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1. Introduction

This thesis is written in the subject of mathematical logic and especially model
theory. Model theory is the abstract study and construction of mathematical
structures and their theories. A structure could be a graph, group, field, tree,
vector space etc. In this thesis however we will almost exclusively consider
structures with only relations in their vocabularies.

The Rado graph was first created by Willhelm Ackerman [1] in 1937 and
named after Richard Rado [39] who further discovered its properties in 1964.
In both articles the Rado graph is constructed by, on the natural numbers,
adding an edge between any numbers a < b such that the a:th number in the
binary expansion of b is 1. We will not explicitly study the Rado graph in
this thesis. The Rado graph could however be seen as a common denominator
between all of the articles through its abstract model theoretic properties and
its many construction methods. We will cover properties such as homogeneity
and supersimplicity, and use construction methods such as probabilistic limits,
Fraissé-limits and extension axioms. In order to conduct these studies we will
use tools from logic, algebra, combinatorics and probability theory.

The six articles presented in this thesis can be briefly summarized by ref-
erencing the Rado graph. The first two articles concern the abstract model
theoretic properties of the Rado graph and notices that the probabilistic con-
struction used to create the Rado graph is also possible to use when creating
other structures with the same model theoretic properties. The third and fourth
article discuss the probabilistic method which can be used in order to create
the Rado graph. This results both in new limit laws and infinite “random”
structures which are similar to the Rado graph. The Rado graph is closely
related to the random ¢—partite graph which is not homogeneous, but is ho-
mogenizable. The last two papers look at the concept of homogenizability and
study this both as an abstract concept and in order to give a specific classifica-
tion.

This thesis consists of four chapters followed by the six appended papers
briefly described above. This introductory chapter contain definitions, theo-
rems and history on the theory related to the articles in this thesis. Chapter
2 contain extended summaries of the appended papers including references to
the examples, theorems and definitions which are mentioned in the introduc-
tion. Chapter 3 is a summary of the thesis, written in Swedish. This chapter is
recommended for anyone (who speaks Swedish) who have not studied model
theory, as it is accessibly written while still somewhat presenting the back-
ground and results of the thesis. Lastly Chapter 4 is acknowledgments.



1.1 Preliminaries

In this section we quickly present the notation and basic model theoretic no-
tions which will be used throughout this thesis. It can be viewed as a sharp
introduction for the mathematician who has not read any model theory, as a
quick reminder for anyone who has worked a little bit with model theory, or an
introduction to the notation for any researcher in the subject. More advanced
concepts are defined in the other sections of this introduction. Anyone who
wants a more complete introduction to the subject should study, for instance,
Hodges book [24].

A vocabulary V is a set of constant, function and relation symbols, where
each function and relation symbol has a certain finite arity. In this thesis we
will almost always consider a finite vocabulary which only contains relation
symbols, such a vocabulary is called finite relational. A language L is the set
of all formulas which we can create using the symbols in a specific vocabulary.
In this thesis we will only consider first order formulas. A theory is a set of
sentences (i.e. closed formulas) from a specific language L. We say that a
theory T is complete if for each sentence ¢ € Leither o € T or @ € T.

Given a vocabulary V, a structure ./ (or a V —structure if we want to be
specific) is a set M together with an interpretation of each symbol in the vocab-
ulary as an element, a function or a relation on M respectively. The structures
we use in this thesis will be denoted with calligraphic letters <7, %,% , ... with
their universes being denoted by the corresponding roman letters A, B,C, .. .. If
V' CV and .# is a V —structure then the reduct of .# to V', written .Z | V', is
the V/—structure with universe M where all symbols in V' are interpreted like
they are in .#. The complete theory of a structure .#, denoted Th(.# ), is
the set of all sentences which are true in .#. The abbreviation [n] = {1,...,n}
is common practice, especially in a combinatorial context, and we will make
good use for it here. We will often abuse notation on tuples writing a € A
when we mean a € A* for some k € Z.

An n—type of a theory T is a set of formulas, who all have n free variables,
such that all formulas are satisfied by a tuple of elements in some model of 7.
A tuple which satisfies all formulas in a type is said to realize the type. Inside
a structure .# we may speak of the type of a tuple a over a set B C M, denoted
tp*(a/B), by which we mean the set of all formulas ¢(%,b), where b € B
such that .# |= ¢(a,b). A type p in a model . is isolated, by a satisfiable
formula @, if Z = Vx(¢(X) — (X)) for every y(X) € p.

For V —structures .# ,./4", an embedding f : .# — ./ is an injective func-
tion f : M — N such that for each constant symbol ¢ € V, function symbol
g € V and relation symbol R € V, the following hold for any ay,...,a, € M.

° f(c///) =
o flg”(ar, - .an) = " (Flar), ... flan).
e R (ay,...,a,) if and only if R (f(a1),..., f(an)).
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An isomorphism is a bijective embedding, while an automorphism is an iso-
morphism whose range is the same structure as its domain. A substructure
N C A is a structure such that N C M and the inclusion function is an em-
bedding.

For a cardinal k a theory is k—categorical if it has only a single model, up
to isomorphism, of cardinality k. The X—categorical theories are especially
nice due the following theorem.

Theorem 1.1.1 (Engeler [12], Ryll-Nardzevski [40] and Svenonius [44] all
independently). Let T be a countable and complete theory with some infinite
model. The following are equivalent.

1. T is Xg—categorical.

2. For each n there are only finitely many n—types of T.

3. All types of T are isolated.

A graph ¢ is a structure over the vocabulary {E} with only a single binary
relation such the interpretation of E in ¥, EY is a symmetric, anti-reflexive
relation. The relation E is called an edge relation, while the elements in the
universe of ¢ are called vertices. Graphs have a special place in this thesis
since the nicest non-trivial relational structures are the graphs. Because of this
we will give some extra definitions just for the graphs. The complete graph
on n vertices, denoted K, is the graph with an edge between every pair of
vertices. For a graph ¢ the complement graph ¢° is the graph with the same
universe as ¢ but for any a,b € G we have that ¢ = aE?b if and only if
¢ b~ aE”"b. For graphs & and ./ we define the disjoint union graph 4.7
as the graph with vertex set GUH and edge set EYUE” . Note that when we
defined substructures, if .4 C .# then all relations which hold on a tuple in
/" also hold for that tuple in .#. In graph theory this is often called induced
subgraph, however in our model theoretic context we will refer to this just as
a subgraph.

Ramsey theory is sometimes introduced as the fact that in big enough chaos
there needs to exist small sections of order. More specifically when we talk
about graphs, for any m € N, if we take a big enough graph then there exists a
subgraph with m vertices which is either the complete graph or the independent
graph. In the infinite case we get the following theorem.

Theorem 1.1.2. If¥ is an infinite graph then there exists an infinite subgraph
o/ C G such that o7 is either complete or independent.

Theorems of a similar fashion exist in many different forms and, even
though the concept is purely combinatorial, the methods of Ramsey theory
are often used in model theory. In this thesis Ramsey theoretical concepts are
used as part of proofs in articles III, IV and VI. For more information about
Ramsey Theory see [19].

11



1.2 0—1 laws

For each n € Z™, let K, be some set of finite structures and associate a proba-
bility measure u, with each such set. Put K = (K, 4, )»en to be the collection
of these sets and their probability measures. We may extend the probabil-
ity measures [, such that for any property P, not necessarily in a first order
language, we define

Un(P) = un({# € K, : A satisfies P}).

Define p(P) = lim,_, Uy (P). We say that K has a limit law if for each first
order sentence @, in the specific language, (@) converges. We say that K has
a 0—1 law if the limit p(¢) always converges to 0 or 1. Define the almost
sure theory Tk associated with K as the set of all first order sentences ¢ such
that u(¢) = 1, these sentences are referred to as almost sure sentences. It is
a quick exercise, using the definitions, to show that K has a 0 — 1 law if and
only if Tk is a complete theory.

A couple of different probability measures will be used throughout this the-
sis. The most common probability measure, which we use unless we say any-
thing else, is the uniform measure which, for each .# € K, puts u,(.#) =
1/|K,|. We will often let K,, be the set of all structures with universe [n] which
satisfy some specific property. We refer to this by saying that the structures
in K,, are labeled. This means that many structures in K,, will (except in triv-
ial cases) be isomorphic to each other since if one renames the elements in
the universe of a structure we get a different (yet isomorphic) structure. The
other common case is to not allow for multiple structures with the same iso-
morphism type in K,. We then say that the structures in K,, are unlabeled.
It is often easier to count labeled sets of structures than unlabeled, which is
why many 0 — 1 laws are first calculated on labeled sets and then transfered,
through careful calculations, to the unlabeled case.

Example 1.2.1. For a fixed finite relational vocabulary V, let K, be the set
of all structures with universe [n] and put u, to be the uniform probability
measure on K,,. Both Glebskii, Kogan, Liogon’kii, Talanov [18] and Fagin
[14] independently proved that K has a 0 — 1 law, however they used quite
different methods to show this. The proof which Fagin used is important for
the rest of this thesis and thus we will give a short sketch of it here.

The first thing which Fagin does is to define extension properties. These are
formulas @y,..., @y,... such that .# = ¢y if for any structure <7 of size k and
o/ C A suchthat |B|—|A| =1, if o C 4 and o/ = <f then there is By C A
such that o7y C Ay and HBy = HAB. These extension properties are then proven
to be almost surely true in K and thus they are in the almost sure theory 7x.
Fagin then show that Tk is countably categorical by building an isomorphism
between any two countable models using the extension properties. Since Tk
is countably categorical and does not have any finite models, as this is clearly
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an almost sure property, the L.os-Vaught test tells us that 7x is complete hence
Khasa0—1 law.

If we consider the previous example in the case of graphs, thus let K, con-
sist of all graphs with universe [n], then the extension properties will state that
for any sets A, B such that ANB = 0 and |A UB| = k there is an element ¢ such
that c is adjacent to all elements in A, but adjacent to no elements in B.

Ae . . | | B e . .

eC

The unique countable model for 7k will be isomorphic to the Rado graph.
Because of this isomorphism the Rado graph is sometimes called “the random
graph”. In the same way “the random structure” often refers to the countable
model of the almost sure theory Tk created in Example 1.2.1. This notation
will not however be used further in this thesis as we have two other definitions
of a structure being random in Paper I and Paper 1II.

Example 1.2.2. For a positive integer [ let K,, consist of all graphs ¢ with
universe [n] such that the complete graph on / + 1 vertices is not embeddable
in . In 1976 Erdés, Kleitman, Rothschild [13] showed that almost surely the
graphs in K are [—partite, thus the structures may be partitioned into / parts
such that no edges exist between elements in the same part. Note that this
implies that if C, is the set of all /—partite graphs with universe [n] then C,
and K,, are almost surely the same. In 1987 Kolaitis, Promel, Rothschild [25]
use this result in order to show that K has a 0 — 1 law. The proof of the 0 — 1
law is done in the fashion of Fagin [14], which we sketched in Example 1.2.1.
The extension properties are similar except that they only concern [—partite
graphs. The proof is then conducted just like in 1.2.1, but in the current con-
text, resulting again in a complete countably categorical almost sure theory.

For a fixed [, we define the random /—partite graph as the unique count-
able model of Tx when K,, consists of all /—partite graphs, as in the above
example.

In general there is no reason to think that a certain set of structures should
satisfy a 0 — 1 law or even a limit law. In the following example we provide
a couple of quick illustrations of some interesting instances of such sets of
structures.

Example 1.2.3. If we let Ky; consist of only complete graphs on 2k vertices,
while Ky consists of only non-complete graphs on 2k + 1 vertices, then K

will not have a limit law. The sentence VxVy(x # y — xEy) is true in each
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structure in Ky; while false in each structure in Ky; 1, thus the limit
lim g1, (VxVy(x 7# y — xEy))
n—oo

will not converge, as the probability will shift back and forth between 0 and 1
when going to infinity.

A more natural example of a set of structures without a limit law comes
from an article by Compton, Henson, Shelah [7]. They prove that if K, con-
sists of all structures with universe [n] over the language {<,R}, where < is
always interpreted as the linear order on [n] and R is a binary relation, then
there is a sentence in the language whose asymptotic probability does not con-
verge. In the same paper a non-limit law is also proved for C when C,, consist
of all structures over the universe [n] using the language consisting of a single
binary function symbol. This is in sharp contrast with the results of Lynch
[35] who prove that if S, consists of all structures with universe [n] over a
vocabulary with a finite amount of unary function symbols then S have a limit
law, but nota 0 — 1 law.

Further examples of 0 — 1 laws include Partial orders [6], Colored structures
[26] and Sparse graphs [41]. For other expositions of limit and 0 — 1 laws the
reader may look at [10, 43, 46].

1.3 Homogeneous structures

Definition 1.3.1. Let .# be a structure and &/ C .#. We say that .Z is
<7 —homogeneous if for each embedding f : & — .4 there is an automor-
phism g : .# — .# such that g(a) = f(a) for each a € A. We say that .Z is
homogeneous if .# is o/ —homogeneous for each finite o7 C ..

What we here call homogeneous is sometimes in the literature referred to as
ultrahomogeneous [24] since the term homogeneous is used in other contexts
in model theory. In this thesis we will however only use the above notion of
homogeneous, thus we will not need to use the term ultrahomogeneous.

Example 1.3.2. The most trivial example of a homogeneous structure is just
taking a trivial structure, having no relations. Trivially any embedding from a
substructure is extendable to an automorphism. The rational numbers QQ with
the usual dense linear order relation is a homogeneous structure. This is a
consequence of the denseness of the rationals making it possible to stretch and
shrink the rational line without changing any properties. The Rado graph is
also a homogeneous structure. In order to show this we can use the extension
properties, which were also used to show the O — 1 law in Example 1.2.1.

In order to show that the previously mentioned structures are homogeneous
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we can use a so called back-and-forth argument to build finite partial isomor-
phisms in such a way that if we take the union of these partial isomorphisms
we get an isomorphism of the whole structure.

Definition 1.3.3. Let K be a class of structures. The class K is closed under
isomorphism if for each structure .# € K and isomorphic structure .4/, we
have that .4~ € K. We say that K has the hereditary property, or in short just
HP, if for each &/ € K and % C .« we have that 2 € K. The class K satisfies
the joint embedding property, or in short just JEP, if for each «7’, %' € K
there exists a structure 4" € K such that both .7/ and %’ are embeddable in
%¢’. Finally K has the amalgamation property, or in short just AP, if for each
o AB,% € K and embeddings fy: &/ — Z and go : &f — € there exists a
structure Z € K and embeddings f; : & — Z and g| : € — 2 such that for

eacha € A, fi(fo(a)) = g1(go(a)).

\ /\
/ \/

Figure 1.1. JEP and AP respectively.
Define the age of a structure

Age( M) = {</ : o is finite and embeddable in .# }.

This is a class of structures which is not a set. We could easily make it into a set
(which is countable in the case of a countable vocabulary) by only choosing
the structures of size n which have universe [n]. Defining the age so that it
only becomes a class will however be convenient for some theorems such as
the one below.

Theorem 1.3.4 (Fraissé [16]). If # is an infinite homogeneous structure, then
Age( M) satisfies HP,JEP and AP.

If K is a class of finite structures closed under isomorphism satisfying HPF,
JEP and AP then there is a unique countable homogeneous structure 4/ such

that Age(#) =K.

Due to this theorem one may say that a structure .# is the Fraissé-limit of
a class of structures K, which means that ./ is the unique (up to isomorphism)
countable homogeneous structure such that Age(.#) = K.

We say that a structure .# has quantifier elimination if for each formula
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@ (%) there is a quantifier free formula y(x) such that .Z = V(@ (X) <> y(x)).
This essentially means that the isomorphism type of a tuple, which in some
sense is the most narrow quantifier free formula possible, determines the type
of the tuple. The following connection between quantifier elimination and
homogeneous structures is a consequence of this argument, where the count-
able categoricity is important to make all the types isolated by their atomic
diagrams.

Fact 1.3.5. Let ./ be a countably categorical structure. The structure M is
homogeneous if and only if # has quantifier elimination.

We have thus got three different characterization of a homogeneous struc-
ture: quantifier elimination, embedding extensions and the age satisfying HP,
JEP and AP. In some cases the homogeneous structures have been classified,
but the general question what a homogeneous structure over a finite relational
vocabulary looks like is still far from being solved. Even in the case of homo-
geneous 3—hypergraphs, there does not exist a known classification.

We will now present the classifications for countable (finite and infinite)
graphs which are important as basic references in this discussion of homoge-
neous structures. The theorems are however also very important for Paper VI
where the results are explicitly used.

Theorem 1.3.6 (Gardiner [17] and independently Golfand and Klin [21]). If
M is a finite homogeneous graph, then . (or ) is isomorphic to the
S5—cycle, the 3 x 3—rook graph or a finite disjoint union of complete graphs
of the same size.

Note that the 3 x 3—rook graph is the graph which is created when you, on
an empty 3 X 3 chess board, add an edge between any two squares which a
rook may move between. This is isomorphic to the line graph of the complete
bipartite graph with 3 elements in each part.

) 1

Figure 1.2. The 3 x 3—rook graph and the 5—cycle respectively.

Theorem 1.3.7 (Lachlan and Woodrow [32]). If .# is a countably infinite
homogeneous graph then M (or A °) is isomorphic to one of the following.
e The Rado graph.
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o For an integer n > 2, the Fraissé-limit of the class of finite graphs which
does not embedd K,

e Forn € 7", the infinite disjoint union of multiple K.

e A finite or infinite disjoint union of multiple K.

Further classification theorems, which will not be relevant for this thesis to
describe in detail, considering homogeneous structures include Cherlin’s [5]
classification of homogeneous digraphs and Lachlan’s [33] classification of
homogeneous tournaments. It is interesting to note that while there exists only
X countable homogeneous graphs, there are 2¥0 different isomorphism types
of countable digraphs, which follows from a result from Henson [23].

In a structure which is not homogeneous there exist tuples who have differ-
ent types yet induce the same local substructure. In a homogenizable structure
we can, by just adding a finite amount of new relation symbols, distinguish
the induced substructures of these types and thus make the structure homoge-
neous.

Definition 1.3.8. A V —structure ./ is called homogenizable if there exists a
finite amount of @—definable relations R},...,R), in .# such that if we create
anew vocabulary V' =V U{Ry,...,R,} of relation symbols of corresponding
arity and let .4 be the V' —structure such that 4" [V = .# and R;" = R/, then
A is a homogeneous structure.

Example 1.3.9. The random bipartite graph .# is not homogeneous. This
structure was constructed in Example 1.2.2 as the unique countable model of
the almost sure theory generated from the set of finite K3—free graphs. One
consequence of the extension properties, which were used to prove the 0 — 1
law, is that for any two elements a,b which belong to the same part there
exists an element ¢ such that both a and b are adjacent to c, thus c is in a
different part than a and b. Note however that this property can not hold for
any elements a’,b" which are in different parts, since then the corresponding
element ¢’ would be in either the part of @’ or b’ and thus there would be
an edge inside a part, which is not allowed in a bipartite graph. Hence if
we let @', b’ be elements which do not have an edge between them yet are in
different parts and map ab to a’b’, this embedding can not be extended to an
automorphism.

Even though .# is not homogeneous, we can use the extension properties
in order to show that .# is homogenizable. Define a new relation P(x,y)
by stating Jz(xEz A yEz). From the above discussion it is clear that ./Z =
P(c,d) if and only if ¢ and d are elements in the same part. If we add P as
a new symbol in the vocabulary and intepret it in the above way, we can thus
distinguish pairs of elements which come from the same part from pairs of
elements from different parts. The new structure which has this extra relation
will be homogeneous, which may be shown using a back-and-forth proof. A
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similar, yet more technical, discussion is possible in order to show that for any
1 € Z the random [—partite graph is homogenizable but not homogeneous.

One of the first to explicitly study homogenizable structures was Covington
who, in her 1989 article [9], studied the class K consisting of all graphs which
does not embed the 4 vertex path. Covington found that there is a unique
model complete structure .# such that .# is homogenizable and Age(.# ) =
K. In a later paper Covington [8] generalized her method in order to show that
any class of structures satisfying the “Local failure of amalgamation prop-
erty” generates a homogenizable structure. This property holds for the graphs
K which does not embed a 4 vertex path, however it does not hold for the bi-
partite graphs described in Example 1.3.9.

In more recent years the subject has come alive again with results com-
ing from Atserias and Toruficzyk [2] who found a necessary condition for a
class of finite structures to generate a homogenizable structure and Hartman,
Hubicka and Nesetril [22] who found that certain sets of structures with certain
forbidden substructures all generate a homogenizable structure. For a review
of homogeneous structures and its applications we refer to Macpherson’s [36]
article.

1.4 Simple theories and Pregeometries

One of the first to take on the quest to abstractly characterize models and their
theories was Morley [37] who, in 1968, introduced the concept of a transcen-
dental theory and Morley rank. These are abstract properties which can be
used to classify theories and tell them apart on an abstract level. The field
took a huge leap through Saharon Shelah who, among other things, published
a book called Classification theory [42] (first printed in 1978) further develop-
ing the field and introducing new abstract properties. The concepts were often
quite concrete, such as “There is a formula which defines a tree” or “There
is a formula which defines a linear order”. It turns out though that some of
the nicest theories we can imagine, such as infinite sets, algebraically closed
fields or sets with a finite number of equivalence relations, do not define any
of these combinatorial structures, thus we get properties such as NIP, NSOP,
NT P which state that such combinatorial structures can not be created. It could
seem that such negative information implies no information. We do however
get strong abstract properties since a theory needs to be very restricted to not,
in any way, define orders or trees.

In this part of the introduction we will take a quick look at some of the
concepts from the abstract part of model theory. The reader who wants to see
more details, consequences and examples the books [3, 45] are recommended
or, for someone new to these concepts, the paper [20] which is written in an
accessible format.
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For a structure .# and A C M let S;{/f (A) be the set of all complete n—types
over A realized in .#. For a cardinal k¥ we say that a theory T is xk—stable
if for any .# =T and A C M with |A| < k we have that |7 (A)| < k. A
theory is stable if it is k—stable for some cardinal k. It is customary to write
w—stable instead of Xo—stable. It should be noted that in any structure .Z,
|S:# (A)| > K for |A| = K since we can create the trivial type generated by a@ = &
which is clearly distinct for each a@ € A.

Example 1.4.1. Many of the most trivial structures are stable. Just taking
an infinite set with no relations is @—stable since the only non-trivial type in
S'// (A) is the type generated by {a # x:a € A}. Some less trivial theories
which are w—stable include algebraically closed fields and finitely/infinitely
cross cutting equivalence relations.

Let T be a theory and .# |=T. For a,A C M we say that a formula ¢(%,a)
divides over A if there is a sequence (;);ey and a number k € Z™" such that
each subset of size k of {@(x,a;) : i € N} is inconsistent with 7. A type p
forks over A if there are formulas @; (), ..., ¢,(X) such that p implies ¢; (¥) V
...V @,(%) and each ¢; divides over A. If A C B, p € S;”(B) and q is the
restriction of p to only the formulas with parameters in A, then we say that p
is a non-forking extension of g if p does not fork over A. We write

A\(_’:/B if tp(A/CUB) is a non-forking extension of 1p(A/C).

The relation . is called an independence relation and its negation, which
indicate that the extension is forking, will be denoted 4. We say that T has
trivial independence if for every A,B,C,C; if A%K(C] UG,) then A%ﬁ C; or
A% C.

A complete theory T is simple if for each model .# |= T, subset B C M and
type p € S;(B) there is A C B such that |A| < |T| and p does not fork over

A. The theory is supersimple if the set A may always be chosen finite. The
SU —rank of a type p is defined in the following way, where « is an ordinal.

SU(p) > 0if p is consistent.

SU(p) > a+ 1 if there is a forking extension g of p with SU(q) > a.

SU(p) > a for a limit ordinal o if SU(p) > B for each B < «.

Equality for SU —rank is defined by SU(p) = a if and only if SU(p) > a but
SU(p) 2 oe+ 1. Note that in general the SU —rank of a type can be any ordinal
and sometimes the process can even go on forever, which is usually denoted
with SU (p) = co. As an abbreviation for SU (tp(a/B)) we write SU (a/B). We
now present a few useful facts regarding the concepts just introduced.
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Fact 1.4.2.

e [fa theory is stable then it is simple.

o In a simple theory, a type p forks over a set A if and only if p divides
over A.

e A theory is supersimple if and only if SU (p) < oo for all types p (which
are real).

Example 1.4.3. The Rado graph is the standard example which is used to
show something which is simple but not stable. This follows quickly using the
extension properties. For any infinite set A and disjoint B,C C A, let ppc be the
type which consists of formulas which state that x is adjacent to all elements
in B but adjacent to no elements in C. Using the extension properties and
compactness we can show that ppc is consistent. For any disjoint B,C such
that BUC = A it is clear that ppc is distinct, thus this method clearly creates
214l different types. In Paper I we show (in a slightly more general setting) that
the Rado graph is supersimple with SU-rank 1, a proof which very smoothly
uses the extension properties and works directly with the definition of dividing.

In Example 1.2.2 we noted that the class K of all graphs not embedding the
complete graph on 3 vertices has a 0 — 1 law, where the countable structure
which satisfy the almost sure theory is the random bipartite graph .Z. It is a
very similar proof (as in the Rado graph case) to show that .# is simple with
SU-rank 1, but .# is not stable. We can also show that the class K satisfies the
amalgamation, joint embedding and hereditary property, thus Theorem 1.3.4
implies that there exists a unique countable homogeneous structure .4 such
that Age(.#") = K. From Example 1.3.9 we know that .# is not homogeneous
(but homogenizable) and thus .# 2 .#". Furthermore one can show that .4
is not simple. This distinction between .#” and .# is a sharp contrast to the
Rado graph which is both generated as the Fraissé-limit from the class of all
graphs and as the unique countable model of the almost sure theory coming
from that class.

Definition 1.4.4. Let Abe asetandletcl: Z(A) — Z7(A) be a function acting
on the subsets of A. We say that ¢!/ is a closure operator on A if the following
properties are satisfied for any X,Y C A.

Reflexive X C c/(X).

Monotonicity X C cl/(Y) implies c/(X) C cl(Y)

Finite Character c/(X) = U{cl(Xo) : Xo C X,|Xo| < No}.
The pair (A,cl) is called a pregeometry (or a matroid) if ¢/ is a closure op-
erator on A and the following property is also satisfied for any a,b € A and
X CA.

Exchange property If a € c/(X U{b}) —cl(X) then b € cl(X U{a}).

20



We say that a structure .# has a definable pregeometry if there is a pregeom-
etry (M, cl) and there exists formulas 6y (x), 61 (x0,x1), ... such that for any
a,by,...,by,e Mwehavea e cl(by,...,b,)ifandonlyif # = 6,(a,by,...,b,).

Remark 1.4.5. The axioms for a closure operator are often chosen to include
the statement c/(X) = cl(c/(X)). This is not necessary using the above chosen
monotonicity axiom. If we let X = ¢/(Y) and then apply the monotonicity
axiom to X C cl(Y) we get

cl(cl(Y)) =cl(X) Ccl(Y).

On the other hand cl/(Y) C c/(Y), thus applying reflexivity we get c/(Y) C
cl(cl(Y)). These two facts together imply that ¢/(Y) = cl(cl(Y)), which we got
using only the above reflexivity and monotonicity. The reason that cl(c/(X)) =
cl(X) is not chosen as an axiom is that we then would have to add another
monotonicity axiom in order to make the axiom schema equally strong, such
as

X CY implies ¢/(X) Ccl(Y).

Thus we would have 4 axioms instead of 3.

Example 1.4.6. The nicest pregeometry (A,cl) is the trivial pregeometry
which is defined by first arbitrarily choosing ¢(0), then put c/(X) = X Ucl(0)
for any X C A. There are other versions for the “trivial pregeometry” in the
literature such as c/(X) = X or cl(X) = U,ex cl(x). The concept of a trivial
pregeometry, as defined above, will be used in Paper 1.

A less trivial example can be created if we have a vector space V and let c/
be the linear span operator. We can show that this is a pregeometry using stan-
dard linear algebra. This pregeometry is called a vector space pregeometry.
The affine pregeometry and projective pregeometry are both pregeometries
which are similar to the vector space pregeometry but with certain modifica-
tions. For more information on and examples of pregeometries see [38].

We say that a type is algebraic if it is only realized by a finite amount of
elements. The algebraic closure in a structure .# is defined on sets X C M,
denoted acl(X), as the set of all elements a € M such that the type tp(a/X)
is algebraic. In any structure the algebraic closure defines a closure opera-
tor. This means that we can talk about the algebraic closure being trivial, the
monotonicity of the algebraic closure etc. just like we do for arbitrary closure
operators and pregeometries. If a structure is simple with SU-rank 1 then the
algebraic closure even defines a pregeometry. If the structure is also count-
ably categorical then the algebraic closure, and thus also the pregeometry, is
definable.
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2. On the appended papers

2.1 Paperl

When studying 0 — 1 laws such as Example 1.2.1, Example 1.2.2, the partial
orders [6] and the colourable structures [26] a certain pattern seems to oc-
cur. The almost sure theories are all countably categorical, supersimple, have
SU —rank 1 and trivial algebraic closure. These are also properties of the al-
most sure theories found in Paper IV. We can also note that the proofs of the
0 — 1 laws which generate the almost sure theories are all done in a similar
way as Fagins original proof, using extension properties, illustrated in Exam-
ple 1.2.1. Paper I investigates why these three properties occur and shows that
indeed the connection is not a coincidence. It is important to note that the
above mentioned properties are not found in all almost sure theories as the
Sparse graphs found by Shelah and Spencer [41] are not countably categori-
cal, the theory is not even small, yet the almost sure theory is stable but not
w—stable.

Remember from Section 1.2 that we denote the almost sure theory with
respect to a set K as 7. We say that a vocabulary is binary if the arity of the
relation symbols is at most 2.

Theorem 2.1.1. If T is countably categorical, simple with SU —rank 1 and has
trivial algebraic closure over a finite binary relational vocabulary then there
exists a set K = (K, W, )nen with a probability measure U, such that Tx = T.

This theorem even comes with an explicit construction showing what these
structures look like and how we can generate them using finite structures.
Since colourable structures such as the /—partite graphs have the above proper-
ties it is not that surprising that we may have a definable equivalence relation.
In general however the equivalence relations do not need to follow the rules
indicating that no edges exist inside any part, but rather we have [ parts and
the relations inside each part and between parts are in some sense randomly
placed, with the partition relation definable in the structure. Further more this
means that all of these structures are homogenizable.

As a corollary we get a similar way to generate the stable and strongly
minimal structures, since these are all special cases of the simple structures.
For stable structures we have [ parts, however instead of placing relations ran-
domly we have a unique choice between parts and inside each part.

In this paper we define a random structure as a structure whose complete
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theory is equal to the almost sure theory generated from its set of finite sub-
structures equipped with the uniform measure. In the proof of the above the-
orem the set K, is created in a very specific way so that the theory T gets
generated as the almost sure theory. However in many of the examples of
0—1 laws [6, 14, 18, 25] the set of structures considered is also the set of
finite substructures of a model of the almost sure theory. Thus one might ask
how the above result may extend to consider only random structures.

Theorem 2.1.2. If .# is binary, countable, X o—categorical, simple with SU —
rank 1 and has trivial algebraic closure such that acl(0) = 0, then .# is a
reduct of a binary random structure which is also Xo—categorical, simple
with SU —rank 1 and has trivial algebraic closure.

Note that the extra condition acl(@) = 0 is there because otherwise the struc-
ture which exist inside ac/(0) will probably disappear when generating the al-
most sure theory from the set of substructures. One way to solve this issue
is if we would redefine a random structure as generated from the set of sub-
structures where the structure of acl(0) always is preserved. Another solution
which works is to use another measure than the uniform. An instance of this
was found by Elwes [11] who showed that if we use a preferential attache-
ment process to get a probability measure, then the almost sure theory will be
that of the Rado graph with a finite amount of vertices added which are either
universal or isolated. These extra vertices will thus be spanning acl(0) of this
structure.

2.2 Paper I

In the ongoing task to understand the homogeneous structures we may add
assumptions and restrictions from abstract model theory in order to get fur-
ther tools to work with. The stable homogeneous structures are quite clearly
understood from the work of Lachlan [34], however when generalizing to the
simple structures not much work has been done. Paper II, which is coauthored
with Vera Koponen, is the first in a sequence of papers [27, 28, 29, 30] where
Koponen continues to study the binary simple homogeneous structures. One
of the threads which which is followed to an end is a complete description of
the binary simple homogeneous structures in [28].

In [29] Koponen shows that the binary simple homogeneous structures are
all supersimple with finite SU —rank. If a structure is supersimple with finite
rank then, for any element a, there is a finite set A such that SU(a/A) = 1.
Thus if we understand the structure of the definable sets of SU—rank 1 we
will have a quite good understanding of what the whole structure looks like.

Given a vocabulary V with only binary relation symbols and a set A of bi-
nary atomic diagrams, let RA be the class of all finite V —structures </ such
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that any binary atomic diagram in <7 belong to A. The class RA is clearly a
class satisfying HP, JEP and AP, thus there is a unique homogeneous structure
A such that Age(.#') = RA. If we allow A to also contain unary relation sym-
bols, such that all structures are "compatible" with each other, then a structure
which is homogeneous with an age RA is called a binary random structure.
Just like the Rado graph is both generated as the unique homogeneous struc-
ture from an amalgamation class and as the a unique structure satisfying an
almost sure theory, so do also the binary random structures satisfy these two
properties.

For sets A,B C ./, the canonically embedded structure in A over B is
the structure with universe A but for each distinct type tp# (@/B) add a rela-
tion symbol R; which hold for exactly the tuples which satisty the type. So the
canonically embedded structure essentially has a relation for everything which
is possible to express. The main result of Paper Il states (in an even more gen-
eral setting) that in a countable, binary, homogeneous, simple structure with
trivial dependence any canonically embedded structure on a SU —rank 1 set is
a reduct of a binary random structure. This means that when we are construct-
ing structures satisfying the above properties, the binary random structures
play a very important part.

2.3 Paper 111

The four colour map theorem state that given any map one can colour the
countries using only four colours such that no two adjacent countries get the
same colour. We can abstract the concept of colourability to graph theory
where we say that a graph is /—colourable if we can colour its vertices using
[ different colours such that no two adjacent vertices get the same colour. In
Example 1.2.2 we looked at graphs which are partitioned into / different parts
where no edge may exist inside any part, and noticed that if K, consists of
all such graphs with universe [n] then we have a 0 — 1 law. If we colour the
elements which belong to the same part in an /—partite graph with the same
colour we clearly get an /—coloured graph. We distinguish between coloured
structures, structures with a unary relation for each colour, and colourable
structures, structures where unary relations can be added (but does not exist)
in order to make it coloured.

When we try to generalize the concept of colours to vocabularies containing
relation symbols with arity 3 or higher, it is not clear exactly in which direction
to go. If R(a,b,c) holds we may either demand that all of a,b and ¢ have
different colours or that at least some pair of elements have different colours.
This is what we call a strong colouring or weak colouring respectively. If a
pregeometry is definable in the structure we can generalize this concept even
more by adding the following extra assumptions.

e For a,b such that a € cl(b) — cl(0) both a and b have the same colour.
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e ./ is strongly (weakly) coloured if whenever R(ay,...,a,) holds for
some relation symbol R and ay,...,a, € M then for all (there exists)
d,e € cl(ay,...,a,) which are independent we have that d and e have
different colour.
Note in the above definition that we get the normal strong and weak coloured
structures if we let ¢/(X) = X for any set X. In [26] Koponen studies exten-
sion properties for sets of structures K,, where certain substructures are forbid-
den. In particular this setting includes the case where we have coloured and
colourable structures. Adding the extra assumption of having an underlying
pregeometry Koponen shows that if K, consists of coloured structures with
dimension n, then they have a O — 1 law. This uses a very general theorem
which may also be applied to the colourable case. In the colourable case Ko-
ponen also deduces certain structural properties, however this is only done in
the case where the pregeometry is trivial.

In Paper III we expand the structural results which Koponen leaves out,
creating the 0 — 1 law in a concrete way and showing that the /—colourable
structures almost surely have a uniformly definable colouring. More specifi-
cally we prove the following main theorem. Note that in favor for readability
we state the assumptions in the Theorem rather vaguely. All details may how-
ever be found in the article.

Theorem 2.3.1. Forl € Z", let K, be all labeled weakly |—colourable struc-
tures with a vector space, dffine or projective pregeometry with dimension n
equipped with the dimension conditional measure 8,. The following then hold:
e There is a formula & (x,y) such that almost surely in K if a,b € .# € K
then # = &E(a,b) if and only if a and b are only colourable with the
same colour.
o The structures in K are almost surely |—colourable in a unique way.
e The structures in K are almost surely not (I — 1)—colourable.

o The almost sure theory Tx is countably categorical and axiomatized by
Va—formulas.

We assume above that we use a weak colouring, in the strong case however
things are even better and we may relax the condition on the pregeometries
to just having a certain property called polynomial k—saturation (which is al-
ready implied by the above pregeometries). The dimension conditional mea-
sure §, is a probability measure which give higher probability for structures
which are easier to generate, where the generation process adds relations to
small dimensions first and go up. This is different from the more common
uniform measure which assigns all structures the same probability and we do
not know whether the above theorem holds if we consider the uniform measure
instead.
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2.4 Paper IV

A year after Fagin published his proof [14] of the 0 — 1 law for the set of
structures K, where K, consists of all structures with universe [n] over a finite
relational vocabulary, Fagin continued to study K and discovered in [15] that
almost surely the automorphism group of a structure in K is trivial. This result
could then be used to show that if C,, consists of all structures of size n, but
with only a single structure of each isomorphism type (the unlabeled case),
then C has a 0 — 1 law under the uniform measure. It also becomes clear that
the set D,, consisting of all structures with universe [n] and with non-trivial au-
tomorphism group will have asymptotic probability 0 when compared to the
set K,,. Note that the automorphism group of a structure can in general not
be described using the first order formulas in the language, thus it is not clear
from the 0 — 1 law of K that any property of the automorphism group even
converges.

Cameron [4] generalized Fagin’s result in the graph case by studying the
following question. Given a group ¢, and letting each graph .# in C, have
universe [n| and ¢ < Aut(.#'), what is the asymptotic probability that Aut (.4 )
=¥ for .4 € C? Fagin’s study shows that if ¢ is the trivial group then this
probability is 1, while Cameron proves that for any group this probability will
exist and that it goes to 1 if and only if it is a direct product of symmetric
groups.

Paper IV generalizes both Cameron’s and Fagin’s results to the case with
sets of structures without trivial automorphism group over a finite relational
vocabulary. The paper only considers sets of structures with the uniform mea-
sure, however the theorems stated below work in both the labeled and unla-
beled setting. For notation in this paper we use S, to denote the set of all
structures with universe [n] over a fixed relational vocabulary with at least one
relation symbol of arity at least 2.

The first main theorem of Paper IV is the following which extend Cameron’s
results.

Theorem 2.4.1. Let 9,7 be finite groups. Then each of the following limits
converge to a number in Q or goes to oo

. A €S, H <Aut( M)} . A €S, A =Aut( M)}

1 1
o €Sy G < Aut(M)}| woe (M €Sy 9 = Aut(M)}|
o A €809 = Au(4)}|

ne [{ A €8y Y < Aur(AM )}

There are more possible fraction combinations than those listed in the above
theorem, however through some easy algebraic manipulation we may deduce
the others. Notice that we need to have infinity as a possibility for the limit
since if we, for instance, choose JZ as the trivial group, but ¢4 as any non-
trivial group then both of the first two limits will go to infinity, due to the
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result by Fagin [15].
To write down the next theorem we will need to introduce some notation.
For a finite structure .# define the following concepts.

spt* (M) = |{a €M : f(a) # a for some f € Aut(A)}|.

spt(#)= max [{aeM: f(a)#a}|
pi() = max |{a€M: f(a) #a)
Thus spt*(.#) is the total number of elements in .# which are moved by
at least one automorphism, while spt(.#) is the highest amount of elements
moved by any automorphism.

Theorem 2.4.2.

e For any finite group G, if K, = {4 €S, : Aut (M )= G} or K, ={ 4 €
St Aut( M) > G} then K has a limit law.

e For any integerm > 2, if K, = {4 €8S, : spt* (M) > m}, K, = {4 €
Sy :spt* (M) =m} or K, ={M €8S, : spt(.#) > m} then K have a
limit law.

e [n all sets of structures previously considered in this theorem there is a
finite set A C Q such that for any sentence @ the asymptotic probability
of ¢ in K, tends to a number in A.

To prove these theorems we deduce the general structure which almost
surely hold for structures in K,,. We show that there are certain basic building
blocks consisting of the structures where we fixate exactly what the structure
of the support is, and then fixate how the automorphisms can move the sup-
port, call these sets of structures S, (<7, H). The set S(.«7, H) will then have a
0 — 1 law and all of the above sets of structures (in the theorems) can be con-
structed as combinations of multiple sets similar to S(.o7, H), thus we get the
limit laws (which in general are not 0 — 1 laws) and limits with rational num-
bers. Further study of which automorphism groups are asymptotically found
on structures depending on the support was done by Koponen [31].

2.5 Paper V

In the introduction we mentioned (Definition 1.3.8) that a structure is homog-
enizable if we can add a finite amount of new relation symbols to represent
already definable relations in order to make the structure homogeneous. A ho-
mogeneous structure has restrictions on the automorphisms, quantifier elimi-
nation and certain properties of the age (Fact 1.3.5 and Theorem 1.3.4). The
focus of Paper V is to study how these properties of the homogeneous struc-
tures generalize when we look at the homogenizable structures.

In the definition below we weaken the homogeneity property in order to
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study homogenizable structures which are not homogeneous. It is shown in
the paper that there are equivalent definitions which discuss quantifier elimi-
nation and the age in a similar way as the homogeneous structures do.

Definition 2.5.1. Let .# be a homogenizable structure. The structure .# is
called
¢ unavoidably homogenizable if for some k € N and any finite o C .#
such that |.o7| > k, .# is @/ —homogeneous.
¢ uniformly homogenizable if there is a finite structure % C .# such that
for any finite structure o/ C .# with % C of , # is &/ —homogeneous.
¢ boundedly homogenizable if for any finite o/ C .# there is a finite
B C M such that of C A and A is Z—homogeneous.

The unavoidably homogenizable structures are essentially the most trivially
homogenizable structures which are not homogeneous. We however show that
the structures are not necessarily trivial, which we might guess since the ho-
mogeneous structures in general are not at all trivial. The unavoidably homo-
geneous graphs are studied and classified in Paper VI.

The uniformly homogeneous structures have a central place in understand-
ing the homogenizable structures. They contain all structures homogenizable
with algebraic formulas and any homogenizable structure can be made into a
uniformly homogenizable structure by adding extra elements which witness
the homogenizing formulas. This holds even if the homogenizable structure is
not model-complete.

The paper provides a couple of examples showing that model-completeness
is an important property of the homogenizable structures in order to keep them
behaving nicely. If a structure is boundedly homogenizable it follows that the
structure is model-complete. The question whether all model-complete ho-
mogenizable structures are boundedly homogenizable remains. In the case
of homogenizable structures which are w—stable we prove that the answer is
yes. Furthermore the paper studies specifically how these new definitions of
homogenizable structures relate to being unary homogenizable, i.e. homoge-
nizable using only unary relations, and find the following theorem.

Theorem 2.5.2. If ./ is a countable infinite unary boundedly homogenizable
structure with trivial algebraic closure such that acl(0) = O then there are
infinite uniformly homogenizable structures { N;}ic; with only finitely many
different isomorphism types such that

M=\ N

icl
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2.6 Paper VI

While studying the homogenizable structures, one comes across the question
“what is the most trivial example of a homogenizable structure which is not
homogeneous?”. There are essentially two ways for something to be “easy”
to homogenize, either we have only a finite amount of elements who are in the
new definable relations, called algebraically homogenizable, or we actually
do not need the new relations after we have chosen a big enough structure,
that is what we called unavoidably homogenizable in Paper V. In Paper VI
we continue the study of the unavoidable homogenizable structures through a
classification in the case of graphs.

Given a positive integer k, a structure .# is called k—homogeneous if
for each &/ C .# such that |</| = k, .# is o/ —homogeneous. If .Z is
t—homogeneous for each r > k (r < k) then .# is called >k—homogeneous
(<k—homogeneous). Note that we could reformulate that .# is homoge-
neous, from Definition 1.3.1, by saying that .# is k—homogeneous for each
k € N. Considering that Lachlan and Woodrow, see Theorem 1.3.7, classified
all countable infinite homogeneous graphs, the next step is to look at graphs ¢
which are k—homogeneous for all £ € N but a cofinite subset. This is equiva-
lent with saying that ¢ is >k—homogeneous for some k € N.

In order to study these graphs we will need to define a couple of new spe-
cific graphs which play important parts in the following constructions. Let ¢
be the graph which consists of an infinite disjoint union of complete graphs
on ¢ vertices, thus % is the complement graph of this graph. It is clear from
Theorem 1.3.7 that ¢, is a homogeneous graph.

Lemma 2.6.1. Let .# be a countable infinite graph. The graph # is >k—ho-

mogeneous but not 1 —homogeneous if and only if for some finite homogeneous
graph € andt € 7" we have that M, or M °, is isomorphic to GV .

N

L] ..
- ——

Figure 2.1. The graph 4, UKj3.

The “only if” direction is straight forward to prove since if we take at least
t+2|H| + 1 vertices in .# then we have found a connected component con-
sisting of more than |H| vertices, hence this component has to be a part of ¥
while the other vertices are a part of .77. Since each component is homoge-
neous it follows that .# is >(¢ + 2|H|)—homogeneous. The number 7 + 2|H |
is not the smallest number k for which .# is >k—homogeneous. However
it is a number which trivially works for any choice of ¢t and 7. In order to
describe the minimal k£ one needs to conduct a case study depending on the
choice of 7 and ¢. This is not done in Paper VI but should be a rather fun,
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and not to hard, exercise.

Going further, for t+ > 2 we define the graph 77| as the disjoint union
%,U%,. Fort > 1 define J, as the graph %,U%; but where each r—tuple of
independent vertices in one connected component gets completely connected
to a unique #—tuple in the other connected component.

° ... ... el — 0o ——o¢
Figure 2.2. 7% 1 to the left, 7 > to the right.

Using these new graphs we may take care of the second case of the >k—ho-
mogeneous graphs, where we have 1 —homogenity but not 2—homogenity.

Lemma 2.6.2. Let ./ be a countable infinite graph. The graph .# is >k—ho-
mogeneous, 1 —homogeneous but not 2—homogeneous if and only if for some
integert > 2 M, or A, is isomorphic to J 1, F > or F ».

To wrap up the paper we show that a >k—homogeneous infinite graph
which is 1— and 2—homogeneous is also homogeneous. The above results
together form the main theorem of Paper VI which is a classification of the
countable infinite >k—homogeneous graphs.

Theorem 2.6.3. Let .# be a countable infinite graph. The graph M is
>k—homogeneous if and only if #, or M€, is isomorphic to one of the fol-
lowing.

e A homogeneous graph.

e G U for some positive integer t and finite homogeneous graph €.

o JA 5, i1 or J 5 for some positive integer t > 2.

The graph ¢%,U~7 in the above theorem is homogenizable by defining a
unary relation which hold for all elements in the infinite component, while the
graph J7/ ; is homogenizable by the definable binary relation which states that
two elements are in the same part. We may thus conclude that the >k—homo-
geneous graphs are homogenizable using only a single extra relation of arity
at most 2.
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3. Sammanfattning pa Svenska (Summary in
Swedish)

Denna svenska sammanfattning dr skriven pa ett sa populirvetenskapligt sétt
som bara dr mojligt for att kunna beskriva materialet i avhandlingen utan att
samtidigt skriva en hel ldrobok i matematik. Malet med sammanfattningen dr
att vem som helst' ska kunna lisa den for att f4 insikt i ungefir vad avhandlin-
gen handlar om. Jag har inkluderat en hel del fotnoter for att fortydliga lite
extra eller for att 14gga till detaljer. For att f4 denna sammanfattning s 14ttlast
som mojligt sd &r vissa definitioner och beskrivningar sé pass vagt skrivna att
de kan tolkas tvetydigt eller kdnns ofullstdndiga. Detta dr ett medvetet val
och jag uppmanar alla som vill ha formella tydliga definitioner att ldsa den
engelska texten som kom tidigare i denna avhandling, alternativt de bifogade
artiklar vilken denna avhandling bygger pa.

Vi borjar med en introduktion 3.1 dér de centrala begreppen, som &r bra att
ha koll pa i samtliga artiklar, diskuteras. Darefter, i Sektion 3.2, beskriver vi
kort innehallet i artiklarna T och II. Det &r tyvirr svart att siga mycket om
dessa artiklar utan att anvinda abstrakta tekniska termer, varpa denna sektion
ar ganska kort. T Sektion 3.3 beskriver vi innehallet i artiklarna IIT och TV,
vilka bada studerar sannolikhetsgransvérdeslagar. Den enklaste delen att 14sa
ar kanske Sektion 3.4 dir vi beskriver artiklarna V och VI. Dessa artiklar &r
de mest konkreta av de som finns med i avhandlingen, och speciellt artikel VI
innehaller en mycket explicit klassifikation av en viss typ av graf.

3.1 Introduktion

Detta dr en avhandling i matematik, specifikt matematisk logik med inriktning
pa modellteori. Modellteori dr studien av abstrakta matematiska modeller, de-
ras egenskaper och teorier. Vi kommer nistan helt uteslutande anvédnda oss av
strukturer som har ett dndligt antal grundldggande relationer, men man kan i
princip genom hela avhandlingen tinka sig att vi bara tittar pa grafer dvs. en
matematisk struktur som innehaller punkter/noder samt streck/kanter mellan
dessa punkter.

IPersoner som lidst matematik vid universitetet kommer sjilvklart ha en férdel, men foérhoppn-
ingsvis kan alla atminstone fa en kénsla for vad det handlar om.
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Den roda traden i denna avhandling ges av den sa kallade Radografen, som
vi kommer beteckna med & genom denna sammanfattning. Radografen kan
definieras pa manga olika sitt. Ett sitt dr att vi tar ett (upprikneligt) odndligt
antal punkter och mellan varje par av tva punkter sa singlar vi en slant for att
se om Vi ska sitta en kant eller inte dar. Genom denna process kommer vi
med sannolikhet 1 att komma fram till Radografen®. En av de viktigaste egen-
skaperna hos Radografen &r foljande som vi kallar f6r en forldngningsegen-
skap.

e For varje tva disjunkta dndliga méangder A, B C % sa finns det en punkt

¢ € # sa att ¢ har en kant till alla punkter i A men till inga punkter i B.

Ae . . Be . . |

eC

Vi hade kunnat definiera Radografen med hjdlp av forldningsegenskapen
ovan. Det dr till och med sa att om vi tar ndgon annan graf ¢ med ett
(upprikneligt) odndligt antal punkter som ocksa uppfyller forlingningsegen-
skapen sa kommer denna graf ¢ vara isomorf> med Radografen.

Ett tredje sitt att skapa Radografen &dr ocksa med hjilp av sannolikhetsteori.
For varje naturligt tal n lat K, vara mangden av alla grafer ddr punkterna
numrerats 1,...,n . Om vi nu tittar pa en egenskap ¢ hos grafer, s kommer
denna egenskap att vara sann i nagra av graferna i K, och falsk i nagra. Pa
detta sitt sa far vi, for varje grafegenskap ¢, en sannolikhet P,(¢) for att

denna egenskap giller i en slumpmassig graf i K.
A

[ ] ] [ ] [ ] [ ] [ ]
— - — -
e——6o0 [ ] o——e0 —— 0

Ett enkelt exempel kan tas om vi later C3 besta av de fyra graferna i bilden
ovan. Da kommer sannolikheten att vi inte har nagon kant vara 1/4, medans
sannolikheten att vi har minst tva kanter vara 2/4 och sannolikheten att vi har
4 kanter dr 0. Om vi tar en specifik egenskap ¢ sa kan vi studera hur denna
egenskaps sannolikhet foridndras i olika K,,, nir K,, dr som vi beskrev ovan.
Om vi later n vixa mot odndligheten (och alltsé véxer dven grafernas storlek
i K,;) s& kommer vi férhoppningsvis fa en sannolikhet for ¢ som stabiliserar
sig och ror sig mot ett tal, detta tal kallas (om den existerar) den asymptotiska
sannolikheten for @. Ett enkelt exempel dr att den asymptotiska sannolikheten
for egenskapen "Det finns inga kanter" gar mot 0, eftersom antalet grafer med

ZNotera att sannolikhet 1 infe ir samma sak som att det helt siikert kommer att hinda. Detta
underliga fenomen uppstar eftersom vi har ett oéndligt antal punkter.
3Likadan.
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minst en kant vixer medans antalet grafer med ingen kant dr exakt en (for
varje val av antal noder). Om varje egenskap* har asymptotisk sannolikhet
0 eller 1 sa sdger vi att K, har en 0 — 1 lag. Lat Tx beteckna méngden av
alla egenskaper som har sannolikhet 1. Fagin [14] och Glebskii, Kogan,
Liogon’kii, Talanov [18] visade, oberoende av varandra, att om K,, bestar av
alla grafer med storlek n s& har K, en 0 — 1 lag. Fagins bevis anvinde sig
av forlangningsegenskaperna som han visade har asymptotisk sannolikhet 1
i K,. Eftersom forlingningsegenskaperna definierar Radografen sa medfor
detta i sin tur att Radografen &r den unika oéndliga grafen som uppfyller alla
egenskaper som har asymptotisk sannolikhet 1.

Figure 3.1. En 3-partit graf.

Ett annat viktigt exempel for oss dr de [—partita slumpgraferna. Lat / vara ett
positivt heltal. En /—partit graf dr en graf som kan delas upp i / stycken delar
sa att inga kanter finns mellan tva punkter som ligger i samma del. Lat K,, vara
mingden av alla /—partita grafer ddr noderna numreras med 1, ...,n. Kolaitis,
Promel och Rothschild [25] visade att K,, kommer att ha en 0 — 1 lag pa ett
liknande sitt som Fagin visade O — 1 lagen som beskrivs ovan, ndmligen med
hjilp av speciella férlingningsegenskaper. Aven denna ging s kommer det
att finnas en unik odndlig struktur som uppfyller alla egenskaper med asymp-
totisk sannolikhet 1. Dock sa kommer denna oéndliga struktur inte vara Rado-
grafen utan den sa kallade /—partita slumpgrafen. Denna graf kan vi generera
pé liknande sétt som Radografen, nimligen genom att ta [ stycken delar med
odndligt antal punkter i varje del, och darefter singla en slant for varje par av
punkter i olika delar for att bestimma om en kant ska finnas eller e;j.

Vi sédger att en struktur 4r homogen om dess lokala egenskaper definierar
dess globala egenskaper. Mer specifikt; om vi i en graf ¢ hittar nagra punk-
ter, med kanter utplacerade pa ett visst sitt, och pa ett annat stille i grafen
hittar andra punkter med precis samma konstellation av kanter, da ska dessa
bada méngder med punkter uppfylla exakt samma egenskaper i hela grafen.
Som exempel kan vi se att 5—cykeln, och den kompletta 4—grafen, i bilden
nedan, ir homogena. Diremot sa dr 6—cykeln inte homogen eftersom paret
med noder uppe till vinster och nere till hoger inte har samma globala egen-
skaper som paret med noder uppe i mitten och nere till vinster, eftersom det
ena paret har avstand> 2 och det andra har avstind 3 mellan sig, samtidigt som

40m man ska vara petig s& menar vi egentligen forsta ordningens sats frén spraket.
5 Antal kanter man behdver gd Gver som minst for att ta sig frén ena punkten till den andra.
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bada paren med noder ser likadana ut, eftersom bada paren med noder saknar

kant.

Figure 3.2. 5—cykeln, den kompletta 4—grafen och 6—cykeln respektive.

3.2 Artiklarna I och II

Radografen har nagra modellteoretiska egenskaper som &r intressanta ur ett
teoretiskt perspektiv. Den ir enkel® har SU-rang 1, trivial pregeometri och
ar upprikneligt kategorisk (14s den engelska introduktionen for definitioner).
Dessa egenskaper innehas dven av andra grafer (och strukturer) som skapas pa
samma slumpmaissiga sitt sa som Radografen och de [ —partita slumpgraferna.
En fraga som man dérfor kan stélla sig dr hur dessa egenskaper hinger ihop
med den genereringsprocess som skapade bade Radografen och de [—partita
slumpgraferna. Vi begrinsar oss ytterligare genom att titta pa sa kallade binra
strukturer, det vill siga grafer men med ett fixerat antal olikfargade kanter som
man kan ha mellan punkterna.

I artikel I visar vi att Fagins [14] bevismetod med forldngningsegenskaper,
som anvinds for att bevisa ett flertal 0 — 1 lagar, medfor att den odndliga struk-
tur som skapas innehar alla egenskaper som beskrevs ovan. Dessutom sa visar
vi att samtliga strukturer som uppfyller egenskaperna ovan kan genereras pa
just detta sitt.

Artikel II skrevs tillsammans med Vera Koponen och 4r den forsta artikeln
i en serie som Koponen [27, 28, 29, 30] fortsatte skriva dir de bindra enkla
homogena strukturerna klassificeras. Det vi kommer fram till i denna artikel
ar framforallt tekniska beskrivningar av de delmidngder av strukturerna som
har SU-rang 1, vilket i senare artiklar anvénds for att kunna klassificera enkla
homogena strukturer.

3.3 Artiklarna III och IV

I dessa tva artiklar studerar vi en av genereringsprocesserna som anvindes for
Radografen. Det vill siga vi har en mingd K, med strukturer’ och sen kollar
vi pa hur sannolikheten for olika egenskaper foridndras nir storleken pa struk-
turerna okar.

Detta har inget att gora med algebrans “enkel grupp” eller liknande begrepp och det betyder
definitivt inte att strukturen &r enkel att forsta eller beskriva.
7Man kan tinka pa grafer, men detta blir i dessa artiklar lite trivialt i vissa aspekter.
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I artikel TIT studerar vi K,, som bestar av firgbara strukturer med en un-
derliggande pregeometri. En férglagd graf &r i princip samma sak som en
farglagd karta. Den ska vara fiarglagd sa att tva punkter som ligger bredvid
varandra aldrig har samma firg. Notera att de [—partita graferna som vi tidi-
gare tittade pa dr [—firgbara. Detta kan man se genom att man fargldgger alla

noder som ligger i en viss del med samma férg.

|
X X

N

:
X +

Figure 3.3. En graf firglagd® i tre firger

Problemet som dyker upp ér hur vi generaliserar detta till strukturer, och
inte bara grafer. Specifikt, om kanterna kan innehalla tre eller fler punkter
(och inte bara tva som i grafer) vilka regler ska vi da ha for fiargliggning?
Svaret blir att vi ger tva olika regler och far da starkt och svagt fiarglagda
strukturer ddr vi antingen vill att alla punkter som ligger pa en kant ska ha
olika firg, respektive att minst tva punkter som ligger pa en kant har olika
firg. En [—fdrgbar struktur dr en struktur som inte dr firglagd &n, men som
kan firglaggas med hogst [ stycken firger. I artikel IIT visar vi att om K, bestar
av alla [ —firgbara strukturer med en pregeometri®, si kommer vi asymptotiskt
ha ett unikt sétt att fargldgga strukturerna i K, och detta maste goras med exakt
[ farger. Vi visar dessutom att samtliga egenskaper kommer att ha asymptotisk
sannolikhet O eller 1, vi har alltsa en 0 — 1 lag.

En graf kallas rigid om det inte gér att byta plats pa nagra av punkterna (och
medfoljande kanter) och fa tillbaka samma graf.

N

Figure 3.4. En rigid graf till vinster och en icke-rigid graf till hoger.

Fagin [15] visade att om K, bestar av alla strukturer av storlek n s& kommer
den asymptotiska andelen rigida grafer att nirma sig 1 nér n vixer. Detta bety-
der alltsa att strukturer ddr vi kan byta plats pa punkterna &r ganska ovanliga.
Om vi tittar pa vilka egenskaper som har asymptotisk sannolikhet O eller 1 i
K, sd kommer graferna som &r icke-rigida alltsa inte kunna paverka resultatet
eftersom de ar for fa. T artikel IV sa studerar vi dédrfér vad som hiander med
dessa strukturer. Mer specifikt sa begrinsar vi K, sa att den endast far besta av
strukturer som inte #r rigida pa olika sétt och i olika grad, bland annat genom

8For att tillata lisande i svart-vitt s anviinder vi symboler som visar om tva punkter har samma
farg.
9Detta ir ytterligare en begrinsning som gor firgliggandet lite kringligare.
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att ha en viss automorfigrupp'®. Det vi hittar #r att for dessa mingder av struk-
turer sa har vi generellt sett inte asymptotisk sannolikhet O eller 1 for samtliga
egenskaper, men vi har en sannolikhet som atminstone ndrmar sig ett tal, och
inte bara oscillerar nir vi gar mot ozndligheten'!.

3.4 Artiklarna V och VI

I introduktionen ovan definierar vi de /—partita slumpgraferna och begreppet
homogenitet. Den /—partita slumpgrafen dr inte homogen eftersom om vi vil-
jer tva punkter som ligger i samma del (och dérfor har ingen kant mellan sig)
och jamfor dessa med punkter som ligger i olika delar och inte har nagon kant
mellan sig sa kommer det ena paret ha avstand 2 och det andra ha avstand 3
mellan sig. Alltsé &r de tva paren med punkter globalt olika vilket medfor att
grafen inte dr homogen. Man kan dock fixa denna miss i homogeniteten med
ett litet trick. Om vi ldagger till en ny rod kant mellan varje par av noder som
ligger i samma del, s kommer vi inte ldngre lokalt st6ta pa problemet som jag
nyss beskrev eftersom att par av noder som ligger i olika delar har ingen rod
kant medans alla par av noder i samma del numera har en rod kant. I fallet
med [—partita grafer sa dr detta det enda problemet vi har, och alltsd kommer
denna nya struktur som vi skapar genom att ligga till en extra rod kant vara
homogen.

En homogeniserbar graf &r en graf som kan géras homogen genom att vi
lagger till ett dndligt antal extra firgade kanter!? eller firgligger punkterna.
Som vi beskrev ovan sa dr de /—partita graferna homogeniserbara. Nedan
syns grafen som bestar av ett odndligt antal punkter dir exakt tva punkter har
en kant mellan sig, kalla denna graf ¢ for referens till senare. Denna graf dr
inte homogen eftersom alla punkter ser, ndr man bara tittar pa dem en i taget,
lika ut men ndr man tittar pd dem i hela grafen ser man att nagra punkter &r

annorlunda eftersom de har en granne'.

cen [ ] [ ] ® [ ] cen
Diremot sa dr denna graf homogeniserbar. Genom att vi fargldgger de punk-
ter som har en granne sa kommer vi kunna upptécka skillnaden mellan de med
granne och de utan granne dven nér vi bara ser en punkt i taget. Detta dr det
enda problemet som finns i grafen, vilket gor att den nu 4r homogen.

[ ] L] X

e X [ [ ] [ ] e

I artikel V sa studerar vi de homogeniserbara strukturerna ur ett abstrakt per-
spektiv och klassificerar dem i forhallande till hur nédra de &r att vara ho-
mogena. Vi studerar sedan egenskaperna hos dessa klasser och visar hur

108:tt att flytta runt punkterna.

I Eor sadana exempel se 1.2.3 i den engelska delen.

12Riittare sagt si kan dessa extra “kanter” vara relationer av valfri stillighet.

13En granne till en punkt a ér en annan punkt b s att det finns en kant mellan a och b.
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klasserna forhaller sig till varandra.

I artikel VI studerar vi i storre noggrannhet klassen med de enklaste ho-
mogeniserbara strukturerna. Den trevligaste av dessa grafer dr grafen, som vi
kallar .7, med ett odndligt antal noder som alla (utom en) har exakt en kant
och dessa kanter gar alla till samma nod.

Figure 3.5. Grafen'4. 7

Denna graf har tva typer av punkter, den unika punkten som alla har en kant
till (kalla denna mittenpunkten) samt resten av punkterna. Om vi dock bara
tittar pa en punkt i taget sd vet vi inte vilken punkt vi har, och alltsé ir grafen
inte homogen. Grafen ir tydligt homogeniserbar genom att fargligga mitten-
punkten.

Om vi tittar pa tva punkter i .5 som inte har nagon kant mellan sig sa vet
vi att dessa punkter inte kan vara mittenpunkten, vi har alltsa koll pa vilka
punkter dessa #r globalt. Tittar vi ddremot pa tva punkter som har en kant
mellan sig, men vi ser inget mer, sd vet vi inte vilken av dessa tva punkter
som #r mittenpunkten. Om vi dock viljer en till punkt, sa vi har tre punkter,
sa maste tva av dessa inte ha en kant mellan sig och alltsa dr den aterstaende
punkten mittenpunkten. Om vi nu ldgger till fler punkter sa kommer vi alltid
ha koll pa vilken av dessa som dr mittenpunkten och dven veta vilka som inte
ar det. Slutsatsen #r att efter vi valt minst 3 punkter i 7 sa kommer vi ha
helt koll pa exakt vilka globala egenskaper som finns hos de valda punkterna.
Detta kallar vi att .7 dr >3—homogen. Alltsa den dr homogen, men bara om
vi tittar pa minst 3 punkter. Generellt sett sa kan vi definiera >k—homogenitet
som dr homogenitet nér vi valt minst k punkter. Notera att den grafen 7 som
vi beskrev pa forra sidan inte d&r >k—homogen for nagot tal k, eftersom om
vi viljer ett stort antal punkter, men sa att inga av punkterna har en kant sd
kommer vi inte veta om nagon, eller vilken, av vara valda punkter som har en
kant till en annan punkt globalt.

Huvudsyftet med artikel VI ir att klassificerar de >k—homogena graferna'>.
Detta gor viitre steg. Det forsta steget dr att visa att om det finns flera typer av
punkter, sa som i grafen .7# ovan, da kommer de ungefir se ut som .7, men
kanske med lite fler punkter som sitter ihop pa ett symmetriskt sétt. Det andra
steget dr att vi visar att om vi har en >k—homogen graf dir alla punkter ser

“Hir borde vi ha oindligt antal noder som ir runtomkring (alla fick dock inte plats i bilden),
men 4nda bara exakt en nod i mitten.

151 denna artikel menas verkligen grafer, gentemot resterande artiklar dir vi egentligen vill prata
om godtyckliga strukturer med dndligt manga (mojligtvis bindra) relationer.
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likadana ut men det finns par av punkter (som bada har en kant eller ej) som
ser olika ut globalt, da kommer de att se ut ungefir som grafen nedan.

o< e

Det tredje steget blir direfter att visa att dessa &r de enda tva fallen som finns
for >k—homogena grafer. Bevisen bestar till stor del av att man anvinder
Ramseyteori.
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