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Abstract

Improvments and evaluation of data processing in
LC-MS metabolomics

Alice Anlind

The resistance of established medicines is rapidly increasing while the rate of
discovery of new drugs and treatments have not increases during the last decades
(Spiro et al. 2008). Systems pharmacology can be used to find new combinations or
concentrations of established drugs to find new treatments faster (Borisy et al. 2003).
A recent study aimed to use high resolution Liquid chromatography–mass
spectrometry (LC-MS) for in vitro systems pharmacology, but encountered problems
with unwanted variability and batch effects(Herman et al. 2017). This thesis builds on
this work by improving the pipeline and comparing alternative methods and evaluating
used methods. The evaluation of methods indicated that the data quality was often
not improved substantially by complex methods and pipelines. Instead simpler
methods such as binning for feature extraction performed best. In-fact many of the
preprocessing method commonly used proved to have negative or neglect-able effects
on resulting data quality. Finally the recently introduced Optimal Orthonormal System
for Discriminant Analysis (OOS-DA) for batch removal was found to be a good
alternative to the more complex Combat method.
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Avancerade algoritmer för kartläggning av cellens 
beståndsdelar, stjälper mer än hjälper

Korrekt kartläggning av cellers beståndsdelar kan göra individanpassad medicin
en verklighet. men är databehandlingen korrekt? Denna rapport visar hur 
många algoritmer som används för databehandling förstör eller är 
verkningslösa. Enkla metoder visar sig också kunna prestera lika bra eller bättre
än komplicerade metoder.

När du tar din medicin får du en dos som verkar fungera bra för de flesta. I 
verkligheten har vi alla olika förutsättningar och det är därför inte ovanligt med både 
biverkningar och verkningslösa mediciner. Det bästa vore om varje medicinering var 
anpassad till just dina celler och förutsättningar. För att kunna göra det måste vi kunna
läsa av dina celler för att förstå vad som skulle fungerar för just dig. Nya biotekniska 
framsteg gör att vi nu har maskiner som kan läsa av alla cellens beståndsdelar inom en
dag till ett överkomligt pris. Att tolka förändringar i dessa  beståndsdelar blir 
komplext och man utvecklar därför algoritmer för att med hjälp av datorer kunna 
tolka och förenkla insamlad data. Maskinerna är också känsliga för variation i 
behandlingen av proverna som stör ut den signal som innehåller biomedicinskt 
relevant information. Även här utvecklas algoritmer för att försöka tvätta bort 
oönskade störningar i insamlad data. 

Jag har studerat sådana algoritmer för att jämföra olika varianter och se hur bra de är 
på att göra sitt jobb. Databehandlingen sker ofta via komplicerade program som 
kräver mycket datakraft. Jag testade bland annat en mycket enklare metod som inte 
krävde så mycket datakraft. Den enklare metoden presterade lika bra eller bättre än de
alternativa mer komplexa metoderna på mina insamlade data. Om den enklare 
metoden presterar bra även på andra datamängder av samma typ skulle stora 
besparingar kunna göras med avseende på både tid och kostnader.

Vid tvättning av insamlade data är det vanligt att forskarna utvecklar sina egna 
metoder. Det är sällan som dessa metoder testas ordentligt. Jag testade ett par metoder
från en tidigare publicerad vetenskaplig artikel och implementerade även egna 
metoder för rengöring. De flesta metoderna har väldigt liten eller negativ effekt på 
den data som behandlats i detta projekt. Att se begränsningar i metoder är svårt och 
därför borde forskarna lägga mer tid på att bevisa och motivera att deras metoder gör 
vad de beskriver.  
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Abbreviations

EM Expectation-maximum

FTMS Fourier transform mass spectrometry

GB Gigabyte

I Intensity

LC Liquid chromatography

LC-MS Liquid chromatography mass spectrometry

LOESS Locally weighted scatter plot smoothing / local regression

LV Latent variable

m/z mass/charge

MS Mass spectrometry

OOS-DA Optimal Orthonormal System for Discriminant Analysis

PCA Principal component analysis

PCX Principal component X

PLS-DA Partial least squares Discriminant Analysis

QC Quality Control

rt retention time

TIC Total Ion Count

ToF Time of Flight

UPLC Ultra high pressure liquid chromatography
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1 Background

During the last decades the rate at which new drugs are released have not increased, despite major 
discoveries and cost reductions in life science. With our current speed it has been estimated that it 
will take 300 years to double the number of drugs available (Spiro et al. 2008). Finding treatment to
diseases and improving already existing treatments remains slow and challenging. Several currently
effective treatments such as antibiotics are loosing effectiveness as resistance is increasing. If the 
speed of developing new treatments does not increase, treatable diseases might become untreatable. 

Since the development of new drugs has not been an slow method of finding new treatments, 
alternative method should be tried. One idea is to find more effective ways to use currently 
available drugs. By studying cells subject to different concentrations and combinations of drugs the 
field of in vitro systems pharmacology aims to find connections and similarities between drugs and 
learn more about combination effects. By knowing which drugs work in similar ways or are 
connected current treatments can be optimized and old drugs can be used in new ways (Borisy et al.
2003). One particularly interesting opportunity is to customize the dose and drugs for each 
individual treatment in what is known as personalized medicine (Kaddurah Daouk & Weinshilboum‐
2014). The current system of generalized treatments could result in too low doses to some patients 
while giving too high doses to others. Personalized treatments could therefore enable maximum 
drug effect while minimizing the side effects. Different variants of personalized medicine are 
already being used in health care in for example pharmacogenomics (Hess et al. 2015). However 
there are still challenges to overcome such as not being cost effective enough and shortcomings of 
genomic techniques such as not being able to account for environmental differences.

Technological advancements in the last decade has resulted in new biotechnological and data 
analysis tools that has enabled genome wide scale maps of gene expression, protein abundance and 
recently metabolites. In vitro systems pharmacology is utilizing these methods to create maps of the
effect of drugs on cellular pathways and biology. 

One early and successful project was the Connectivity map (CMap) database (Lamb et al. 2006). 
The CMap database contains results of standardized experiments designed to study the changes in 
mRNA gene expression induced by a large library of different drug compounds. It has successfully 
been used to re-purpose drugs (Iorio et al. 2010) and identifying previously unknown drug 
mechanisms (Iorio et al. 2010, Gullbo et al. 2011, Hassan et al. 2011, Fryknäs et al. 2013). 
However large scale mRNA experiments are expensive, and the relevance to biology can be hard to 
deduce from mRNA levels (ThermoFisher Scientific). A cheaper alternative with higher relevance 
to biology is metabolomics which has become popular in in vitro systems pharmacology in recent 
years (Wishart 2016). Metabolites are easier to interpret than mRNA and protein levels since they 
are closer to physiology (Kell & Goodacre 2014). However the information from different parts of 
the cell are complementary and a combination of all techniques are needed to get a complete picture
of the cell. 

3



For metabolomics there are mainly two techniques used, NMR and MS (Zhang et al. 2012). NMR 
is known to be more reproducible while MS has a higher sensitivity and resolution. In LC-MS the 
number of detectable metabolites is significantly higher and quantities about one million times 
smaller can be detected (Alonso et al. 2015, Nassar et al. 2017).

The first steps towards a CMap like database for metabolomics were conducted by Aftab et al. 
using NMR (Aftab et al. 2014). The NMR study was able to confirm clustering of drug families as 
expected indicating that metabolomics is a viable tool for in vitro systems pharmacology. A more 
recent similar study was conducted using LC-MS but failed to reproduce similar types of drug 
family clustering (Herman et al. 2017), partly due to  problems with experimental variability and 
batch effects.

For large-scale studies, the experimental work is often divided into batches. Batch effects refers to 
variability in the data that is only dependent on which batch the samples were prepared and 
measured in. There are several methods to remove batch effects in high-dimensional datasets. Initial
methods were built around building latent variable (LV) models of the data and identifying the 
latent variables with batch effect (Alter et al. 2000, Benito et al. 2004). While there have been 
documented cases of LV models working in practice, critique was raised regarding the high number 
of samples needed in each batch and regarding removing all variation in the latent variables 
(Nielsen et al. 2002, Johnson et al. 2007). As a response the Combat algorithm was developed 
based on empirical Bayes statistics which was designed to avoid these limitations (Leek et al. 
2010). For metabolomic data both Combat and LV based methods have been applied (Fukushima et
al. 2014, Andgan 2016). However Leek et al. argue that an underestimated method that outperforms
both latent variable methods and Combat is to redo the experimental work (Leek et al. 2010).

In this thesis the established LV methods, PCA and PLS-DA, the new latent variable method OOS-
DA proposed by Herman et al. and Combat are compared. Since batch effect removal has mostly 
been performed for microarray mRNA gene expression data it is possible that there are 
characteristics of the metabolomics LC-MS data that would lead to other conclusions. Furthermore 
OOS-DA was previously only compared to PCA, in the study by Herman et al., which is an 
unsupervised method. By adding comparison to another supervised LV method, PLS-DA, and to the
supervised empirical Bayes method, Combat, further insights might be gained. 

2 Aim

The aim of this thesis was to replicate and improve a computational pipeline for data processing of 
LC-MS metabolomics data. This pipeline should be adapted and optimized for use in in vitro 
systems pharmacology studies.

The goal was to include three main parts in the pipeline; feature extraction, preprocessing and batch
effect removal. Each part should include comparisons between different techniques and methods. 
Some method specific user defined parameters should be optimized and the final results should be 
evaluated. One additional goal was to apply the pipeline to other datasets.
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3 Theory

3.1 LC-MS

An LC-MS system aims to detect and quantify molecules by separating them based on mass charge 
ratio (m/z) and the chemical separation specified by the experimental set-up of the LC system. An 
LC-MS system consists of three connected parts, the liquid chromatography system, the ionization 
device and the mass spectrometer, see Figure 1. 

Assume you would like to detect and quantify metabolites in a set of samples. Samples are first 
prepared by extracting metabolites before injection into the LC-MS system. Once the sample is 
injected the LC system separates the molecules by solubility in the mobile phase. Highly soluble 
metabolites will elute from the column first. The time of elution is refereed to as the retention time. 
The elution is passed on to an ionizer which charges each molecule and transforms it into gas phase 
before injection into the MS. The MS detects the m/z value and the intensity of each ionized 
molecule. A response (detected m/z) from one type of ionized molecule is called a signal. All the 
signals registered for one injection into the MS are summarized in a m/z spectrum, see Figure 2. 
One m/z spectrum is created about every half second. Such a time interval is often referred to as a 
scan as the MS scans the contents of a small time frame of elutions from the LC. The full output 
from the MS is a list of several m/z spectras which can be summarized in the form of an intensity 
map, see Figure 2. 

5

Figure 1: Schematic of a LC-MS system



The LC system is often a Ultra High Pressure Liquid Chromatography (UPLC) that is run either as 
reverse-phase chromatography(RP) or hydrophilic interaction liquid chromatography (HILIC) 
(Zhou & Yin 2016). The RP set-up enables good separation for semi-polar and lipid molecules 
while HILIC is best suited for polar metabolites. The mobile phase used is often a analytical 
gradient of several solvents. Most experiments use their own optimized gradient protocols while the
solvents chosen are often the same (Ranninger et al. 2016, Narduzzi 2017, Herman et al. 2017). For
RP systems common solvents are, water, acetonitrile and methanol. Mobile phase modifiers, such as
formic acid, are often added to the mobile phase to improve stability and sensitivity (Zhou & Yin 
2016). Due to the varying set-up of the mobile phase, the retention time (rt) across experiments is 
not comparable.

There are many different types of ionization principles to choice from; Atmospheric Pressure 
Ionisation (APCI), Atmospheric Pressure Photoionisation (APPI), Electrospray (ESI) (Barwick et 
al. 2006). The ESI method is perhaps the most common ionization principle (Ranninger et al. 2016, 
Narduzzi 2017, Herman et al. 2017). ESI is a soft ionizer which means that the fragmentation of the
molecules are limited. The ionized product of a molecule, M, is often the molecule with a added 
cation (Barwick et al. 2006). The most common products of ESI is: [M+H]+, [M+Na]+ or  [M+ 
nH]n+. Ionization is done via spraying the molecules in solvent through a needle tip at high voltage 
(typically 1-10keV) and temperature (300-500C) (Barwick et al. 2006, Narduzzi 2017, Herman et 
al. 2017). This produces highly charged droplets which evaporate into the ionized molecule in gas 
phase, which is the form accepted by the mass spectrometers. 
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Figure 2: Each scan has an retention time (rt) and a m/z spectrum. All scans can be 
visualized together by combining them into an map, where each intensity is visualized 
by a grayscale value. 



The basis in MS is to use the the conversion of potential energy to kinetic energy of an charged 
particle in an electric field. All potential energy is converted into kinetic energy as the particle is 
accelerated through the electric field. This results in the m/z ratio being deduced as the following 
equation:  

Ep=E k⇔ zU=
1
2

m v2
⇔

m
z
=

2U

v2

where Ep is the potential energy, Ek the kinetic energy, z the charge of the particle, U the electric 
potential difference, m the mass of the particle and v the velocity. The electric potential is given by 
the  MS and the velocity is measured in the MS.  Different MS types use slightly different methods 
of deducing the velocity of the molecules. 

Two common mass spectrometer types are Time of Flight MS (ToF-MS) and OrbiTrap systems. 
ToF-MS accelerates the molecules with a electric field through a potential and the measured time to 
reach the detector from passing the potential will give the m/z value of the molecule (Wolff & 
Stephens 1953). The number of molecules are given by the intensity of the signal hitting the 
detector. OrbiTrap systems will catch ions into trajectories around an inner spindle-like electrode. 
The trajectory of the ions can then be transformed into m/z values by means of Fourier transform of 
the frequency (Hu et al. 2005). It has been shown that the OrbiTrap systems have a higher 
resolution than ToF (Perry et al. 2008). OrbiTrap systems are more expensive than ToF and has less 
database entries of fragmentation patterns to be used for metabolite identification (Perry et al. 
2008). Furthermore there are several additional settings, options and parameters to tune. One such is
if the MS is run in positive or negative mode. Positive mode means that only positively charged 
molecules are measured, while negative means that molecules with negative charge are measured. 
Another common term is targeted MS. Targeted MS have spiked in isotope standards that are used 
to better quantify molecules. In this thesis all datasets are run in positive mode and are untargeted.

3.2 LC-MS data processing

The raw data from LC-MS consists of thousands of m/z spectras for each sample which are hard to 
interpret. By data processing the data can be transformed to easier interpret the biology of the data. 
The two main steps used in LC-MS data processing are feature extraction and preprocessing.

3.2.1 Feature extraction
The feature extraction procedure aims to simplify the data by grouping several signals into features. 
There are many different algorithms and ideas on how to extract features. The following methods 
will be used and presented bellow, Binning, XCMS and OpenMS. The binning algorithm was 
developed as part of this thesis project, XCMS is a commonly used package and OpenMS is the 
method applied by Herman et al. (Herman et al. 2017). A graphic representation of the algorithms 
can be seen in Figure 3.  

Binning
The binning algorithm first makes all spectra have the same number of features by having a 
common vector of bins (intensity intervals)  with the same m/z values for all retention time points 
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and samples. Then the resulting intensity map for one sample is reduced to a single m/z spectrum by
adding together the individual spectra (rows of the resulting intensity map). This means that there is
no need for alignment of the samples due to differences in the retention times.

XCMS
XCMS, perhaps the most popular program for LC-MS data processing, tries to collect signals into 
peaks by trying to matching a Gaussian function to the collected data. There are two methods 
available matchedFilter and centWave. The matchedFilter (Smith et al. 2006) algorithm uses small 
bins of m/z to form chromatograms of the rt-dimension. In the rt-dimension a Gaussian filter 
identifies peak shapes which are integrated to get the total peak signal. In centWave (Tautenhahn et 
al. 2008) a mass trail is found by finding ranges in rt-dimension where a signal at a certain m/z 
value is continuously present. An Gaussian filter is then used on this region to identify peak location
and area of integration. For alignment each peak is linked up with all other peaks that are within a 
given resolution in both m/z and rt direction. This is followed by a user defined number of cycles of
retention time correction step, where small differences in rt between samples are corrected, 
followed by an updated alignment. For our data only one cycle was done as the rt shifts between 
samples were as small as a few seconds. 

OpenMS
In the paper by Herman et al. a step further is taken by trying to add peaks together with their 
pipeline using the software framework OpenMS (Sturm et al. 2008). Depending on ionization one 
metabolite might result in several peaks. By grouping peaks together into candidate metabolites the 
hope is that the data will be easier to interpret. To find which peaks to group together an support 
vector machines (SVMs) was pre-trained on a dataset of known peaks of chemical compounds. The 
result of these trained SVMs is used on the data to predict which peaks form a candidate metabolite.
In the pipeline of Herman et. al. the alignment across samples is done via clustering approaches to 
solve the complexity of having several regions in each peak. 
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Figure 3: Schematic of different feature extraction methods, from the most simplistic (Binning) to 
the most complex (OpenMS). Binning divides signals (black dots) into uniformly distributed bins in 
the m/z dimension. XCMS fits gaussian curves to the collected MS-data to find peak areas. OpenMS
merges several peak areas into potential metabolites.



This results in features that are comparable across samples. The data for one sample can therefore 
be simplified into an intensity vector with the values of the intensity for each feature. The full 
dataset can be collected into a intensity matrix, I, with samples as columns and features as rows. 

3.2.2 Preprocessing
The data can be subject to computer based analysis at this stage but usually a preprocessing step is 
performed before. Since LC-MS is a high resolution technique able to detect metabolites in the 
range of nano grams, both technical and biological experimental variability (noise) is often highly 
abundant. The preprocessing is often tailored by each user to solve variability issues in the specific 
dataset. Blank samples only containing solvents are often used to identify and subtract background. 
Normalization of intensity distributions across samples is often applied to correct for experimental 
variance between samples. A common method is to simply scale the intensity matrix to make the 
medians, of the intensities for all features, between samples  equal. However the steps are often 
poorly evaluated and presented in many published reports and the effects of this poor practice will 
be apparent later on in this thesis. 

3.3 Latent variable model batch effect removal

The idea of LV model batch effect removal is to find latent variables that contain the batch effects in
the dataset and remove them. 

Consider a dataset represented by a matrix X containing n samples as columns X = [x1, x2, ... , xn] 
and k variables as rows. Assume that the dataset X consist of batch effects, Xb, and true signals, Xt:

X=X t
+X b (1)

Let us assume that each sample xi  can be expressed as a linear combination of some latent variables
ti(i):

xi=p1 t1(i)+ p2t 2(i)+...+ pn tn(i) (2)

where pj  is a loading vector being a column vector with k elements. The values of the vector tj of 
the latent variables are called the score values of xi. The full dataset can now be expressed as:

X=PTT (3)

where P is a matrix containing all loading vectors as columns, and T is a matrix containing all score
vectors as columns.

Denote the loading vectors containing the batch effects as Pb, and their respective scores as Tb. The 
true signal can now be found as:

X t
=X−Xb

=X−Pb
(Tb

)
T (4)

Three different methods of finding the latent variables containing the batch effect were tried: PCA, 
PLS-DA and OOS-DA. The theory of which will be presented in the following subsections.

9



3.3.1  PCA
Principal component analysis (PCA) is a method to linearly compress a dataset while retaining as 
much variance as possible.

Consider a mean centred dataset, X, with n samples as columns, X = [x1, x2, ... , xn] and k variables 
as rows. The covariance between any two variables in X can be found in the covariance matrix, C. 
Assuming the variables have zero mean, the covariance matrix C can be empirically approximated 
as:

Ĉ=
1

N−1
X XT (5)

The eigenvalue λi associated with eigenvector pi of C correspond to the variance of all samples in X
along the direction defined by pi. The score values of one sample xj are the coordinates of xj when 
expressed in the coordinate system defined by the eigenvectors (loading vectors) pi.

Thus the dataset X can be reduced to fewer dimensions by projecting X onto the loading matrix, 
P=[p1, p2, ..., pl], where l is the number of latent variables. The resulting score matrix, T=[t1, t2, ..., 
tl], can be calculated as:

T=XT P (6)

3.3.2  PLS-DA
In this thesis project the 'plsregress' function in Matlab was used to perform PLS regression 
modelling. This function implements the SIMPLS method , the interested reader is encouraged to 
visit de Jongs article for more in-depth explanations and details (de Jong 1993). 

Consider a mean centred dataset, X0=[x1,x2,...,xn], with n samples as columns and k variables. Each 
sample i has a mean centred response variables stored in Y0=[y1,y2,...,ym] as columns. The idea of 
PLS is to perform linear regression in latent variable representations of X0 and Y0 to find a linear 
regression model (coefficients) that can accurately predict Y0 from X0. For PLS-DA each class is 
considered a response variable that can either be 1, if the sample belongs to a class of interest, or 0 
if it does not belong to that class.

3.3.3  OOS-DA
Optimal Orthonormal System for Discriminant Analysis (OOS-DA) aims to find latent variables of 
a dataset that best separates the data based on pre-defined class labels (Okada & Tomita 1985). 

Consider a dataset, X, containing n samples as column vectors, X = [x1, x2, ... , xn] , where each 
sample, xi, contains k variables. Each sample also has a class label c, where c is a numeric index, 
c=1, 2, ... , C,  where C is the number of classes. To introduce the idea behind OOS-DA let the 
centroid of a subset S among samples collected in X be defined as:

xs
=

1
N s

∑
i∈S

x i (7)
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where Ns  is the size of the subset. Now define the between-class scatter matrix B as:

B=

∑
c=1

C

N c (x
c
−x g

)(xc
−xg

)

N
(8)

where Nc, is the number of samples with class label c, N is the total number of samples, xc is the 

centroid of class c and xg is the global centroid. The global centroid is the centroid of the entire 
dataset X.

Define the within-class scatter matrix for each class c, Wc,  as:

W c=

∑
i=1

Nc

(x i−xc
)(x i−xc

)

N c

(9)

The different within-class scatter matrices, Wc, are as a last step joined to form the general within 
variance as:

W o=

∑
c=1

C

W c N c

N
(10)

A separation matrix, S, which reflects how the between-class scatter matrix is related to the within-
class scatter matrix can now be defined as:

S=W 0
−1 B (11)

The goal of OOS-DA is to sequentially for each dimension find the eigenvectors of the scatter 
matrix S with the largest corresponding eigenvalue. The set of eigenvectors extracted this way will 
be used as orthogonal loading vectors pi  of X. The score  score vectors tn can then be calculated 
from the linear transformation  tn=PTxn, where P=[p1 , p2,   ...  pk]. 

3.4 Combat

Combat is a batch effect removal technique developed to counteract the limitations of LV based 
approaches. Johnson et al. stated that LV approaches often require more than 25 samples per batch 
making it unsuitable when batches are small (Johnson et al. 2007). Further more they argue that if 
the latent variables (the score values) are uncorrelated (which is true for both PCA, PLS-DA and 
OOS-DA) the first latent variables will be very important for the performance. The batch effect 
removal itself is also blind, in that it removes all variation in the direction associated with the latent 
variables, not only the batch variation. This means that if there is a large batch variation and a 
smaller true variation in the same direction, the true variation will be lost in LV based approaches. 
The idea of Combat is to use a linear model to model the observed data in terms of multiplicative 
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and additive effects  and then performing both subtraction and scaling (division)  aimed at removing
these effects. The fitting of the model parameters is based on so called empirical Bayes methods.

3.5 Dimensionality optimization

One key issue related to the batch effect removal step is the choice of the number of dimensions to 
remove from the data in the attempt to remove the batch effects. To automate this process 
dimensionality optimization was performed where the results obtained by means of different 
number of dimensions removed were compared. 

To evaluate the performance of a particular parameter setting a separation score was calculated as a 
measurement of the separation of some pre-specified classes. The classes specified should be 
known to separate well biologically speaking and should not be the same as the classes for the 
biological question since that would lead to overfitting.

3.6 Separation score

The separation score is an measure of the separation between classes and is defined as:

s=
b
ŵ

 (12)

 where b is the between class variability score and ŵ  denotes the mean of the within class 
variability score of each class c, equation 13 and 15. 

The separation between classes, b,  is quantified as the mean distance of class medians around the 
global median, see Figure 4 and equation 15. If the samples inside a class has high variability then 
the between class variability could still be large even when there is only a small separation. To 
account for this the between class variability is divided by the within class variability, see Figure 4 
and equation 13 and 14.
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ŵ=
1
C
∑
c=1

C

wc  (13)

here C is the number of classes and wc is the within-variance score within class c, calculated as:

w c=
1
N s

∑
s=1

N s |xs−~xc|
|~xc|

 (14)

where N s  is the number of samples in class, c, ~xc  is the class median and xs  is sample s 

belonging to class, c.

b=
1
N c

∑
c=1

N c |~xc−
~x|

|~x|
 (15)

Here ~x is the global median and N c is the number of classes.

The drug dataset seemed to be sensitive to outliers within the classes, which were biological 
replicates of untreated cells (Controls) and cells treated with Mebendazole (Mebendazole). Small 
changes in outliers of these classes had a larger impact on the score than small changes in all of the 

13

Figure 4: Schematic for within class variability (w) and between class variability (b). The 
within class variability for blue class is the mean distance from the members (circles) to 
the mean (cross). The between class variability is the mean distance between the global 
mean (grey cross) and the class means (red, blue and green cross).



samples. To avoid this problem outliers were excluded from each class before separation score 
calculations. For each class the samples were evaluated as the Euclidean distance to the sample 
median vector. The 20% of replicates that had the largest distance to the median was removed 
before separation score calculations.

4 Methods

A computational pipeline for processing LC-MS data was built inspired by the pipeline of Herman 
et al. (Herman et al. 2017). The pipeline was initially tested on the dataset produced by Herman et 
al.. An additional dataset was found in the European Bioinformatics Institute (EMBL-EBI) 
affiliated database of metabolomic experiments, MetaboLights (Haug et al. 2013). The dataset 
MTBLS209 was selected since it had verified status, available blank and quality control (QC) 
samples and run order information (Narduzzi 2017). 

4.1 Experimental data and set-up

4.1.1 Drug dataset
One goal of the dataset produced by Herman et. al. was to study if human cell cultures treated with 
drugs of the same drug class would cluster together based on induced metabolomic changes. The 
experiment was done by incubating non-cancerous mammary gland derived cells in vitro with a 
drug, belonging to one of 4 different drug classes or a pesticide from a group of pesticides, for 24 
hours, see Table 1. It should be noted that support for this drug classes could only be found for the 
tyrosine kinase inhibitors (Thomas et al. 2012). The drugs were then harvested and prepared to be 
run in an LC-MS system. The incubation was done in 4 batches due to experimental limitations in 
the number of samples. The assignment of drug samples into the 4 batches was done by random, see
Table 1. Each drug treatment was done in a biological triplicate. Untreated cells (controls) and cells 
treated with the drug Mebendazole was done in biological triplicate for each batch for quality 
control. After each batch the cells were freeze dried. When all batches were complete the freeze 
dried samples were rehydrated and analysed by a Thermofisher Qexactive OrbiTrap MS coupled to 
a UPLC system. For further quality control 25 blank samples and 10 pool samples were added 
randomly in the run order. The blank samples only contained the rehydration solution. Pool samples
was created by allocating a small part of all samples into one pool. Separate pools only containing 
the samples from one batch was also prepared. For more details see the study by Herman et. al.
(Herman et al. 2017). In the following sections this dataset will be referred to as the "drug dataset".
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Table 1: Drug classes used as columns with drugs in columns. Colours represents which batch the 
drug was prepared in. Mebendazole was prepared in triplicate in all four batches. This table is 
copied with permission from Herman et. al. (Herman et al. 2017).

Estrogen
pathway

perturbators
Anti-

inflammatory

Tyrosine
kinase
inhib. HDAC inhib. Pesticides

17-ß-estradiol Dexamethasone Erlotinib Vinblastine Octylmethoxycinnamate
Diethylstilbestrol Hydrocortisone Gefitinib Vincristine Diuron

Bisphenol A Prednisolone Lapatinib Albendazole Glyphosate
Genistein Aspirin Mebendazole Atrazine
Quercetin Ibuprofen Trichostatin A Dimephenthioate
Tamoxifen Chloroquine Thiram

NVP-BEZ235

4.1.2  Grape dataset
The original aim behind the grape dataset was to study spatial differences across different grape 
species. The grapes were collected at a set maturity (18 brix) and immediately stored at -80 °C. The 
different tissue types, skin (b), pulp (p) and seeds (s) were extracted manually and ground under 
-80°C. The preparation before the LC-MS analysis was done according to the optimized protocol by
Theodoridis et al. with slight modifications (Theodoridis et al. 2012, Narduzzi 2017). The samples 
were analysed with both targeted and untargeted approaches, in both positive and negative mode of 
the MS, but in this thesis only the positive untargeted data will be used. Blank samples, samples 
containing a standardized mix of metabolites and pool samples were identified in files and meta 
data but no clear definition of the preparation of these samples were given. Similarly run order was 
extracted from the sample names produced by the LC-MS system. In the following sections this 
dataset will be refereed to as the "grape dataset".

4.2 Computational pipeline 

The computational pipeline was implemented in Matlab 2015b (The MathWorks Inc., Natick, MA, 
2000) for fast development speed using provided and custom functions to clean the data, see Figure 
5 for an overview. Before preprocessing the raw data need to be transformed into features and be 
aligned between samples. This is refereed to as the feature extraction step in this thesis. The data by 
Herman had already been processed by a complex pipeline implemented in the framework OpenMS
(Herman et al. 2017). Due to the complexity of this pipeline we compared two alternative feature 
extraction methods, XCMS and a custom binning approach (Smith et al. 2006, Tautenhahn et al. 
2008). After the feature extraction the resulting dataset was cleaned by means of several functions 
developed for the preprocessing steps. These preprocessing steps were based on known technical 
variations and individual observations of the given datasets. After preprocessing, batch effects could
be observed in the drug dataset. The tissue differences were used to simulate batch effects in the 
grape dataset. Four different methods of batch effect removal using PCA, PLS-DA, OOS-DA and 
Combat were investigated. To choose the number of dimensions removed for batch effect removal, 
dimensionality optimization using an objective function across a grid of possible number of  
dimensions removed in two consecutive steps of the pipeline was employed. 
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4.3 Feature Extraction

Feature extraction was performed using three different methods, Binning, XCMS and OpenMS. The
feature extraction in OpenMS was conducted as in the article by Herman et al.. All other methods 
were implemented and run as a part of this thesis project. The runs using XCMS were performed 
according to the manual, and the implementation of the binning approach was written in Matlab see 
following sections for summary or the code for details (Anlind 2017).

4.3.1 Binning
For the binning algorithm the number of bins to use had to be specified. In order to ensure the 
resolution of the Orbitrap MS to be at the level of 0.05 Da, the number of bins was specified to 
20000. To reduce noise all signals with an intensity below 100 was ignored.
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Figure 5: Schematic over the computional 
pipeline developed. The pipeline was 
organized into the three blocks, feature 
extraction, preprocessing and batch effect 
removal.



First a common feature vector of m/z values at the bins middle point was specified. The m/z values 
are the m/z range (0-1000) divided into 20,000 equally large pieces with size equal to the resolution 
(0.05). The m/z range can be set by the user to depending on the settings used by the MS 
instruments. The range may also be decreased in the lower m/z regions to reduce noise from small 
highly abundant molecules. Then the algorithm will go through each signal and match the m/z of 
the signal with the m/z of the bin that is within a distance of 0.025. The intensity will then be added 
to the already existing values in the bins intensity values. If the signal is outside the range it will be 
ignored.

Let:
- mz(x) denote the m/z value of bin x or signal x,
- I(x) denote the intensity vector at bin x,
- int(s) denote the intensity value of signal s,

Procedure:

 1. For each signal, s

 1.1.If int(s) <100

 1.1.1. Do nothing

 1.2. Else

 1.2.1. Find bin, b where |mz(bin) - mz(s)| < 0.025

 1.2.2. I(b) <- I(b) + int(s) 

4.4 Preprocessing pipeline

The preprocessing pipeline in R used by Herman et al. was used for inspiration. The new pipeline 
developed for this thesis project was written in Matlab and is designed to be more robust to outliers.
The full pipeline code is available at Github (Anlind 2017). The ordering of the different functions 
in the pipeline is important, but depending on the actual aims, different orders might be more or less
suitable. The logarithm function was set first in the pipeline since it will alter the relative 
importance of features on the separation score used. The outlier removing functions were set at the 
end of the pipeline to ensure that no new outliers appeared when correcting the data. 

4.4.1 Log
The range of intensity values obtained from an MS experiment are known to have high variation in 
metabolomic datasets, typically ranging from 10  to 10  . Therefore changes in the highly abundant ⁴ ⁸
features will be so large that changes in less abundant features will have limit impact on the 
separation score, even if there is a high fold change. This was corrected by replacing the intensities 
with the natural logarithm of the intensities. The logarithm was chosen as it corrects for 
heteroscedasticity, results in pseudo scaling and make multiplicative models additive (van den Berg 
et al. 2006). However it should be noted that van den Berg showed that auto-scaling or range 
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scaling might be more suitable choices. These methods were not investigated due to a lack of time, 
but are encouraged for future work.

However the logarithm is not defined for zero meaning that features that have an intensity of zero 
will become undefined after logarithmic transformation. A zero intensity in this context means that 
there is no signal present. Since the logarithm of one equals zero, all intensities with the value zero 
were set to one before logarithmic transformation. 

Procedure:

 2. Set all zero values of intensity matrix, I (corresponding to non-detected features) equal to 1

 3. Replace the intensity matrix, I, with the logarithm of I, log(I). 

4.4.2 Correction of intensity based on run order
Due to temporal drifts in LC-MS properties, it is known that for MS runs with a large number of 
samples the intensity of the signal might be affected by the run order of the samples. The effect of 
run order is seen as a trend either increasing or decreasing based on run order. The systematic 
change due to run order can vary across features. To correct for this the trend as a function of run 
order was identified and removed from the data, Figure 6, for each feature. 

 

The resulting data would then be centred around zero loosing the information about general 
abundance of the feature. To correct for this the mean intensity across the samples are added to 
rescale the adjusted data back to the original intensity scale. The trend curve was found using 
Matlab's curve fitting function, fit, with the following call, fit(run order, intensity, 'smoothingspline',
'SmoothingParam', 1e-4) (MathWorks 2017). The LOESS (Cleveland & Devlin 1988) algorithm 
was also considered as an alternative, but it resulted in lower separation scores and had significantly
longer computational time for the drug dataset, see Table 2. The drug dataset had about three times 
as many samples per feature which might contributed to the change between the methods. Meaning 
that LOESS scales poorly as the number of samples increase.
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Figure 6: Schematic description of runorder correction. A. First a trend curve (red line) is 
identified. B. The predicted trend is then removed leaving only the residuals that are centered 
around zero. C. The data is rescaled to original intensity.



Neither LOESS nor the Smoothing spline approach are algorithms that are robust against outliers. 
Outliers in this case would represent large deviation in one feature for only one sample. This could 
for example happen if a drug was added to only a few samples. To make the algorithm robust, the 
outliers were identified and removed before curve fitting . Outliers were identified as residuals to 
the fitted curve that were greater than 1.5 standard deviations of all residuals (MathWorks 2017).

Procedure:

1. For each feature

1. Fit a curve to intensity based on run order

2. Remove samples with residuals greater than 1.5 standard deviations of residuals

3. Fit a new curve using the reduced dataset

4. Subtract the curve

5. Add the mean of the original data.

4.4.3 Normalization of intensity distributions
Some samples may have systematically lower or higher expression of most features. While this can 
be of biological origin, it is often more likely to be a technical error due to either LC-MS, injection 
size or experimental preparation. To correct for this there are several methods to choose from such 
as factor scaling, quantile normalization and CyclicLoess (Ballman et al. 2004). CyclicLoess and 
quantile normalization is considered one of the more complex methods that has fewer assumptions 
than factor scaling . CyclicLoess and quantile normalization is based on the idea that any pair of 
samples should have the same statistical distribution of intensities. Both methods have been showed
to perform similarly (Bolstad et al. 2003). As Herman et. al. used CyclicLoess I decided to use the 
same method for reproducibility. It should be noted that there are papers suggesting that quantile 
normalization is a better choice than CyclicLoess (Bolstad et al. 2003).  

CyclicLoess is  available in the R package "limma" but it is not available for Matlab (Ritchie ME et
al. 2015). Hence the fast version of CyclicLoess was re-implemented in Matlab with slight 
modifications to get better performance and faster computational time.  Comparing LOESS and 
Smoothing Spline showed that Smoothing Spline produced better separation scores at a lower 
computational time once again, see Table 3. Robust, outlier proof methods are not included in the R 
implementation of fast CyclicLoess. For LC-MS metabolomics data in in vitro systems 
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pharmacology the robustness is vital as for high concentration of drugs, outliers are always 
expected. The expected outliers are the drugs added to the cell culture which will be very high in 
only a few samples. For this reason the median was used to calculate the reference sample used in 
the fast algorithm instead of mean sample used by Ballman (Ballman et al. 2004).

The algorithm compares each sample with a reference sample, which is the median sample in the 
method implemented as part of this thesis project. The idea is that the majority of the intensities 
should be equal when comparing the sample and the median sample. To express this the trend of 
sample, s, plotted against the median sample should form a diagonal from the origin. The algorithm 
finds the trend in a modified version of this plot and de-trends any other trend than the diagonal 
from origin, see Figure 7. 

Procedure:

1. For each sample

1. Fit a curve that deviates from the diagonal

2. Remove samples with residuals greater than 1.5 standard deviations of residuals

3. Fit a new curve using the reduced dataset
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Figure 7: Schematic of CyclicLoess. Trend (red) is correct to fit the y=x function.



4. Subtract the curve

4.4.4 Blank background removal
When running LC-MS it is considered gold standard to add blank samples every 5-10 samples for 
both quality control and cleaning of the column. Hence the information in the blanks will indicate 
what features are carried in the background either as artefact (called carry over) from earlier 
samples or as a background from non-biological origins. Examples of sources of non-biological 
background are the mobile phase, the solvents and left-overs from the sample preparation. No 
matter if the signals are carry overs or a background signals they will introduce unwanted variance 
into the data. Two different methods of removing this variation was evaluated in this project called 
blank filter and blank subtraction. Blank filter was studied previously by Herman et al..

Blank filter
The blank filter aims to exclude features that are highly expressed in the blank compared to the 
samples. Let maxs(samples) denote the maximum intensity of the feature across all samples. Let 
medianf(blanks) denote the median intensity of the blanks for feature f. The blank filter keeps 
feature f if:

maxs(samples)
100

>median f (blanks) (16)

The actual ratio of 100 of the maxs(samples) used was found to give the highest score when 
compared to both 10 and 1000. 

Procedure blank filter: 

1. For each feature, f

1. IF maxs(samples)/100 > medianf(blanks)

1. Consider f a blank signal and remove f from dataset

Blank subtraction
If there are carry over effects in the data this will lead to biological signals bleeding into the blanks. 
Hence the blank filter would identify these signals as contaminants and remove the entire feature 
from the dataset, potentially missing important biological variation. To solve this I made a new 
algorithm called blank subtraction. In blank subtraction the idea is to identify if a sample's intensity 
for a feature belongs to the same distribution as the blank samples. If the sample intensity is within 
5 standard deviations of the blank median it is considered to be a contaminant and set to zero. Thus 
the feature f is considered to be a contaminant if the following strict inequality holds:

I− Î b>std (Ib)⋅5  (17)

where I is the intensity of the sample for that feature, Î b is the median of the blanks for this 
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feature  and std ( I b)  is the standard deviation of the blanks for this feature. Several 

multiplication factors for the standard deviation were tried, ranging from 0 to 5, where 5 achieved 
the best score, see Table 4. 5 was the highest multiplicative factor tested. If the signals are normally 
distributed a factor of 5 means that there is a probability of 1 in 3.5 million that a non-contaminant 
is falsely labelled as contaminant. Higher factors are therefore hard to motivate theoretically and 
might thus lead to overfitting. However it should be noted that a common threshold used in limit of 
quantification is 10 standard deviations, meaning that higher thresholds should have been tried if 
there was time (Armbruster & Pry 2008).

If the inequality in equation 17 is not fulfilled the measured signal I is considered to consist of both 
a blank background, and a true signal, It:

I=It + I b (18)

The true signal It is thus found by subtracting the median sample of the blanks. 

Procedure blank subtraction:

1. For each sample, s

1. For each feature, f

1. IF abs(I(f,s) - median(blanks)) > std(blanks)*5

1. I(f,s) <- I(f,s) - median(blanks)

2. ELSE

1. I(f,s) <- 0

4.4.5 Outlier TIC
Sometimes samples are subject to so large technical or experimental errors that preprocessing 
cannot clean them. Instead it is advisable to simply exclude these samples from the dataset. One 
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way to detect these outlier samples is to compare the sum of all intensities, called total ion count 
(TIC), and identify abnormal values. This is often done by manually by removing samples outside 
the whiskers of a box plot of the TICs. In this work an algorithm was implemented to automate this 
process. 

The limits for outlier detection are traditionally set to 2 standard deviations (95% confidence 
interval assuming normal distributions) for the data. While this threshold is often good there are 
cases where a higher or lower threshold might be useful. Therefore the option to change the number
of standard deviations was added to the function, see Figure 8.  For the drug dataset a threshold of 2
standard deviations was used while a threshold of 3 was used for the grape dataset. This was due to 
the high variability of the different species in the grape dataset leading to the removal of entire 
species if the threshold was set at 2.

Procedure:

Let mediandev(x) denote the median standard deviation of x.

1. For each sample, s

2. IF abs(TIC(s) - TIC(samples)) > mediandev(samples)*2

1. Consider s outlier, remove s from dataset

4.4.6 Outlier replicates
When creating three or more replicates it is possible to assess the quality of those replicates to 
identify samples with poor similarity between replicates. A fair assumption to make is that the 
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Figure 8: Schematic of outlier removal by 
TIC. Samples that lie within the outlier zone 
(red) are excluded. The limit for the outlier 
zone is set in terms of standard deviations 
(std) for the median.



correlation, in this work Pearson correlation, should be high between each replicate, ri ,  and the 

median of all replicates, ~r . In cases of large technical or experimental variability the correlation 
across replicates will be low. If a replicate, ri, has a Pearson correlation coefficient ρri ,~r

 lower 

then a threshold value, t, it should be removed from the dataset, see equation 22. The threshold was 
set to 0.8 for the grape dataset and 0.7 for the drug dataset. 

ρri ,~r
<t (22)

Procedure:

1. For each group or replicates, g

1. For each replicate, r

1. IF Pearson correlation < t

1. Consider r an outlier, remove r from the dataset 

4.4.7 Batch filtering
For large experiments the samples often needs to be prepared in batches due to experimental 
limitations. This leads to unwanted variance that needs to be removed to exclude that the results are 
not due to effects of preparation batch. A similar approach as used in Herman et al. was 
implemented. The batch filter algorithm aims to find features that are highly present in one batch 
and had a low presence in all other samples. The threshold for highly present features was set to 
having a signal higher than zero in more than 80% of the samples. The threshold for low presence 
was set to 20%. Other levels were tried but the effect was limited in our datasets.

Procedure:
For each batch, b

for each feature, f
if intensity >0 for >80% of samples in batch b AND intensity>0 for <20% of all 

other samples
consider feature f a batch specific contaminant and remove it

4.5 Batch effect removal

After all preprocessing steps were completed the first two principal components from PCA of the 
drug dataset separated the data into the four experimental batches the samples were prepared in, see
Figure 9. Three different methods for identifying the latent variables explaining the batch effect 
were compared; PCA, PLS-DA and OOS-DA. The results from employing these methods were 
compared with the corresponding results obtained using Combat.

After the batch effects based on experimental batches were removed a new batch effect emerged in 
the processed data from OpenMS, see Figure 10. The new batch effects was identified as depending
on if the run order was before or after the 95th sample. However this new batch effect could only be
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found when using OpenMS and thus could not be seen using the other two feature extraction 
methods, XCMS and binning, see Figure 11 and Figure 12. In XCMS another kind of batch effect 
was identified but its origin could not be traced, see  Figure 11. For binned processed data there was
no clear new separation seen after batch effect removal, see Figure 12. 

For the grape dataset there were no batch effects found. Instead the tissue type was used to simulate 
a batch effect to be removed, see Figure 13. Ideally this should result in the revealing of species 
specific effects that after batch effect removal should be independent of tissue type. 
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Figure 9: Batch effects in drug dataset after 
preprocessing shown by means of PCA using the
first two principal components. Here OpenMS 
was used as feature extraction method.

Figure 10: Secondary batch effects in drug 
dataset with OpenMS as feature extraction 
method. The  data seperates into two 
batches based on runorder before 95 (blue) 
or after (red).
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Figure 11: A clear split can be seen after 
batch effect removal using XCMS for the 
drug data. The split is is not based on 
runorder like in the OpenMS drug data.

Figure 12: No clear separation based on 
runorder can be seen in when using binned 
drug data.



4.5.1  Dimensionality optimization
The choice of the number of dimensions to remove from the data was selected by dimensionality 
optimization, using a grid. The separation score was used as objective function.  

In the grape dataset no clear candidate classes could be found, the only classes annotated were the 
different grape species and tissues. The separation between all species were used for the analysis 
even though this was the original biological question. This means that there is a risk of overfitting, 
but unfortunately no better classes could be found. 

In the drug dataset two good candidate classes are the Mebendazole and Control samples as they are
present in all batches, with triplicates within each batch. Controls should separate well from 
Mebendazole assuming that the Mebendazole affects the metabolome. Since Mebendazole is a drug 
used to treat colon cancer this assumption should hold true (Nygren et al. 2013). 

There was an imbalance in the number of samples in the Control and Mebendazole samples. 
Previous experience from Herman et al. and initial experiments showed a bias based on class sizes 
in the separation score. To counteract this imbalance in the analyses performed, replicates where 
created as linear combinations of all replicates in the under-represented class: 

Ir=I cW r (20)

where I r is the intensity matrix of the simulated replicates with samples as columns, I c , is the

intensity matrix of the real replicates with samples as columns. W r is a weight matrix where each

column is a uniformly random vector where all elements are between 0 and 1, with the sum of all 
elements in each column equal to 1. 
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Figure 13: Separation based on tissue type is the 
dominant separator for the grape dataset. 



To increase stability of the random simulation, the score calculation was performed 100 times and 
the mean score was used. The standard deviations were found to be in the magnitude of 0.01.

4.6 Software and Hardware

All feature extraction methods and dimensionality optimization of data processing  was run on 
UPPMAX using provided batch scripts (Anlind 2017). All other script were run on commodity 
hardware using R studio 2015 and Matlab 2015b under Ubuntu LTS 16.04. 

5 Results & Discussion

5.1 Feature extraction

A comparison of feature extraction methods was only done for the drug dataset. This was due to the 
grape dataset being added too late in the project. Results show that the "Binning" method for feature
extraction had the highest separation score after all steps of data analysis, see Table 5. It should 
however be noted that the separation was poor for all methods. It is therefore possible that a good 
separation cannot be found due to poor data quality. This is however an indication that the binning 
approach might be viable for feature extraction. 

5.2 Preprocessing pipeline

Most newly incorporated preprocessing methods showed no or actually negative improvements on 
the separation score in both datasets, see Table 6 and 7. For the grape dataset the logarithm had a 
strong negative effect while the normalization of intensity distributions and the blank subtraction 
had strong positive impacts. However for the drug dataset all these functions had mostly neglect-
able effects on the separation score. Overall effects on the separation score was mostly neglect-able 
for the drug dataset. The exception is when binning is used for feature extraction where positive 
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effects can be seen at blank subtraction. This might be due to the binning being closer to the raw 
data making processing of the data easier. 

Methods that had poor or neglect-able performance, marked with footnote 1, were excluded before 
progressing in the pipeline. Poor performance was not only evaluated on separation score values.  A 
high separation can be due to non-biological factors, such as outliers increasing the separation 
score. To determine if that was the case a more in-depth analysis was made for each method which 
will be explained in the following sections. The result of this analysis resulted in normalized 
intensity distributions being applied for grape dataset despite having a negative separation score 
impact. When there was no score impact the methods were not used to minimize the risk of 
destroying the data and batch effects before batch effect removal. 

The final preprocessing pipeline for the grape dataset included: Logarithm, Normalize 
Distributions, Blank Subtraction, TIC Outlier, Replicate Outlier. For the drug dataset the methods 
was tailored depending on the feature extraction method. For the binned data the pipeline was: 
Logarithm, Blank Subtraction, TIC Outlier, Replicate Outlier. For XCMS the pipeline was: Log, 
TIC Outlier, Replicate Outlier. For OpenMS the pipeline was: Log, Blank Filter, TIC Outlier, 
Replicate Outlier. 
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5.2.1 Log
If no logarithm is applied the data will heavily favour changes that have a high intensity value. 
Hence the logarithmic transformation should always be applied. In our dataset we can only see an 
decrease for the grape dataset and the binned drug data, see Table 6 and 7. This would indicate that 
there were high intensity features that contributed more to the separation than the intensities with 
lower intensity values. High intensity features are typically added chemicals or very highly 
abundant substances that often have high variance. Except for solvents and mobile phase it could 
have been the drugs added for the drug dataset. In the binned data there are a high number of 
features (>15000). As the number of features increases the risk of the data being noisy in lower and 
middle domains rises, hence the logarithm amplifies this noise which could be an additional reason. 

5.2.2 Correction of intensity based on run order  
The correction based on run order addresses that there might be a systematic change in intensity in 
some features based on run order. Ideally it should not change the intensities if there is no 
systematic difference and correct it if there is one. For all datasets only minor changes in separation 
could be seen. This would indicate that the variation, if there is one, does not affect the separation or
that the underlying biologically related separation and the technical separation cancel out. By 
investigating at the features where the samples had the highest mean change of intensity one can get
an idea of what corrections were done to the data.

For the grape dataset, the run order correction was run on each tissue separately. The run order 
correction on the p tissue introduced new unwanted variation into the data, see Figure 14. Before 
run order correction it seems to be two underlying classes with different expression. One at around 
6.5 and another at 4. After run order correction these classes got additional unwanted variation. By 
investigating the fitted trend curve it can be seen that the slight bias for early sample order for the 
class with higher intensities lead to a sort of overfitting, see Figure 15. Similar but weaker 
phenomena were seen for the remaining tissues s and b, see Appendix A.
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For the drug dataset each feature extraction method was investigated separately.  The run order 
correction has little to no effect on the highest changed feature in XCMS, see Figure 16. Since the 
effect was also small on the separation score it was decided that the correction of run order should 
not be applied for XCMS subset. 

For Binned and OpenMS large variation due to run order was noted, and the trend line was well 
fitted to this trend for both dataset, see Figure 17 and Figure 18. Hence the run order correction was 
able to remove unwanted variation in these dataset despite low separation score increase. The run 
order correction was applied for both OpenMS and Binned versions of drug dataset.
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Figure 14: Effect of runorder 
correction of grape dataset 
tissue p.

0 20 40 60 80 100 120 140 160

x

3.5

4

4.5

5

5.5

6

6.5

7

y

Correction of feature 404based on runorder

Original data
Trend runorder
outliers

Figure 15: The trend (red) is 
overfitted for feature 404 in grape 
dataset tissue p.

0 50 100 150 200 250

runorder

0

5

10

15

20

25

C
o
rr

e
ct

e
d

 i
n

te
n

si
ty

(I
)

Before correction

Correction of feature 735

0 50 100 150 200 250

runorder

0

5

10

15

20

25

C
o
rr

e
ct

e
d

 i
n

te
n

si
ty

(I
)

After correction

Figure 16: Runorder correction of the drug 
dataset with  XCMS as feature extraction method 
has an neglectable effect of the features.



5.2.3 Normalization of intensity distributions
The normalization of intensity distributions has the goal of making the intensity distribution similar 
to the distribution for a typical sample. The methods used for normalization are mainly based on 
assumption that all samples have about the same distribution of signal intensity. One case where this
does not hold true is between tissue types, which is why the method was employed separately for 
each tissue type in the grape dataset. The separation score decreased for the grapes, but by looking 
into the distributions of tissue b it can be observed that the samples are being normalized as desired,
see Figure 19. 
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For the drug dataset processed using OpenMS as feature extraction method the opposite is true 
where the distributions are well aligned before normalization but becomes vastly different 
afterwards, see Figure 20. Similar results were seen with XCMS and Binning, see Appendix B.

It is not clear why this strange result is obtained for the drug dataset. In some way the original 
signal must be very different from the median sample. Due to time restriction there was not time for
a more in-depth investigation of this phenomenon. However it does highlight the importance of 
investigating the effects on the data for this normalization method as unexpected results might 
appear.

5.2.4 Blank background removal
For removal of blank background two different approaches were tried, blank subtraction and blank 
filtering. For the grape dataset and drug dataset processed with binning the blank subtraction had 
resulted in a vast increase in separation score while the blank filter had a negative effect on 
separation score, see Tables 6 and 7. But for the drug dataset processed with XCMS and OpenMS 
the effects on separation score where mostly neglect-able for both methods, where a slight increase 
was seen for blank filter on OpenMS data, see Table 6 and 7.

In the binned drug data and the grape dataset almost all features, 100% and 98%, are filtered out by 
the blank filter method. This is a sign of strong carry over effects where the signals from previous 
samples were carried over to the next sample. Here blank subtraction has a slightly lower 
percentage affected features, see Table 8. Since blank subtraction handles each signal individually 
more parts of the data can be kept than in the blank filter. 

For the drug dataset processed with XCMS and OpenMS the opposite is true, where the blank 
subtraction affects more features than the blank filter, see Table 8. Since the blank subtraction is 
dynamic not all samples are affected within one feature which could contribute to the difference. 
Out from these numbers and the separation score it is hard to evaluate if the effect of either method 
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is positive or negative. For this reason the separation score was set as used as the guide. For 
OpenMS by blank filtering there was a slight increase of 0.03 and therefore that method was used.  

5.2.5 Batch filter 
For the batch filter little to no effect was seen in the score. This might be due to that only about 1% 
of the features were removed, see Table 9. The small fractions of features removed could be a sign 
of that the batch effects are more complex than can be captured by the coverage approach used by 
the batch filter.

5.3 Batch effect removal

5.3.1 Grape data
Dimensionality optimization in grape data showed clear increase in separation score for all three 
methods. PCA and PLS-DA reached a maximum score of 1.06 using 1 dimension for removal, see
Figure 21. For OOS-DA the even higher scores could be observed at using between 35-50 
dimensions. However the scores have a high variation in-between every other increase or decrease 
of dimensions, which could be a sign of instability of OOS-DA in that region. To test the stability, 
OOS-DA batch effect removal was repeated 10 times for each dimension value and the mean and 
standard deviations were plotted, see Figure 22. It can now be seen that the standard deviations 
increase substantially when the dimensions are higher than 30, see Figure 22. The cause for this is 
unknown but it could be due the randomization of vectors used to generate uncorrelated vectors 
when identifying the latent variables.  To minimize risk of overfitting no dimensions higher than 30 
were used for batch effect removal with OOS-DA on the grape dataset. Instead a maximum score 
was found using 28 dimensions resulting in a score of 1.12, Figure 21. OOS-DA provided a slightly 
higher score than PLS-DA and PCA.
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PCA had remaining tissue clustering as identified by the PCA plot, see Figure 23. OOS-DA and 
PLS-DA on the other hand showed only small signs of tissue clustering, Figure 23. The ultimate 
goal was to see if samples would cluster into underlying species after batch effects were removed. A
visual inspection of 3 randomly chosen species, 41b maillard (41B), Iasma Eco 3 (F3P51) and 
Gewurztraminer (GWT), showed that only OOS-DA and PLS-DA was able to achieve some 
clustering of species, see Figure 24. However the clustering is not perfect and the batch effect was 
not fully removed successfully in neither OOS-DA  nor PLS-DA.

Batch removal with Combat resulted in a separation score of 1.20, which is higher than all other 
methods. The PCA plot confirms that the tissue information was successfully removed, see Figure 
25. Species clustering was tighter than for OOS-DA and PLS-DA, but there is still overlap between 
species indicating an incomplete separation, see Figure 25. Therefore Combat provided the best 
batch effect removal for the grape dataset.
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Figure 23: OOS-DA and PLS-DA results in the 
most overlapping tissue groups, indicating the 
best batch effect removal. For PCA tissue 'b' 
(blue) still form a separate group.

Figure 24: Species clustering show that 
there is a somewhat successful species 
clustering for F3P51 and GWT when 
OOS-DA or PLS-DA is used for batch 
effect removal. For PCA the clustering is
split due to incomplete batch effect 
removal.
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5.3.2 Drugs
During dimensionality optimization using the drug dataset individual points between 40-50 
dimensions for batch effects in the grid of binned dataset using OOS-DA method had the highest 
separation scores, see Appendix A. Just like with the grape dataset these maximum points are 
probably due to numerical instability in OOS-DA at dimensions higher than 30 for this dataset. The 
dimensionality optimization was therefore limited to a maximum of 30 in both dimensions to reduce
the chance of instability. 

Only batch effect removal with OOS-DA on data with XCMS used as feature extraction method 
that was able to achieve an increase in separation score, see Figure 26. The maximum separation 
score of 0.46 was found while using first 23 dimensions for the first batch effect, the four sample 
preparation batches, and 1 dimension with the second batch effects, the split classes. This is 
surprising as the split effect could not be seen in the prior plots for PCA. The score improvement of 
batch effect removal was however only 0.03, which is just slightly above the standard deviation of 
0.01 for the score. This means that the separation increase is mostly insignificant.

36

Figure 25: Batch effect removal using Combat was able to remove tissue information and 
clustering of species can be observed. There is still overlap across species after batch effect 
removal using Combat. 
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For other feature extraction methods OOS-DA had an small negative effect on the score. For PCA 
and PLS-DA the score decreased rapidly as dimensions increased, see  Figure 27 and Figure 28. The
negative effect on the score for OOS-DA was significantly lower than when using PCA or PLS-DA 
in all cases. Hence if a latent method is to be used, OOS-DA is the best choice. 
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Figure 26: Seperation score for batch effect removal on 
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score increase at dimensions higher than 0.
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Batch effect removal with Combat resulted in decreasing scores for all feature extraction methods, 
see Table 10. The method performed among the worst in terms of separation score together with 
PCA.
OOS-DA was able to get an slight increase or neglect-able effect on separation score independently 
on feature extraction method.

The batch effect removal with using OOS-DA at the optimal dimensions, dbatch=4 (sample 
preparation batches) and dsplit =12 (split batches), which had the highest score was further 
investigated. The batch effect removal is incomplete where batch 2 still clusters separately from the 
other three batches, see Figure 29. While investigating the clustering of the two separation score 
classes Control and Mebendazole, no clear separation between them can be seen, see Figure 29. 
This indicates that batch effect removal is both incomplete and not enough to clean up the drug 

38

PCA

10 20 30

dbatch

5

10

15

20

25

30
d

sp
lit

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

PLS-DA

10 20 30

dbatch

5

10

15

20

25

30

d
sp

lit

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Binned score
OOS-DA

10 20 30

dbatch

5

10

15

20

25

30

d
sp

lit

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 28: Seperation score for batch effect 
removal on drug dataset used with OpenMS. 
Negelectable score impact is seen for OOS-DA 
below 10 dimensions in both batch and split 
dimensions. While rapid decrease is observed for 
PLS-DA and PCA at all dimensions higher than 0.



dataset. Instead as suggested by Leek et al. in terms of high variability and batch effects, the 
experiments might have to be re-done instead. 

6 Conclusions

The comparison and evaluation of computational data analysis methods for processing of LC-MS 
data in the context of metabolomics studied in this thesis project lack a one size fits all solution. 
While some methods showed universally poor results, both in terms of plots and scores, others 
showed varying result depending on dataset, feature extraction methods and dimensionality. It can 
be concluded that correction based on run order performed poorly, but the run order plots for the 
features indicate that good results could be achieved if the fitting of the trend curve is improved. 
The blank subtraction outperformed or performed on par with the blank filtering method, offering a 
good option for a more robust and accurate background removal. For some methods the results also 
offer insights into the data. Such as the occurrence of carry over effects indicated by the background
removal or potential run order effects as seen by the correct run order plots. Hence preprocessing 
methods should be used with care and be thoroughly investigated to ensure that the effects of the 
preprocessing is improving data quality.

Furthermore this work showed that evaluation of LC-MS data is hard when the quality of the data is
poor. In this thesis project one high quality dataset was identified, the grape dataset. Here the 
clustering of replicates could be seen in the first latent variables directly after feature extraction. 
The second dataset studied, drug dataset, was found to have poor quality as replicates did not group 
together even after extensive preprocessing and batch effect removal. While high quality datasets 
ensure that there are signals that can reveal the biological meaning in the dataset, cleaning an 
already quite clean data is questionable. On the other hand for a low quality dataset the need for 
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Figure 29: Batch effect removal with optimal settings, OOS-DA (dbatch=4, dsplit=12) and feature
extraction methods (Binning). Batch effect from batch 2 (red) is not completely removed, and there
is no visible clustering between control and Mebendazole samples.
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cleaning is high, but one cannot ensure that it is possible to extract any biological conclusion. The 
only safe way to evaluate methods are controlled experiments made to evaluate that particular 
method. Taking time and money for these experiments might feel wasteful but is ultimately needed 
to improve further experiments and evaluation.

The evaluation of feature extraction methods performed in this thesis project was inconclusive as 
the feature extraction methods were only tried for the drug dataset. It can however be stated that the 
only significant change in separation score between the methods was favouring the least 
computationally expensive method, binning, at all stages. The short computational time for binning 
enables an  extensive optimization of the number of bins, which might altogether be as, or more, 
important than the choice of feature extraction method. Further experiments should therefore be 
done to investigate the effects of parameter optimization for binning and comparing it to the more 
well known methods such as XCMS. 

For batch effect removal the newly implemented OOS-DA method had a performance close to 
Combat for the grape dataset and a better performance for the drug dataset. Improvements are still 
needed to improve stability for using high number of dimensions. If the stability in higher 
dimensions can be secured there is an potential that OOS-DA might add improved removal of batch 
effect compared to Combat. However as seen in the current performance of both Combat and OOS-
DA the underlying effects are often hard to fully remove and repeating the experiments might still 
be the most effective means of batch effect removal.

The aim of this thesis was to replicate and improve a computational pipeline for LC-MS raw data 
processing. The resulting computational pipeline is available on Github (Anlind 2017). The pipeline
has  modular parts that were all investigated in this report. By investigation on two different 
datasets partial insights where obtained regarding their pitfalls. Preprocessing methods where found
to often lack outstanding performance, and a new improved blank background removal was 
developed. A simple binning method for feature extraction showed potential to outperform today’s 
established methods. Finally OOS-DA was shown to be a good contender for batch effect removal, 
but improvements are needed for use in higher dimensions on LC-MS data.
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Figure: Parameter optimization showed binned batch removed with OOS-DA to give the 
highest score. At dimensions higher than 30 OOS-DA show signs of instability as indicated by 
the grainy surface. 


