusters

Figure	 5	 shows	 a	 histogram	 over	 how	 long	 it	 took	 to	 run	 all	 queries	 on	 all	 4	

clusters.	 The	 blue	 columns	 show	 the	 time	 it	 took	 to	 run	 the	 queries	 on	 the	

Omicron	 cluster.	The	 red,	 green	and	purple	 columns	 shows	 the	 time	 it	 took	 to	

run	the	queries	on	the	AWS	cluster	with	3,	6	and	15	worker	nodes.		

	29	

	
Figure	5	–	Shows	the	time	it	took	to	run	all	the	queries	on	all	different	clusters.	

4.3.1 Comparing MDX queries
The	plot	seen	in	figure	6	shows	the	time	it	took	to	run	the	MDX	queries	on	all	4	

clusters.	

	

Figure	6	–	Shows	the	time	it	took	to	run	the	four	MDX	queries	on	the	4	different	clusters.	

4.3.2 Comparing SQL queries
In	plot	in	figure	7	shows	the	time	it	took	to	run	the	SQL	queries	on	the	4	different	

clusters.	

0	

100	

200	

300	

400	

500	

600	

700	

800	

Q1	 Q2	 Q3	 Q4	

TI
m
e	
(s
)	

Queries	

Comparison	of	all	queries	

Omicron	MDX	

Omicron	SQL	

AWS	3	Workers	MDX	

AWS	3	Workers	SQL	

AWS	6	Workers	MDX	

AWS	6	Workers	SQL	

AWS	15	Workers	MDX	

AWS	15	Workers	SQL	

0	
100	
200	
300	
400	
500	
600	
700	
800	

Q1	 Q2	 Q3	 Q4	

Ti
m
e	
(s
)	

Queries	

MDX	queries	performance	

Omicron	Cluster	

AWS	3	Workers	

AWS	6	Workers	

AWS	15	Workers	

	30	

	

	
Figure	7	–	Shows	the	time	it	took	to	run	the	SQL	queries	on	the	different	clusters.	

4.4 Scalability

The	master	node	on	 the	AWS	cluster	did	not	have	enough	storage	 to	 store	 the	

SSB	 database	 of	 120	 GB.	 Furthermore,	 the	 smallest	 amount	 of	 worker	 nodes	

required	to	produce	the	SSB	database	straight	on	to	HDFS	using	MapReduce	jobs	

was	3	nodes.	Therefore,	it	was	not	possible	to	measure	the	performance	of	only	

using	one	worker	node.	This	means	 that	 it	was	not	possible	use	equation	1	 for	

measuring	the	scaling.		

	

Instead,	 the	 throughput	 was	 estimated.	 The	 total	 size	 of	 the	 dataset	 was	 119	

720.225	Mb.	This	means	that	the	throughput	is	this	number	divided	by	the	time	

it	took	to	run	each	query.	The	throughput	for	each	query	on	the	different	sized	

clusters	was	then	divided	with	the	amount	of	nodes	used.	The	results	can	be	seen	

in	table	13	for	queries	run	in	MDX	and	in	table	14	for	queries	ran	in	SQL.		

	

	

	

	

	

	

	

0	

100	

200	

300	

400	

500	

600	

700	

Q1	 Q2	 Q3	 Q4	

Ti
m
e	
(s
)	

Queries	

SQL	queries	performance	

Omicron	Cluster	

AWS	3	Workers	

AWS	6	Workers	

AWS	15	Workers	

	31	

Table	13	–	Shows	how	the	AWS	cluster	scales	on	the	MDX	queries	when	using	3,	6	and	15	nodes.	

#Nodes	 Query	 Throughput	(Mb/s)	 Throughput/#Node	
(Mb/(s*node))	

3	 Q1	 239.9	 80.0	
6	 Q1	 400.4	 66.7	
15	 Q1	 782.5	 52.2	
	 		 	 	
3	 Q2	 243.8	 81.3	
6	 Q2	 392.5	 65.4	
15	 Q2	 808.9	 53.9	
	 	 	 	
3	 Q3	 302.3	 100.8	
6	 Q3	 460.5	 76.8	
15	 Q3	 777.4	 51.8	
	 	 	 	
3	 Q4	 286.4	 95.5	
6	 Q4	 451.8	 75.3	
15	 Q4	 721.2	 48	
	
	
	
Table	14	–	Shows	how	the	AWS	cluster	scales	on	the	SQL	queries	when	using	3,	6	and	15	nodes.	

#Nodes	 Query	 Throughput	(Mb/s)	 Throughput/#Node	
(Mb/(s*node))	

3	 Q1	 274.0	 91.3	
6	 Q1	 513.8	 85.6	
15	 Q1	 1108.5	 73.9	
	 		 	 	
3	 Q2	 275.9	 92.0	
6	 Q2	 482.7	 80.5	
15	 Q2	 1078.6	 71.9	
	 	 	 	
3	 Q3	 330.7	 110.2	
6	 Q3	 604.6	 100.8	
15	 Q3	 1345.2	 89.68	
	 	 	 	
3	 Q4	 329.8	 108.9	
6	 Q4	 572.8	 95.5	
15	 Q4	 1392.1	 92.8	

4.5 Kylin

Unfortunately,	it	was	not	possible	to	run	queries	on	Apache	Kylin	running	on	the	

Omicron	cluster.	This	was	because	Kylin	failed	during	the	creation	of	the	MOLAP	

cube.	The	cube	to	be	created	from	the	large	database	failed	during	stage	3	out	of	

	32	

the	11	stages.	This	stage	extracts	the	distinct	columns	in	the	fact	table	and	failed	

because	 all	 the	 memory	 was	 used.	 The	 cube	 to	 be	 created	 from	 the	 smaller	

database	managed	 to	run	 to	stage	7	which	built	 the	cube	with	Spark.	This	also	

failed	due	to	the	system	being	out	of	memory.	

4.6 System benchmark

The	values	obtained	in	the	benchmark	where	the	CPU,	RAM	read,	RAM	write,	I/O	

write	and	I/O	for	the	master	nodes	on	two	clusters	can	be	seen	in	figure	8.		

	
Figure	 8	 –	 Shows	 the	 performance	 of	 CPU,	 RAM	 read,	 RAM	write,	 I/O	write	 and	 I/O	 Read	 on	 the	
master	 nodes	 of	 the	 two	 clusters.	 The	 values	 are	 normalised	 to	 percentage	 in	 order	 to	 compare	
performance.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

	CPU	
[20k/s]	

	RAM	
read	
[MB/s]	

RAM	
write	
[MB/s]	

IO	write	
[MB/s]	

IO	READ	
[MB/s]	

System	benchmark	

AWS	

Omicron	Cluster	

	33	

5. Discussion

5.1 Omicron cluster vs. AWS clusters

How	the	performance	of	the	clusters	differs	can	easily	be	seen	in	figure	6.	Here,	it	

can	 be	 seen	 that	 the	 Omicron	 cluster	 performs	 worse	 than	 any	 of	 the	 AWS	

clusters,	even	if	fewer	worker	nodes	are	used.	This	can	also	be	observed	in	figure	

7	 and	8.	 The	 reason	 for	 this	 is	 either	 due	 to	 bandwidth	 between	 the	 nodes	 or	

hardware.	The	performance	of	the	system	benchmark	seen	in	figure	9	shows	that	

the	 CPU	 and	 the	 RAM	 is	 faster	 on	 the	 Omicron	 cluster.	 The	 I/O	 read	 on	 the	

Omicron	 cluster	 is	 also	 a	 lot	 faster	 than	 the	 AWS	 cluster.	 However,	 this	 is	

probably	because	the	Omicron	cluster	read	from	RAM	instead	of	from	disk	since	

it	is	not	likely	that	it	reads	at	almost	4	GB/s	from	disk.		The	I/O	read	value	from	

the	Omicron	cluster	should	therefore	not	be	taken	 into	consideration.	 It	can	be	

noticed	that	 the	 I/O	write	on	the	AWS	cluster	 is	much	 faster	 than	the	Omicron	

cluster.	 It	 is	 therefore	 very	 likely	 that	 it	 is	 the	writing	 and	 reading	 that	 is	 the	

bottleneck	 for	 the	 Omicron	 cluster.	 Ousterhout,	 K.	 et	 al.	 in	 2015,	 showed	 that	

when	running	Spark	SQL	queries	on	compressed	data,	 like	 in	parquet,	 the	CPU	

was	the	bottleneck.	However,	when	running	the	same	queries	on	uncompressed	

data	like	in	this	thesis,	the	queries	became	I/O	bound.	This	further	implies	that	it	

could	be	the	I/O	that	is	the	bottleneck	in	this	case.	The	bandwidth	between	the	

nodes	was	not	measured,	but	it	could	be	that	this	is	faster	for	the	AWS	cluster	as	

well	since	they	for	example	could	be	launched	on	the	same	machine.		

5.2 Comparison to previous work

In	section	2.10,	discussing	previous	work,	it	can	be	seen	that	they	have	obtained	

much	better	performance	on	the	queries	than	the	ones	obtained	here.	It	becomes	

very	obvious	when	comparing	table	2	and	3	with	table	5,	7,	9	and	11.	However,	

the	setup	used	in	this	thesis	was	not	same.	For	example,	in	the	article	No	size	fits	

All,	 MDX	 queries	 were	 also	 sent	 through	Mondrian,	 but	 a	 smaller	 database	 of	

around	6	million	rows,	stored	in	MySQL,	was	used.	The	computer	used	also	had	

128	GB	RAM	and	16	 cores.	 In	 the	 article	The	Business	 Intelligence	 on	Hadoop	

Benchmark	that	was	also	mentioned	in	section	2.10,	a	larger	database	consisting	

of	more	than	6	billion	rows	was	used.	Still,	a	better	performance	was	obtained.	In	

	34	

this	 case,	 only	 SQL	 queries	were	 used	 and	 the	 database	was	 stored	 in	MySQL.		

The	 cluster	was	 also	 different.	 Firstly,	 the	 cluster	 had	 a	 gateway	 node	 and	 10	

worker	 nodes.	 Secondly,	 each	worker	 node	 also	 had	 128GB	 RAM	 and	 32	 CPU	

cores.	This	can	be	compared	to	the	15GB	RAM	and	4	CPU	cores	the	available	on	

each	node	 in	 the	AWS	cluster	used	 in	 this	 thesis	 showing	 that	a	 lot	more	RAM	

and	CPU	cores	are	used.			

	

The	 reason	 why	 Spark	 performs	 well	 is	 because	 it	 saves	 data	 into	 memory.	

However,	when	a	dataset	is	too	large,	Spark	will	save	the	data	back	to	disk	and	

this	is	a	large	bottleneck	of	Spark.	It	is	therefore	likely	that	this	has	happened	in	

this	 benchmark	 since	 the	 nodes	 had	 quite	 low	 amounts	 of	 RAM	 compared	 to	

what	others	have	used.	

5.3 AWS instance types

Table	1	shows	the	hourly	cost	for	three	different	instance	types	on	AWS.	There	

are	no	instances	on	AWS	with	128	GB	RAM	and	32	CPU	cores	as	used	in	the	

previous	studies	discussed	above.	However,	m4.10xlarge	and	r3.4xlarge	are	the	

instances	with	the	most	similar	amount	of	resources.	It	can	be	noted	that	the	

hourly	rate	is	almost	5	and	8	times	more	expensive	for	m4.10xlarge	and	

r3.4xlarge	compared	to	the	m3.xlarge	instance	that	has	been	used	in	this	project.	

An	hour	of	using	a	cluster	of	in	total	12	nodes	would	cost	3.78$	for	type	

m3.xlarge,	19.2$	for	type	r3.4xlarge	and	28.8$	for	type	m4.10xlarge.		

5.4 Database

In	 this	 thesis,	 the	 database	was	 created	 in	Hive	Metastore	 in	Hive	 tables.	 This	

was	 used	 since	 Pentaho/Mondrian	 needs	 a	 JDBC	 connection	 to	 a	 database	 in	

order	to	use	Spark	SQL	and	there	is	no	other	feature	for	this	in	Hadoop.	The	data	

in	 the	 previous	work	was	 stored	 in	 a	MySQL	database	 and	 this	 could	 possibly	

increase	 the	 performance	 of	 Spark.	 However,	 a	 connection	 from	 Pentaho	 to	 a	

database	is	either	through	a	MySQL	JDBC	connection	or	a	Spark	JDBC	connection.	

This	means	 that	 it	 becomes	 impossible	 to	 send	 SparkSQL	 queries	 to	 a	MySQL	

database	 through	Pentaho.	 Before	 running	 the	 SQL	 queries	 through	Beeline	 to	

the	 Hive	 tables,	 the	 queries	 were	 run	 through	 a	 Spark-shell	 on	 the	 Omicron	

	35	

cluster.	 The	 data	was	 stored	 into	 parquet	 files	 and	Hive	 tables	were	 not	 used.	

The	performance	was	not	registered,	but	it	took	around	a	minute	to	run	the	SQL	

queries.	This	implies	that	using	Hive	tables	is	not	optimal	when	using	Spark.		

5.5 MDX vs. SQL

In	all	four	clusters,	the	SQL	queries	ran	faster	than	the	MDX	queries	and	this	can	

easily	be	seen	 in	 figure	5.	By	 looking	at	 table	6,	8,	10,	and	12,	one	can	observe	

just	how	much	faster	the	SQL	queries	ran.	It	varied	between	28	seconds	and	94	

seconds	difference.	However,	most	of	the	queries	were	around	60	seconds,	or	1	

minute	faster.	In	table	2,	it	can	be	observed	that	MDX	queries	ran	a	tiny	bit	faster	

than	 the	 SQL	 queries	 in	 the	 article	 No	 size	 fits	 All.	 This	 implies	 that	 it	 is	 not	

Mondrian	 or	 badly	 translated	MDX	 queries	 slowing	 down	 the	 performance.	 It	

could	therefore	be	because	of	the	Simba	Spark	JDBC	driver	being	slow,	because	

Pentaho	slows	down	 the	progress	or	because	 the	 cube	 schema	defined	 in	XML	

was	not	optimised	for	the	data.		

5.6 Scaling

In	ideal	linear	scaling,	the	throughput	per	node	should	have	been	the	same	for	all	

sized	clusters	running	the	same	query.	This	means	that	the	throughput/#nodes	

in	 the	MDX	queries	seen	 in	 table	11	should	have	been	around	80	Mb/(s*node)	

for	query	Q1,	81	Mb/(s*node)	for	query	Q2,	100	Mb/(s*node)	for	query	Q3	and	

95	Mb/(s*node)	for	query	Q4.	Furthermore,	the	throughput/#nodes	in	the	SQL	

queries	seen	in	table	12	should	have	been	around	91	Mb/(s*node)	for	query	Q1,	

92	 Mb/(s*node)	 for	 query	 Q2,	 110	 Mb/(s*node)	 for	 query	 Q3	 and	 108	

Mb/(s*node)	 for	 query	Q4.	 By	 looking	 at	 table	 11	 and	 12,	 it	 becomes	 obvious	

that	this	is	not	the	case,	which	means	that	neither	of	the	systems	scale	linearly.	

However,	 the	SQL	queries	 scale	better	 than	 the	MDX	queries	 since	 the	drop	 in	

throughput	is	not	as	high	and	is	closer	to	the	ideal	value.		

	

The	reason	why	none	of	the	queries	scaled	linearly	could	be	due	to	what	is	stated	

in	Amdahls	law.	It	proposes	that	there	is	a	part	of	each	application	that	cannot	be	

parallelized.	In	that	case,	it	could	be	that	there	is	a	large	part	of	the	queries	that	

cannot	be	parallelized,	causing	a	very	non-linear	scaling.		As	stated	in	section	2.2,	

	36	

wide	transformations	such	as	Join	and	GroupBy	operations	are	computationally	

expensive	 and	 require	 data	 from	 different	 partitions	 to	 be	 shuffled	 across	 the	

cluster.	These	shuffles	require	that	all	tasks	are	completed	before	the	next	stage	

can	start.	If	the	partitions	have	different	amount	of	data	stored	on	them,	some	of	

the	tasks	will	run	faster	than	others	and	stay	on	hold	until	the	last	task	is	done.	

This	 scenario	 prevents	 parallelism	 and	 could	 be	 a	 possible	 answer	 to	why	 the	

scaling	 has	 been	 so	 bad.	 If	 this	 is	 the	 case,	 then	 a	 possible	 solution	 to	 this	

problem	 could	 be	 to	 change	 the	 amount	 partitions	 and	 their	 size.	 It	 is	 also	

possible	 to	 change	 the	 amount	 of	 partitions	 used	 specifically	 in	 shuffles.	 It	 is	

likely	that	uneven	partitions	are	causing	problems	since	a	large	fact	table	is	to	be	

joined	with	smaller	dimension	tables.	Another	possible	solution	for	solving	this	

could	be	to	use	broadcast	joins.	This	type	of	join	is	only	useful	when	a	small	table	

is	 to	 be	 joined	 with	 a	 large	 one	 since	 it	 stores	 the	 data	 of	 the	 small	 table	 in	

memory	 on	 all	 the	 nodes.	 Not	 only	 could	 this	 prevent	 a	 shuffling	 stage,	 but	 it	

could	 also	 improve	 the	 speed	of	 the	 join	 since	 the	 large	data	 amount	does	not	

have	to	be	moved	across	the	cluster.	

5.7 Possibilities with Apache Kylin

As	previously	 stated,	 it	was	not	possible	 to	 run	any	queries	with	Apache	Kylin	

due	to	failure	during	the	cube	building	stage.	The	reason	for	failure	was	because	

the	size	of	the	cube	was	too	large	and	the	system	ran	out	of	memory.	This	was	

not	unexpected	since	such	a	large	cube	had	to	be	created	in	this	benchmark	and	

this	is	the	problem	with	using	MOLAP	cubes.	However,	if	a	smaller	cube	was	to	

be	 used	 in	 a	 future	 application,	 I	 would	 recommend	 trying	 to	 use	 Kylin	 for	

sending	MDX	queries	to	a	database.	Then,	it	would	not	matter	if	the	data	is	saved	

in	a	Hive	table	since	all	the	data	is	available	in	the	cube.	It	can	take	a	long	time	to	

create	a	MOLAP	cube,	but	when	it	 is	 initiated,	the	queries	will	run	fast.	Kylin	is	

also	very	user	friendly	and	monitors	a	lot	of	the	performed	work.		

5.8 Other OLAP options

Building	OLAP	cubes	in	Hadoop	is	still	a	new	area	that	has	not	been	fully	

developed	nor	tested.	Apart	from	Apache	Kylin,	there	are	several	other	OLAP-on-

Hadoop	technologies	such	as	Atscale,	Kyvos	and	Apache	Lens.	All	technologies	

	37	

promise	the	world,	but	it	is	very	hard	to	find	any	articles	that	prove	that	what	

they	say	is	true.		Apache	Kylin	is	the	most	documented	technology	and	it	is	

therefore	easy	to	say	that	it	seems	to	be	the	most	promising	one	at	the	moment.	

	

Using	Amazon	Redshift	as	a	data	warehouse	instead	of	storing	the	data	in	

Hadoop	could	be	another	option.	Redshift	uses	a	columnar	storage,	which	can	be	

benefical	to	use	since	only	the	columns	needed	are	used.	It	should	not	be	hard	to	

set	up	a	JDBC	connection	from	Pentaho	to	Redshift.	However,	I	cannot	find	any	

documentation	or	articles	of	the	performance	when	using	Redshift	for	large	

OLAP	cubes.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	38	

6. Conclusion
	
The	queries	running	on	the	Omicron	cluster	ran	slower	than	all	queries	running	

on	the	AWS	cluster,	regardless	of	their	size.	In	this	case,	the	bottleneck	for	the	

Omicron	cluster	was	probably	due	to	disk	I/O	writing	and	reading.	Compared	to	

previous	work,	worse	performance	was	obtained.	This	was	probably	because	a	

much	more	RAM	and	CPU	was	used	in	those	cases.	Since	Spark	spills	data	that	is	

too	large	to	save	in	memory	to	disk,	a	large	amount	of	RAM	is	probably	needed	in	

order	to	obtain	good	performance	when	benchmarking	such	a	large	database.	

Another	possible	reason	for	why	worse	results	were	obtained	could	have	been	

because	the	data	was	stored	in	Hive	tables.	The	problem	with	Pentaho	is	that	

data	stored	in	a	MySQL	database	cannot	be	queried	using	Spark	SQL	from	

Pentaho.		

	
It	took	between	8.2	to	11.9	minutes	to	run	the	MDX	queries	on	the	Omicron	

cluster	and	the	SQL	queries	ran	between	28	to	94	seconds	faster.	In	general	for	

all	queries,	it	took	about	1	minute	faster	to	run	the	SQL	queries.	The	reason	for	

this	could	be	either	due	to	the	JDBC	driver	being	slow,	because	using	Pentaho	

slows	the	process	down	or	because	a	non-optimal	cube	schema	was	used.		

	

The	scaling	of	the	AWS	cluster	was	not	linear	and	the	reason	for	this	could	be	

because	there	was	a	large	part	of	the	application	that	could	not	be	parallelized.	

The	reason	for	this	could	be	because	the	data	was	not	partitioned	evenly	and	this	

could	be	further	investigated.		Using	broadcast	joins	could	help	reducing	the	

uneven	partitioning	when	using	star	schemas	with	a	large	fact	table	and	smaller	

dimension	tables.	

	

A	 possible	 solution	 for	 increasing	 the	 performance	 could	 have	 been	 to	 use	

Apache	 Kylin.	 Not	 only	 would	 performance	 probably	 increase	 since	 it	 uses	

MOLAP	 cubes,	 but	 sending	 queries	 to	 Hive	 tables	 and	 going	 through	 a	 BI	 tool	

such	as	Pentaho	could	be	avoided.	It	is	also	user-friendlier	and	there	is	no	need	

to	specify	a	cube	schema	in	XML.	 	Unfortunately,	it	was	not	possible	to	create	a	

cube	on	the	Omicron	cluster	because	it	ran	out	of	memory.	If	a	smaller	cube	was	

	39	

to	 be	 created	 in	 a	 future	 application	 however,	 it	 is	 possible	 that	 it	 could	 have	

worked.	

	

There	is	at	the	moment	not	much	documented	information	about	the	

performance	of	OLAP	cubes	on	clusters.	Kylin	seems	to	be	the	most	documented	

technology,	but	there	are	others	such	as	Atscale,	Kyvos	and	Apache	Lens.	

Another	option	could	be	to	use	Amazon	Redshift	as	a	data	warehouse	and	store	

the	data	there	instead	of	on	Hadoop.		

	

	

		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	40	

7. References
Amazon	Web	Services.	2017.	Amazon	EMR	https://aws.amazon.com/emr/	

(2017-05-11)	
Amazon	Web	Services,	2017.	Performance		

http://docs.aws.amazon.com/redshift/latest/dg/c_challenges_achieving_hi
gh_performance_queries.html	(2017-06-20)	

Apache	Hadoop,	2017.	MapReduce	Tutorial	
https://hadoop.apache.org/docs/current/hadoop-mapreduce-
client/hadoop-mapreduce-client-core/MapReduceTutorial.html		
(2017-03-13)	

Apache	Hadoop,	2017.	Apache	Hadoop	Yar.	
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-
site/YARN.html	(2017-03-13).	

Apache	Kylin,	2017.		Build	Cube	with	Spark	(beta).	
http://kylin.apache.org/docs20/tutorial/cube_spark.html	(2017-05-09)	

Apache	Lens,	2016,	Welcome	to	Lens!		
https://lens.apache.org/	(2017-06-20)	

Apache	Spark,	2017.	Cluster	Mode	Overview.	
https://spark.apache.org/docs/latest/cluster-overview.html	 (2017-01-
12).	

AtScale,	2016.	The	Business	Intelligence	on	Hadoop	Benchmark.	
http://info.atscale.com/atscale-business-intelligence-on-hadoop-
benchmark	(2017-05-15)	

 Back,	D.W.,	Goodman,	N.	and	Hyde,	J.,	2013.	Mondrian	in	Action:	Open	source	
business	analytics.	Manning	Publications	Co.	

Cuzzocrea,	A.,	Moussa,	R.	and	Xu,	G.,	2013,	September.	OLAP*:	effectively	and	
efficiently	 supporting	 parallel	 OLAP	 over	 big	 data.	 In	International	
Conference	 on	 Model	 and	 Data	 Engineering	(pp.	 38-49).	 Springer	 Berlin	
Heidelberg.	

de	Albuquerque	Filho,	B.E.M.,	Siqueira,	T.L.L.	and	Times,	V.C.,	2013.	OBAS:	An	
OLAP	 Benchmark	 for	 Analysis	 Services.	Journal	 of	 Information	 and	Data	
Management,	4(3),	p.390.	

Guller,	M.,	2015.	Spark	SQL.	In	Big	Data	Analytics	with	Spark	(pp.	103-152).	
Apress.	

Hortonworks,	2017.	Comparing	Beeline	to	Hive	CLI	
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-
2.4.0/bk_dataintegration/content/beeline-vs-hive-cli.html	(2017-01-20).	

Hortonworks,	2017.	What	HBASE	Does.	
https://hortonworks.com/apache/hbase/	(2017-05-09)	

Hortonworks,	2015.	OLAP	in	Hadoop	–	Introduction	(Part	1)	
https://community.hortonworks.com/articles/14958/olap-in-hadoop-
introduction-part-1.html	(2017-06-20)	

Huang,	J.,	Zhang,	X.	and	Schwan,	K.,	2015,	August.	Understanding	issue	
correlations:	 a	 case	 study	 of	 the	 Hadoop	 system.	 In	 Proceedings	 of	 the	
Sixth	ACM	Symposium	on	Cloud	Computing	(pp.	2-15).	ACM.	
Vancouver	

Kaser,	 O.	 and	 Lemire,	 D.,	 2006.	 Attribute	 value	 reordering	 for	 efficient	 hybrid
	 OLAP.	Information	Sciences,	176(16),	pp.2304-2336.	
Kim,	M.,	2012.	Scaling	Theory	and	Machine	Abstractions.	

	41	

http://www.cs.columbia.edu/~martha/courses/4130/au12/scaling-
theory.pdf	(2017-04-25)	

Lakhe,	B.,	2016.	The	Hadoop	Ecosystem.	In	Practical	Hadoop	Migration	(pp.	103-	
116).	Apress.	CHAPTER	5	 	

Mazumder,	S.,	2016.	Big	Data	Tools	and	Platforms.	In	Big	Data	Concepts,	Theories,
	 and	Applications	(pp.	29-128).	Springer	International	Publishing.	
Microsoft	Developer	Network.	2002.	Just	What	Are	Cubes	Anyway?	(A	Painless	

Introduction	 To	 OLAP	 Technology)	 https://msdn.microsoft.com/en-
us/library/aa140038(v=office.10).aspx#odc_da_whatrcubes_topic2	
(2017-04-19)	

Ordonez,	C.,	Chen,	Z.	and	García-García,	J.,	2011,	October.	Interactive	exploration
	 and	 visualization	 of	 OLAP	 cubes.	 In	Proceedings	 of	 the	 ACM	 14th
	 international	workshop	on	Data	Warehousing	and	OLAP	(pp.	83-88).	ACM.	
Ousterhout,	K.,	Rasti,	R.,	Ratnasamy,	S.,	Shenker,	S.,	Chun,	B.G.	and	ICSI,	V.,	2015,	

May.	 Making	 Sense	 of	 Performance	 in	 Data	 Analytics	 Frameworks.	 In	
NSDI	(Vol.	15,	pp.	293-307).	
Vancouver	

Pentaho,	2017.	CDE	 	
	http://community.pentaho.com/ctools/cde/	(2017-06-19)	 	

Salloum,	S.,	Dautov,	R.,	Chen,	X.,	Peng,	P.X.	and	Huang,	J.Z.,	2016.	Big	data	
analytics	 on	 Apache	 Spark.	International	 Journal	 of	 Data	 Science	 and	
Analytics,	pp.1-20.	CHAPTER	2	

Sanchez,	Jimi.	"A	Review	of	Star	Schema	Benchmark."	arXiv	preprint	
arXiv:1606.00295	(2016).	

Schwartz,	B.,	2015.	Practical	Scalability	Analysis	With	The	Universal	Scalability	
Law.	 https://cdn2.hubspot.net/hubfs/498921/eBooks/	
scalability_new.pdf?t=1449863329030	(2017-05-02)	

Thusoo,	A.,	Sarma,	J.S.,	Jain,	N.,	Shao,	Z.,	Chakka,	P.,	Anthony,	S.,	Liu,	H.,	Wyckoff,	P.	
and	Murthy,	 R.,	 2009.	 Hive:	 a	 warehousing	 solution	 over	 a	map-reduce	
framework.	Proceedings	of	the	VLDB	Endowment,	2(2),	pp.1626-1629.	

Vohra,	Deepak.	"Practical	Hadoop	Ecosystem."	(2016).	In	Introduction	(pp.	163	
205)	Springer	International	Publishing.	

Yaghmaie,	M.,	Bertossi,	L.	and	Ariyan,	S.,	2012,	March.	Repair-oriented	relational	
schemas	 for	 multidimensional	 databases.	 In	Proceedings	 of	 the	 15th	
International	 Conference	 on	 Extending	 Database	 Technology	(pp.	 408-
419).	ACM.	

Wadkar,	S.,	Siddalingaiah,	M.	and	Venner,	J.,	2014.	Pro	Apache	Hadoop.	Apress.	
Zaharia,	M.,	Chowdhury,	M.,	Franklin,	M.J.,	Shenker,	S.	and	Stoica,	I.,	2010.	Spark:	

Cluster	Computing	with	Working	Sets.	HotCloud,	10(10-10),	p.95.	
Vancouver	 	

	
	
	
	
	

	42	

Appendices

Appendix A – MDX queries

Q1 MDX
SELECT	{[Measures].[Sum	lo_revenue]}		
ON	 COLUMNS,	 {Crossjoin([dates].[d_year].members,	
{[part].[p_brand1].[MFGR#2221],	 [part].[p_brand1].[MFGR#2222],	
[part].[p_brand1].[MFGR#2223],	 [part].[p_brand1].[MFGR#2224],	
[part].[p_brand1].[MFGR#2225],	 [part].[p_brand1].[MFGR#2226],	
[part].[p_brand1].[MFGR#2227],	[part].[p_brand1].[MFGR#2228]})}		
ON	ROWS	FROM	[SSB]		
WHERE	[supplier].[s_region].[ASIA]		

Q2 MDX
SELECT	{[Measures].[Sum	lo_revenue]}		
ON	 COLUMNS,	 {Crossjoin([dates].[d_year].members,	
{[part].[p_brand1].[MFGR#2239]})}		
ON	ROWS	FROM	[SSB]		
WHERE	[supplier].[s_region].[EUROPE]		

Q3 MDX
SELECT	{[Measures].[Sum	Profit]}		
ON	 COLUMNS,	 CrossJoin({[dates].[d_year].[1997],	 [dates].[d_year].[1998]},	
Crossjoin([supplier].[s_region].[AMERICA].children,	
Filter([part].[p_category].members,	 [part].currentmember.parent.name	 =	
"MFGR#1"	OR	[part].currentmember.parent.name	=	"MFGR#2")))		
ON	ROWS	FROM	[SSB]		
WHERE	[customer].[c_region].[AMERICA]	

Q4 MDX
SELECT	{[Measures].[Sum	Profit]}		
ON	 COLUMNS,	 CrossJoin({[dates].[d_year].[1997],	 [dates].[d_year].[1998]},	
Crossjoin([supplier].[s_nation].[UNITED	 STATES].children,	
[part].[p_category].[MFGR#14].children))		
ON	ROWS	FROM	[SSB]		
WHERE	[customer].[c_region].[AMERIC	

Appendix B – SQL queries

Q1 SQL
SELECT	sum(lo_revenue),	d_year,	p_brand1		
FROM	lineorder,	dates,	part,	supplier		
WHERE	lo_orderdate	=	d_datekey	and	lo_partkey	=	p_partkey		
AND	lo_suppkey	=	s_suppkey		
AND	p_brand1	between	'MFGR#2221'		
AND	'MFGR#2228'		
AND	s_region	=	'ASIA'		

	43	

GROUP	BY	d_year,	p_brand1		
ORDER	BY	d_year,	p_brand1;	

Q2 SQL
SELECT	sum(lo_revenue),	d_year,	p_brand1		
FROM	lineorder,	dates,	part,	supplier		
WHERE	lo_orderdate	=	d_datekey		
AND	lo_partkey	=	p_partkey	and	lo_suppkey	=	s_suppkey		
AND	p_brand1	=	'MFGR#2239'		
AND	s_region	=	'EUROPE'		
GROUP	BY	d_year,	p_brand1		
ORDER	BY	d_year,	p_brand1;	

Q3 SQL
SELECT	 d_year,	 s_nation,	 p_category,	 sum(lo_revenue	 -	 lo_supplycost)	 FROM	
dates,	customer,	supplier,	part,	lineorder		
WHERE	lo_custkey	=	c_custkey		
AND	lo_suppkey	=	s_suppkey		
AND	lo_partkey	=	p_partkey		
AND	lo_orderdate	=	d_datekey		
AND	c_region	=	'AMERICA'		
AND	s_region	=	'AMERICA'		
AND	(d_year	=	1997	or	d_year	=	1998)		
AND	(p_mfgr	=	'MFGR#1'	or	p_mfgr	=	'MFGR#2')		
GROUP	BY	d_year,	s_nation,	p_category		
ORDER	BY	d_year,	s_nation,	p_category;	

Q4 SQL
SELECT	d_year,	s_city,	p_brand1,	sum(lo_revenue	-	lo_supplycost)	
FROM	dates,	customer,	supplier,	part,	lineorder	
	WHERE	lo_custkey	=	c_custkey		
AND	lo_suppkey	=	s_suppkey		
AND	lo_partkey	=	p_partkey		
AND	lo_orderdate	=	d_datekey		
AND	c_region	=	'AMERICA'		
AND	s_nation	=	'UNITED	STATES'		
AND	(d_year	=	1997	or	d_year	=	1998)		
AND	p_category	=	'MFGR#14'		
	

	

	

	44	

Appendix C – Omicron Cluster performance
Language	 Query	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	
MDX	 Q1	 709	 715	 719	 656	 725	 716	 718	 733	 712	 715	
MDX	 Q2	 711	 704	 648	 658	 650	 653	 647	 656	 713	 713	
MDX	 Q3	 491	 513	 486	 498	 507	 495	 477	 493	 484	 485	
MDX	 Q4	 494	 614	 522	 490	 486	 506	 493	 511	 509		 539	
SQL	 Q1	 681	 605	 664	 607	 612	 606	 669	 612	 686	 679	
SQL	 Q2	 665	 620	 649	 599	 692	 686	 614	 682	 650	 616	
SQL	 Q3	 410	 418	 410	 420	 421	 411	 411	 401	 415	 403	
SQL	 Q4	 456	 409	 405	 419	 424	 421	 422	 414	 428	 428	

Appendix D – AWS 3 worker nodes performance

	
Langu
age	

Query
/Atte
mpt	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

MDX	 Q1	 491	 504	 504	 499	 488	 490	 494	 496	 534	 491	
MDX	 Q2	 484	 508	 490	 485	 490	 488	 495	 495	 487	 488	
MDX	 Q3	 418	 419	 417	 382	 422	 376	 374	 383	 394	 374	
MDX	 Q4	 	397	 381	 434	 390	 392	 401	 454	 447	 449	 437	
SQL	 Q1	 443	 488	 431	 437	 429	 430	 435	 420	 433	 422	

SQL	 Q2	 432	 434	 426	 435	 439	 437	 434	 436	 435	 427	
SQL	 Q3	 361	 350	 343	 363	 361	 374	 369	 366	 364	 368	
SQL	 Q4	 368	 366	 362	 354	 367	 356	 372	 348	 366	 368	

Appendix E – AWS 6 worker nodes performance

Langu
age	

Query
/Atte
mpt	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

MDX	 Q1	 298	 296	 290	 311	 293	 301	 307	 303	 297	 298	
MDX	 Q2	 344	 299	 287	 306	 287	 295	 297	 305	 305	 325	
MDX	 Q3	 256	 262	 234	 252	 261	 262	 261	 251	 270	 286	

MDX	 Q4	 	261	 270	 267	 270	 271	 276	 252	 258	 270	 259	
SQL	 Q1	 223	 244	 224	 237	 224	 222	 211	 248	 242	 250	
SQL	 Q2	 238	 250	 250	 257	 244	 244	 255	 231	 255	 260	
SQL	 Q3	 212	 214	 188	 189	 185	 214	 199	 196	 187	 195	
SQL	 Q4	 210	 195	 194	 232	 205	 194	 193	 241	 216	 212	
	
	
	

	45	

Appendix F – AWS 15 worker nodes performance

Langu
age	

Query
/Atte
mpt	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

MDX	 Q2.2	 152	 146	 145	 187	 152	 146	 152	 152	 152	 145	
MDX	 Q2.3	 144	 147	 146	 145	 145	 151	 151	 152	 146	 152	
MDX	 Q4.2	 167	 172	 149	 123	 143	 172	 137	 167	 172	 136	

MDX	 Q4.3	 	157	 175	 175	 145	 157	 173	 174	 174	 174	 151	
SQL	 Q2.2	 111	 124	 97	 124	 125	 97	 103	 104	 99	 99	

SQL	 Q2.3	 115	 98	 100	 104	 129	 123	 93	 103	 123	 123	
SQL	 Q4.2	 76	 119	 75	 128	 75	 72	 130	 74	 72	 72	
SQL	 Q4.3	 128	 107	 73	 71	 71	 124	 73	 71	 72	 71	
	
	

Appendix G – System Benchmark

	
sysbench	 --test=memory	 --memory-block-size=4K	 --memory-scope=global	 --
memory-total-size=100G	--memory-oper=write	run	
	
sysbench	 --test=memory	 --memory-block-size=4K	 --memory-scope=global	 --
memory-total-size=100G	--memory-oper=read	run	
	
sysbench	--test=cpu	--cpu-max-prime=20000	run	
	
sysbench	--test=fileio	--file-total-size=1G	prepare	
	
sysbench	--test=fileio	--file-total-size=1G	--file-test-mode=rndrd	--max-time=240	
--max-requests=0	--file-block-size=4K	--num-threads=1	run	
	
sysbench	 --test=fileio	 --file-total-size=1G	 --file-test-mode=rndwr	 --max-
time=240	--max-requests=0	--file-block-size=4K	--num-threads=1	run	
	
	
		

	

