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Abstract
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Since the early 2000s, in order to keep up with the performance predictions of Moore's law,
hardware vendors have had to turn to multi-core computers. Today, parallel hardware is
everywhere, from massive server halls to the phones in our pockets. However, this parallelism
does not come for free. Programs must explicitly be written to allow for concurrent execution,
which adds complexity that is not present in sequential programs. In particular, if two concurrent
processes share the same memory, care must be taken so that they do not overwrite each other's
data. This issue of data-races is exacerbated in object-oriented languages, where shared memory
in the form of aliasing is ubiquitous. Unfortunately, most mainstream programming languages
were designed with sequential programming in mind, and therefore provide little or no support
for handling this complexity. Even though programming abstractions like locks can be used to
synchronise accesses to shared memory, the burden of using these abstractions correctly and
efficiently is left to the programmer.

The contribution of this thesis is programming language technology for controlling
concurrency in the presence of shared memory. It is based on the concept of reference
capabilities, which facilitate safe concurrent programming by restricting how memory may
be accessed and shared. Reference capabilities can be used to enforce correct synchronisation
when accessing shared memory, as well as to prevent unsafe sharing when using more fine-
grained concurrency control, such as lock-free programming. This thesis presents the design of
a capability-based type system with low annotation overhead, that can statically guarantee the
absence of data-races without giving up object-oriented features like aliasing, subtyping and
code reuse. The type system is formally proven safe, and has been implemented for the highly
concurrent object-oriented programming language Encore.
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Sammanfattning på svenska

De senaste 40 åren har utvecklingen av datorhårdvara följt Moores lag, som
säger att antalet transistorer som får plats på ett datorchip dubbleras vartannat
år. I praktiken betyder det att även datorers prestanda mer eller mindre har
dubblerats vartannat år sedan 1970-talet. Fysikens lagar sätter dock en gräns
för hur många transistorer som kan få plats på ett chip innan energiåtgången
blir för hög, och i början av 2000-talet började hårdvarutillverkare känna av
den gränsen.

För att kunna fortsätta följa den utvecklingskurva somMoores lag förutspår har
de flesta hårdvarutillverkare istället vänt sig till flerkärniga processorer. Idag
finns parallell hårdvara överallt, från företagens stora serverhallar till telefoner-
na i våra fickor. Teoretiskt kan en processors prestanda fördubblas genom att
låta ytterligare en processor arbeta parallellt med den första, men i praktiken
är detta inte alltid sant. För att kunna utnyttja en flerkärnig processor till fullo
så måste program skrivas så att de tillåter parallell exekvering.

Att skriva parallell mjukvara introducerar en komplexitet som inte finns i se-
kventiella program, där kontrollflödet kan följas genom att helt enkelt läsa pro-
grammet från början till slut. I ett parallellt program, med flera kontrolltrådar,
måste särskild hänsyn tas till minne somdelasmellan trådar. Om två exekveran-
de trådar samtidigt arbetar med samma minne kan de råka skriva över varand-



ras resultat, vilket kan leda till att programmet beter sig på oförutsedda sätt.
Sådana problem kallas för kapplöpningsproblem (eng. data-races).

De flesta programspråk har utvecklats med fokus på sekventiell programme-
ring, vilket betyder att programmeraren i allmänhet inte får någon hjälp från
kompilatorn att skriva korrekta parallella program.När det gäller kapplöpnings-
problem så måste programmeraren själv lista ut vilket minne som delas mellan
trådar, om detta minne någonsin används samtidigt, och i så fall hur trådarna
ska samarbeta för att inte störa varandra.

Dessa problemär frekvent förekommande i objektorienterade programmerings-
språk, där aliasering (eng. aliasing) – alltså när samma minne är åtkomligt via
flera olika namn – är en del av programmeringsstilen. En viktig observation är
att aliasering är nödvändigt för att två trådar ska kunna dela på minne. Det går
att ha aliasering utan att ha delad åtkomst till minne (alltså att ha aliasering in-
om en och samma tråd), men det går inte att ha delad åtkomst till minne utan
att ha aliasering. Många av de mest använda språken idag är objektorienterade,
och för att de ska kunna fortsätta användas på ett effektivt sätt med modern
hårdvara behövs programmeringsstöd för att hantera parallellism.

Den här avhandlingen introducerar ett antal nya programspråkstekniker för
att hjälpa programmerare att skriva korrekta och effektiva parallella program.
Centralt för arbetet är tesen att nyckeln till att hantera parallellism är hur aliase-
ring hanteras. Genom att noggrant kontrollera hur referenser till minne får ska-
pas och spridas i programmet kan situationer där kapplöpningsproblem skulle
kunna inträffa helt och hållet uteslutas. Avhandlingen presenterar ett typsystem
som med låg syntaktisk kostnad garanterar att ett kompilerande program ald-
rig råkar ut för kapplöpningsproblem, utan att för den sakens skull överge de
principer som objektorienterade programspråk bygger på. Programspråkstek-
nikerna har formaliserats och bevisats korrekta, och har även implementerats i
det objektorienterade språket Encore.

Ett vanligt sätt att förhindra kapplöpningsproblem är genom att upprätthålla
ömsesidig uteslutning (eng. mutual exclusion), vilket innebär att en tråd som
arbetar inom en viss sektion av minnet är den enda tråden som just då har till-
gång till detta minne. En teknik för detta är att skydda det delade minnet med
ett lås. Om en tråd försöker få tillgång till minne som redan används tvingar lå-
set tråden att vänta tills den andra tråden har arbetat klart. Ett annat alternativ
är att låta minnessektioner permanent tillhöra en viss tråd, och istället låta and-



ra trådar delegera sitt arbete till tråden som äger minnet. Typsystemet i denna
avhandling garanterar att båda dessa tekniker används på ett korrekt sätt.

Ömsesidig uteslutning är en kraftfull egenskap, men när många trådar arbe-
tar med samma minne kan det leda till att de tvingas lägga majoriteten av sin
exekveringstid på att vänta på att minnet ska bli ledigt. I dessa situationer an-
vänds ofta så kallade låsfria algoritmer, där trådar koordinerar sitt arbete med
delat minne på ett sätt så att ingen tråd behöver vänta på någon annan. Typ-
systemet i denna avhandling hjälper programmerare att implementera sådana
algoritmer genom att garantera att felaktig koordinering som skulle ha lett till
kapplöpningsproblem inte kan inträffa.

Vi har sedan länge lämnat den sekventiella programmeringens tidsålder, och
idag är nästan all hårdvara mer eller mindre parallell. Programspråkstekniker-
na i denna avhandling tillhandahåller en mångsidig verktygslåda för nya språk
som utvecklas för den parallella värld vi lever i, utan att för den sakens skull
tvinga programmerare att lämna sina gamla, objektorienterade verktyg bakom
sig.
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1. Introduction

For the last 40 years, the evolution of computer hardware has followedMoore’s
law [107], which states that the number of transistors that fit on a chip doubles
approximately every two years. In practice, when factoring in the increased
performance of single transistors, this means that the performance of comput-
ers has roughly doubled every two years since the 1970s [90]. However, due to
energy requirements and heat dissipation, there is a physical limitation to how
many transistors can be added to a chip. In the early 2000s, manufacturers of
computer chips started to approach this limit [70].

In order to keep up with the performance predictions of Moore’s law, hardware
vendors instead turned to multi-core processors, and today parallel hardware
is everywhere, from server halls to phones. In theory, one can double the per-
formance of a processor by adding another processor running in parallel. In
practice, however, this is not always true; in order to fully utilise the potential
of a multi-core processor, programs must be written in such a way that they
allow for concurrent execution [133]. This is captured by Amdahl’s law, which
states that the maximum performance improvement of a parallel program is
proportional to the amount of code that can be run concurrently [9].

Writing concurrent software introduces complexity that is not present in se-
quential programs, where the control flow can be followed by simply reading
the code from the beginning to the end. In a concurrent program with mul-
tiple threads of control, special care must be taken with the memory shared
between threads. For example, if two threads access the same memory concur-
rently, theymay overwrite each others’ results, leading to unexpected behaviour.
Such situations are known as data-races.

Most mainstream languages were designed with sequential programming in
mind, meaning that the programmer is left with little or no support from the
compiler to write correct concurrent programs. When it comes to data-races, it
is up to the programmer to figure out whichmemory is shared between threads,
which shared memory is potentially subject to data-races, and how to properly
synchronise concurrent accesses to this memory.

15



These problems are prevalent in object-oriented programming languageswhere
mutable objects and aliasing, i.e.,multiple references to the same object ormem-
ory address, are central features [51]. Today, four out of the five most used lan-
guages are object-oriented [135], and with the ubiquity of parallel hardware, de-
veloping language technology for handling concurrency in an object-oriented
context is imperative for allowing programmers to write efficient software. An
important observation about aliasing is that it is a prerequisite for sharing; one
can have aliasing without sharing (i.e., aliasing fromwithin a single thread), but
can never have sharing without aliasing.

This thesis defends the statement that controlling aliasing is key to controlling shar-
ing between threads.

1.1 Contributions

Themain contribution of this thesis is a number of static and dynamic language
features for controlling aliasing in a concurrent setting. At the core of these fea-
tures is the idea of a reference capability, an abstract token attached to each
reference which defines what operations are available on both the underlying
object (e.g., which methods may be called) and the reference itself (e.g., if the
reference may be copied). By controlling the creation and propagation of ref-
erence capabilities, situations where data-races could occur can be completely
avoided.

In this thesis, the tracking of reference capabilities is implemented in the form
of a type system called Kappa. The type system supports object-oriented fea-
tures like subtyping, code reuse and encapsulation, and a program written us-
ing Kappa is guaranteed to be free from harmful1 data-races. Kappa ensures
that a reference may always be used to the full extent allowed by its type with-
out fear of data-races, regardless of which objects are reachable through the
reference. In addition to the object-oriented paradigm, the contributions of
this thesis extend to both procedural programming and programming with ac-
tors using mutable state. Kappa incorporates ideas frommany existing systems
for alias control and expresses them in a unified system.

1In certain cases, concurrent mutation can safely be explicitly allowed by the programmer.
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This thesis consists of a collection of papers that cover different aspects of the
Kappa type system. This section continues with a summary of the contribution
of each paper.

PAPER I
Reference Capabilities for Trait Based Reuse and Concurrency Control

This paper presents the original formulation of Kappa in the shape of a type system
for concurrent, object-oriented programming. Objects are guarded by reference
capabilities, and an object may always be accessed without fear of data-races. The
type system uses traits for subtyping and code reuse. When implementing a trait,
programmers can assume mutual exclusion and encapsulation of private data,
which simplifies and localises reasoning.

Howmutual exclusion is achieved is specifiedwhen the trait is used. This advances
the state-of-the-art by allowing traits to be reused across different concurrency
scenarios. Traits are also used to reason about the possible effects caused by
calling a method, and allows safely accessing an object concurrently when the
effect footprints of two methods are disjoint. All of this is done without explicit
ownership types or effect annotations.

PAPER II
Kappa: Insights, Status and Future Work

This paper expands Paper I by providing more details on the connections between
Kappa and related work. It discusses the implementation of Kappa in Encore, a
programming language based on active objects, and how it facilitates safe sharing
between active objects. It also outlines some directions for future work.

PAPER III
Types for CAS: Relaxed Linearity with Ownership Transfer

The type system presented in Paper I ensures data-race freedom by guaranteeing
mutual exclusion. This is a powerful property, but also too strict for many fine-
grained concurrency patterns, where threads cooperatively access shared mutable
state, following some protocol to ensure that their interaction is safe. This paper
presents a type system for capturing patterns in lock-free data structures, centered

17



around the atomic compare-and-swap (CAS) primitive. It extends Kappa by
allowing shared mutable state in a controlled fashion. It is flexible enough to
allow the implementation of several fundamental lock-free data structures, while
still guaranteeing the absence of uncontrolled data-races. The paper formalises the
type system and proves it sound, and also reports on a prototype implementation.

At the core of the system is the observation that aliasing is only harmful if more
than one alias is used to accessmutable state. The type system tracks the ownership
associated with each reference, using the CAS primitive to transfer ownership
between aliases, and ensures that there is never more than one owning reference
to an object. The guarantee given by the system is that access to owned data is
always exclusive, and therefore free from data-races.

PAPER IV
Bestow and Atomic:

Concurrent Programming using Isolation, Delegation and Grouping

The type systempresented in Paper I relies on encapsulation—keeping the internal
state of an object truly private—to ensure that exclusive access to an object also
implies exclusive access to the objects thatmake up its internal state. This property
is useful, but also restrictive as it forces all interaction with an object aggregate
to go via the “owner” of these objects. Paper IV extends Kappa with a construct
which allows references to an object’s private state, enforcing that all operations
through such references are implicitly delegated to the owner, and ensuring that
concurrent accesses are properly synchronised. This facilitates switching between
synchronisation based on isolation and synchronisation based on delegation,
which is useful for programming with both actors and locks.

Additionally, the paper introduces a construct for grouping several operations
so that they are performed back to back without any interleaving of concurrent
operations. This allows programmers to introduce new atomic operations by
composing existing operations, without having to worry about the effects of
concurrent accesses to the same object. The paper formalises both constructs in
three different variations and proves them all sound. The paper also reports on a
prototype implementation.
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PAPER V
OOlong: an Extensible Concurrent Object Calculus

This paper introduces OOlong, a small object calculus with support for concur-
rency and locking. It was first used in the formalisation of the type system in
Paper I, but has since been stripped down to its essentials, making it suitable for
extension. In contrast to commonly used Java-based calculi, OOlong does not aim
to model any specific language, but rather object-oriented languages in general.
For this reason, it uses a simple subtyping mechanism based on interfaces rather
than relying on class inheritance. To facilitate extension and formal reasoning,
the semantics have been mechanised and proven sound in the theorem prover
Coq, and the source code is publicly available. OOlong serves as a starting point
for researchers who want to develop and reason about new language features in
concurrent object-oriented languages.

The Author’s Contributions

I Manuscript written together with second author. Sole implementor. Se-
mantics and proofs written in collaboration with second author.

II Main author.

III Main author. Semantics written in collaboration with second author. Sole
contributor of proofs and implementation.

IV Main author. Semantics written in collaboration with third author. Sole
contributor of proofs. Implementation written in collaboration with sec-
ond author.

V Main author. Sole contributor of semantics and proofs.

Related Publications

VI Capable: Capabilities for Scalability [37], Elias Castegren and Tobias
Wrigstad. International Workshop on Aliasing, Capabilities and
Ownership, 2014
Sketches of the ideas in Papers I–III were first presented in this
workshop paper.
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VII Reference Capabilities for Concurrency Control [39], Elias Castegren
and Tobias Wrigstad. European Conference on Object-Oriented
Programming, 2016
Paper I is the extended version of this paper.

VIII Relaxed Linear References for Lock-Free Data Structures [42], Elias
Castegren and Tobias Wrigstad. European Conference on
Object-Oriented Programming, 2017
Paper III is the extended version of this paper.

IX Types for CAS: Relaxed Linearity with Ownership Transfer [41], Elias
Castegren and Tobias Wrigstad. Nordic Workshop on Programming
Theory, 2016
The ideas of Paper III were presented in this extended abstract.

X Actors without Borders: Amnesty for Imprisoned State [44], Elias
Castegren and Tobias Wrigstad. Programming Language Approaches to
Concurrency- and Communication-cEntric Software, 2017
Paper IV is an extended version of this article.

XI Parallel Objects for Multicores:
A Glimpse at the Parallel Language Encore [29], Stephan Brandauer,
Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar Broch
Johnsen, Ka I Pun, Silvia Lizeth Tapia Tarifa, Tobias Wrigstad, and
Albert Mingkun Yang. Formal Methods for Multicore Programming, 2015
This paper introduces the programming language Encore, in which all
implementations have taken place.

Artefacts

All the implementation in papers I–XI was carried out in the Encore compiler
[29, 62], which was written from scratch in parallel with this thesis as part of
the UPSCALE project [138]. At the time of writing, the author is the number
one contributor to the compiler’s development. The compiler is open source
software and can be obtained from the following URL:

https://github.com/parapluu/encore
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1.2 Outline

The rest of this extensive summary is structured as follows:

– Chapters 2 and 3 review the necessary background on concurrent and object-
oriented programming, setting the stage for the contributions of this thesis.

– Chapter 4 overviews existing techniques for alias control and data-race pre-
vention, and briefly discusses verification techniques based on program log-
ics and model checking.

– Chapter 5 introduces Kappa, explains the basics of the Kappa type system,
and discusses extensions and variations thereof.

– Chapter 6 discusses the implementation of Kappa in the active object lan-
guage Encore, focusing on the features that are available in the implemen-
tation but not in the formal treatise.

– Chapter 7 concludes and discusses some directions for future work.

The overarching goal of the work in this thesis is to prevent concurrency errors
caused by data-races. We therefore begin by explaining some background on

how concurrency is commonly achieved and controlled.
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2. Achieving and Controlling Concurrency

This thesis introduces language features which help programmers write correct
concurrent programs, notably by guaranteeing the absence of data-races. In
order to explain the context of these contributions, this chapter reviews how
concurrency is commonly achieved and controlled. Section 2.1 discusses con-
currency based on threads, what kind of errors may occur when memory is
shared between threads, and how these errors are avoided by using locks (Sec-
tion 2.1.1) or other more fine-grained techniques (Section 2.1.2). Providing sup-
port for this kind of programming is the focus of the Kappa type system, and
Papers I–III.

This chapter also overviews how conflicting accesses to shared memory can be
resolved dynamically by using software transactional memory (Section 2.1.3)
and how channels and message passing allow threads to communicate without
using sharedmemory (Section 2.1.4). Finally, Section 2.2 discusses concurrency
based on actors instead of threads, and overviews some existing actor systems.
Actors are relevant for the work presented in Paper IV, and for the implemen-
tation of Kappa in Encore (cf., Chapter 6).

2.1 Threads and Locks

Themost common concurrencymodel is onewhere a programhas one ormore
threads of execution that are running concurrently. In this model a thread can
spawn (fork) new threads, andwait for one ormore threads to finish (also called
a join). Commonly, threads do not necessarily map to the same number of
processor cores; a single core can run many software threads, meaning that the
software threads are scheduled to run one at a time, sharing the same core.

In general, one discerns between concurrency, which is any situation where
more than one thread is making progress, and parallelism, which is when sev-
eral threads are actually executing simultaneously [132]. Concurrency is about
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1 void calculate(int *result) {
2 int x = ... // Perform some work
3 *result = x;
4 }
5
6 int main() {
7 int result = 0;
8 thread_t t = fork(calculate(&result));
9 join(t);

10 printf("%d", result);
11 return 0;
12 }

Figure 2.1. A simple example of thread communication. Removing the join on Line
9 introduces a data-race between the reading of result on Line 10 and the write to
result on Line 3.

operations being logically simultaneous, while parallelism is generally about
performance optimisation. For example, the window manager of an operat-
ing system is a concurrent program; there may be one window showing a video
while the user is entering text in another window, and a third window is display-
ing the current time through an animated clock. All of these software threads
could be run without parallelism (i.e., on a single core) and still appear to be
running at the same time to the user. It is the scheduling of concurrent threads
that decide if the program is actually parallel.

A web server is also a concurrent program which could be implemented by
spawning a new thread for each incoming connection1. When running on a
single core, each connection reduces the amount of processing time given to
each software thread, possibly introducing latency for the connecting clients.
In order to handle a larger number of connections, a web server may turn to
parallelism and distribute the load of incoming connections over several cores.
These cores may be run on the samemachine, or be distributed across different
machines.

Themost basic way for two threads to communicate with each other when run-
ning on the same machine is via shared memory. For example, one thread
may spawn another thread and give it access to some known memory location
where the spawned thread writes the result of its computations before finishing.
Figure 2.1 shows this interaction in C-like pseudo code (using fork and join as

1In reality, it would probably use a more lightweight solution, like a thread pool.
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1 void send_to_printer(document_t *d, int *count) {
2 int pages = ... // Send d to printer
3 if (pages > 0) {
4 *count = *count + pages;
5 }
6 }
7
8 int main() {
9 int count = 0;

10 thread_t t1 = fork(send_to_printer(new_document(), &count));
11 thread_t t2 = fork(send_to_printer(new_document(), &count));
12 join(t1);
13 join(t2);
14 printf("%d", count);
15 return 0;
16 }

Figure 2.2. An example of two threads racing to write to the same memory.

primitives). The fork on Line 8 spawns a new thread which runs the calculate
function. The join on Line 9 waits for the spawned thread to finish.

In this scenario, there are two points of communication: the sending of the
shared memory location result to the new thread (a form of direct commu-
nication), and the passing of the spawned thread’s result via this shared mem-
ory (a form of indirect communication). The first form of communication is
the most simple of the two, as it will never fail and will always result in the
spawned thread getting access to the address of result. In contrast, if the join
on Line 9 is removed the second point of communication may fail. Depending
on whether the spawned thread manages to write to result before it is read by
the spawning thread, the program may have different results for different runs.

This is a simple example of a data-race. Two threads are racing to read from
and write to the same memory, and the order of these operations depend on
how the threads are scheduled (which may be different for different runs of the
program). The join operation gets rid of the data-race by introducing synchro-
nisation, which prevents certain orderings of the operations (in this case that
the read happens before the write).
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2.1.1 Synchronisation using Locks

Figure 2.2 shows an example with a total of three threads running concurrently.
The main thread spawns two threads running the send_to_printer function,
which tries send a document to someprinter and then conditionally increments
the shared integer countwith the number of pages thatwere printed. Once both
spawned threads have finished, the original thread prints the value of count to
the screen.

This programhas a data-race, as both spawned threads attempt to update count
concurrently. This data-race is more complicated than the read-write race in
Figure 2.1 for two reasons. First, neither of the racing threads is “aware of ” the
existence of the other thread, so there is no way to explicitly wait for the other
thread as in Figure 2.1. Second, it is generally not possible to detect if a data-race
occurred or not. The increment on Line 4 will be performed in three atomic
steps: reading the value of count into a register, incrementing this value, and
finally writing the new value back to memory. Between any of these steps, the
other thread may access the same memory. For example, the following inter-
leaving of operations for threads t1 and t2 is possible (assuming the value of
pages is 1 for both threads):

Time t1 t2
1 read*count into register r1
2 increment r1 by 1
3 read*count into register r2
4 increment r2 by 1
5 write contents of r2 to*count
6 write contents of r1 to*count

In this scenario, both threads read the initial value 0, increment it locally to
1 and then write it to memory, leaving the final value of count at 1 instead of
the expected value 2. This is known as a lost update; even though both threads
locally appear to successfully increment the counter, the resulting state is as if
one of the operations was never performed.

A simple way to prevent this data-race from occurring would be to spawn the
first thread, wait for it to finish, and then spawn the second thread. This would
however destroy any potential performance gained by running the threads in
parallel. A better solution would be to have the two threads only synchronise
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1 void send_to_printer(document_t *d, int *count, mutex_t *mutex) {
2 int pages = ... // Send d to printer
3 if (pages > 0) {
4 lock(mutex);
5 *count = *count + pages;
6 unlock(mutex);
7 }
8 }
9

10 int main() {
11 int count = 0;
12 mutex_t *m = mutex_init();
13 thread_t t1 = fork(send_to_printer(new_document(), &count, m));
14 thread_t t2 = fork(send_to_printer(new_document(), &count, m));
15 join(t1);
16 join(t2);
17 printf("%d", count);
18 return 0;
19 }

Figure 2.3. An example of synchronising memory accesses by using locks.

when accessing the shared memory. This is commonly achieved by using locks.
A lock provides a way for threads to communicate that they are requesting ex-
clusive access to some resource, for example a memory region. A thread may
acquire a lock and later release it. If a thread attempts to acquire a lock that has
already been acquired by another thread, it will stop executing until the lock is
released.

Figure 2.3 shows a modified version of the program from Figure 2.2. Here, the
spawning threadfirst creates a lock onLine 12 (abstracted into the type mutex_t)
and passes it to the spawned threads together with the shared integer count.
When one of the spawned threads is about to update the counter, it acquires
the lock (Line 4), performs the update and then releases the lock (Line 6). This
way, the lock will serialise all accesses on the counter, but allow the rest of the
function to run concurrently.

Even though these examples are simplified, they show some of the complexity
introduced when memory is shared across threads. Notably, there is no way to
distinguish operations that need synchronisation from operations that do not,
without inspecting the full program. In Figure 2.1, no locks were needed when
writing to sharedmemory, whereas in Figure 2.2, omitting synchronisation lead
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to a data-race. Sometimes the same piece of data may need synchronisation to
be safely accessed in one place, but not in another. In Figure 2.3, operations on
count must be wrapped in a lock in send_to_printer, but not after the joins
in main. Readers-writer locks allow a lock to be acquired for reading or writing,
allowing several concurrent readers but only a single writer at a time [120], but
this still relies on the programmer to ensure that readers do not performwrites.

In all of these examples, the mechanisms for achieving synchronisation is dis-
joint from the data that is being protected, and it is up to the programmer to
keep track of which locks are used for which data, and when they are needed
to prevent incorrect thread interleavings. Apart from avoiding obvious mis-
takes, like forgetting to acquire or release a lock, the programmer must also
ensure that a locally correct refactoring of one part of a program does not lead
to synchronisation bugs in another part of the program. Mainstream languages
generally provide little or no support for any of these things.

For all these reasons, getting locking right in a program can be very tricky. Lock-
ing too little leads to bugs caused by data-races, while locking too much de-
grades performance by removing parallelism. Additionally, for programs with
more than one lock, programmersmust be careful with the order inwhich locks
are taken to avoid having two threads both waiting to acquire a lock already be-
ing held by the other thread. This is known as a deadlock, and while it is an
important class of bugs this thesis does not explore them further. Deadlocks
caused by threads acquiring the same lock twice can be avoided by using reen-
trant locks [121].

One of the contributions of this thesis is type system support for trackingwhich
operations need synchronisation to avoid data-races and which operations do
not. Kappa enforces that shared data is never accessed without proper synchro-
nisation. This guaranteesmutual exclusionwhenever a thread accesses mutable
state, meaning that no other thread may access the same memory at the same
time. This part of the system is outlined in Chapter 5 and detailed in Paper I.

While mutual exclusion is a powerful and useful property, it is sometimes too
strong a restriction. Certain algorithms and data structures require several
threads to have shared access to memory which is updated concurrently. The
following section overviews some of the techniques for coordinating threads
without using locks.
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1 void send_to_printer(document_t *d, int *count) {
2 int pages = ... // Send d to printer
3 if (pages > 0) {
4 fetch_and_add(count, pages);
5 }
6 }
7
8 int main() {
9 int count = 0;

10 thread_t t1 = fork(send_to_printer(new_document(), &count));
11 thread_t t2 = fork(send_to_printer(new_document(), &count));
12 join(t1);
13 join(t2);
14 printf("%d", count);
15 return 0;
16 }

Figure 2.4. An example of using atomic operations to allow concurrent updates without
data-races.

2.1.2 Fine-Grained Concurrency without Locks

The previous section showed how to use locks to achieve mutual exclusion and
avoid data-races. According to Amdahl’s law [9], the parallel speedup of a pro-
gram is restricted by the amount of code that cannot be executed concurrently.
In a program where many threads share the same data, or where there is a lot
of contention on some sharedmemory, even aminimal amount of lockingmay
degrade performance, since a lot of time will be spent waiting to acquire locks
guarding shared data. This section overviews some of the techniques for han-
dling concurrency in a more fine-grained manner, without using locks.

The data-race in Figure 2.2 stems from the fact that the increment on Line 4
is not an atomic operation, meaning that two increments can be interleaved in
such away that one of the updates is lost. Theprogram in Figure 2.3 uses locks to
guarantee atomicity. Since incrementing values in memory is such a common
operation, there are special instructions for reading and updating a memory
location in an atomic fashion2. For example, a fetch_and_add operation will
atomically read a value from memory, increment it by some amount, and then
write the new value back to memory [13].

2Locks are commonly implemented using these operations to guarantee atomicity of e.g., aquiring
a lock.
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1 struct node {
2 void *elem;
3 struct node *next;
4 };
5
6 struct stack {
7 struct node *node;
8 };
9

10 void *pop(struct stack *s) {
11 struct node *tmp = s->top;
12 if (tmp == NULL) return NULL;
13 s->top = tmp->next;
14 return tmp->elem;
15 }

Figure 2.5. A partial implementation of a stack data structure. Using this stack concur-
rently without synchronisation would lead to data-races.

Figure 2.4 shows the program from Figure 2.2, modified to avoid data-races by
using an atomic fetch_and_add instruction. While the two threads are still
reading from and writing to the same memory location concurrently, this in-
teraction is no longer considered a data-race. This is because all operations on
shared state are performed using atomic instructions, meaning there can be
no lost updates. Another way to motivate why this interaction should not be
considered harmful is that the program has the same outcome as if all func-
tion calls were run sequentially by a single thread. This property is known as
serialisability [85].

fetch_and_add and similar instructionsworkwell for programswhere themem-
ory shared between threads contains integers, but they can not be used formore
advanced operations, such as modifying references in a data structure. Fig-
ure 2.5 shows a partial implementation of a stack data structure which would
be correct if it was only used in a sequential setting. However, using it concur-
rently would lead to unwanted behaviour, due to data-races. The cause of the
error is analogous to the lost update in Figure 2.2: if two threads are executing
the function concurrently the program might see the following interleaving of
operations (NULL checks omitted):
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Time t1 t2
1 read s->top into tmp
2 read tmp->next into register r1
3 read s->top into tmp
4 read tmp->next into register r2
5 write contents of r2 to s->top
6 write contents of r1 to s->top

In this scenario both threads read the top node into a local variable tmp, and
then replace s->top by the successor of tmp. In other words, both threads “suc-
cessfully” pop the same top node and return its element, which is most likely
unexpected behaviour. One might be tempted to fix this by reading tmp->next
into a local variable and adding an if-statement to check if tmp is still an alias of
s->top before performing the assignment (and retrying the whole operation if
it is not), but this will not work as the value of s->top may be updated concur-
rently after the check but before the assignment.

The solution to this problem without resorting to locking is another atomic
operation called compare_and_swap (or CAS for short) [13]. It has the same be-
haviour as the following function

1 bool CAS(void **p, void *old, void *new) {
2 if (*p == old) {
3 *p = new;
4 return true;
5 } else {
6 return false;
7 }
8 }
with the important property that the comparison on Line 2 and the (potential)
assignment on Line 3 happens atomically; if the comparison evaluates to true,
the assignment will happen before any other operation of any other thread.

Figure 2.6 shows the partial implementation of a stack that uses CAS to avoid
data-races (originally developed by Treiber [136]). The assignment on Line 12
speculatively reads s->top into a local variable. The CAS on Line 14 checks if
the speculation is still valid, and if it is, overwrites s->top with its successor
node. If the CAS is successful, the element of the popped node is returned. If
the CAS fails, the pop is retried by starting the loop over from the beginning.
The buggy interleaving seen in the program of Figure 2.5 is no longer possible;
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1 struct node {
2 void *elem;
3 struct node *next;
4 };
5
6 struct stack {
7 struct node *node;
8 };
9

10 void *pop(struct stack *s) {
11 while (true) {
12 struct node *tmp = s->top;
13 if (tmp == NULL) return NULL;
14 if (CAS(&s->top, tmp, tmp->next)) {
15 return tmp->elem;
16 }
17 }
18 }

Figure 2.6. A partial implementation of a Treiber stack. Using this stack concurrently is
safe from data-races.

if two threads are just about to pop the samenode, only one of them can succeed
with the CAS. When the first thread has successfully updated the top node, the
next CAS will fail, as the speculation from Line 12 is no longer valid.

In order to reason about the correctness of the code in Figure 2.6, the program-
mer needs to look at all the code that accesses the data structure, and assume
that all this code may be executed concurrently at any point in time. Using
atomic operations like CAS to update shared memory does not automatically
mean that concurrency errors go away.

As an example of the kind of subtle bugs that can occur when implementing
concurrent data structures, Figure 2.7 shows a function for extracting the sec-
ond node from the stack seen in the previous examples. In a sequential setting,
this implementation is correct, and several threads can even run pop_snd con-
currently without problems. However, introducing this function breaks the in-
ternal consistency of the data structure when run concurrently with pop from
Figure 2.6. Consider the following interleaving of threads t1 running pop and
t2 running pop_snd:
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1 void *pop_snd(struct stack *s) {
2 while (true) {
3 struct node *top = s->top;
4 struct node *tmp = top->next;
5 if (tmp == NULL) return NULL;
6 if (CAS(&top->next, tmp, tmp->next)) {
7 return tmp->elem;
8 }
9 }

10 }

Figure 2.7. A function for extracting the second node from the stack seen in Figure 2.6.
Concurrently running pop_snd and pop may result in the same node being popped
twice.
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Figure 2.8. The state of the stack after running the CAS in pop, and after running the
CAS in pop_snd.

Time t1 t2
1 read s->top into tmp1
2 read s->top into top2
3 read top->next into tmp2
4 CAS(s->top, tmp1,

tmp1->next)
5 CAS(top2->next, tmp2, tmp2->next)

The state of the stack after time step 4 is shown in the left side of Figure 2.8. The
stack’s top node is the same node as tmp2, the node just about to be popped by
the thread running pop_snd. When the CAS in this function is run, the state of
the stack is not actually changed as the node being updated (A) has already been
popped from the stack by the thread running pop (right side of Figure 2.8). Even
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though thread t2 just successfully popped node B andmay read its element, the
next thread that runs pop will successfully pop the same node!

An interesting observation is that the bug in this case is not caused by data-
races; all operations on shared memory are atomic operations. Instead, this is
an instance of a more general class of concurrency errors known as race con-
ditions, where an error is caused by an unforeseen interleaving of operations.
Another example of a race condition not caused by a data-race is when an error
is caused by two threads acquiring locks in an unexpected order. In the bug
introduced by pop_snd, the race condition leads to a potential data-race as the
two threads popping the same node gets access to the same memory (the elem
reference of the node), which they may subsequently try to update without syn-
chronisation.

Just as when programming with locks, the programmer is left with little or
no support from the compiler or programming language to get fine-grained
concurrency algorithms like the Treiber stack in Figure 2.6 correct. Such algo-
rithms are arguably even harder to reason about than locks, as there is no mu-
tual exclusion; the programmer must always keep all possible interleavings of
other threads in mind. Another contribution of this thesis is a type system that
prevents bugs like having two threads believing that they successfully popped
the same node from a data-structure. The type system tracks the permissions
of each memory address, and makes sure that at most one alias of the same
memory may be used to update that memory in a non-atomic fashion. While
it cannot guarantee correctness of an implementation, it lifts the burden of cer-
tain classes of concurrency errors from the shoulders of programmer. This type
system is outlined in Chapter 5 and detailed in Paper III.

Non-Blocking Algorithms

This section overviews some other important correctness properties of fine-
grained concurrent algorithms. The motivation for using fine-grained concur-
rency algorithms without using locks is to reduce the time that threads spend
waiting for a resource to become available. In general, an algorithm is non-
blocking if any thread can be suspended mid-execution without hindering the
progress of the other threads [69]. An algorithm that uses locks is generally
blocking, since suspending a thread that is holding a lockwill force other threads
to wait indefinitely for the lock to be released.
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More specifically, an algorithm is lock-free if the algorithmmakes global (mean-
ingful) progress in a finite number of steps, regardless of the progress of individ-
ual threads [69]. Unfortunate scheduling may hinder the progress of a single
thread, but there will always be some thread thatmakes progress. An algorithm
iswait-free if each thread is guaranteed to locally make progress in a finite num-
ber of steps. The Treiber stack from Figure 2.6 is an example of a lock-free, but
not wait-free, data structure: if two threads are continuously popping from the
stack, scheduling may in theory cause one of the threads to always fail its CAS
operation (meaning that the algorithm is not wait-free), but this will mean that
the other thread has succeeded and the algorithm has made global progress
(meaning that the algorithm is lock-free).

It is important to note that, although the terminology suggests it, a program
without locks is not automatically lock-free. An algorithm without locks can
still be designed so that global progress depends on the progress of a single
thread. A simple example would be a version of pop from Figure 2.6 which
replaces the top reference with NULL before replacing it with the successor node.
If the threadwas to be suspended between these operations, it would prevent all
other threads from making meaningful progress, meaning that the algorithm
would no longer be lock-free.

Other than never having threads wait for each other, a non-blocking algorithm
needs to be correct with respect to some specification, even when run concur-
rently. On a high level, the expected property is that the concurrent version of
an algorithm does not allow behaviours that are not present in the sequential
version of the algorithm. For example, the stack implementation in Figure 2.5
allows two threads to pop the same node from the stack, which could never
happen if the two operations were run sequentially.

In Section 2.1.2, Figure 2.4 showed an example of an algorithm fulfilling the
property of serialisability, where the concurrent version of a program is the
same as if all operations were executed sequentially by a single thread. Another
correctness condition that is often used for reasoning about concurrent systems
is linearisability, which states that each operation appears to take global effect
at a single point in time, known as the linearisation point of the operation [85].
For the stack in Figure 2.6, the linearisation point of the pop operations is where
the CAS happens. In contrast, the stack in Figure 2.5 is not linearisable as it is
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possible for two threads to successfully pop the same node, meaning it is not
possible to find a linearisation point for this operation.

Another example of a subtle bug that can appear in CAS based algorithms is
what is known as the ABA problem. This occurs when a thread speculatively
reads some value, which is then updated by another thread and subsequently
restored to its original value. When the first thread continues, it appears as
if the value has not changed, allowing e.g., a CAS to succeed when it should
not. For example, in the stack of Figure 2.6, a thread T performing a pop may
read the top field (the address of a node N1) and its successor (the address
of a node N2) right before another thread successfully pops N1, followed by
popping its successor N2. If these nodes are deallocated, chances are that the
same memory addresses will be reused when allocating other nodes for the
stack. If the memory for N1 is reused for a new node pushed to the stack, the
first thread T may incorrectly believe that its original speculation was correct,
and replace the top field by the address of the (now deallocated!) node N2. This
kind of problem can be avoided by deferring the deallocation of nodes until no
aliases remain, for example by using hazard pointers [103], or by running the
algorithm in a system with automatic garbage collection.

The type system of Paper III does not attempt to guarantee serialisability nor
linearisability, but these properties are non the less important in order to under-
stand the background and the related work presented in Chapter 4. The type
system is no more susceptible to the ABA problem than other languages, and
it can be avoided using the same approaches.

2.1.3 Transactional Memory

The concurrency control offered by locks is inherently pessimistic. Taking a lock
forces all other threads to wait, regardless of whether these concurrent accesses
would be harmful (i.e., cause data-races) or not. For example, it would be safe
to concurrently append and prepend elements to a (non-empty) linked list, but
if the whole list is protected by a single lock, threads will be forced to synchro-
nise their operations. In contrast, fine-grained concurrent algorithms like the
stack in Figure 2.6 are typically optimistic, allowing threads to compete for com-
pleting their operations without waiting, and retrying when an operation fails
(in the case of Figure 2.6 when the CAS fails).
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1 void send_to_printer(document_t *d, int *count) {
2 int pages = ... // Send d to printer
3 if (pages > 0) {
4 atomic {
5 *count = *count + pages;
6 }
7 }
8 }
9

10 int main() {
11 int count = 0;
12 thread_t t1 = fork(send_to_printer(new_document(), &count));
13 thread_t t2 = fork(send_to_printer(new_document(), &count));
14 join(t1);
15 join(t2);
16 printf("%d", count);
17 return 0;
18 }

Figure 2.9. An example of two threads using software transactional memory to synchro-
nise access to shared memory.

Another formof optimistic concurrency control is offered by transactionalmem-
ory [84, 129]. The idea of transactions stems from databases [76], where they
capture the notion of an operation which either finishes completely or has no
visible effect whatsoever. With transactional memory, when a thread performs
an operation on some shared memory it records all its reads and writes in a
log. At the end of the operation, the thread can verify if the locations in the
log were updated concurrently by some other thread, and if so, roll the changes
back and restart the operation. If therewere no conflicting accesses, the changes
in the log are committed to memory, atomically making the changes visible to
other threads. In this way, transactional memory gives the illusion of having
all transactional operations be atomic; a thread can never observe the interme-
diate result of another thread’s operations. Of course, this comes at the price of
the overhead of logging reads and write.

Figure 2.9 shows the program from Figure 2.2, in an imagined language with
support for transactions in the form of atomic blocks. When a thread executes
the atomic block on Line 4 it starts a transaction, and on the next Line records
that it has read from and written to the memory pointed to by count. At the
end of the block, the new value of count will only be committed to memory
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1 package main
2
3 import "fmt"
4
5 func sendToPrinter(d *Document, c chan int) {
6 pages := ... // Send d to printer
7 c <- pages
8 }
9

10 func main() {
11 c := make(chan int)
12 go sendToPrinter(new(Document), c)
13 go sendToPrinter(new(Document), c)
14 success1 := <-c
15 success2 := <-c
16 count := success1 + success2
17 fmt.Println(count)
18 }

Figure 2.10. AGo program implementing the program from Figure 2.3, but with channels
instead of locks.

if there was no concurrent updates to the value, otherwise the transaction will
roll back and retry from Line 4.

2.1.4 Alternatives to Shared Memory

While this thesis focuses on alias control when programmingwith sharedmem-
ory in a concurrent setting, it is important to note that shared memory is not
a requirement for concurrent programs. In systems where the processing units
are distributed across different physical machines, it may not even be possi-
ble for threads to share memory in any meaningful way. This section briefly
overviews two alternatives for how threads may communicate without using
shared memory: channels and message passing using MPI.

A channel is a construct that allows point-to-point communication between
threads [118]. A channel has two ends, and a value written to one end of a chan-
nel by one thread may be read from the other end by another thread. Chan-
nels thus provide a more abstract way for threads to share values than directly
sharing memory addresses. In a distributed setting, the channel may be imple-
mented by using sockets connected over the network.
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Figure 2.10 shows a version of the program from Figure 2.3 using channels in-
stead of locks. The example is written in Go [72], where channels are primi-
tives of the language. Reading from or writing to a channel blocks the thread
until there is a thread performing the opposite operation in the other end3. Go
additionally has built-in support for dynamic data-race detection (concurrent
writes to channels are not considered races). The main function starts by creat-
ing a channel and sending it to the two “goroutines” (Go’s lightweight threads)
spawned on Lines 16 and 17. The goroutines run the sendToPrinter function
which ends with writing the number of printed pages to the channel (Lines 8
and 10). The spawning goroutine waits for two values to arrive in the chan-
nel (Lines 18 and 19) and then sums them up. The channel thus serves both as a
mechanism for communication of values and synchronisation between threads.

A similar approach to communication, but without explicit channels, is found
in MPI (short for Message Passing Interface) [108]. MPI is a standard for com-
munication via message passing. It has been implemented, fully or partially,
for several languages, including C, Java, C# and Python. In MPI, processes
(threads) are organised in a virtual topology which is either a Cartesian grid
or a graph, and messages can be sent to individual processes or to several pro-
cesses based on the current topology (e.g., to all adjacent processes in the grid).
This makes MPI suitable for parallel processing of structured data, for example
matrix operations. There is some overhead when copying and distributing data
across the topology, but this is unavoidable when the underlying hardware is
not a single shared memory machine.

The concept of communicating via message passing is something that also ap-
pears when programming with actors. The message queue of an actor also is
similar to the channels of e.g.,Go. Further similarities and differences between
actors and channels is discussed in work by Fowler et al. [68].

2.2 The Actor Model

Another popular concurrency model is the actor model [4, 16, 86]. An actor
can be thought of as an independent process, logically similar to a thread, run-
ning concurrently with other actors. Each actor has an address, and knowing

3Go also features buffered channels where writes do not block.
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1 -module(m).
2
3 send_to_printer(Document, Pid) −>
4 Pages = ..., % Send d to printer
5 Pid ! {self(), Pages}.
6
7 main() −>
8 spawn(m, send_to_printer, [#document{}, self()]),
9 spawn(m, send_to_printer, [#document{}, self()]),

10 receive
11 {_, Count1} −>
12 receive
13 {_, Count2} −>
14 io:format("~w~n", [Count1 + Count2])
15 end
16 end.

Figure 2.11. An Erlang program implementing the program from Figure 2.3, using
selective message receives to synchronise the actors.

the address of an actor allows sending messages to it. Message sends are asyn-
chronous, andmessages are buffered in themessage queue of the receiving actor
until they are read. In addition to sending and receivingmessages, an actormay
spawn new actors.

The concurrency model based on threads is an extension to sequential pro-
gramming, as each thread can be understood as a smaller sequential program.
Any sequential programming language can be turned into a concurrent one by
adding support for spawning new threads. In contrast, the actor model is a
programming model that is naturally concurrent. The actor model is designed
to express computation by spawning actors and having them communicate via
asynchronous message passing.

Figure 2.11 shows an Erlang version of the program from Figure 2.3. The main
function spawns two actors running the send_to_printer function, and then
waits to receive two replies (in any order). The address of the spawning actor
is passed to the two send_to_printer actors (the argument Pid) so that they
know where to send the replies.

Actor systems are often classified in two different ways based on howmessages
are sent and received: actors and active objects [21]. With traditional actors
there is typically no limitation on what messages can be sent to an actor, and
an actor can choose to selectively receive messages at any point during execu-
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tion. Selective receive means that an actor can choose to receive any message
in its message queue, regardless of the order that they arrived (like in the main
function in Figure 2.11). Active objects on the other hand can be understood as
Java-style objects4 with a fixed interface, but with their own thread of control.
Calling a method on the object enqueues a message in a message queue, where
it is eventually picked up by the object’s thread, which calls the corresponding
method. An active object has no way of selectively receivingmessages or receiv-
ing messages in the middle of a method call.

In practice, these terms are not used strictly: languages that use active objects
as defined above are sometimes also referred to as “actor languages”. For this
thesis, the distinction is not very important as the focus is not on howmessages
are sent and received between actors/active objects. In order to not add to the
confusion, a language that calls itself an actor language will be referred to as an
actor language in the remainder of this thesis (and vice versa for active objects),
regardless of how messages are handled.

A more interesting topic for this thesis is how data is shared between actors.
The actor model simplifies concurrency by adopting message passing, where
synchronisation happens naturally, and allows reasoning about each actor in
isolation. However, if two actors can share and update the same data concur-
rently, values may change underfoot, and sequential reasoning for individual
actors is lost. Just like when programming with threads, avoiding data-races is
paramount when writing correct concurrent programs.

Some languages (e.g., Erlang [12]) enforce that message payloads are copied
on send, avoiding any sharing. Other languages, especially those implemented
as libraries on top of existing languages (e.g., Akka [5]) do not prevent unsafe
sharing and thus leave it up to the programmer to ensure the absence of data-
races (such languages may also mix actors with other concurrency primitives,
e.g., threads [134]). Some languages employ a type system which prevents un-
safe sharing, for example by only allowing sharing of data that is safe for the
receiver to access (e.g., Kilim [130]). Section 2.2.2 gives an overview of some
existing actor languages.

Regardless of whether an actor language allows data-races or not, programs
written in it may still have concurrency errors due to race conditions, for ex-

4The original formulation of active objects is as a design pattern for object-oriented program-
ming [97].
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1 active class Worker
2 def sendToPrinter(d : Document) : int
3 val pages = ... // Send d to printer
4 return pages
5 end
6 end
7
8 active class Main
9 def main() : unit

10 val w1 = new Worker()
11 val w2 = new Worker()
12 val f1 = w1 ! send_to_printer(new Document())
13 val f2 = w2 ! send_to_printer(new Document())
14 val count = get(f1) + get(f2)
15 println(count)
16 end
17 end

Figure 2.12. An Encore program implementing the program from Figure 2.3, using
futures to synchronise the active objects. A method in an active class implicitly returns
a future when called asynchronously.

ample when a program behaves differently depending on in which order two
messages are delivered. This thesis does not aim to prevent such race conditions,
but only to ensure that data shared between actors is not subject to data-races.
Chapter 6 details the implementation of the Kappa type system in the active
object language Encore, where it facilitates safe sharing and transfer of data be-
tween active objects.

2.2.1 Structured Actor Programming with Futures

Actors communicate by passing messages. This is a one-way, asynchronous
communication channel, where the sender is the writer and the receiver is the
reader. Sometimes, an actor sending a message may want to wait for a reply
from the receiving actor before continuing its execution, similar to how func-
tion calls work in procedural languages. In a language where actors can se-
lectively receive messages, the sender can pass its own address with the mes-
sage and then wait for the receiver to reply with another message. In languages
without selective receives, this kind of synchronisation needs additional mecha-
nisms. This section presents one suchmechanism, called a future (or sometimes
a promise) [15, 100].
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A future acts as a placeholder for a value that will be available at some later
time. An actor may block on a future, waiting until the future is fulfilled and
the value is made available. When a reply is required immediately, a message
send can directly return a future which will later be fulfilled by the receiving
actor. The caller can choose to block on the future immediately, perform some
computation of its own before waiting for the result of the message send, or
pass the future on to another actor without first waiting for the result. Just as
with locks, having two actors blocking on futures which each are supposed to
be fulfilled by the other actor will result in a deadlock. Similarly, an actor will
deadlock if it blocks on a future that it is expected to fulfill itself.

Figure 2.12 shows an Encore version of the program from Figure 2.3, which uses
futures to get the return values from asynchronous calls. The main method cre-
ates two active objects of type Worker, and then calls themethod sendToPrinter
on themasynchronously. In Encore, asynchronous calls implicitly return future
values, which can be read (blocking if needed) by using the get operation. Here,
futures are used both for synchronisation and passing values.

Like “actor” and “active object”, the terms “future” and “promise” are not used
consistently in the literature. Sometimes they are used interchangeably, and
sometimes the two are seen as different views of the same structure, where one
is the part that is read and the other is the part that is written (i.e., fulfilled).
Again, this thesis uses the terminology of the referenced work.

2.2.2 Actor Languages

This section overviews some existing languages and frameworks which use ac-
tors or active objects and discusses how they deal with shared mutable state.
One of these languages is Encore, whose type system is part of the contribu-
tions of this thesis (cf.,Chapter 6). Asmentioned earlier, the terminology varies
slightly between languages, and this section uses the terminology from the ref-
erenced language, clarifying when necessary, to avoid adding to the confusion.

Erlang

Erlang [12] is an actor language that was originally developed at Ericsson for
programming telephone switches. It has since been used for other highly con-
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current systems [11]. In Erlang, each actor is a stateless functional process (al-
though state can be emulated using recursive function calls) which does not
share any data with other actors5 . This is ensured by copying data when send-
ingmessages. Giving each actor its own private heap which is never shared also
allows garbage collection to happen concurrently, without having to stop more
than one actor at a time. Actors may selectively receive messages at any time,
and there are no restrictions on the type of messages an actor may receive.

Elixir [63] is another actor language which runs on the Erlang virtual machine,
and which therefore shares many of the properties of Erlang.

Akka and Scala

Akka [5] is an actor library for the Java virtualmachine. It is written in Scala, but
has bindings for both Scala and Java. Actors communicate via message passing,
but may also use the futures from Scala’s standard library. Akka supports both
traditional actors with an untyped interface and active objects (called typed ac-
tors) which define whichmessages theymay receive. As the code implementing
the behaviour of actors is written in Scala or Java, sharing mutable state is pos-
sible and is subject to data-races. In practice, Scala programmers also mix the
actor model with other means of concurrency, e.g., threads [134].

Scala itself also provides an actor library of its own [81]. While Scala is not data-
race free, there have been efforts to implement type systems based on capabil-
ities which can give guarantees about aliasing and data-races [80, 82]. These
type systems are discussed further in Chapter 4.

Kilim

Kilim [130] is an actor framework for Java. In contrast to Akka and Scala ac-
tors, Kilim can guarantee that mutable data is never shared between actors. It
does this by utilising Java’s annotations framework and performing additional
static analysis after Java’s regular compilation. In Kilim, messages are treated as
a special kind of data which is restricted to be tree-shaped, i.e., have no inter-
nal aliasing. A cut operation destructively extracts branches from such a tree.
Additionally, a message may only have a single heap alias at any point in time

5There are exceptions, such as the ets (Erlang term storage)module, which implements a dynamic
table that may shared between actors. Its implementation however ensures that operations are
atomic, so it is not subject to data-races.
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(cf., Section 4.1.1). This allows messages to be efficiently and safely transferred
between actors, without introducing any sharing. A special marker interface
Sharable acts as an escape hatch from safety checking, allowing programmers
to identify classes of objects that may be safely shared.

A later extension of Kilim, called Ownership-Kilim (or O-Kilim) [78], allows
arbitrary aliasing inside a message by dynamically tracking the owner, a mes-
sage or an actor, of each object. Like in Kilim, a special operation is used to
extract an object (and all the objects reachable from it) to or from a message,
dynamically changing the owner of the object(s). Using a reference to an object
whose ownership has been transferred to another actor ormessage results in an
exception being thrown.

Creol

Creol [57, 91] is an object-oriented language with active objects. Method calls
are asynchronous and return futures. A distinguishing feature of Creol is that
an active object may have several executingmethod calls (with at most one run-
ning at a time). A special await operation allows suspending the execution of
the current message and resuming it at a later stage (similar to cooperative mul-
titasking in operating systems [64]). For example, when waiting for a future
to be fulfilled, the programmer can chose to block, suspending the active ob-
ject until the future is fulfilled, or await, allowing other messages to be handled
while waiting. Reducing the time spent blocking opens up formore parallelism,
but also requires the programmer to think about when it is safe to delay finish-
ing an operation.

Joelle

Joelle [115] is an object-oriented programming language with active objects.
Method calls to active objects are asynchronous and return futures. In addi-
tion to parallelism stemming from active objects running concurrently, Joelle
supports intra-object parallelism, both by allowing messages to be processed
in parallel, and by having the internal thread of control spawn new threads for
doing parallel computations. This parallelism, as well as the sharing of objects
between active objects running concurrently, is safe from data-races thanks to
Joelle’s type system, which is discussed further in Chapter 4.
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E, Vats and Far References

E [106] is an object-oriented language implementing the object-capabilitymodel
[60]. In this model, an object capability is an unforgeable reference to an object,
coupled with the permission to send messages to (call methods on) this object.
The only way for an object o1 to gain access to another object o2 is if o2’s object
capability is passed to o1 in a message (and not e.g., by reading a reference from
a field or a global variable). This restricted version of object-oriented program-
ming facilitates the so called principle of least authority. An object can only ever
access the objects that it is explicitly sent.

The similarity to actor systems comes from the fact that each object belongs
to a vat, where a single thread of control handles messages sent to the objects
belonging to that vat. A near reference is a reference between two objects in the
same vat, allowing message sends to be handled synchronously (like a normal
method call). A far reference is a reference that crosses the boundary of a vat,
and which only allows asynchronous message sends (similar to message sends
in an actor system). A message send through a far reference returns a promise
(cf., Section 2.2.1).

Vats are similar to CoBoxes [126], which also permit far references. CoBoxes ad-
ditionally support processing several messages concurrently (with at most one
running at a time), similar to howCreol allows yielding control to the scheduler
in themiddle of amethod call. Far references also appear in AmbientTalk [140],
but to objects owned by actors.

While actors typically rely on isolation to avoid races, vats in E rely on delega-
tion. Far references refer directly to objects inside other vats, but do not access
these objects directly. Instead operations are implicitly delegated to the owning
vat, which eventually handles the message. One of the contributions of this the-
sis is a construct that allows actor programs to safely switch between relying on
isolation and relying on delegation. Actors may send private data to other ac-
tors, but any operations on these objects will be delegated to the owning actor.
This construct is outlined in Chapter 6 and detailed in Paper IV

Pony

Pony [119, 124] is an object-oriented language which uses actors (active objects,
by the definition of this thesis) to achieve concurrency. Pony uses a capability-
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based type system to ensure that there are no data-races. Data is either uniquely
owned by a single actor at a time, or is immutable and therefore safe to access
concurrently. The type systemof Pony is co-designedwith a concurrent garbage
collection scheme [54], which utilises the guarantee of data-race freedom to
allow actors to collect garbage in their own local heaps without having to stop
other actors, or copy data on message sends.

Pony’s type system is discussed further in Chapter 4. In addition to the guaran-
tee of data-race freedom, there is no concept of null and exceptionsmust always
be handled. There are no futures, but since actors cannot synchronise, there is
also no way for actors to deadlock.

Encore

Encore [29] is an object-oriented programming language which uses active ob-
jects as a means to achieve concurrency. It uses futures to support returning
values from asynchronous method calls. Part of this thesis’ contributions is the
implementation of Kappa as the type system for Encore, which allows active
objects to share data without data-races. The integration of Kappa and Encore
is detailed in Chapter 6.

With the necessary background on concurrency and concurrency control
covered, we continue by discussing object-oriented programming, which is the

programming paradigm that Kappa was designed for.
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3. Object-Oriented Programming

The Kappa type system ensures that concurrent programs are free from data-
races, but also aims to facilitate a familiar object-oriented programming style.
This chapter therefore reviews the distinguishing features of object-oriented
programming, focusing on subtyping and code reuse (Section 3.1) and encap-
sulation (Section 3.2). Section 3.3 covers the topic of object calculi, a useful tool
for formally reasoning about the behaviour of object-oriented programming
languages. In addition to thementioned language features for concurrency con-
trol, the development of Kappa gave rise to an object calculus called OOlong,
which is specialised for concurrent object-oriented programming. OOlong is
covered in detail in PaperV.

Although not a necessity for object-oriented programming, the focus of this
chapter (and this thesis) is on statically typed, class-based languages. As the
contributions of this thesis revolve around type systems for alias control, dy-
namic languages like Python, JavaScript and Smalltalk mostly fall out of scope.

3.1 Subtyping and Code Reuse

The most important feature of object-oriented programming is arguably the
idea of subtype polymorphism: a piece of code that handles objects of type A
can also be used with objects of type B if B is a subtype of A (this is know as
the Liskov substitution principle [99]). For example, a Java method that takes an
argument of type List can be called with an instance of type LinkedList or an
instance of type ArrayList since they are both subtypes of List. Subtype poly-
morphism fits nicely together with the object-oriented philosophy that objects
carry their own behaviour. The method in the example above only needs to
know that its argument knows how to behave like a List, but does not need to
know exactly how this behaviour is implemented. Method calls are dispatched
dynamically to the corresponding implementation, based on the runtime type
of the argument.
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In many mainstream languages, such as Java, C# and C++, subtyping can be in-
troduced via inheritance. A class B inheriting from another class A will automat-
ically include all themethods and fields of A. Methodsmay be overridden to im-
plement new behaviour, but all method names in A are guaranteed to be present
in B. The methods that are not overridden can reuse the implementation of the
original methods in the superclass. This way, inheritance enables code reuse
in subclasses, in addition to the code reuse enabled by subtype polymorphism.
Coupling inheritance and subtyping is not a requirement however. For exam-
ple, Go [72] uses inheritance for code reuse, but does not equate subclassing
with subtyping. Similarly, C++ supports private inheritance, which gives code
reuse without subtyping. Dynamic languages such as Smalltalk, Python and
Ruby support inheritance, but implement subtyping structurally rather than
nominally: an instance of class A may be substituted for an instance of class B in
context c if all of A’s attributes accessed in c are also in B, regardless of whether
or not B inherits from A1.

Coupling inheritance and subtyping introduces design issues, as classes related
through subtyping need to be arranged in a hierarchy. The higher up in the
hierarchy a class C is, the more subclasses there are which have a dependency
on C, meaning that any changes to C will need to be compatible with all of its
different subclasses (this is known as the fragile base class problem). Implement-
ing a hierarchy where A is a subtype of both B and C is also problematic. Either
B needs to be made a subclass of C (or vice versa), which may not make sense
for other uses of the classes, or A needs to inherit from both B and C, which
introduces complexity and ambiguity when the same attributes are inherited
from both classes (for example, the infamous diamond problem [102]). Many
class-based languages disallow multiple inheritance to avoid these issues; C++
being a notable exception.

In order to get around some of the issues of inheritance-based subtyping, some
languages complement classes with interfaces. An interface is a collection of
method signatures, and a class that implements an interface must provide im-
plementations for each of these methods. If a class C implements an interface I,
the class type C is a subtype of the interface type I, and can thus be used wher-
ever an I is expected. In the Java example in the beginning of this section, List
is an interface that is implemented by both LinkedList and ArrayList.

1Structural typing can also lead to the famous example where an Artist object ends up in a duel
with a Cowboy object, because they both support the method draw.
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In contrast to class inheritance, having a class implement many interfaces is
unproblematic. Since there are no implementations in the interfaces, including
two interfaces with overlapping method signatures simply means that the class
has “promised twice” to implement amethodwith that signature; there is no am-
biguity as towhich implementation should be used. Interfaces let programmers
define subtyping relations through composition instead of tying subtyping to
the class hierarchy.

Interfaces allow programmers to decouple the type of an object (its available
behaviour) from its implementation, but they do not provide code reuse like
inheritance (Java 8 remedies this to some extent, see below). Mixins [27] have
been proposed as an alternative to inheritance that also enjoys the composi-
tional property of interfaces. A mixin is an abstract class that can be composed
(“mixed in”) with a class in order to create a new class that also includes the
behaviour of the mixin. A class may include several mixins, and conflicts are
resolved by includingmixins one at a time and overriding any conflictingmeth-
ods from earlier mixins.

Finding the correct order to include mixins may be hard, or in certain cases
even impossible. To address this, traits have been proposed as a more compo-
sitional mechanism for code reuse [127]. A trait provides a set of methods and
may require the presence of a set of fields and methods in the including class2.
This allows themethods provided by the trait to use fields andmethods that will
be provided later by the including class. A class may include several traits, but
contrary to mixins, the order of inclusion does not affect which methods are
included (in fact, order does not matter at all). Instead, any ambiguities must
be resolved by the programmer, either by specifying which method should be
used, or by providing an overriding implementation in the class.

Figure 3.1 shows a simple example of a Scala program for building and evalu-
ating syntax trees for simple arithmetic expressions. All classes implement the
trait Expr, which requires a method eval. In the class Constant this method
is provided by the class. In the classes Addition and Subtraction, the same
method is provided by the included trait Binary, which in turn requires fields
for the operands of the binary operation, as well as a function for evaluating
the current expression. The same program can be written using classes and

2In the original formulation of traits, only methods could be required by traits [127]. Field
requirements have been added later to other languages, e.g., Scala [125].
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1 trait Expr {
2 def eval() : Int
3 }
4
5 class Constant(val value : Int) extends Expr {
6 def eval() = value
7 }
8
9 trait Binary {

10 val loper : Expr
11 val roper : Expr
12 val op : (Int, Int) => Int
13 def eval() = op(loper.eval(), roper.eval())
14 }
15
16 class Addition(val loper : Expr, val roper : Expr)
17 extends Expr with Binary {
18 val op = _ + _
19 }
20
21 class Subtraction(val loper : Expr, val roper : Expr)
22 extends Expr with Binary {
23 val op = _ - _
24 }

Figure 3.1. A Scala program using traits for subtyping and code reuse. class C extends
A with B is Scala syntax for having C implement traits A and B. The order of A and B
does not matter. _ + _ is Scala syntax for an anonymous function which adds its two
arguments.

inheritance by making Binary a subclass of Expr (Expr would then be an ab-
stract class to be able to defer the implementation of eval), but with traits this
coupling is not necessary.

In practice, the line between interfaces and traits has become blurred over time,
possibly due to the influence of traits and similar concepts. Since Java 8, inter-
faces may also supply default implementations of methods, which lets inter-
faces provide code reuse akin to what traits provide [143]. Interfaces in C# can
include signatures of properties, which are fields with explicit getters and set-
ters [33].

Kappa uses traits for both subtyping and code reuse, leaving out class inheri-
tance altogether. A contribution of this type system is that it extends the code
reuse offered by traits across different concurrency scenarios. The same traits
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can be reused to implement different versions of a data structure, depending
on how and if the data structure is accessed concurrently (cf., Section 5.1.1).

3.2 Object Encapsulation

Another cornerstone of object-oriented programming is the concept of object
encapsulation; the idea that an object can be internally represented by an ag-
gregate of other objects, and that these objects will never be referenced from
outside the aggregate. The canonical example is a linked list that is represented
by a chain of Link objects, which will only ever be referenced from within the
list itself. Encapsulation is an important tool for abstraction and modularity as
it lets programmers reason about the invariants of an object by looking at that
object’s implementation in isolation; if the links of a list could be accessed and
changed from the outside, reasoning about e.g., the shape of the list would be
considerably harder.

In a concurrent setting, encapsulation comes into play when reasoning about
what kind of concurrency control is necessary for accessing a piece of data. If a
list is shared between threads, properly encapsulating its links implies that they
will never be accessed in a racy fashion as long as accesses to the list object itself
is synchronised. In a lock-free implementation (cf., Section 2.1.2), proper encap-
sulation of the links means that only the methods in the List class needs to be
considered when reasoning about the interaction of concurrent operations.

Unfortunately, in the mainstream languages of today, the burden of maintain-
ing encapsulation rests on the shoulders of the programmer. Many object-orien-
ted languages supports controlling the visibility of fields from outside of the
class; declaring a field as private makes it inaccessible from outside the class.
While this helps signal the intent of the programmer, it does not prevent writing
amethodwhich returns the contents of a private field. Inmainstream languages,
encapsulation is a pattern and not a language feature.

Section 4.1.2 discusses techniques for statically enforcing encapsulation, some
of which have also been incorporated in Kappa. Encapsulation plays an impor-
tant role in Kappa for simplifying the implementation of traits and allowing
code reuse across concurrency scenarios (cf., Section 5.1.1).
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3.3 Proving Properties of Object-Oriented Languages

When developing type systems and other language features, it is desirable to be
able to prove that they fulfill the properties for which they are designed. How-
ever, carrying out proofs about the semantics of full fledged languages execut-
ing on actual hardware is often too complex to be feasible3. Instead, a common
approach is to develop a simplified formal model of a programming language
and its execution environment, and prove the properties of the new language
features in this context. The rationale behind this is that a correctness proof
carries over to a real language implementation as long as all the relevant details
are captured in the formal model4.

By far the most common formal model of computation is the lambda calculus,
which forms the foundation of functional programming languages [18]. For ex-
ample, the semantics of the language features presented in Paper IV is explored
using a version of the lambda calculus, extended with actors. The lambda calcu-
lus is purely functional, so a common extensionwhenmodelling imperative lan-
guages is to add reference cells which may be updated with side-effects. When
modelling object-oriented languages, it is useful to also extend the type system
with record types which can describe the interface and state of an object.

Even though it is possible to use the lambda calculus to model object-oriented
languages, the indirection required means that there is a disconnect between
the formal model and the actual language being modelled. To bridge this gap,
object-oriented languages are often modelled using an object calculus, which
have primitive support for the features common for object-oriented languages
(e.g., classes and subtyping). The purpose of an object calculus is to be to object-
oriented languages what the lambda calculus is to functional languages [1].

Due to the popularity of Java, there have been several candidates for object cal-
culi which model a core subset of Java, e.g., ClassicJava [67], Featherweight
Java [89], Lightweight Java [131], Middleweight Java [19] andWelterweight Java
[116]. They differ in the choice of features modelled, but have all been used as a
basis for reasoning about extensions for Java. PaperV further discusses the sim-

3WebAssembly is a recent example of a language which was designed with a formal semantics
from the start [79]
4Recent work has showed that the type systems of both Scala and Java are unsound (they permit
writing functions that changes the type of a value to any type), even though Java has been
formalised and proven sound several times [10]. This is an example of where the formal models
have failed to include all relevant details.

52



ilarities and differences between these Java calculi and presents an alternative
object calculus called OOlong. OOlong does not aim to model Java in particu-
lar, but object-oriented programs in general. As argued in Section 3.1, subtyping
is a fundamental concept in object-oriented programming but need not (and
should not!) be coupled with class inheritance. In contrast with the Java calculi,
OOlong uses interfaces for subtyping, omitting class inheritance completely.
Additionally, OOlong is aimed at concurrent programming, natively support-
ing fork/join style parallelism and synchronisation using locks. OOlong was
developed in the context of Kappa, whose formal semantics is based on (an
extended version of) OOlong.

3.3.1 Mechanised Semantics and Proofs

Carrying out proofs by hand can be a tedious and error-prone process, and
proofs about language semantics are no exception. Even when a proof has been
completed and has been inspected closely enough to be trusted, any changes to
the premise of the proof (e.g., a change in the semantics of a language model)
means that the whole proof needs to be inspected again in order to find where
(and if) changes to the proof is needed. For large proofs, this can be a significant
undertaking.

The burden of working with proofs can be alleviated somewhat with the help
of an interactive theorem prover (or proof assistant). These are programs or pro-
gramming languages that are based on the view of theorems as a special kind
of data type, which can be combined in well-defined ways to form new theo-
rems. A program that handles this data thus serves as the proof of the resulting
theorem, and this proof is valid if and only if the program compiles (i.e., type-
checks). Such a program is known as a mechanised proof. If the premises of a
proof changes, re-checking the proof can be done automatically, and only the
parts that the proof assistant no longer accept need attention. Rather than trust-
ing the person who writes the proof, one only has to trust the implementation
of the proof assistant (whose core logic implementation is usually quite small,
making them trustworthy).

There are several theorem provers in use by researchers today. Isabelle/HOL
is a theorem prover based on Standard ML which supports proofs in higher-
order logic [112]. It has been used to prove famous theorems such as Gödel’s in-
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completeness theorem [117] and the prime number theorem [14]. Lightweight
Java was mechanised and proven sound in Isabelle [131]. Coq is a language
and theorem prover based instead on dependent types and the calculus of con-
structions [55]. Famous projects in Coq include a proof of the four-color theo-
rem [73] and the CompCert compiler [98], which is a fully verified C compiler.
Featherweight Java (extended with mutable state) has been mechanised and
proven sound in Coq [101], and so has a later extension of Lightweight Java [58].

In order to facilitate reliability, reusability and extensibility, OOlong, the object
calculus presented in PaperV, has been fully mechanised and proven sound in
Coq. The formalism of the system presented in Paper IV has also been fully
mechanised, including the two variations of the semantics.

This chapter, together with Chapter 2, has described the context in which Kappa
was developed and the problems it aims to solve. We now continue by discussing

existing approaches for solving these problems.
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4. Related Work

Kappa stands on the shoulders of giants by incorporating and extending ideas
from many existing proposals for alias control. This chapter overviews some
of these techniques for alias control, focusing in Section 4.1 on programming
language features which help programmers to write safe and correct code. As
a contrast, Section 4.2 looks at techniques for doing program verification of
existing programs.

4.1 Language Features for Alias Control

Programming languages should help programmers write correct code. They
should provide tools for structuring code andmanaging data in an efficient way.
While most mainstream programming languages provide support for data ab-
straction, procedural abstraction, code reuse etc., support for controlling alias-
ing is only available in limited form, e.g., the const annotations in C and C++
(which can be bypassed via casts, unless data is placed in ROMby the compiler)
or the restrict keyword in C (which does not enforce correct usage). This sec-
tion goes through some of the techniques for alias control that have come out
of research, but have not yet made their way into mainstream languages. These
are techniques that are related to the techniques used in this thesis, especially
the type systems presented in Papers I–III.

4.1.1 Linear References

A linear (or unique) reference enjoys the powerful property of having no aliases;
it is the only reference to the object it points to. The concept has its origin in
linear logic [71], where propositions can be “consumed” (as opposed to classic
logic, where using a proposition once does not prevent using it again). The
terminology varies in the programming language literature, and sometimes a
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(FREE ⊕ (BUSY ⊗ release))
⊗ *acquire(reply(release))

Figure 4.1. The behavioural type of a lock. Example taken from [56]

linear value is a value thatmust be used exactly once (a value that can be used
at most once is then called an affine value). In this thesis this distinction is not
important, and the terms “linear” and “unique” are used interchangeably to
mean a reference without aliases (modulo borrowing and burying, see below).
The alternative meaning of “linear” is referred to as “use-once linear”.

An early use of linearity in programming languages was memory management;
when a use-once linear value is used, its memory can be safely reclaimed [141].
Similarly, in a language where linear values may be used more than once, the
memory of a linear valuemay be collected as soon as the reference to it goes out
of scope [95]. Linearity also allows for strong updates, i.e., dynamically chang-
ing the type of a value or an object (e.g., [61]). In the same vein, linearity is of-
ten used when implementing type state (e.g., [7, 105]) or behavioural types (e.g.,
[34, 56]), where the state of an object is tracked through its type1 – the canon-
ical example being tracking whether a file stream is open or closed, thereby
preventing errors like reading from a closed stream.

Amore relevant example of type state for this thesis is the behavioural type of a
lock [56], shown in Figure 4.1. This type states that a lock is either FREE or BUSY
(i.e., acquired). Through the use-once linearity of behavioural types, the speci-
fication states that in the latter case, the lock must (eventually) be released. Fur-
thermore, a lock is interacted with through zero or more concurrent acquire
operations, which must eventually be followed by a release of the lock. The
details of this example can be found in [56].

In a concurrent setting, linear references give a trivial guarantee of data-race
freedom. If a thread holds the only reference to an object, this object cannot be
accessed by another thread concurrently; the mere existence of another refer-
ence to the object would violate the uniqueness of the original reference. Trans-
ferring a linear reference across threads implies a transfer of ownership of the

1Linearity greatly simplifies this tracking, but it can also be achieved in the presence of aliasing,
for example by dynamically inspecting the type of the object.
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object it refers to (e.g., [22, 74]). In an actor system, linear references can be
used to implement safe, zero-copy message passing (e.g., [115, 124, 130]).

In any language with linear references, care must be taken to avoid acciden-
tally creating aliases of linear values [24]. The simplest way to achieve this
is to require that variables containing linear references are destructively read
(e.g., [74]), meaning that the original reference is set to null as a side-effect of
performing the read. A similar technique is to require linear references to be
swapped rather than copied (e.g., [82]), so that x =:= y sets x to y and y to
x. Some systems support both these techniques, for example the C++ library
unique_ptr2 [137]. Programming in this style quickly becomes tedious though,
as linear values must be threaded through the program. For example, a func-
tion that takes a linear argument must return it again if the caller wants to use
it after the call. Destructively reading variables introduces null pointers which
the programmer needs to keep track of to avoid runtime exceptions or crashes.
An operation as simple as calling a method introduces an implicit alias in the
this variable, which must be controlled if the receiver is linear.

A static technique for maintaining linearity without destructive reads is alias
burying [23]. The main idea of alias burying is that aliasing a linear reference
is benign as long as the original reference is never used again (this reference is
“buried”). After the assignment x = y, rather than setting y to null, the com-
piler can check that y is not used again and throw an error if it is. The problem
of threading a linear value back and forth between function calls can be miti-
gated by using borrowing [23]. Borrowing allows temporarily creating an alias
of a linear reference, as long as this alias is not reachable once it goes out of
scope (e.g., because it was stored on the heap) and the original reference is un-
reachable for the duration of the borrowing (it is “temporarily buried”). For
example, a function that is called with a linear argument x, but does not retain
it, can be called without using a destructive read; for the duration of the call,
the corresponding parameter is the only reachable alias of x, and when the call
ends and the parameter goes out of scope, linearity of x is restored.

A more fine-grained approach for relaxing linearity is found in the work on
disjointness domains [30]. A disjointness domain is a set of references with the
property that each reference is uniquewithin that set. Having all references in a

2This library adds linear references to C++, but does not prevent the programmer from misusing
it, e.g., by initialising a unique_ptr with a pointer that is already aliased
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single domain permits no aliasing, which corresponds to global uniqueness. A
disjointness domain may further be extended with two or more child domains
for a limited scope, and references can be moved from a parent domain into
both child domains. A reference in such a child domainmay thus have aliases in
sibling domains, but not in the same domain or the parent. When the scopes of
the child domains end, references may bemoved back from one of the children
to the parent domain. This way, borrowing of a variable x can be understood
as creating two child domains, moving x into these domains as x1 and x2 re-
spectively, using one of these aliases as the borrowed value (making sure not to
touch references in the sibling domain), and finally using the other reference to
restore the borrowed value into x at the end of the scope of the child domains.
Disjointness domains also support patterns like implementing a doubly linked
list, which is known to be a linear chain of references both when iterated from
front to back and from back to front.

Although its not widespread enough to be called mainstream at the time of
writing, Rust is an example of a programming languagewhich uses linearity suc-
cessfully [123]. In Rust, all references which supportmutation of the underlying
object are linear. By giving up mutation rights, a reference may be aliased. For
concurrent programs, this rules out any data-races. There is support for borrow-
ing, and the compiler tracks the lifetime of all references to completely avoid the
need for destructive reads. When a reference reaches the end of its lifetime, the
underlying memory is reclaimed. Thanks to linearity, this can be done without
any need for a garbage collector or any other runtime machinery. For applica-
tions that need aliasing, Rust has an unsafe annotation which circumvents the
type checker. This is used to implement trusted libraries which allow express-
ing more relaxed aliasing patterns, such as reference counted shared data, or
data protected by locks which may be shared between threads. At the time of
writing this thesis, a new version of the web browser Firefox was recently re-
leased, which had its C++-based CSS engine rewritten in Rust [65]. By using
Rust, the developers could parallelise the code without having to worry about
many of the errors that can occur in C++ programs, e.g., data-races, dangling
pointers and double frees.
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4.1.2 Ownership Types

Section 3.2 discussed the importance of encapsulation in object-oriented pro-
gramming, but also noted that mainstream languages rely on the programmer
to maintain encapsulation. This section overviews the research into ownership
types and related work, which provide language support for enforcing encap-
sulation. Before the invention of ownership types, earlier work (e.g., [8, 88])
provided full alias encapsulation [114], allowing identifying borders over which
no references could pass. The objects within these borders are encapsulated,
but can also not refer to objects outside of the borders, directly or indirectly.
This allows a list to encapsulate its links, but does not allow these links to refer
to elements outside of the links. Ownership types instead provide flexible alias
protection [114], allowing objects to be encapsulated within some aggregate (i.e.,
not be aliased from outside of the aggregate), but still allowing outgoing refer-
ences.

In traditional ownership types [52], each object defines an ownership context
and also belongs to some context. The objects belonging to the context of an-
other object is said to be owned by this object. The owner of an object is tracked
via its type. At the start of the program, new objects belong to the root owner
world (or norep). After an object has been created, new objects may be assigned
to the ownership context of this object. Ownership types thus partition the
heap into a nested structure of owners, and provide the guarantee that refer-
ences whose types are annotated with different owners may not be aliases. Fur-
thermore, traditional ownership types enforces a property known as owners-as-
dominators; all paths from outside of an object o to an object owned by o must
go via o, or put differently, all paths to an object must go via its owner. This
means that the only way to have an effect on an owned object is via a method
call on its owner. Objects with the same owner may refer to each other freely.

Figure 4.2 shows the partial implementation and the ownership hierarchy of a
programwith a linked list (defining the owner L). The links of the list are owned
by the list and may not be accessed from outside the list. References from the
links to elements in world are allowed. The special owners rep and owner refer
to the owner defined by the current object and the owner of current object
respectively. From the view of the list, the links are owned by rep, but from the
view of the links they are owned by owner (in both cases the keywords refer to
the owner L).
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1 class Link {
2 world T elem;
3 owner Link next;
4 ...
5 }
6
7 class List {
8 rep Link first;
9 ...

10 }

LinkLink

next

first
List

elem L

…

T T
World

Figure 4.2. Partial implementation of a linked list using ownership types, and the resulting
ownership hierarchy. The owners rep and owner both refer to the owner L in the figure.

The original treatise on ownership types [52] further supports parametric own-
ership, allowing for example a list which is polymorphic over the owner of its
elements. Later extensions and variations of ownership types (e.g., universe
types [109] and ownership domains [6]) include supporting objects which have
multiple owners [35], allowing objects to selectively share the objects in its rep-
resentation [6, 144], allowing external read-only references into ownership con-
texts (enforcing owners-as-modifiers) [109], supporting reasoning about the in-
ternal structure of an ownership context [36], and allowing mutable references
into ownership contexts as long as they are only accessed following a method
call to the owner of the context (known as owners-as-accessors) [113]. The pur-
pose of these different systems vary from giving strong aliasing guarantees to
the programmer, to simplifying program verification [49].

Combining owners-as-dominators with linear references gives a strong prop-
erty know as external uniqueness [50]: holding the only reference to an object
o also means holding the only means of accessing the objects owned by o. By
moving the reference to o, one also transfers ownership of all the objects (tran-
sitively) owned by o [50, 110]. Inside the externally unique aggregate, aliasing
is unrestricted, including references to o. If the list in Figure 4.2 was externally
unique, there could be at most one reference to it from within the owner world,
but any number of references to it from the links in L. A variant of external
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uniqueness known as separate uniqueness disallows outgoing reference from
the unique object aggregate, thus enforcing full alias encapsulation3 [82].

In a concurrent setting, ownership types provide a way of excluding data-races
by forbidding the existence of certain references. If a thread is guaranteed exclu-
sive access to an object, it also gets exclusive access to the objects owned by that
object. In a system with actors (or active objects), ownership types can be used
to guarantee that actor-local data is not accidentally shared between actors, e.g.,
Joelle (cf., Section 2.2.2) [115]. Joelle also uses external uniqueness to transfer
ownership of whole aggregates of objects between active objects, and further
uses ownership information to infer which parts of an argument to a message
which need to be copied and which can be transferred by reference. In a simi-
lar vein, Gordon’s isolated types (cf., Section 4.1.4) uses external uniqueness to
transfer object aggregates between threads [74]. In this system the outgoing ref-
erences from an externally unique aggregate may only refer to immutable data
(which is safe to access concurrently).

4.1.3 Effects and Regions

Both linear references and ownership types are prescriptive in the sense that
they forbid certain references from existing. Other systems take a descriptive
approach to alias control and allow “dangerous” references to exist as long as
the programmer does not use them in an incorrect way. One way to achieve
this is by using an effect system [111]. An effect system complements a type sys-
tem by providing an abstract description of the (possible) effects of running
an expression. Effects have been used to describe I/O effects (such as opening
and closing file streams)[28], trackingmemory liveness to avoid dangling point-
ers [77], and reasoning about control flow. An example of the latter is Java’s
checked exceptions. When a method declares that it throws some exception,
this describes a possible side-effect of running the method. Like with checked
exceptions, effect systems often suffer from effect propagation; a method that
calls another method with some effect must declare that effect itself, meaning
that effects have a tendency to spread throughout the program.

3Separate uniqueness is a special case of external uniqueness, where the objects in an aggregate
cannot name any of the owners outside of this aggregate.
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In concurrent systems, effects can be used to reason about which data is read
and written when executing some expression. As long as two expressions have
disjoint effects (any data touched by both expressions is only ever read), run-
ning them in parallel is safe from a data-race perspective. In the presence of
aliasing, it is not enough to know which variables will be touched by an effect,
since an effect on one variable will be visible through any alias of that variable.
Instead, regions are used to denote the “maximum reach” of an effect. Regions
may be explicitly declared by the programmer (e.g., [20, 115]), or be based on
some other construct in the language, like stack frames [77] or owners (effects
on two non-nested owners will be disjoint) [48].

Deterministic Parallel Java (DPJ) is an extension of Java which adds support for
regions and effects [20]. In DPJ, a class may declare regions and associate each
field with one of these regions4. Additionally, each method is annotated with
the effects (reads or writes) that the method has on each region. By requir-
ing that any two expressions run in parallel have disjoint effects, meaning that
they will not race to update the same fields, the language guarantees that pro-
grams are deterministic, i.e., have the same result regardless of how threads are
scheduled. DPJ also supports partitioning of arrays into disjoint parts, making
parallel operations on a single array free from data-races as well.

The active-object language Joelle (cf., Section 2.2.2) uses regions and effect anno-
tations in a similar way toDPJ, but with the purpose of allowing safe parallelism
within active objects [115]. In addition to allowing programmers to write paral-
lel code in methods of active objects, if two messages in the queue of an active
object have disjoint effects, these can automatically be run in parallel. Joelle
also supports user-specified abstract effects which can be used to express the
allowed interactions of more high-level operations. Abstract effects can either
be assigned to owners, or be declared as disjoint (in which case safety is not
checked by the compiler), allowing methods with disjoint effects to be run in
parallel.

4Regions in DPJ can also be nested, making them similar to ownership contexts, but without the
encapsulation guarantees (and restrictions).
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4.1.4 Capabilities and Permissions

Central to the work in this thesis is the concept of a capability, sometimes also
known as a permission. The terminology is not consistent in the literature, and
both terms are overloaded. In this thesis, the terms are used tomean an abstract
token associated with an alias (usually tracked in its type) which describes both
which operations are permitted on the underlying object (e.g., which methods
may be called) and which operations are permitted on the reference itself (e.g.,
if it may be copied). Capabilities can thus be used to control how the under-
lying object is accessed, as well as for tracking aliasing information, such as
uniqueness or ownership [26].

The rest of this section overviews and compares work related to this thesis,
which uses permissions or capabilities to avoid data-races in concurrent pro-
grams. Their relation to Kappa is discussed closer in Chapter 5.

Fractional permissions

Fractional permissions capture the notion that it is safe to read a piece of data as
long as no other thread is writing it at the same time [25]. Data is created with a
full permission, which allows updating the data. This permissionmaynot be du-
plicated, but may be split into several permissions which hold a fraction of the
original permission, and which only allows reading the data. The smaller per-
missions may be further split, but importantly, the individual fractions always
“add up” to the original permission. This means that the full permission can be
restored by collecting all the fractions, facilitating the pattern of having a single
mutable reference, splitting it up into several read-only aliases which may be
accessed concurrently, and then restoring the original mutable reference when
all aliases have been collected.

An extension to Habanero Java called Habanero Java with Permissions (HJp)
uses fractional permissions to ensure that all objects are either referenced by a
single mutable reference, or by one or more read-only references, which may
be shared between threads [142]. The single mutable reference can be fully
transferred between threads, or temporarily split and distributed across threads.
Additionally, in order to simplify programming with thread-local data, HJp al-
lows privatewrite permissionswhichmay be duplicated but not shared between
threads.
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1 isolated IntBox increment(isolated IntBox b) {
2 // implicitly convert b to writable
3 b.value++;
4 // convert b *back* to isolated
5 return b;
6 }

Figure 4.3. An example of how isolation can be recovered, taken from [74]

SafeJava

SafeJava is a type system for of Java-like languages which uses a combination
of capabilities, ownership types and effect clauses to ensure the absence of data-
races and deadlocks [22]. Types can be annotated as unique, meaning values
must be treated linearly, or immutable, meaning values will never change after
initialisation. Objects owned by world may be shared across threads and are
therefore implicitly protected by locks. Thread-local objects are expressed by
using the special owner thisThread. Importantly, classes can be written para-
metrically, deferring specifying their “protection mechanism” (i.e., uniqueness,
immutabililty, encapsulation etc.) until the class is used. This allows the same
implementation to be used for different concurrency scenarios, for example
reusing the same List class as a thread-local list on one place and a linearly
referenced list in another.

Isolated Types

Gordon’s isolated types are used to guarantee safe concurrent programming in
an object-oriented setting (the prototype implementation is in C#) [74]. The
type system provides four permission annotations:

writable – a “normal” read/write reference.

readable – a reference through which no writable references can be obtained,
and nomutation can be performed (otherwritable aliasesmay still exist).

immutable – denoting a reference to an object that will never be mutated and
through which only other immutable references can be obtained.

isolated – the only external reference to an aggregate object, which may con-
tain arbitrary internal aliasing (cf., Section 4.1.2). Outgoing references
from such objects may only refer to immutable data, making transfer
of isolated references between threads safe from data-races.
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An isolated reference can be converted to an immutable reference, effectively
“freezing” the whole object aggregate. The type system similarly allows isolated
references to be converted to writable ones to allow updating them, but im-
portantly, the type system also allows recovering an isolated reference from
a writable one: in a context (e.g., a method call) where all ingoing values (ar-
guments) are isolated or immutable and the outgoing value (return value) is
a single writable reference, this reference must be externally unique (it was ei-
ther one of the ingoing isolated values, or a value that was created in the current
context, in which case it is the only remaining reference to that object).

Figure 4.3 shows an example of a method which takes an isolated argument
and converts it to a writable one in order to be able to update it. At the end of
the method, converting b from writable to isolated is safe because no external
references to the object (even if there were any) can remain; any aliases are
either local variables, in which case they go out of scope, or they are internal
to the isolated argument of the method. Combining isolation recovery with
the ability to convert isolated references to immutable ones facilitates building
immutable structures with arbitrary internal aliasing.

Methods are also annotated with a permission, denoting the permission of that
method’s this variable. Methods may only be called when the annotation on
the receiver matches (or can be converted to) the annotation on the method.
This motivates the existence of the readable annotation; a method annotated
as readable can also be called on a writable, immutable or isolated receiver,
as all these annotations can be converted to readable. If no annotation is given
for a reference or method, the permission defaults to writable.

Pony

Pony (cf., Section 2.2.2) is an actor language with a capability-based type system
which prevents data-races, even in the presence of sharing between actors [119,
124]. A reference can have one of six reference capabilities, four of which are
similar to Gordon’s permission annotations above [74].

iso – an externally unique reference (cf., Section 4.1.2), similar to Gordon’s iso-
lated annotation, allowing outgoing references to immutable data only.
An iso reference may be transferred between actors.
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val – a reference to deeply immutable data, which may be shared between ac-
tors. Similar to Gordon’s immutable annotation.

ref – a “normal” read/write reference that allows aliases, but cannot be shared
between actors. Similar to Gordon’s writable annotation.

box – a reference that does not allow mutation, although other ref aliases may
exist in the same actor. Similar to Gordon’s readable annotation

trn – the only writable reference to an object that is “transitioning” from be-
ing mutable to immutable. A trn reference may have box (“read-only”)
aliases in the same actor, and may be converted into a val reference, after
which it is permanently immutable and may be shared between actors.

tag – an “opaque” reference that may not be dereferenced, but which may be
used as the receiver of a message send (if the underlying type is an actor).
Any reference may have an unbounded number of tag aliases, even iso
ones.

Like in Gordon’s system, there are mechanisms for converting references be-
tween the different capabilities, and for recovering isolation. Also similarly,
methods are annotated with capabilities and can only be called on a receiver
with a matching (or convertable) capability. If nothing else is specified, refer-
ences of class type default to ref and primitives to val, while references to actors
are always tag (preventing other actors from accessing private state). Method
capabilities default to box, meaning mutating methods must be identified with
an annotation.

Scala Capabilities and LaCasa

In Haller and Odersky’s capabilities for Scala [82], references and capabilities
are decoupled; a reference can only be accessed if its capability is available.
A variable marked as @unique may be aliased (locally), but its capability is
treated linearly; passing one of the references together with the capability to an-
other context renders all other aliases inaccessible. This removes the need for
destructive reads of local variables (fields marked @unique must be swapped
for another value when read). A method (or parameter) may be marked as
@transient to denote that calling it on a @unique receiver (or with a @unique
argument) does not consume the capability of that reference (akin to borrow-
ing, cf., Section 4.1.1).
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A @unique reference is an external reference to a separately unique aggregate
(cf., Section 4.1.2), and its capability guards access to that entire region. This
means there may be references which are not aliases, but which share the same
capability. A method parameter x may be marked as @peer(y) to denote that x
is guarded by the same capability as y, allowing e.g., assigning x into a field of y.
Consuming a capability renders all references with that capability inaccessible.
The type system also allows merging two regions, for example when a @unique
reference is passed into, and stored in, another separately unique aggregate.

A similar system, but based on Scala implicits rather than annotations, is found
in LaCasa [80]. LaCasa focuses on communication between actors, and re-
quires references passed between actors to be wrapped in a special Box object.
In order to interact with a Box (and the encapsulated object within), an actor
needs to supply a special permission value associated with the box. Certain
operations, such as sending a Box to another actor, consumes the permission,
making the Box inaccessible to the sender (effectively transferring ownership).
By using Scala’s path dependent types, the type system can guarantee that a
Box’s permission cannot be forged. Scala implicits are used to avoid having
to explicitly chain the permission value through the program. By enforcing a
strict object-capability discipline [60] (cf., the E language [106], Section 2.2.2)
within a Box, the type system ensures that the internal reference cannot leak
(an external reference into a Box could cause data-races).

Mezzo

Mezzo [17] is another programming language where references are decoupled
from the abstract tokens which guard their use. In Mezzo, using a reference re-
quires access to a corresponding permission, and unlike for example the Scala
capabilities in the previous section, these permissions may be defined by the
programmer. Passing a reference to a function may consume its permission,
but also return new permissions. This allows programmers to use the type sys-
tem to enforce protocols for user-defined data. For example, a Cell data type
may be created with a use-once linear permission which only allows calling the
function that sets the value of the Cell. This function may in turn return a
duplicable permission to the same Cell that only allows reading it.

When concurrency is involved, the type system prevents data-races by ensur-
ing that only duplicable permissions (which do not allow mutation) are shared
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across threads. Additionally, locks can be used to safely share access to mutable
state. The type system allows expressing the protocol of a lock, enforcing e.g.,
that a lock may only be released if it was first held. This also aids the program-
mer in correctly implementing other data structures which use locks. However,
the actual implementation of a lock can not be written in the language as it re-
quires sharing mutable state (and thus duplication of linear permissions).

Comparison

All the systems discussed in this section have one or more things in common,
apart from using capabilities or permissions. All systems use linearity in one
form or another to ensure that mutable state is not shared, while still allowing
data tomigrate without copy between threads (or actors). Another reoccurring
theme is relying on immutability for safe sharing (Scala capabilities being an ex-
ception). Mezzo, Pony and Gordon’s isolated types, all allow “freezing” a linear
object (aggregate) by making it immutable. Unlike with fractional permissions,
mutability cannot be recovered once an object has been frozen. Pony and Gor-
don’s isolated types additionally allows fixing a mutable object to a thread or
actor by dropping linearity together with the ability to share the object.

In SafeJava, code can be reused across different concurrency scenarios, but after
creating an object, its protection mechanism is fixed. Pony and Gordon’s iso-
lated types instead rely on being able to convert between capabilities to change
the interface and aliasing restrictions of an object for different use-sites. Mezzo
and SafeJava allows shared access to mutable state protected by locks and en-
sure that locks are not bypassed. Mezzo is the only one of these systems whose
types are also used to enforce that the protocol of e.g., locks is followed.

4.2 Verification Techniques

The techniques presented in Section 4.1 help the programmer to write safe and
correct code. Type systems are modular and light weight—types can tell a pro-
grammer something useful about a single line of code in isolation—but this
also forces reasoning to be conservative. For example, unless some borrowing
annotation is used, a type systemmust conservatively assume that a linear refer-
ence passed to a function is consumed, regardless of how the function is imple-
mented. Additionally, new languages and state-of-the-art type systems do not
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help with all the legacy code that has already been written in other languages.
This section briefly overviews some more powerful (but also more involved)
techniques for program verification. They are generally used to reason about
more high-level correctness properties than “just” alias control.

4.2.1 Program Logics

A program logic is a formal system for reasoning about the behaviour of pro-
grams. Themost widely used program logic is probablyHoare logic [87], which
facilitates reasoning about pre- and post conditions by usingHoare triples. The
Hoare triple {P}e{Q} should be read as “if P holds in the initial state, and the
program expression e is executed, Q will hold in the resulting state” (P and Q
can for example describe the values of the variables in scope).

Hoare logic works well for reasoning about programs which manipulate nu-
merical values, but less well for programs with pointers and potential aliasing.
This is addressed by separation logic [122], which extends Hoare logic with an
explicit notion of a heap and a store (or stack) and logical connectives for reason-
ing about the contents of the heap. Importantly, the “separating conjunction”
P∗Q states that the current heap can be partitioned into two non-overlapping
heaps h1 and h2 such that P holds for the heap h1 and Q holds for the heap
h2. Conversely, the “separating implication” P −∗ Q (also known as the “magic
wand”) states that if two disjoint heaps h1 and h2 are merged into a heap h, and
P holds for h1, then Q holds for h. Concurrent separation logic additionally ex-
tends separation logic with support for reasoning about programs running in
parallel.

To handle the complexity of using concurrent separation logic, there are imple-
mentations for theorem provers (cf., Section 3.3.1), such as Iris [96] and FCSL
(Fine-grained Concurrent Separation Logic) [128]—both implemented in Coq.
These systems have been used to prove correctness of fine-grained concurrency
algorithms (cf., Section 2.1.2) [59, 96, 128], to reason about weak memory mod-
els [94], and to model the programming language Rust [93].

Rely/guarantee reasoning [92] is another technique often used in verification of
concurrent programs. In short, with a rely R and a guarantee G, a thread can
rely on the other threads to behave as specified by R, and must guarantee that
it behaves according to G. Together, R and G can be used to reason about the
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possible interference between threads. Systems using rely/guarantee reasoning
have been used to guarantee safe interference over sharedmemory [104], to rea-
son about functional correctness of fine-grained concurrency algorithms [74],
and for automatically proving that non-blocking algorithms actually do not
block [75]. Rely/guarantee techniques have also been combined with separa-
tion logic into RGSep, which has been used to prove linearisability of several
fine-grained concurrency algorithms [139].

4.2.2 Model Checking

Another approach for reasoning about concurrent programs is to use model
checking [53], which, given a model of a program, exhaustively explores all pos-
sible states of this model to see if the program can reach an erroneous state. An
erroneous state can for example be a deadlock between two threads, a failing
assertion for a single thread, or a situation where e.g., linearisability is violated
for a lock-free data structure (e.g., [83]). Naïvely exploring all possible interleav-
ings of the threads in a concurrent programwould not be feasible for non-trivial
programs. Instead, the search space is pruned by using techniques such as dy-
namic partial order reduction to avoid exploring redundant interleavings (in-
terleavings which are known to be equivalent to an already explored interleav-
ing) [3, 66]. Two examples of tools using model checking to find concurrency
errors are Concuerror for Erlang [47], and Nidhugg for C with PThreads [2].

After this overview of related work, we now move on to the main contribution of
this thesis: Kappa, a capability based type system for concurrency control.
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5. Kappa

This chapter presents Kappa, a capability-based type system for race-free con-
current programming. The details of the type system can be found in Papers
I–III. Section 5.1 covers the contents of Papers I and II, while Section 5.2 focuses
on Paper III. All examples in this chapter are written with the syntax of Encore,
the active object language in which Kappa has been implemented, but not all
examples are valid Encore code as some features of Kappa have not yet been
implemented in Encore. The current state of the implementation in Encore is
discussed in Chapter 6.

5.1 Reference Capabilities for Concurrency Control

In Kappa, the reference concept is unified with the concept of a capability. A
reference capability is a handle to some resource, which can be an object, a part
of an object, or an entire object aggregate1. Importantly, a reference capability
guarantees that while the underlying resource is being accessed (read or writ-
ten), no other thread will write to it (concurrent reads are allowed). In other
words, accesses through a reference capability is always free from data-races.

A capability is specified by a type, which defines the operations available on the
underlying object, and amode, which defines the protection mechanism of the
underlying object. The original formulation of Kappa uses six different modes2:

linear – a linear reference, potentially externally unique (cf., Section 4.1.1). It
may be passed between threads, and is trivially safe from data-races since
it is the only (external) reference to its resource. Linearity can be main-
tained through destructive reads, or by some more advanced static track-
ing, e.g., alias burying [23].

1Our terminology is different from e.g., Pony, where the reference capability is the annotation on
the type (cf., Section 4.1.4).
2This presentation uses the names of the modes from the implementation in Encore. The names
are therefore slightly different from the ones used in Paper I.
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local – a thread-local reference, which may be freely aliased, but never passed
between threads. It is trivially safe from data-races since it may only be
accessed by a single thread. In order to ensure that local capabilities do
not implicitly escape their thread, only local objects are allowed to have
fields containing local capabilities.

locked – a reference to a resource implicitly guarded by a lock, and which
may be freely shared across threads. Calling a method through the ca-
pability will acquire the lock for the duration of the call (cf., Java-style
synchronized), which guarantees mutual exclusion.

subord – a reference to a subordinate object, which is strongly encapsulated
inside another object. Kappa ensures the owners-as-dominators property
for subordinate objects (cf., Section 4.1.2), meaning that the subordinate
object is implicitly protected by the same mechanism as its owner.

read – a reference that does not allow mutating operations on the underly-
ing object, and which may be freely shared across threads. The read-only
property is shallow, meaning that a method call may result in (safe) mu-
tation of some other object. The read mode does not exclude mutable
aliases of the same resource (but does ensure that the object will not be
mutated while it is being accessed through the read capability).

unsafe – a “normal” object reference, without any protection. This mode can
either be used as an “escape hatch” for expressing aliasing patterns that are
not captured by the othermodes (this is the approach taken in Encore), or
as an indication that someother synchronisation is needed, e.g., acquiring
a lock (this is the approach taken in Paper I).

The selection of modes is similar to the annotations offered by other capabil-
ity systems (cf., Section 4.1.4). Like SafeJava [22], Kappa relies on a combina-
tion of annotations and ownership to achieve data-race freedom, but unlike
SafeJava, Kappa does not need explicit ownership types. The linear, local and
readmodes are similar to the isolated,writable and readable annotations from
Gordon’s isolated types [74] (or iso, ref and box of Pony [124]), although read
capabilities are safe to share between threads, which reduces the need for the
deep immutability offered by Gordon’s immutable (or Pony’s val)3. There is no
conversion between modes, but since Kappa does not require annotations on

3Deep immutability can be expressed in Kappa by constructing read capabilities which (transi-
tively) can only reach other read capabilities.
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methods, a capability can always be used to the full extent allowed by its type.
Patterns such as turning a linear, mutable object into an immutable one is pos-
sible by using composite capabilities (cf., Section 5.1.2). There is no equivalent
of Pony’s trn capability (a unique writable reference which may have read-only
aliases) in Kappa.

The ownership guarantees given by the subord mode can be though of as a
combination of the special owners rep and owner in ownership types (cf., Sec-
tion 4.1.2). This means that there is no way for an object o to distinguish be-
tween privately owned objects and sibling objects that have the same owner as
o. This is less expressive than full ownership types, but also requires less com-
plicated machinery. Having subordinate objects with a local or unsafe domi-
nator expresses flexible alias protection, while a linear dominator additionally
expresses external uniqueness. Having a locked dominator lets a single lock
protect a whole object aggregate. Since a read capability may be accessed con-
currently, it may only grant access to other capabilities which are also safe to
access concurrently (i.e., locked capabilities and other read capabilities). This
disqualifies read capabilities from accessing encapsulated state in the form of
subord capabilities.

In order tomake programmingwith linear capabilities simpler, method param-
eters can be annotated as borrowed to allow linear capabilities to be passed as
arguments without destructive reads (cf., Section 4.1.1). Additionally, if x is a
linear capability which grants access to a linear field x.f, Kappa allows non-
destructively borrowing x.f as long as x is buried for the duration of the bor-
rowing (this generalises to longer chains of linear fields).

Figure 5.1 shows a hierarchy of different kinds of capabilities. The three top-level
categories are the exclusive capabilities, linear and local, the subordinate capa-
bilities and the shared capabilities, which may all be shared between threads.
The shared capabilities can be categorised as safe and unsafe, where the latter
does not provide any concurrency control of its own. The safe capabilities can
further be grouped according to the kind of concurrency control they provide.

The optimistic capabilities allow concurrent updates, but roll back in case of
conflicts (the lockfreemode is detailed in Section 5.2). The pessimistic capabil-
ities are based on mutual exclusion, like locked. The activemode, for express-
ing active objects, is explained in Chapter 6. Finally, the oblivious capabilities
do not need concurrency control because they only provide non-racing (i.e.,
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Figure 5.1. A hierarchical view of the modes of reference capabilities.

read-only) operations. The figure also includes two modes that have not yet
been implemented: an immutablemode, which is a “deep” version of the read
mode, and an atomic mode, which wraps each method call in a transaction
(cf., Section 2.1.3).

As the hierarchy suggests, allowing a safemode which abstracts over the under-
lying modes introduces a kind of polymorphic concurrency control: a method
which takes a safe capability knows that this capability can be safely used and
shared, but does not need to care how this safety is achieved. Section 6.3 ex-
plains how parametric polymorphism is implemented Encore, including this
kind of “mode-bounded polymorphism”.

5.1.1 Concurrency Agnostic Code Reuse with Traits

The mode of a capability expresses why that capability is safe to access. The
interface of a capability is defined by its type, which is introduced via traits
(cf., Section 3.1). When a trait type is used (e.g., included by a class), it must be
provided with a mode in order to form a capability. Like in SafeJava [22], sep-
arating the business logic from the mechanism of concurrency control allows
traits to be reused across different concurrency scenarios. A trait can always
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1 trait Inc
2 require var cnt : int
3 def inc() : unit
4 this.cnt += 1
5 end
6 end
7
8 trait Get
9 require val cnt : int

10 def get() : int
11 this.cnt
12 end
13 end
14
15 class LinearCounter : linear Inc + read Get
16 var cnt : int
17 end
18
19 class LockedCounter : locked Inc + read Get
20 var cnt : int
21 end
22
23 class LocalCounter : local Inc + read Get
24 var cnt : int
25 end

Figure 5.2. A simple example of how traits can be reused for different concurrency
scenarios. var and val denote mutable and immutable (Java final) fields respectively.

be given any mode, except read which requires that all required fields are im-
mutable and have types which are safe to access concurrently.

An important property of Kappa is that the implementor of a trait can assume
exclusive access to all the required fields of the trait. Regardless of which mode
the trait type is given when used, mutual exclusion will be guaranteed (except
for the unsafe mode). This is made possible by typechecking the methods of
a trait with this as a subord capability, meaning methods may not leak this to
the outside. If this was not encapsulated, a linear reference could return itself
from a method, and a local reference pass itself to another thread. Optionally,
the programmer can provide a trait declaration with amanifest mode, meaning
methods will be typechecked with this having that mode. These traits cannot
have theirmode overridden at use-site, andmay only be included together with
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other traits of the same mode4. Providing a manifest mode thus makes the
implementation less restricted, but reduces the amount of possible code reuse.

Figure 5.2 shows a simple example of how traits can be reused to implement
classes for different concurrency scenarios. The trait Inc provides a method
inc, which increments the required field cnt. The trait Get provides a method
get which simply reads the field. These traits are included by three different
classes, which all give different modes to the Inc trait, respectively producing
a counter that must be handled linearly, a counter that is protected by a lock,
and a counter that is thread local. Using the read mode for the trait Get is
allowed as Get only requires an immutable (val) fields whose type (int) is safe
to access concurrently. Conversely, it would not be allowed to use read for Inc
as it mutates its required field. In the case of LockedCounter, the fact that Get is
a read capability—and thus will not mutate the underlying object—facilitates
safely using a readers-writer lock (cf., Section 2.1.1) to allow concurrent calls to
get but keep calls to inc mutually exclusive. In general, all compositions of
locked and read capabilities can be implemented to use readers-writer locks.

The design decisions for Kappa have been aided by studies of aliasing patterns
in extant Java programs [31] using the trace-based analysis tool Spencer [32]. A
comprehensive study of over 1 million lines of Java code shows that the amount
of aliasing found in Java programs is quite small, and that aliasing patterns for
a declaration are mostly stable across its use-sites. We hope to further validate
our designs using Spencer in future work, but it should also be noted that it is
not clearly established how well Java-results translate to e.g., Encore.

5.1.2 Composite Capabilities

In addition to introducing capabilities through traits, capabilities can be formed
by composing existing capabilities. When a class includes more than one trait,
this class name becomes synonymous with the corresponding composite ca-
pability. A composite capability offers the union of the interfaces of its con-
stituents, and must adhere to the aliasing restrictions of all its modes. For ex-
ample, the LinearCounter class in Figure 5.2 is synonymous with the compos-
ite capability linear Inc + read Get, which must be treated linearly due to its
sub-capability linear Inc.

4If for example a class could include traits where some methods see this as local and others see
this as linear, linearity could be violated.
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1 linear trait Left
2 require var left : Tree
3 def getLeft() : Tree
4 consume this.left
5 end
6 def setLeft(var left : Tree) : unit
7 this.left = consume left
8 end
9 end

10
11 linear trait Right
12 // Analogous to Left
13 end
14
15 linear trait Elem
16 require val elem : T
17 def apply(f : T -> unit) : unit
18 f(this.elem)
19 end
20 end
21
22 class Tree : Elem * Left * Right
23 var left : Tree
24 var right : Tree
25 var elem : T
26 end
27
28 fun foreach(var t : Tree, f : T -> unit) : Tree
29 unless t == null then
30 var e : Elem, l : Left, r : Right = consume t // Split t
31 finish
32 // Operate on aliases concurrently
33 async {e.apply(f)}
34 async {l.setLeft(foreach(l.getLeft(), f))}
35 async {r.setRight(foreach(r.getRight(), f))}
36 end
37 t = consume e * consume l * consume r // Restore t
38 end
39 return t
40 end

Figure 5.3. An example of traits composed into a conjunctive capability. T is some elided
type.
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Figure 5.4. Restrictions for overlapping fields in composite capabilities.

When aliasing a composite capability, the new capability must generally retain
the same modes as the original capability. Forgetting e.g., that a capability is
thread local is not allowed, as this could lead to a thread local object leaking.
It is however safe to drop all linear sub-capabilities of a capability (cf., strong
updates, Section 4.1.1). For example, using the code fromFigure 5.2 it is possible
to drop the capability linear Inc from LinearCounter and get a sharable read
capability (consume denotes a destructive read):

var cnt1 = new LinearCounter()
val cnt2 = cnt1 // Not allowed! cnt is linear
val g1 : read Get = consume cnt // Drop linear Cnt capability
val g2 = g1 // Allowed! g1 is a read capability

This pattern is similar to converting from isolated to immutable in Gordon’s
isolation types (cf., Section 4.1.4). Paper I additionally defines machinery for
temporarily dropping a linear capability, allowing a mutable capability to be
split into several read capabilitieswhichmay be used concurrently, before restor-
ing the original linear capability, akin to fractional permissons [25] (cf., Sec-
tion 4.1.4). This is not supported in SafeJava, Pony, nor Gordon’s isolated types.

Capabilities can be either be composed as disjunctions (using “+”) or conjunc-
tions (using “*”). Disjunctive capabilities A + B can be used as an A or a B, but
not at the same time5. There are no restrictions on what data A and B may ac-
cess concurrently. Conversely, conjunctive capabilities A * B can be used as an
A and a B, possibly at the same time. This capability is only allowed if the fields
shared by A and B are immutable and have types that are safe to access concur-
rently. Figure 5.4 illustrates the restrictions on field sharing between conjunc-
tions and disjunctions.

5This doesn’t really hold for read capabilities, as two composed read capabilities can safely be
used at the same time, but it works as a mnemonic.
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Concurrent access to conjunctive capabilities is handled by splitting the com-
posite capability into its constituents. Figure 5.3 shows the definition of a Tree
class, conjunctively composed by three linear capabilities Elem, Left and Right.
This allows a Tree capability to be split into three aliases of type Elem, Left and
Right respectively, which can be operated on concurrently, and later bemerged
to restore the original capability, as shown in the function foreach. On Line
30, the variable t is split into three aliases, presenting three different “views”
of the same object, and on Line 37, the aliases are merged again. If one of the
capabilities would not be an alias of the others, the operation would fail, and
throw an exception. The dynamic check could be omitted using escape analysis
or a blocked splitting construct. This splitting and merging of capabilities ex-
tends the ideas of fractional permissions [25]—which support the pattern single
writer/multiple readers—to also allow multiple writers.

Paper I contains the same example as Figure 5.3, but uses borrowing to avoid
having to reconstruct the Tree after each call to foreach. A more clever local
analysis could infer that concurrent usages of a single Tree capability are non-
interfering, removing the need for an explicit split6:

1 fun foreach(t : borrowed Tree, f : T -> unit) : unit
2 unless t == null then
3 finish
4 // Infer that non−overlapping capabilities are used
5 async {t.apply(f)}
6 async {foreach(t.getLeft(), f)}
7 async {foreach(t.getRight(), f)}
8 end
9 end

10 end

Paper I also shows how a nested capability linear Tree[A*B] can be split into
two aliases of type read Visit[A] and read Visit[B], where Visit is a trait
that implements iterating over the tree. This allows applying two different (non-
overlapping) functions concurrently to the elements of a data structure.

Conjunctive capabilities allow similar concurrency patterns as regions and ef-
fects (cf., Section 4.1.3). While effects are more fine-grained, Kappa avoids the
introduction of explicit effect annotations on methods which must be tracked

6implementing such an analysis is future work
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Figure 5.5. A Treiber stack before and after a successful pop. Dashed lines are references
without ownership.

and propagated. In Kappa, the required fields of a trait can be seen as defining
its maximum “effect footprint”, where the modifier on the field (var or val) de-
cides if the effect is a read or a write. The Tree class from Figure 5.3 could be
reinterpreted with regions and effects as a class with three regions Left, Right
and Elem, with one of the fields in each. The effect annotations on the methods
from the trait Left would be “writes Left” because of the var annotation on
the Left field (and similarly for Right). The effect annotations on the apply
method would be “reads Elem”, since elem is a val field. The rules for when
two methods have non-conflicting effects coincides with the rules for when a
disjunctive capability is well-formed. This is discussed closer in Paper II.

5.2 Reference Capabilities for Fine-Grained
Concurrency

The modes presented in Section 5.1 guarantee mutual exclusion whenever a
thread is accessingmutable state. This is a powerful property, but does not allow
implementing the kind of fine-grained concurrency discussed in Section 2.1.2,
where threads follow some protocol to safely compete for access to some shared
memory. Such algorithms are important to avoid scalability bottlenecks caused
by high contention on data structures that require synchronisation. This sec-
tion discusses an extension of Kappa, called LOLCAT7, which allows the im-
plementation of data structures based on fine-grained concurrency, while still
guaranteeing the absence of (uncontrolled) data-races.

7Paper III presents LOLCAT as a stand-alone type system which does not explicitly mention
reference capabilities.
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In contrast to systems like behavioural types (cf., Section 4.1.1) or more heavy-
weight verification techniques (cf., Section 4.2), LOLCAT cannot specify or ver-
ify high-level protocols for data structures. Instead, the guarantee given by the
type system is simpler: access to owned data (mutable var fields) is always ex-
clusive, and any occurrences of shared mutable state must be explicitly allowed.
The type system captures and enforces existing patterns from the literature on
fine-grained concurrency, such as speculating on values and using atomic op-
erations to acquire ownership of these values.

The ideas in LOLCAT stem from two observations. Firstly, many fine-grained
concurrent data structures, e.g., the lock-free Treiber stack in Figure 2.6, fol-
lows a pattern of linear ownership: each element in a stack is “owned” by the
data structure itself, until a threadmanages to assert ownership of it by popping
it from the stack. In a correct implementation, there can never be more than
one owner of an element. Note that using destructive reads (cf., Section 4.1.1) to
maintain linearity will not work in a concurrent setting—even temporarily set-
ting a shared field to null will prevent the progress of other threads, destroying
concurrency. Secondly, havingmore than one reference to an object is safe from
a data-race perspective as long as at most one of these references is ever used
to access the mutable resources of that object. For the rest of this presentation,
this reference is called the owning reference.

As a concrete example, Figure 5.5 shows the Treiber stack fromFigure 2.6 before
and after a successful pop. The fully drawn lines are owning references; before
the pop, all owning references are references in the data structure. In particu-
lar, the top reference from the Stack object S owns the node A. Two threads
are accessing the stack concurrently, shown as the two non-owning references
(dashed lines) to A, top1 and top2. After the pop succeeds, top1 is upgraded to
an owning reference. The top reference from S has been moved forward from
A to B, meaning top now owns B. In order to maintain linear ownership, the
next reference fromAmust be downgraded to a non-owning pointer (if A.next
could also be used to access the element of B, there could be races).

LOLCAT uses reference capabilities to track this kind of ownership information
and maintain linear ownership. Figure 5.6 shows a partial implementation of a
Treiber stack in the extended version of Kappa (the full code is available in Pa-
per III).The lockfreemode (cf., Figure 5.1) denotes a capability that is safe to use
because its implementation follows the protocol enforced by LOLCAT. Since the
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1 linear class Node
2 var elem : Elem
3 val next : Node
4 end
5
6 lockfree trait Pop
7 require spec top : Node // Field may be accessed concurrently
8
9 def pop() : Elem

10 while true do
11 val t = speculate this.top // t : Node | elem
12 if(t == null) then
13 return null
14 end
15 if (CAT(this.top, t, t.next)) then
16 // t : Node ~ next
17 return consume t.elem
18 end
19 end
20 end
21 end

Figure 5.6. A partial implementation of a Treiber stack in Kappa. Elem is some elided
type. The full code is available in Paper III.

top field may be updated concurrently, any values read from it are considered
speculative. It is therefore marked with the keyword spec. A spec field may
be speculatively read to yield a non-owning reference, as in Line 118.Updates
to a spec field must be performed with an atomic CAT (compare-and-transfer)
operation, as in Line 15.

A CAT has the same dynamic semantics as a CAS (cf., Section 2.1.2), but leverages
types to ensure that correct ownership is in place. CAT(this.top, t, t.next)
should be read as “atomically transfer ownership of t.next to this.top, and
from this.top to t”. The intuition behind this is as follows:

– this.top stores an owning reference, and because of linear ownership, it is
the only owning reference to its referent.

– The CAT only succeeds if this.top and t are aliases, meaning that t must be a
non-owning reference.

– If the CAT succeeds, ownership of t.next is transferred to this.top (through
assignment), meaning that t.next must also be an owning reference.

8We use a speculate keyword in the implementation to explicate speculative reads.
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– If this.top, which is the only owning reference to its referent, is overwritten,
there is no longer an owning reference to the Node being popped. It is there-
fore safe to transfer ownership to t.

The types in LOLCAT track ownership on a per-field basis. A type Node can be
used to access any field. The speculative read on Line 11 yields a reference of
type Node | elem, denoting that the mutable var field elem may not be accessed
(the immutable val field may still be accessed though). If the CAT on Line 15
succeeds, the type of t changes to Node ∼ next, denoting that the field next
no longer contains an owning pointer9 (cf., Figure 5.5). Because the restriction
on elem is lifted for the duration of the if-statement, the field may safely be
destructively read on Line 17. Restricting individual fields is similar to dropping
capabilities from a composite capability (cf., Section 5.1.2).

Tracking the ownership of individual fields gives a meaningful type to the com-
pare-and-swap operation (in the form of CAT), enforcing the pattern of linear
ownership. The types in LOLCAT help programmers to modularly reason about
ownership in the context of fine-grained concurrency. Paper III also defines
constructs for tracking stability (non-mutation) of mutable fields, as well as the
global absence of owning references (the type Node | elem seen above still al-
lows owning aliases). There are also additional examples of lock-free data struc-
tures based on CAS implemented in LOLCAT, including spin-locks that can be
used to protect a linear value. These locks could be used to implement Kappa’s
locked capability as a library, without using the unsafe escape hatch, as war-
ranted e.g., by Rust (cf., Section 4.1.1).

After a brief overview of the type systems presented in Papers I–III, we now
continue by discussing the implementation of Kappa in a real programming

language.

9This prevents the Node from e.g., being re-inserted in another stack, introducing sharing between
the two stacks.
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6. Implementing Kappa in a Language with
Active Objects

This chapter discusses the implementation of Kappa in the object-oriented lan-
guage Encore, which supports concurrency and parallelism through active ob-
jects (cf., Section 2.2) [29]. Just as the object calculi discussed in Section 3.3
model a subset of Java, the formal description of Kappa in Paper I omits many
features and programming conveniences that belong to a full-fledged langugae.
This chapter explains how Kappa was adapted to a language with active objects
(Section 6.1), and goes through the addition of method overriding (Section 6.2)
and polymorphism (Section 6.3). Section 6.4 discusses the work presented in
Paper IV, which allows switching from synchronisation based on isolation to
synchronisation based on delegation.

The Encore compiler, runtime and tooling is open-source and is available on
GitHub [62].

6.1 Active Objects for Concurrency Control

Encore distinguishes between active and passive objects, where passive objects
are normal objects which may be interacted with synchronously, and active
objects are objects with their own logical thread of control which may only be
interactedwith asynchronously viamessage sends. Messages end up in themail-
box of the active object, where they are picked up and handled one by one. This
way, the mailbox serialises all interactions with an active object, analogously to
how locks achieve synchronisation by blocking interfering threads. Encore uses
active objects as its main source of concurrency; there is no explicit spawning
of threads.

The modes discussed in Chapter 5 all describe passive data. Kappa handles ac-
tive objects by introducing an activemode. An active capability is a reference
to an active object which may only be interacted with through message sends.
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Active objects serialise all external interactions in their message queue, much
like locks serialise interactions by making threads wait for their turn. Since in-
teraction with an active object is always safe, active capabilities can be freely
shared between active objects. A local capability is encapsulated inside an ac-
tive object, and will never escape from the active object that created it. There-
fore active objects are allowed to have fields holding local capabilities. A linear
capability can be transferred between actors, together with any encapsulated
subord capabilities. As usual, read capabilities can be freely shared.

Encore’s concurrent garbage collection protocol (which it shares with that of
Pony, cf., Section 2.2.2) [54], is based on the absence of shared mutable state.
This complicates the inclusion of locks, and explains why the locked capability
has not been implemented in Encore yet. In related work, Yang and Wrigstad
recently introduced Isolde [145], a pluggable garbage collection protocol which
uses the information given by the LOLCAT type system (cf., Section 5.2) to allow
threads to share garbage collection responsibility of lock-free data structures.
This allows the Encore garbage collector to handle shared mutable state in spe-
cial cases, including library implementations of simple locks. The omission of
the locked capability has not been a problem so far though, as the synchronisa-
tion offered by active objects has been enough.

To facilitate the common case where all the included traits of a class have the
same mode, giving a class a manifest mode will implicitly assign that mode to
all the included traits. For example, here is “Hello World” in Encore, with the
business logic broken out into a trait:

trait Hello
def hello() : unit

println("Hello, World!")
end

end

active class Main : Hello
def main() : unit
this.hello()

end
end
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6.2 Preserving Safety under Method Overriding

In the original formulation of Kappa, classes can only define fields; all methods
come from included traits. This makes programming somewhat tedious, as
even small classes need to be factored into one or more traits. At the same time,
Kappa requires all capabilities to have a mode which explains why its methods
are safe to use. If classes could definemethods of their ownwithout “protecting”
the code with a mode, Kappa’s safety guarantees would be lost.

In Encore, the onlymethod that all classesmay define is the constructormethod
init. To be allowed to define other methods, the class must either provide a
manifest mode which explains why that code is safe, or assign each method to
one of its included traits (which by necessity has a mode), thereby extending
that trait. For example, the following code defines a class which includes the
Hello trait from above and extends it with a method for additionally giving
compliments:

class Greeter : active Hello(compliment())
def compliment() : unit

println("You are looking swell today!")
end

end

The inclusion of the trait Hello(compliment()) creates an anonymous trait,
which is equivalent to Hello extended with a requirement of compliment:

trait Hello’
require def compliment() : unit
... // the rest of Hello

end

The implementation of compliment in Greeter is therefore seen as overriding
the abstractmethod in the anonymous trait. In order for an overriddenmethod
to be valid, it must typecheck as if it was defined in the requiring trait. In the
example above, the compliment method is therefore typechecked twice: once
with this as the class type Greeter, and once with this as the trait type Hello.
If the added method uses fields or calls other methods, these must be added to
the anonymous trait as well.

To see why extending traits is necessary, consider the code in Figure 6.1, which
does not typecheck. If this code was allowed, an active object could create a
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1 read trait Box
2 require val f : int
3 def get() : int
4 return this.f
5 end
6 end
7
8 class BadBox : Box
9 var f : int

10 def init(f : int) : unit
11 this.f = f
12 end
13 def reset() : unit
14 this.f = 0 // Potentially racing operation!
15 end
16 end

Figure 6.1. A non-compiling program showing why all code must be “protected” by a
mode.

BadBox, create an alias of type read Box which can be shared with other actors,
and then call reset to cause a data-race. If on the other hand Box is extended
with reset(), the compiler gives the errormessage “Overriddenmethod ’reset’
writes field ’f’, which is marked as immutable in requiring trait ’Box’ ”.

Requiring included traits to be extended with the fields and methods used by
any overridden methods also prevents creating malformed composite capabil-
ities. In Figure 5.3, the class Tree could be split into its Left and Right sub-
capabilities, which could then safely be operated on concurrently since they do
not share fields. The following bad code, which tries to cause a data-race by
updating the left field when calling getRight, does not compile:

1 class BadTree : Left * Right
2 var left : Tree
3 var right : Tree
4 def getRight() : Tree
5 this.left = null // Potentially racing operation!
6 consume this.right
7 end
8 end

The error given by the compiler is “Overridden method ’getRight’ requires
access to field ’left’ which is not in requiring trait ’Right’. Consider extend-
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ing the trait on inclusion: Right(left)” (this error is caught when typecheck-
ing the overridden method in the original trait). Following the suggested fix
instead gives the error message “Conjunctive traits ’Left’ and ’Right’ cannot
share mutable field ’var left : Tree’ ”, preventing the definition of a conjunc-
tive capability with data-races.

6.3 Polymorphism

An important source of code reuse for programming languages is polymor-
phism. In Kappa however, the presence of capabilities which have different
aliasing restrictions complicates the matter. Since a fully polymorphic value
does not “remember” its mode, care must be taken so that polymorphic code
cannot violate the aliasing restrictions of incoming capabilities. In particular,
linear capabilities must no be duplicated, local capabilities must not be passed
to another actor, and subord capabilities must not escape its enclosing object
aggregate.

Encore solves this problemby introducingmode bounded polymorphism. When
introducing a type parameter, the programmer can optionally specify a mode
whose aliasing restrictions values of that type must respect. For example, the
following function promises to treat its argument as a local capability:

fun duplicate[local t](x : t) : (t, t)
(x, x)

end

Calling the function with a linear capability gives a compiler error (as the local
mode allows aliasing). Calling the function with a read capability is however al-
lowed, as the readmode is strictly more permissive than the localmode. With-
out a specifiedmode, type parameters default to the localmode, meaning it can
be instantiated with any type that can be freely aliased within the same actor
(i.e., any type except linear and subord), including primitives. In addition to
the concrete modes, Encore allows the abstract mode sharable, which can be
instantiated with any mode that allows sharing across active objects (i.e., read,
active and locked). This is the same as the safemode in the capability hierarchy
in Figure 5.1.
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Generic classes and traits follow the same rules as polymorphic functions and
methods. A parameterised capability Foo[T] must follow the aliasing restric-
tions of T. For example, if T is a local capability, Foo[T] gives access to local
state, and must therefore be treated as a local capability as well1. With similar
reasoning, closures which capture capabilities of certainmodesmust follow the
aliasing restrictions of these modes.

The need for destructive reads when reading linear capabilities from fields in-
herently complicates the story for data structures that are generic over both
linear and non-linear data, as e.g., iterating over such a data structure either
destroys it, or only allows mapping functions which explicitly use borrowing.
Since a destructive read changes the value being read, instantiating a linear
type parameter with a primitive type is also problematic as it is not clear e.g.,
what the value of a destructively read int should be. Encore currently solves
this problem by only allowing destructive reads of linear polymorphic values
when they are wrapped in a Maybe (destructively reading a value of Maybe type
sets it to Nothing).

Gordon’s isolation types [74] allow polymorphism over type qualifiers, but do
not allow using isolated types to instantiate type parameters (for the reasons
mentioned above). Pony [119] also allows capability generic types, and also pro-
vides a kind of abstract capabilities in the form of capability constraints, for ex-
ample #read, which abstracts over all types that can be read, and #send which
abstracts over all types that can be sent between actors. Whenever a type pa-
rameter allows instantiation with iso types (e.g., an unconstrained parameter,
or one with the #send constraint), values of that type must be handled linearly.

6.4 Switching between Isolation and Delegation

As discussed in Section 2.2.2 many actor languages avoid shared mutable state
by relying on isolation, achieved either with language support or through pro-
grammer diligence. With the help of the local capabilities of Kappa, program-
mers can achieve encapsulation of an active object’s private state and trust that
this state remains isolated from other active objects and can be accessed with-
out fear of data-races. This section overviews an extension to Kappa that allows

1An exception is active capabilities, which when parameterised over local data can still be safely
shared since the local data is going to be local to the active object itself.
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Figure 6.2. A graphical depiction of the program in Figure 6.3. The dashed lines denote
a bestowed capability to a User object, whose messages will be relayed to the owning
Server.

switching from protection based on isolation to protection based on delegation,
similar to the far references of E [106], AmbientTalk [140] and CoBoxes [126]
(cf., Section 2.2.2).

This extension is based on the observation that the existence of external refer-
ences to the private state of an active object is benign, as long as these references
are never dereferenced by another active object2. Active objects are allowed to
create such sharable references by bestowing local capabilities with activity (us-
ing a bestow operation). A bestowed capability behaves like an active capability
and can be aliased as such, but implicitly forwards all messages sent to it to the
active object that created it. This way, all interaction through the bestowed capa-
bility is synchronised in the mailbox of the owning actor, effectively serialising
all operations. Figure 6.2 shows a graphical depiction of the difference between
isolation and delegation.

Figure 6.3 shows a simplified program using bestowed capabilities. An active
Server object stores a Map of local User objects. When a new connection comes
in, the Server looks up the corresponding User and returns a new active object
that acts as the proxy for the client to interact with. The ClientProxy holds
a bestowed capability to the User object of the logged in user (note that the
User is actually a local object in the Server). When the ClientProxy receives
a request to change e.g., the name of the logged in user, it sends a message to
its bestowed User capability. Because this capability is bestowed, the message

2The same reasoning exists in Pony [124], where any reference can have an unbounded number
of tag aliases, which do not allow dereferencing (cf., Section 4.1.4)
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1 local class User
2 var name : String
3
4 def setName(newName : String) : unit
5 this.name = newName
6 end
7 ...
8 end
9

10 active class Server
11 val users : Map[String, User]
12
13 def newLogin(userId : String) : ClientProxy
14 val user = this.users.lookup(userId)
15 return new ClientProxy(bestow user)
16 end
17 ...
18 end
19
20 active class ClientProxy
21 val user : bestowed User
22
23 def init(user : bestowed User) : unit
24 this.user = user
25 end
26
27 def updateName(newName : String) : unit
28 this.user ! setName(newName)
29 end
30 ...
31 end

Figure 6.3. An example of a program using bestowed capabilities.

will be placed in the mailbox of the Server, where it will be handled eventu-
ally. In Figure 6.2, a ClientProxy has just sent a setName message through its
bestowed User capability.

The same program could have been written by extending the Server class with
methods for performing all possible operations on users, for example:

def setUserName(userId : String, newName : String) : unit
val user = this.users.lookup(userId)
user.setName(newName)

end
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With bestowed capabilities, this coupling can be avoided. The same kind of safe
relaxation of encapsulation is also possible for objects protected by locks; it is
safe for a locked capability to leak an internal object (i.e., a subord capability) if
accessing the leaked object requires taking the lock of its owner.

The details of bestowed capabilities is discussed in Paper IV, including variants
where the owner of a bestowed object can change during runtime. The paper
also presents constructs for grouping messages to guarantee that two (or more)
messages are performed back to back by the receiving active object, without
any other messages interleaved. This allows composing new atomic operations
from the existing methods of an active object, analogous to locking an object
over several method calls.

We have now seen the motivation for this work, surveyed the necessary
background, and examined the relation between our contributions and related

work. Following that, we looked briefly at Kappa, and touched on the
implementation of Kappa in the Encore programming language. Finally, we are

ready to give some concluding remarks.
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7. Concluding Remarks

This thesis contributes with novel programming language technology for con-
trolling concurrency in the presence of sharedmemory. Kappa’s vision is to take
the fear out of programming in the multi-core age, and allow even novices to
write concurrent programswith confidence. At the core of Kappa is the concept
of viewing references as capabilities which restrict the operations allowed on
the underlying object as well as the reference itself. The key to controlling con-
currency is controlling the creation and propagation of reference capabilities, to
ensure that no two concurrent processes, whether they are threads, actors, or
active objects, can ever hold aliasing references which provide unsynchronised
access to mutable state.

Concurrency control can be achieved in many different ways: by restricting
which operations are available through a reference, for example by only allow-
ing read operations or operations wrapped in locks; by restricting how a refer-
ence may be shared, for example by confining it to a single thread or encapsu-
lating it inside an object aggregate; or by making sure that there is never more
than one reference that gives access to the underlying object, for example by
banning aliasing altogether or by tracking which reference currently owns the
object. As this thesis has shown, all of these things can be expressed naturally
using the capability abstraction.

Reference capabilities, as described in this thesis, provide a versatile toolkit for
developing programming language technologies for the multi-core era. With
a small number of primitives, they are capable of expressing a wide variety of
intentions for how references may be—or are intended to be—used. Allowing
the placement of annotations to vary between declaration-site and use-site in-
troduces a “sliding scale” which balances reusability and freedom of implemen-
tation. The closer to declaration-site an annotation is, the lower the syntactic
overhead and implementation restriction, but also the less flexible the program
is. Allowing a single program to combine both approaches is both powerful and
sensible. Future work involves extending the range of the sliding scale further
by allowing programmers to defer annotation until object creation.
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Kappa-style reference capabilities provide a means of constructing and decon-
structing objects in ways tied to object-oriented, trait-based reuse. The key
cost for the programmer to allow a piece of code to be used across different
concurrency scenarios is giving up the leaking of this to outside of the current
aggregate. Where such leakage is warranted, reference capabilities will allow it
(where sound), and constrain the versatility of that piece of code accordingly.
This last note is important, as it highlights how reference capabilities differenti-
ate code that involves sharing from code that does not. The annotation clarifies
how a programmer must reason about correctness about that particular code,
and statically prevents code to be used in ways which might lead to data-races.

An important direction of future work is defining the semantics of new modes,
aswell as further exploring the combination of capabilitieswith differentmodes.
For example, the active mode opens up for some interesting combinations,
where parts of an active object could be interactedwith synchronously, orwhere
acquiring a lock could provide prioritised access to an active object. Com-
posing non-overlapping active capabilities naturally expresses an active object
where several messages can be safely processed in parallel. Further directions
for future work is discussed in the individual papers.

On the hardware-side, we entered the age of ubiquitous parallelism in the early
2000s, but so far, software has been lagging behind. With the help of reference
capabilities, we hope to have opened the door enough for object-oriented pro-
gramming to take the plunge.

The rest of the thesis consists of Papers I–V, which have all been briefly
summarised in previous chapters. The appendix after the references contains

some notes for the reader of these papers.
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Appendix A.
Notes and Errata

• In Paper I, the well-formedness rule for classes (WF-CLASS) is missing a
premise for checking that traits with manifest modes are not included
together with traits of different modes. The missing premise should read:

∀ (k1T1),(k2T2) ∈ K . (k1trait T⟨_⟩{__} ∈ P)⇒ k1 = k2

• In Paper I, appendices §D and §E define the target calculus κF , which is
an extended version of OOlong, presented in PaperV. There is therefore
some overlap between the two papers. Thepresentation in the latter paper
is a better starting point than the appendices.

• Paper III presents LOLCAT as a stand-alone type system in a procedural
setting with structs, rather than a class-based object-oriented setting as in
Chapter 5. While the implementation follows the style seen in Chapter 5,
the system is just as applicable in a procedural setting.

• Papers II and V have been reformated from double to single column to
make reading the printed thesis easier. See the references for the original
versions.
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