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ABSTRACT The distribution of fitness effects (DFE) encompasses the fraction of deleterious, neutral, and beneficial mutations. It
conditions the evolutionary trajectory of populations, as well as the rate of adaptive molecular evolution (a). Inferring DFE and a from
patterns of polymorphism, as given through the site frequency spectrum (SFS) and divergence data, has been a longstanding goal of
evolutionary genetics. A widespread assumption shared by previous inference methods is that beneficial mutations only contribute
negligibly to the polymorphism data. Hence, a DFE comprising only deleterious mutations tends to be estimated from SFS data, and a is
then predicted by contrasting the SFS with divergence data from an outgroup. We develop a hierarchical probabilistic framework that
extends previous methods to infer DFE and a from polymorphism data alone. We use extensive simulations to examine the perfor-
mance of our method. While an outgroup is still needed to obtain an unfolded SFS, we show that both a DFE, comprising both
deleterious and beneficial mutations, and a can be inferred without using divergence data. We also show that not accounting for the
contribution of beneficial mutations to polymorphism data leads to substantially biased estimates of the DFE and a. We compare
our framework with one of the most widely used inference methods available and apply it on a recently published chimpanzee exome
data set.
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random field

NEW mutations are the ultimate source of heritable var-
iation. Their fitness properties determine the possible

evolutionary trajectories that a population can follow
(Bataillon and Bailey 2014). For instance, supply rate and
fitness effects of beneficial mutations determine the expected
rate of adaptation of a population (Lourenço et al. 2011),
while the proportion of deleterious mutations conditions
the expected drift load of a population (Kimura et al.
1963). Even a few beneficial mutations with large effects

can quickly move a population toward its fitness optimum,
while the fitness can be reduced through the accumulation of
multiple deleterious mutations with small effects that occa-
sionally escape selection. Genome-wide rates and effects of
new mutations influence, among others, the evolutionary
advantage of sex (Otto and Lenormand 2002), the expected
degree of parallel evolution (Chevin et al. 2010b), the main-
tenance of variation on quantitative traits (Hill 2010), and
the evolutionary potential and capacity of populations to re-
spond to novel environments (Chevin et al. 2010a; Hoffmann
and Sgrò 2011).

Effects of newmutations onfitness are typicallymodeledas
independent draws from an underlying distribution of fitness
effects (DFE)which spans deleterious, neutral, and beneficial
mutations. There has been considerable focus on estimating
the DFE of new nonsynonymous mutations to learn more
about factors governing the rate of adaptive molecular
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evolution, commonly defined as the proportion of fixed adap-
tive mutations among all nonsynonymous substitutions,
denoted a. Therefore, inferring the DFE, both from experi-
mental (Halligan and Keightley 2009; Bataillon et al. 2011;
Sousa et al. 2012; Jacquier et al. 2013; Bataillon and Bailey
2014), and from polymorphism and divergence data (Eyre-
Walker et al. 2006; Keightley and Eyre-Walker 2007, 2012;
Boyko et al. 2008; Eyre-Walker and Keightley 2009; Galtier
2016), has been a long-standing goal of evolutionary
genetics.

The McDonald–Kreitman test (McDonald et al. 1991) was
one of the first attempts to use DNA data to measure the
amount of selection experienced by genes. It compares the
amount of variation within a species (ingroup) to the varia-
tion between species. The test contrasts the amount of vari-
ation found at synonymous and nonsynonymous sites, where
synonymous sites are assumed to be neutrally evolving.
Smith and Eyre-Walker (2002) further developed this test
to infer a and the amount of purifying selection, defined as
the proportion of strongly deleteriousmutations [see also Fay
andWu (2000) andWelch (2006) for a maximum-likelihood

approach]. Building on the Poisson random field (PRF)
theory (Sawyer and Hartl 1992; Sethupathy andHannenhalli
2008) and arising as extensions to the classic McDonald–
Kreitman test, a series of methods have been developed to
not only characterize the amount of selection, but also the
DFE (Bustamante et al. 2003; Piganeau and Eyre-Walker
2003; Eyre-Walker et al. 2006; Keightley and Eyre-Walker
2007, 2010; Boyko et al. 2008; Gronau et al. 2013;
Kousathanas and Keightley 2013; Racimo and Schraiber
2014), using it as a building block to estimate a (Loewe
et al. 2006; Eyre-Walker and Keightley 2009; Schneider
et al. 2011; Keightley and Eyre-Walker 2012; Galtier 2016).

Assuming that sites are independent, new mutations arise
as a Poisson process and always occur at new sites, these
methods then either model the observed variation using a
Poisson distribution or a binomial distribution conditioned on
the total number of observed mutations (as in Keightley and
Eyre-Walker 2007). Patterns of nucleotide variation within
the ingroup can be summarized via the polymorphism counts
occurring in each frequency class and form the site frequency
spectrum (SFS), while variation between the ingroup and

Figure 1 Schematic of data and the hierarchical model assumed in the inference method. Throughout the figure, gray and blue fill indicates sites that
are assumed to be evolving neutrally or potentially under selection, respectively; while red and blue outlines indicates polymorphism and divergence
data (expectations), respectively. (A) The history and coalescent tree of two populations: the ingroup (on the left side), for which polymorphism data are
collected, and the outgroup (on the right side), for which divergence counts are obtained. A total of n sequences are sampled from the ingroup (marked
in red), with the MRCA marked with a red circle. The MRCA of the whole ingroup population is marked with a gray circle. From the outgroup we
typically have access to one sequence (marked in blue). The total evolutionary time between the MRCA of the sample (red circle) and the sampled
outgroup sequence can be divided into the time from the MRCA of the sample to the MRCA of the whole ingroup population (blue dot–dash line) and
T, the time from the ingroup MRCA to the sampled outgroup sequence (blue solid line). (B) Observed SFS and divergence counts [pzðiÞ and dz; with
z 2 fneut; selg and 1# i,n]. (C) Expected counts [E½PzðiÞ� and E½Dz �; with z 2 fneut; selg and 1# i, n], model parameters, and relations between
parameters, expectations, and data. The dashed gray and blue Y’s connect observed counts from (B) with matching expected counts from (C).
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outgroup is measured by fixed mutations as divergence
counts (Figure 1). The means of each entry of the SFS and
divergence counts are calculated as a function of the DFE and
other parameters. Selection is assumed to be weak (s � 1;
but note that 4Nes can still be large) and the DFE to be con-
stant in time and the same in both the ingroup and outgroup.

To disentangle selection from demography and other
forces (Nielsen 2005), the sequenced sites are divided into
two classes of neutrally evolving and selected sites. The DFE
is then inferred by contrasting the SFS counts for the neutral
and selected sites, by assuming that demography and other
forces equally affect the two classes.

Ideally, a full demographicmodel should be jointly inferred
with the DFE parameters from the data. This can be compu-
tationally very demanding and instead a simplified demog-
raphy can be often assumed, where a few population size
changes are allowed (Keightley and Eyre-Walker 2007; Eyre-
Walker and Keightley 2009; Kousathanas and Keightley
2013), or a somewhat more complex model is inferred
(Boyko et al. 2008). Alternatively, the explicit inference
of demography can be avoided altogether by introducing a
series of nuisance parameters that account for demographic
and other effects. These parameters account for distortions of
the polymorphism counts relative to neutral expectations in
an equilibrium Wright–Fisher population (Eyre-Walker et al.
2006; Galtier 2016). The approach of Eyre-Walker et al.
(2006) can potentially be more robust for estimating a DFE
than putting a lot of faith in a simplified demographic
scenario, especially when demography cannot be simply
summarized by a few changes in population size. However,
this approach will only be accurate for modeling the SFS in
the limit of weak selection, as neutral and selected sites will
increasingly have experienced different histories.

The proportion of adaptive substitutions, a, is typically
obtained as a ratio between an estimate of the number of
adaptive substitutions and the observed selected divergence
counts (Loewe et al. 2006; Eyre-Walker and Keightley 2009;
Keightley and Eyre-Walker 2012; Galtier 2016). The number
of adaptive substitutions is calculated by subtracting the
expected counts accrued by fixation of deleterious and neu-
tral mutations from the observed divergence counts at se-
lected sites. These expected counts are calculated from an
inferred DFE of deleterious mutations (henceforth denoted
deleterious DFE). The deleterious DFE is most often inferred
from the SFS data under the assumption that all mutations
at selected sites are deleterious. This approach for estimating
a heavily relies on the assumption that the ingroup and out-
group species share the same DFE, or more accurately, the
same distribution of scaled selection coefficients S ¼ 4Nes:
Unfortunately, this assumption of invariance might not often
be met in practice, because the DFE might change, or simply
because it is unlikely that both the ingroup and outgroup
lineages evolved with the same population size.

There has been great focus on developing methods in-
ferring a deleterious DFE from polymorphism data alone
(Eyre-Walker et al. 2006; Keightley and Eyre-Walker 2007;

Kousathanas and Keightley 2013; Racimo and Schraiber
2014). These methods rely on a crucial assumption: beneficial
mutations contribute negligibly to polymorphism and are not
modeled. The reasoning behind this assumption is that
strongly selected beneficial mutations will fix very quickly
and that “at most an advantageous mutation will contribute
twice as much heterozygosity during its lifetime as a neutral
variant” (Smith and Eyre-Walker 2002), which is backed by
one study (Keightley and Eyre-Walker 2010). We note that
there is no sharp difference in the expected contribution to
SFS and divergence counts between beneficial and deleteri-
ous mutations when their selection coefficients are small
(jNesj, 1) (Charlesworth and Eyre-Walker 2007; Eyre-
Walker and Keightley 2007). Hence, there is scope for weakly
selected deleterious and beneficial mutations to contribute to
both polymorphism and divergence data.

We develop a hierarchical probabilistic model that com-
bines and extends previous methods, and that can infer both
the full DFE and a from polymorphism data alone. While
some DFE methods do model a full DFE encompassing both
deleterious and beneficial mutations (Bustamante et al.
2003; Piganeau and Eyre-Walker 2003; Boyko et al. 2008;
Schneider et al. 2011; Gronau et al. 2013; Galtier 2016), the
majority of them do not estimate a [but see Schneider et al.
(2011), who estimate related quantities]. We note that an
outgroup is still needed to obtain an unfolded SFS, but our
inference method does not have to assume invariance of the
DFE in the ingroup and outgroup lineages. We show that the
assumption that beneficial mutations make negligible contri-
bution to SFS data are unfounded and that a full DFE can
also be inferred from polymorphism data alone. Using the
estimated full DFE, we show how a can be inferred without
relying on divergence data. Performing inference on poly-
morphism data alone is desirable when assumptions regard-
ing outgroup evolution (for example, invariance of the DFE)
are unlikely to be met. We also demonstrate that when the
contribution of beneficial mutations to SFS data is ignored,
both the inferred deleterious DFE and a can be heavily
biased. This point was also made by Messer and Petrov
(2013) in the context of studies relying onMcDonald–Kreitman
tests. We compare our method and illustrate the resulting bias
using the most widely used inference method, dfe-alpha
(Keightley and Eyre-Walker 2007, 2012; Eyre-Walker and
Keightley 2009; Schneider et al. 2011). We also investigate
the impact of misidentifying the ancestral state on infer-
ence, and illustrate our method by reanalyzing a recently
published exome data set, containing both polymorphism
and divergence counts for three chimpanzee subspecies
(Bataillon et al. 2015).

Method

Hierarchical Model for Inference of DFE and a

BasedonPRF theory,webuild ahierarchicalmodel to infer the
DFE from polymorphism (SFS) and divergence counts. Our
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modelcombinesandextends features fromdifferentapproaches.
Figure 1 shows a schematic of the model. We offer below a
summaryof theassumptions and theoryunderlyingour approach.
Further details on the likelihood function, its implementation, and
numerical optimization can be found in the Supplemental
Material, File S1.

Notations and assumptions

The data are divided into sites that are assumed to be either
evolving neutrally (henceforthmarked by the subscript neut),
or those bearing mutations with fitness consequences for
which the DFE is estimated (henceforth marked by the sub-
script sel). Let the observed SFS be given through pzðiÞ;where
pzðiÞ is the count of polymorphic sites that contain the derived
allele i times (1# i, n) and lz the total number of sites sur-
veyed, where n is the sample size and z 2 fneut; selg: We
denote by PzðiÞ the corresponding random variable per site,
defined as the random number of sites that contain the de-
rived allele i times, normalized by lz: From PRF theory, pzðiÞ
follows a Poisson distribution with mean lzE½PzðiÞju;f�;
where u ¼ 4Nem is the scaled mutation rate per site per gen-
eration, and f is a parametric DFE (Figure 1, B and C). A
specific example of f will be given in the Results and Discus-
sion section. We assume additive selection and we define the
selection coefficient s as the difference in fitness between the
heterozygote for the derived allele and the homozygote for
the ancestral allele, leading to fitness of 1, 1þ s; and 1þ 2s
for the ancestral homozygote, heterozygote, and derived
homozygote genotypes, respectively.

Expected SFS

From PRF theory (Sawyer and Hartl 1992; Sethupathy and
Hannenhalli 2008),

E½PneutðiÞju� ¼ u

i
;

E½PselðiÞju; S� ¼ u

Z 1

0
Bði; n; xÞHðS; xÞdx;

(1)

where

Bði; n; xÞ ¼
�
n
i

�
xið12xÞn2i

is the binomial probability of observing i derived alleles in a
sample of size n when the true allele frequency is x, and

HðS; xÞ ¼ 12 e2Sð12xÞ

xð12 xÞð12 e2SÞ:

Note that due to our scaling of the mutation rate, Hðs; xÞ is
proportional (with a factor of 1=2) to the mean time a new
semidominant mutation of scaled selection coefficient
S ¼ 4Nes spends between x and x þ   dx (Wright 1938).
Figure 2 shows the expectations from Equation 1 as a
function of S.

To obtain E½PselðiÞju;f�; we integrate over the DFE,

E½PselðiÞju;f� ¼
Z N

2N
E½PselðiÞju; S�fðSÞdS: (2)

Relative to the expected SFS of independent sites under a
Wright–Fisher constant population (Equations 1 and 2), the
observed SFS can be distorted due to demography, ascertain-
ment bias, nonrandom sampling, and linkage.We account for
such distortions that affect both the neutral and selected sites
to a similar extent by using the approach of Eyre-Walker et al.
(2006) and introduce nuisance parameters ri; 1# i, n; that
scale the expected SFS, for z 2 fneut; selg;

E½PzðiÞju; ri;f� ¼ ri   E½PzðiÞju;f�: (3)

To avoid identifiability issues, we set r1 ¼ 1:

Full DFE and divergence counts

Unlike methods that infer only a strictly deleterious DFE, we
can incorporate a full DFE that includes both deleterious and
beneficial mutations. We optionally model divergence counts
dz as a Poisson distribution with mean ldzE½Dzjl; u;f�. Here, ldz
is the number of sites used for divergence counts, and can
possibly be different from lz: We have that

E½Dneutjl� ¼ l;

E½Dseljl; S� ¼ l
S

12 e2S;
(4)

where l ¼ Tu is a composite divergence parameter that ac-
counts for the number of neutral mutations that go to fixation
during the divergence time T from the most recent common
ancestor (MRCA) of the ingroup population to the outgroup
(blue full line in Figure 1A). The term S=ð12 e2SÞ accounts
for the fixation of a mutation with scaled selection coefficient
S, and can be obtained as limx/1HðS; xÞ: Figure 2 shows the
expectations for the divergence counts at selected sites from
Equation 4 as a function of S.

As divergence counts are calculated by comparing the
outgroup sequence to the sample of sequences from the
ingroup, polymorphism may be misattributed as divergence,
i.e., mutations that are polymorphic in the ingroup popula-
tion but fixed in the sample are counted as divergence. This is
the case for mutations that occur between the MRCAs of
the sample and ingroup (blue dot–dash line in Figure 1A).
Misattributed polymorphism can lead to biased inference of a
(Keightley and Eyre-Walker 2012). To account for this issue,

Figure 2 Expected counts per site as a function of S, for u ¼ 0:001 and
l ¼ 0:005:
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we adjust the above means to also incorporate the misattrib-
uted polymorphism by increasing the expectations with
the contributions coming from mutations present in all
n sampled individuals,

E½Dneutjl; u; rn� ¼ E½Dneutjl� þ urn
1
n
;

E½Dseljl; u; rn; S� ¼ E½Dseljl; S� þ urn
Z 1

0
Bðn; n; xÞHðS; xÞdx:

(5)

Assuming that the ingroup and outgroup share the sameDFE,
we integrate over it to obtain

E½Dseljl; u; rn;f� ¼
Z N

2N
E½Dseljl; u; rn; S�fðSÞdS: (6)

Unfolded SFS and ancestral misidentification

When only a deleterious DFE is inferred, the folded SFS is
typically used, where only sums of the form pzðiÞ þ pzðn2 iÞ
are modeled. This is sufficient for inference of a deleterious
DFE (Keightley and Eyre-Walker 2007). However, the un-
folded SFS contains valuable information for inference of
the full DFE, as beneficial mutations are expected to be pre-
sent in high frequencies (Fay and Wu 2000; Durrett 2008).
To obtain an unfolded SFS, the ancestral state needs to be
identified, and this is prone to polarization errors (Hernandez
et al. 2007). Error rates can be reduced by relying on more
than one outgroup population, as described by Keightley
et al. (2016). Even for potentially well-identified ancestral
states, polarization errors can remain, for instance at hyper-
mutable CpG sites in mammals. We use the approach of
Williamson et al. (2005), Boyko et al. (2008), and Glémin
et al. (2015), which has proved efficient to correct for this
problem (Glémin et al. 2015). We model the mean of PzðiÞ;
z 2 fneut; selg; as a mixture of sites whose ancestral states
were correctly identified (with probability 12 e), or misiden-
tified (with probability e),

E½PzðiÞju; ri; e;f� ¼ ð12 eÞE½PzðiÞju; ri;f�
þ eE½Pzðn2 iÞju; ri;f�: (7)

Mutation variability

There is substantial evidence that both substitution and mu-
tation rates vary along the genome (Golding 1983; Yang
1996; Arndt et al. 2005; Hodgkinson and Eyre-Walker
2011; Francioli et al. 2015), with a long tradition of modeling
this variability in phylogenetic inferences as a gamma distri-
bution (Golding 1983; Yang 1996). A few DFE inference
methods allow for mutation rates to vary in a nonparametric
fashion (Bustamante et al. 2003; Gronau et al. 2013). We
model mutation variability by assuming that mutation rates
follow a gamma distribution with mean u and shape a. This is
motivated by the phylogenetic approaches, but also by math-
ematical convenience: if the mean of a Poisson distribution

follows a gamma distribution, the resulting distribution is a
negative binomial. We assume that the data are divided into
m nonoverlapping fragments of lengths l jneut þ l jsel; 1# j#m;

for each fragment j, we have the SFS p j
zðiÞ; 1# i,n:We can

also include an additionalmd fragments of lengths l d; jneut þ l d; jsel
for which we have the divergence counts, d j

z:We assume that
each fragment has a constant mutation rate u, and mutation
rates can vary between fragments. Given the mutation
rate uj of the fragment j, then p j

zðiÞ and d j
z follow the

Poisson distributions with means l jzE½PzðiÞjuj; ri; e;f� and
l d; jz E½Dzjl; uj; rn;f�; given by Equations 1–6. Integrating
over the distribution of mutation rates, we obtain that p j

zðiÞ
and d j

z have a negative binomial distribution with shape a and
means l jzE½PzðiÞju; ri; e;f� and l d; jz E½Dzjl; u; rn;f�; respectively.
Inferring a using divergence or polymorphism
data alone

Once the DFE is estimated, a can be calculated from the
observed divergence counts as follows (Eyre-Walker and
Keightley 2009):

a �
dsel 2

l dsel
l dneut

dneut
Z 0

2N

S
12 e2S fðSÞdS

dsel
; (8)

where the numerator represents the estimated number of
adaptive substitutions, obtained by subtracting the expected
deleterious and neutral substitutions from the total observed
divergence counts at selected sites. Keightley and Eyre-Walker
(2012) extended Equation 8 to account formisattributed poly-
morphism.We correct for it by removing the expected number
of mutations that are in fact polymorphic from dsel and dneut:
These expectations can be readily obtained from Equation 5 by
setting l ¼ 0: The new estimate ofa is obtained as in Equation
8, where dsel and dneut are replaced with the readjusted di-
vergence counts d*sel and d*neut given by

d*neut ¼ dneut 2 ldneutE½Dneutjl ¼ 0; u; rn�;

d*sel ¼ dsel2 ldselE½Dseljl ¼ 0; u; rn;f�:
(9)

This approach to calculate a relies heavily on the assumption
that the ingroup and outgroup share the same scaled DFE.
However, if one has access to an estimated full DFE purely
from polymorphism data, a can still be estimated by replac-
ing the observed divergence counts with the expected counts
from Equation 4. As lwill cancel out in the resulting fraction,
a can be obtained by setting l ¼ 1: Then,

a �

Z N

0
E½Dseljl ¼ 1; S�fðSÞdS

Z N

2N
E½Dseljl ¼ 1; S�fðSÞdS

: (10)

In the following, we refer to the two above estimates of a as
adiv and adfe; respectively, to distinguishmore clearly the type
of information used.
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Likelihood estimation and comparison of models

The framework described above allows maximum-likelihood
estimation of both evolutionary (mutation rates and DFE pa-
rameters) and nuisance parameters, as well as the error in the
ancestral states, e. Details about the implementation and opti-
mization of the likelihood function are given in File S1. Note
that in our implementation, likelihood ratio tests (LRTs) can be
used to rigorously test whether polymorphism data provide
evidence for a full DFE, or if a strictly deleterious DFE is suffi-
cient. This framework also allows for deciding whether includ-
ing nuisance parameters and/or ancestral error provides a
better fit to the data. The reported P-values for the LRT are
obtained by assuming that the likelihood ratio under the null
hypothesis (reducedmodel is correct) follows a x2 distribution.

Data availability

The source code implementing the maximum-likelihood
framework presented here is freely available from https://
github.com/paula-tataru/polyDFE/.

Results and Discussion

To investigate the statistical performance of our method to
infer the DFE, a, and test hypothesis regarding the contribu-
tion of beneficial mutations to patterns of polymorphism,
we performed extensive simulations using SFS_CODE
(Hernandez 2008). We generated exome-like data, where
a 10.8-Mb genetic segment was simulated per data set,
containing multiple independent fragments (typically of
216 sites) for which recombination took place. We sampled
20 sequences (10 diploid individuals) from the ingroup,
and one sequence from the outgroup. We explored a wide
range of simulated DFEs (12 full and 5 deleterious, Table 1),
chosen such that the simulated a had one of four possible

values (0; 20; 50, and 80%; Figure 3A). Most simulations
were performed using a constant population size and without
error in the identification of the ancestral state. Results are
shown for this case unless stated otherwise. These assumptions
were later relaxed. For each considered simulation scenario
(one given DFE, demographic, linkage, and misidentification
of the ancestral state), we simulated 100 replicate data sets.
For more details on the simulated data, see File S1.

The general shape of the DFE is not agreed upon (Welch
et al. 2008; Bataillon and Bailey 2014). The DFE has been
modeled using a wide range of functional continuous forms
(Boyko et al. 2008; Kousathanas and Keightley 2013; Galtier
2016), but also as a discrete distribution (Keightley and Eyre-
Walker 2010; Gronau et al. 2013; Kousathanas and Keightley
2013). We use a DFE consisting of a mixture between gamma
and exponential distributions, which model deleterious and
beneficial mutations, respectively. With probability 12 pb; a
newmutation is deleterious and its selection coefficient comes
from a reflected gamma distribution with mean Sd ,0 and
shape b; while with probability pb; a new mutation is benefi-
cial and its selection coefficient comes from an exponential
distribution with mean Sb .0 (Figure 3A). We do not explore
alternative parametric DFE families, but they could easily be
incorporated within this framework. For such studies see
Welch et al. (2008) and Kousathanas and Keightley (2013).

We inferred the DFE and a parameters using three different
models: a full DFE was inferred from both polymorphism and
divergencedata, a full DFEwas inferred frompolymorphismdata
alone, or a deleterious-only DFE was inferred from polymor-
phism data alone. We calculated adfe and adiv from the inferred
DFEs; adfe is always 0 for inference assuming only a deleterious
DFE, so here we only calculated adiv: Distortion parameters r
were always estimated, while the ancestral misidentification er-
ror e was fixed at 0, unless otherwise specified.

Table 1 Simulated DFEs

DFE type DFE abbreviation Sd b pb Sb a

Full DFEs Low a, low Sd LALSD 210 0.4 0.02 4 0.21
Low a, low b LALB 2400 0.15 0.02 4 0.21
Low a, low pb LALPB 2400 0.4 0.005 4 0.21
Low a, low Sb LALSB 2400 0.4 0.02 0.1 0.22
Medium a, medium Sd MAMSD 2400 0.4 0.02 4 0.53
Medium a, low pb MALPB 2400 0.65 0.005 4 0.50
Medium a, low Sb MALSB 2400 0.4 0.07 0.1 0.50
Medium a, high Sb MAHSB 2400 0.4 0.005 16 0.51
High a, high Sd HAHSD 210,000 0.4 0.02 4 0.80
High a, high b HAHB 2400 0.65 0.02 4 0.80
High a, high pb HAHPB 2400 0.4 0.07 4 0.81
High a, high Sb HAHSB 2400 0.4 0.02 16 0.81
High Sb HSB 2400 0.4 0.02 800 0.99

Deleterious DFEs Low Sd DelLSD 210 0.4 0 — 0
Low b DelLB 2400 0.15 0 — 0
Medium Sd DelMSD 2400 0.4 0 — 0
High Sd DelHSD 210,000 0.4 0 — 0
High b DelHB 2400 0.65 0 — 0

The DFE consists of a mixture between gamma and exponential distributions: a new mutation is deleterious with probability 12 pb; and has a selection coefficient drawn
from a reflected gamma distribution with mean Sd , 0 and shape b; a new mutation is beneficial with probability pb; and has a selection coefficient drawn from an
exponential distribution with mean Sb . 0:
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Reporting inference quality

We report inference performance using log2ðestim=simÞ on a
log-modulus scale. Here, estim is the estimated value, while
sim is the simulated value. Unlike the relative error, defined
as 12 ðestim=simÞ; this log ratio gives equal weight to both
overestimation and underestimation of the parameters. For
example, the log ratios of 1 and 21 correspond to the esti-
mated value being double or half the simulated value, re-
spectively. When sim equals estim, the ratio is equal to 0.

Where applicable, we report log2ðestim=simÞ for the
DFE parameters, a and e in File S1. The remaining param-
eters (u; a, l, ri) are also estimated but are not of interest
here, and we do not investigate how well they are recovered
(but see File S1 for details). For the sake of clarity, the figures
in the main text do not cover all simulated DFEs, but illustrate
the main results and overall trends. Where applicable, we also
report in File S1 the P-values for different LRTs.

Inference of deleterious DFE

Using simulations that did not contain any beneficial muta-
tions in the polymorphism data, we investigated howwell we
can infer the deleterious DFE and if our method can recover
the fact that all polymorphic mutations are deleterious. We
observed that the twoparameters determining thedeleterious
DFE, Sd and b, and a are accurately inferred when only a
deleterious DFE was estimated (Figure 4A and Figure S1 in
File S1). When, instead, a full DFE was inferred from the

polymorphism data alone, the parameters showed different
amounts of bias (Figure 4A and Figure S1 in File S1). When
using an LRT to compare the relative goodness of fit on sim-
ulated data, virtually all data sets rejected the full DFE model
in favor of the reduced model (Figure S2 in File S1). This
indicates that our method can accurately detect if there is no
empirical evidence for the presence of beneficial mutations in
the SFS. So in principle, one can perform estimation under
both the full and deleterious DFE models and use the LRT to
decide which model is most appropriate for the data.

Inference of full DFE

From the expected contribution of mutations to polymor-
phism and divergence data, as a function of S (Figure 2), it
is evident that if beneficial mutations occur at any apprecia-
ble rate, they should have a nonnegligible impact in the poly-
morphism data. This suggests that it should be possible to
infer the full DFE from polymorphism data alone. We inves-
tigated this using data generated under a full DFE. As
expected, the deleterious DFE parameters were inferred
equally well, regardless of whether the divergence data were
used or not (Figure S3 in File S1). The variance of the esti-
mates seems to be somewhat larger when divergence data
are not used, but this is most likely due to the inference using
less data. The parameters of the beneficial part of the DFE
and a were inferred with different levels of accuracy (Figure
4B and Figure S3 in File S1). As beneficial mutations become

Figure 3 Example of simulated and inferred mix-
ture of gamma and exponential DFEs. (A) Three of
the simulated DFEs (Table 1) with different a values
(proportion of beneficial substitutions). The DFEs are
parameterized by Sd (mean selection coefficient of
deleterious mutations), b (shape of distribution of
deleterious DFE), pb (proportion of beneficial muta-
tions), and Sb (mean selection coefficient of benefi-
cial mutations). The inset shows a zoom-in of the
beneficial part of the DFE. (B) Simulated discretized
DFE (corresponding to MAMSD from Table 1), to-
gether with the mean (over the 100 replicates)
inferred discretized DFE using both polymorphism
and divergence data and only polymorphism data,
where a full DFE and a deleterious DFE was inferred.
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more commonor of stronger effects, they dominate the divergence
counts andalsomake substantial contribution toSFScounts,which
alone can allow reliable estimation of the beneficial fraction of the
DFE and a. For a � 20%; the use of divergence data provides
more accurate estimates thanwhen relying on polymorphismdata
alone. This could be explained by the fact that the polymorphism
dataaredominatedbydeleteriousmutationsand it ismoredifficult
to tell apart the amount of beneficial selection from polymorphism
data alone. However, as a increases, the differences in perfor-
mance between the inference with and without divergence
diminishes, strongly indicating that divergence data are not
necessarily needed for accurate inference.

Similar to Schneider et al. (2011), we observe a strong
negative correlation between the proportion of beneficial

mutations pb and their scaled selection coefficient Sb (Figure
S4 in File S1). This illustrates the fact that pb and Sb are
difficult to estimate separately, but their product, which
largely determines a, is more accurately estimated. This
can be seen in Figure S3 in File S1, where even though pb
and Sb might be slightly biased, a is more accurately inferred.
Schneider et al. (2011) reported that the estimation of pb and
Sb improves as more sites are included. We used a fixed num-
ber of sites in simulations, but we do observe that pb; Sb; and
a are better estimated as a increases.

When inferring a full DFE, we can calculate both adiv and
adfe; which should both be good predictors of the true simu-
lated a. We generally found very good correlation between
the two estimated values (Figure S5 in File S1).

Figure 4 Inference of a (proportion of beneficial substitutions) and DFE parameters: Sd (mean selection coefficient of deleterious mutations), b (shape
of distribution of deleterious DFE), pb (proportion of beneficial mutations), and Sb (mean selection coefficient of beneficial mutations). (A) Quality for
inference performed on polymorphism data alone, for three simulated deleterious DFEs (Table 1) with different Sd’s. The DFE parameters are inferred
using only polymorphism data assuming a full and deleterious DFE. (B) Quality for inference performed on polymorphism and divergence data, for three
simulated DFEs with different a values (Table 1). The DFEs differ only in the simulated value of Sd : The DFE parameters are inferred using polymorphism
and divergence or only polymorphism data. (C) Quality for inference performed on polymorphism data alone, for three simulated DFEs with different
a values (Table 1). The DFEs differ only in the simulated value of Sb: Only polymorphism data are used and the DFE parameters are inferred assuming
a full DFE, where e is set to zero and is not estimated, and a deleterious DFE, where e is set to zero and is not estimated, or is estimated. The data
were simulated with e ¼ 0:
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We note here that Schneider et al. (2011) is the only
method that we are aware of that can estimate both a full
DFE and a from polymorphism data alone, though the authors
did not investigate the power to infer a, but rather the product
pbSb; which is taken as a proxy for a. Additionally, they did
not consider different deleterious DFEs in their simulations.
Our simulated DFEs were chosen such that they cover cases
with the same simulated pb and Sb; but generate different a
values. The differences in a can be driven by the amount of
beneficial mutations, but also by the intensity of purifying
selection, as reflected in the properties of the deleterious
fraction of the DFE. These simulations revealed that the
amount and strength of positive selection is not the only
determinant of how accurately pb and Sb are inferred. For
example, the results in Figure 4B are given for simulated
DFEs that differ only in the value of Sd and we find a clear
difference in the inference performance.

Biases arising from not inferring the full DFE

Divergence data are clearly not necessary for reliably estimat-
ing the full DFE. This raises the question: what happens when
inferencemethods ignore thepresenceofbeneficialmutations
in the polymorphism data? Using simulated data generated
assuming full DFEs, we performed inference only on poly-
morphism datawhere we inferred either a full DFE or under a
reduced model restricted to only a deleterious DFE. The re-
duced model corresponds to the common approach for empir-
ical studies of DFE from population genomics data, which
tends to assume an exclusively deleterious DFE (Slotte et al.
2010; Strasburg et al. 2011; Halligan et al. 2013; Racimo
and Schraiber 2014; Arunkumar et al. 2015; Bataillon et al.
2015; Charlesworth 2015; Castellano et al. 2016; Harris and
Nielsen 2016), even thoughmethods exist to infer a full DFE
from the SFS data (Schneider et al. 2011).

As a increased, the inferred Sd and b were increasingly
biased (Figure 4C and Figure S6 in File S1). The mean Sd
was estimated to be more negative, while the shape b was
estimated to be closer to 0: the inferred deleterious DFEs were
getting much more leptokurtic than the parametric DFE used
for simulations. This resulted in inferringDFEswithmore prob-
ability mass accumulating close to zero. A straightforward in-
terpretation is that the inference method attempted to fit the
SFS counts, contributed by theweakly beneficial mutations, by
fitting a DFE that comprised a sizable amount of weakly dele-
terious mutations (the best proxy for beneficial mutations). A
comparison of the simulated and inferred discretized DFEs
(Figure 3B and Figure S7 in File S1) illustrates this point: the
inference with only deleterious DFE overestimated the amount
of mutations which experience weak negative selection [simu-
lated DFE, 0.07; deleterious DFE, 0.11 in the range ð21; 0Þ].

We can test for the presence of beneficial mutations in the
polymorphism data by comparing the inferences with a full or
deleterious DFE using an LRT (Figure S8 in File S1). We
observed that there exists a stronger preference for the full
DFE model for larger a. Even for relatively large a, if the
mean effect of beneficial selection was very low (Figure S8

in File S1, MALSB where Sb ¼ 0:1), the LRT indicated that
there were no beneficial mutations in the polymorphism
data. These mutations can pass as weakly deleterious muta-
tions when fitting the data. When a deleterious-only DFE is
inferred, the LRT favored the model with e 6¼ 0: This is be-
cause e can partly mimic expected patterns contributed by
weakly beneficial mutations to polymorphism data.

Inferring only a deleterious DFE also leads to a consistent
bias in a. This bias is not well correlated with simulated a

values, but it is apparent that a higher a leads to a smaller
bias (Figure S6 in File S1). To obtain a from a deleterious
DFE, we need to rely on the divergence data. Yet, for large a,
the signal of positive selection in the divergence data are
sufficiently strong that it overrides the bias in Sd and b, so a

is estimated more accurately.
The assumption of negligible contribution of beneficial

mutations to SFS counts can be traced back to Smith and
Eyre-Walker (2002). To support the claim, the authors stated
that “if advantageous mutations, with an advantage of
Nes ¼ 25 occur at 100th the rate of neutral mutations, they
will account for 50% of substitutions, but account for just 2%
of heterozygosity.” Our simulated Sb (which is scaled by 4Ne)
was typically 4. To investigate what happens when selection
is much stronger, we simulated a full DFE with Sb ¼ 800 such
that only 10% of beneficial mutations (0:2% of all mutations)
had a selection coefficient of 100 or less. Here, the simulated
a was nearly 100% and one would expect that most muta-
tions would fix quickly. While the DFE parameters could not
be recovered as accurately (Figure S9 in File S1), the esti-
mated a was very precise, regardless of the model used for
inference. Hence, even with very strong positive selection,
there is sufficient information in polymorphism data to esti-
mate a without relying on divergence data. The bias in Sd; b,
a (Figure S9 in File S1), and LRT (Figure S10 in File S1) from
inference with only deleterious DFE followed the same trend
as before. However, even though a was large, pb and Sb were
not that well estimated. This is most likely because when Sb is
getting very large, the expected counts from Equation 1 be-
come independent of S, sinceHðS; xÞ � 1=xð12 xÞ for large S
(Figure 1D). This explains why the inference method will
have trouble finding precise values of Sb:

Keightley and Eyre-Walker (2010) investigated if the pres-
ence of beneficial mutations in the polymorphism data could
potentially affect the inference when assuming only a dele-
terious DFE. For this, they simulated data using a partially
reflected gamma distribution, given by

fðS; Sd; bÞ ¼
1

1þ eS
GðjSj; 2 Sd; bÞ;

where Gðx;m; sÞ is the density of a gamma distribution with
mean m and shape s. This distribution arises from the as-
sumption that the absolute strength of selection is gamma
distributed and that each site can be occupied by either an
advantageous or a deleterious allele, both having the same
absolute selection strength jsj: Keightley and Eyre-Walker
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(2010) simulated data with jSdj ¼ 400 and b ¼ 0:5: Due to
the chosen distribution, the simulated proportion of benefi-
cial selection was pb ¼ 0:0214; while the mean selection
coefficient of beneficial mutations was only Sb ¼ 0:014
(pbSb ¼ 0:00029). These values are close to one of our own
simulated DFEs with a � 20% (LALSB, Table 1), with the
difference being that we simulated an Sb that was approxi-
mately seven times larger. For this simulation scenario we
did, indeed, find little bias in Sd and b when inferring only a
deleterious DFE (Figures S6 and S7 in File S1). However, ar-
guably, this strength of beneficial mutations is extremely low.
For example, Schneider et al. (2011) inferred the strength
of beneficial mutations from Drosophila and found pbSb to be
two to three orders of magnitude higher: pb ¼ 0:0096 and
Sb ¼ 18 (pbSb ¼ 0:1728).

Impact of ancestral error on inference

The results presented abovewere based on simulationswhere
the true ancestral state was used. To investigate the conse-
quences of misidentification of the ancestral state, we first
added errors to the simulated data using one unique error
rate e (set to 5%) for both neutral and selected sites (see File
S1 for details). Inferring a full DFE using divergence data,
we found that we can properly account for the rate of mis-
identification, and the error e is accurately recovered (Fig-
ure 5 and Figure S11 in File S1). As expected, the inference
of the DFE and a is biased when the misidentification is not
accounted for. An LRT for e 6¼ 0 (Figure S14 in File S1)
supported the use of a model including the joint estimation
of e and DFE parameters for the data with errors, but
rejected the more complex model for the data without
errors.

Galtier (2016), who also used distortion parameters ri
when inferring the DFE, stated that these parameters are
“expected to capture any departure from the expected SFS
as soon as it is shared by synonymous and nonsynonymous

sites.” Our results indicate that the misidentification of the
ancestral state cannot be accurately accounted for by the ri
parameters (Figure 5 and Figure S11 in File S1). However, we
did find that the resulting bias decreased with a and that the
preference (as measured by an LRT) for models inferring
e 6¼ 0 also decreased for data sets with higher a (Figure
S14 in File S1). For data simulations with a � 80%; the in-
ference was just as good when e was set to zero. To investi-
gate this in more detail, we also ran the inference with ri ¼ 1
(i.e., no distortion correction) and e ¼ 0 on those simulated
DFEs. The results showed a large bias in the DFE parameters
and a when ri ¼ 1 (Figure S12 in File S1), and an LRT
favored the estimation of ri values (Figure S15 in File S1).
Merely using the ri parameters without explicitly accounting
for misidentification of the ancestral state is not always ac-
curate and can bias inference of DFE and a.

Both the presence of beneficial mutations and e 6¼ 0 create
similar patterns in the polymorphism data, as the frequency
of common derived alleles increases. We have seen that e can
account for some of the positive selection in the data (Figure
4C and Figures S6 and S7 in File S1). Similarly, we observed
that positive selection can account for some of the misiden-
tification of ancestral states. For simulations with a deleteri-
ous DFE and incorrect ancestral states, we found that when
assuming e ¼ 0; the parameters inferred using a full DFE are
generally more accurate than when only a deleterious DFE is
inferred (Figure S13 in File S1). An LRT also supported the
use of a full DFE (Figure S16 in File S1). Comparing the
inferred Sb when e is inferred or not (Figure S13 in File S1)
showed that this parameter is higher when e ¼ 0; further
indicating that it captured some of the ancestral misidentifi-
cation errors. Therefore, if the data contain sites that have the
ancestral state misidentified, which is virtually always the
case in empirical data sets, ancestral misidentification will
be wrongly interpreted as positive selection if the misidenti-
fication is not accounted for. If e is inferred jointly with the

Figure 5 Inference of a (proportion of beneficial substitutions), e (rate of ancestral error), and DFE parameters: Sd (mean selection coefficient of
deleterious mutations), b (shape of distribution of deleterious DFE), pb (proportion of beneficial mutations), and Sb (mean selection coefficient of
beneficial mutations). The figure shows the inference quality for three simulated DFEs (Table 1) with different a values. The DFEs differ only in the
simulated value of Sd : A full DFE is inferred from both polymorphism and divergence data, and e is set to zero and is not estimated, or is estimated. The
data were simulated with e ¼ 0:05:
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DFE parameters, an LRT comparing models with full DFE or
only deleterious DFE can correctly detect that the polymor-
phism data do not contain any beneficial mutations (Figure
S16 in File S1).

Our approach to modeling misidentification of ancestral
states assumes identical errors at both neutral and selected
sites. To investigate how different error rates for neutral and
selected sites affected our inference, we simulated data using
two different error rates, eneut and esel; for the neutral and
selected sites, respectively, and assumed one unique e during
inference.We simulated data using eneut ¼ 5% and esel ¼ 10%;

and eneut ¼ 10% and esel ¼ 5%: Inferring a full DFE using
divergence data, we found that the two different error rates
create biases in the estimated parameters (Figure S17 in File
S1), though this bias was reduced when the error rate e was
estimated. We observed a lower bias when esel , eneut; which
is the more realistic scenario as selected sites are expected to
be less prone to homoplasy when purifying selection predom-
inates. An LRT for e 6¼ 0 (Figure S18 in File S1) showed a
notable difference between the two different simulations:
when eneut ¼ 5% and esel ¼ 10%; the LRT generally sup-
ported the estimation of e at �10% (Figure S17 in File S1);
while for eneut ¼ 10% and esel ¼ 5%; the LRT supported
e ¼ 0: The distortions created in the data were instead cap-
tured by the ri parameters (Figure S19 in File S1), which
greatly deviated from 1 when e was not estimated.

Our simulation results illustrated that systematically in-
corporating the rate of ancestral error is crucial for a reliable
inference of DFE parameters anda, and an LRT can be used to
avoid model overfitting when the ri parameters are sufficient
for correcting departures from the expected SFS.

Distortions of the SFS by linkage and demography

It has previously been suggested that correcting for demog-
raphy by using the observed SFS at neutral sites can also
reduce some of the bias introduced by linkage (Kousathanas
and Keightley 2013; Messer and Petrov 2013). We explored
this possibility by simulating different levels of linkage (see
File S1 for details). We found that, indeed, the ri parameters
could partially correct for the presence of linkage (Figure S20
in File S1), with the most pronounced effect on Sd and b. An

LRT for ri 6¼ 1 (Figure S21 in File S1) increasingly favored
models fitting ri as the level of linkage increased.

For theprevious simulationsweusedaconstant population
size. To check that the ri parameters can also correct for de-
mography, we simulated data using different demography
scenarios (see File S1 for details). When population size
varies in time, Ne is typically taken to be the harmonic mean
of the different sizes (Kliman et al. 2008). While this approx-
imation may be valid for neutral sites, those under selection
experience a different Ne; which depends on the strength of
selection S (Otto and Whitlock 1997). Therefore, for these
simulations, we do not have a priori knowledge of the Ne that
accurately captures the interaction between selection and
demography. We could only compare b and pb; which are
independent of Ne; and a, for which a value can be obtained
by tracking the proportion of adaptive mutations contrib-
uting to divergence in forward simulations. As before, we
first simulated a deleterious DFE, similar to previous stud-
ies (Eyre-Walker et al. 2006; Keightley and Eyre-Walker 2007;
Boyko et al. 2008; Eyre-Walker and Keightley 2009). We
found that an LRT correctly detected that ri 6¼ 1 (Figure
S23 in File S1), but that parameters can only partially
correct for demography (Figure S22 in File S1). The b pa-
rameter was accurately inferred when ri parameters were
estimated. However, the estimated awas still biased (Figure
S22 in File S1). As no full DFE was inferred, a was calcu-
lated from the divergence data, assuming the same DFE in
the ingroup and outgroup. However, as the ingroup under-
went variable population size, its Ne was different from the
constant-sized Ne of the outgroup, and therefore the two
populations had different scaled DFEs. This difference could
explain the observed bias in a. Eyre-Walker and Keightley
(2009) noticed the same effect and proposed a correction
for a. However, their correction requires the ratio of the Ne’s
of the two populations, which is typically unknown.

We then investigated if the ri parameters could also correct
for demography when a full DFE was simulated (Figure S24
in File S1). The LRT (Figure S25 in File S1) showed a clear
preference for ri 6¼ 1:When inferring the DFE from both poly-
morphism and divergence data, we observed a bias in b and
pb:As before, this was caused by the incorrect assumption of a

Figure 6 Inference of a (proportion of beneficial substitutions) for different demographic scenarios. The figure shows the inference quality for adfe

(inferred from DFE alone) and adiv (inferred from DFE and divergence data) for four simulated demographic scenarios (const: population of constant size,
grow: population that grows in size once; shrink: population that shrinks in size once; exp: population that undergoes an exponential growth; see details
in File S1) and a deleterious DFE only or a full DFE (Table 1). For all inference, only SFS data were used and an LRT was performed to compare the full and
deleterious-only DFE models. The estimated value of a was obtained from the model preferred by the LRT.
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shared DFE between the ingroup and outgroup. When only
polymorphism data were used for inference, the ri parame-
ters could accurately correct the estimation of pb and b, but
the inferred a (estimated via adfe) was still slightly biased. To
investigate if this bias was caused by linkage, we also ran
simulations with reduced linkage (Figure S24 in File S1),
but the bias remained.

We investigated if the full or deleterious DFE model is
preferred for the data simulated under variable population
size.We found that an LRT consistently preferred the full DFE
model when the SFS contained beneficial mutations (Figure
S26 in File S1). Under demographic simulations, the esti-
mated adfe and adiv could differ considerably (Figure 6).
When only a deleterious DFE was simulated, relying on di-
vergence data to estimate a can lead to heavily biased esti-
mates. Note that when the population size was halved and a
full DFE was simulated, the LRT favored the incorrect dele-
terious DFE model. In this simulation, the incorrect model
choice can be explained by the extra deleterious load in-
curred by the population shrinkage.

The simulated demographics were the same for both del-
eterious and fullDFE simulations, and therefore the inferred ri
parameters on the deleterious and full DFE data should be
highly correlated, which we detected (Figure S27 in File S1).
One of the simulations showed no correlation in ri and the
LRT preferred the less complex model with ri ¼ 1 (Figures
S23 and S25 in File S1). The change in population size for this
simulation was most likely not strong enough for it to leave
an appreciable footprint in the data.

Galtier (2016) is the only study we are aware of
that tested if demography can be accurately accounted for
when a full DFE was simulated. While the estimated a values
from Galtier (2016) were somewhat more accurate than
what we found, there are critical differences between these
studies. While we simulated a continuous full DFE, Galtier
(2016) assumed that all beneficial mutations had the same
selection coefficient Sb: Nevertheless, Galtier (2016) inferred
a continuous full DFE and used Equation 8 for calculating a,
where the integration limit was set to some Sadv . 0 instead
of 0. The reasoning behind this is that mutations with a se-
lection coefficient S. 0 that is not very large should not be

considered advantageous mutations. Galtier (2016) used an
arbitrary cutoff at Sadv ¼ 5: Note that a different cutoff value
of Sadv would lead to different a values: the smaller Sadv; the
larger the estimated a.

Inference of mutation variability

Our framework provides means for estimating mutation var-
iability, and this has been applied for all inferences performed.
The shape parameter a of the gamma distribution governing
the mutation rate was recovered accurately (data not shown).
However, not modeling the mutation rate variability does not
bias the remaining parameters. This is explained by the fact
that the expected values of the SFS and divergence counts
depend only on the average mutation rate and are indepen-
dent of mutation variability.

Comparison with the dfe-alpha method

We compared our method with dfe-alpha, one of the most
widely used inference methods for DFE and a. dfe-alpha was
originally developed to infer a deleterious DFE (Keightley
and Eyre-Walker 2007), and it was subsequently extended
to estimate a (Eyre-Walker and Keightley 2009), model a full
DFE (Schneider et al. 2011), and correct a for misattributed
polymorphism (Keightley and Eyre-Walker 2012). For sim-
plicity, and as we showed that accounting for errors in the
identification of the ancestral state is crucial for accurate in-
ference (Figure 5 and Figure S11 in File S1), we chose to run
dfe-alpha with a folded SFS, where only a deleterious DFE
can be estimated. We then compared with our method when
only a deleterious DFEwas inferred, where ewas either set to
zero or estimated. Although these comparisons are quite lim-
ited in scope, we found that, for simulations with only a
deleterious DFE, our method provided better estimates and
with lower variance than dfe-alpha (Figure 7 and Figure S28
in File S1). For these simulations we also found that, some-
times, dfe-alpha estimated an a that was very large, both on
the negative and positive side (Figure S28 in File S1, DelHB
simulation). This seemed to be the result of the correction for
the misattributed polymorphism introduced in Keightley and
Eyre-Walker (2012), as the uncorrected awas much closer to
the true value (data not shown). This most likely explains the

Figure 7 Comparison to dfe-alpha of inference of a (proportion of beneficial substitutions) and deleterious DFE parameters: Sd (mean selection
coefficient of deleterious mutations) and b (shape of distribution of deleterious DFE), for four simulated DFEs (Table 1) with different a values. The
DFE parameters are inferred using only polymorphism data, assuming a deleterious DFE, where ɛ is set to zero and is not estimated, or is estimated. The
data were simulated with e ¼ 0:
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general differences observed between the estimateda fromdfe-
alpha and our method. When the inference was performed on
data simulated with a full DFE, we observed the same type of
bias in Sd and b as described before (Figure 7 and Figure S28 in
File S1).When demography and a strictly deleterious DFEwere
simulated, the estimation was, again, comparable (Figure S29
in File S1). However, when demography was simulated on top
of a full DFE, the bias of b differed between dfe-alpha and our
method. This could be explained by the differences between the
twomethods for accounting for demography:whilewe used the
nuisance parameters ri; dfe-alpha only allows the population to
undergo a few size changes in the past.

Analysis of chimpanzee data

To illustrate the use of our method, we reanalyzed a recently
published chimpanzee exome data set (Table 2) covering the
central, eastern, andwestern chimpanzee subspecies (Bataillon
et al. 2015). We assumed that the synonymous SNPs are neu-
trally evolving and we estimated the DFE and a from the non-
synonymous SNPs.

Bataillon et al. (2015) inferred a deleterious-only DFE
from the SFS, using the method of Eyre-Walker et al.
(2006), and the presence and strength of positive selection
by relying on a variety of summary statistics. They found that
the larger the effective population size, the stronger the pu-
rifying selection, and that autosomal regions have undergone
less positive selection than the X chromosome. We analyzed
the data by inferring both a deleterious and a full DFE, while
relying or not on the divergence counts (Figure 8A), where
both e and the nuisance parameters r were estimated. From
the inferred DFEs, we also estimated adiv and adfe (Figure
8B). The variability of parameter estimates was obtained by
using 100 bootstrapped data sets.

We found that, for the autosomes, the central chimpanzees
(the subspecieswith the largest effective size) experienced the
strongest purifying selection; while the western chimpanzees
(with the smallest effective population size) had the most
relaxed purifying selection (Figure 8A). These results are in

accordance with the original study and hold regardless of the
type of the DFE assumed and type of data used. The consis-
tency of the inferred DFE is also supported by an LRT, which
indicates that there is little evidence for the presence of ben-
eficial mutations in the polymorphism data (Figure S30 in
File S1). Even when divergence data are used, very little
positive selection is found on the autosomes. When analyzing
the X chromosome, the overall picture changes. While the
smaller amount of data (Table 2) leads to a larger variance
in the estimates, there is considerable difference between
the estimated DFEs (Figure 8A). This is also supported by
the LRT (Figure S30 in File S1), which shows more evidence
for beneficial mutations in the polymorphism data for the X
chromosomes than for the autosomes. Although the P-values
obtained on the original data are not significant, the boot-
strapped data point to the presence of beneficial mutations in
the X-linked SFS from the central chimpanzees. The stronger
evidence found in the central chimpanzee could be a result of
the higher proportion of beneficial mutationswith S. 10; the
larger sample size, and, therefore, the higher amount of poly-
morphism data (Table 2). We would expect that support for
the presence of beneficial mutations in the SFS data would be
stronger if the number of sequenced individuals would have
been larger. Our findings of more evidence for positive
selection on the X chromosome than on the autosomes is
also in line with the original study (Hvilsom et al. 2012;
Bataillon et al. 2015). While for the autosomes, the type of
DFE (full or deleterious only) assumed and the type of data
used did not affect drastically the inferred discretized DFE
(Figure 8A), the same cannot be said for the X chromosome;
further indicating that care needs to be taken when making
assumptions of no presence of beneficial mutations in the poly-
morphism data, or about the invariance of the DFE in the
ingroup and outgroup species used. We also observed the same
trend in the inferred discretized DFE for the chimpanzee sub-
species previously noted for the simulated data: the estimated
proportion for S 2 ð21; 0Þ is considerably larger when only a
deleterious DFE is estimated (Figure 8A).

While for the autosomes the inferred discretized DFE is
very similar across assumptions, the same cannot be said
about the inferred a; where the type of inferred DFE and type
of data used does leave a clear impact (Figure 8B). In line
with the observations from the discretized DFE, the esti-
mated a is larger for the X chromosome than the autosomes.

A visual comparison of the observed SFS and divergence
counts with the expected counts given the fitted DFEs (Figure
S31 in File S1) reveals that autosomal patterns of polymor-
phism and divergence are generally well fitted. Consistent
with the LRTs, the models using a full DFE do not further
improve the fit of data. For the X chromosome, the data are
intrinsically noisier, but using a full DFE yields expectations
that are closer to the observed data.

Conclusion

We have presented a new method to infer the DFE and pro-
portion of advantageous substitutions, a, from polymorphism

Table 2 Summary of chimpanzee exome data

Central Eastern Western

Autosome 20-Mb sites
Sample size 24 22 12
No. synonymous SNPs 33,941 21,871 10,217
No. nonsynonymous SNPs 25,290 16,664 8,567

X chromosome 0.89-Mb sites
Sample size 21 19 9
No. synonymous SNPs 684 492 202
No. nonsynonymous SNPs 471 323 150

The summary of chimpanzee exome data from Bataillon et al. (2015) is shown. As
some of the sequenced chimpanzees were males, the sample size (number of
haploid chromosomes sequenced) varies between the autosomes and X chromo-
somes. The number of sites represents the number of sequenced sites where SNPs
where potentially called. The orientation of SNPs was inferred via parsimony using
the human reference genome, as well as the orangutan reference genome. Further
details on the SNP, divergence calling, and SNP orientation are available in Hvilsom
et al. (2012).
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and divergence data. We demonstrated that inference can be
performed using polymorphism data alone, without relying
on the assumption that the DFE is shared between the
ingroup and the outgroup. We additionally illustrated that,
when the effects of beneficial mutations on polymorphism
data were not modeled, the inferred deleterious DFE
was biased. This bias arises from an increase of mutations
at selected sites that segregate at high frequencies. Methods
ignoring the contribution of the beneficial fraction to SFS
counts will tend to infer DFEs that have a larger amount of
slightly deleterious mutations, as this is the best way to ac-
count for the observed data. Therefore, the estimated dele-
terious DFE had a much larger mass close to zero compared
to the simulated deleterious DFE. This, in turn, could be
achieved by a larger (more negative) Sd and a lower b of
the gamma distribution used here for the deleterious
DFE. In cases where polymorphism data did not contain
any beneficial mutations, the inference was much more
accurate under a reduced model positing only a deleterious
DFE. The use of an LRT comparing a model featuring a full
DFE and a deleterious DFE would accurately select the re-
duced model and allow precise inference of the deleterious
DFE. This is an important result, as it suggests that using a
full DFE for inference from SFS data does not come with a

cost when no beneficial mutations contributed to the SFS
counts, and that the method does not spuriously infer pres-
ence of beneficial mutations.

To correct for demography andother forces that candistort
the SFS data, such as linkage, we used the nuisance param-
eters ri: These parameters have the potential of accounting
for more complex scenarios without directly modeling the
underlying changes in population size and, potentially, other
events such as migration and admixture. This correction
could prove more robust than just allowing for a few popu-
lation size changes, as dfe-alpha assumes. However, we did
not test the behavior of our method under these more com-
plex scenarios and the extent of bias ina theymight generate.

To infer the full DFE, we used the unfolded SFS. This
requires the identification of the ancestral state, which is
prone to errors. These errors can be accounted for by using
aprobabilisticmodeling of the ancestral state (Schneider et al.
2011; Gronau et al. 2013; Keightley et al. 2016). We assumed
that the polymorphism data are comprised of a mixture of
sites with correctly inferred ancestral state and sites with in-
correct ancestral state. This approach has proved to be effi-
cient for unbiased estimation of GC-biased gene conversion
(Glémin et al. 2015), a weak selection-like process. We also
showed that we could capture the errors in the identification

Figure 8 Inference of DFE and a (proportion of beneficial substitutions) on three chimpanzee subspecies. A full DFE was inferred from both poly-
morphism and divergence data, while also both a full DFE and deleterious DFE were inferred from polymorphism data only. (A) Inferred discretized DFE.
The error bars indicate 1 SD obtained from the inferred discretized DFEs from 100 bootstrap data sets. (B) Box plot of inferred adfe and adiv from the
100 bootstrap data sets. The values of a inferred on the original data sets are given as empty squares. Note that when inferring a deleterious DFE only,
adfe is zero.
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of ancestral state and, as opposed to the expectations of Galtier
(2016), that the ri parameters are not sufficient to correct for
misidentification of ancestral state. The inferred parameters
were biased when the neutral and selected sites did not share
the error rate of the ancestral state identification.

When using the divergence data in the inference, we
corrected for mutations that were fixed in the sample but that
were, in fact, polymorphic in the population. Thesemutations
would incorrectly be counted into the divergence data. Our
correction is different from the one used by Keightley and
Eyre-Walker (2012), which is implemented in dfe-alpha.
We found that this correction can sometimes lead dfe-alpha
to predict extreme positive or negative values of a. Our ap-
proach showed a much more consistent behavior throughout
the simulations.

Similar to the ri parameters, both our approach and meth-
ods that use probabilistic modeling to account for the identi-
fication of ancestral state rely on that the same process
applies to both neutral and selected sites. This is probably
not the case, as one could expect that the error in the iden-
tification of the ancestral state is different for the sites that are
under selection. Theoretically, the neutral and selected sites
could both be modeled with their own e, but this would not
be easily identifiable. Additionally, error rates might vary with
strength of selection, with some selected sites being more
prone to misidentification of ancestral state (Keightley et al.
2016). To correct for variable error rates and rates that are not
shared by neutral and selected sites, DFE inference will ben-
efit by using maximum-likelihood methods for inference of
ancestral states (Hernandez et al. 2007; Wilson et al. 2011;
Keightley et al. 2016). This reduces the errors, but does not
necessary remove them completely (Glémin et al. 2015).
Combining accurate ancestral state inference and models
including errors is thus an efficient strategy. In particular,
separate inference of neutral and selected ancestral states
by maximum likelihood (Keightley et al. 2016) should make
the residual errors similar between both sites, making our
method more accurate.

Throughout this article, we used LRTs for model testing.
However, inferences with or without divergence data are
not comparable through LRT, the Akaike information crite-
rion, or any other similar method (as the data used are differ-
ent). Using a recently published chimpanzee exome data set
(Bataillon et al. 2015), we showed that care needs to be taken
when choosing the type of data analyzed and the type of DFE
assumed. Tomake an informed choice about whether or not to
include the divergence data in the inference of the DFE and a,
a goodness-of-fit test could be developed that investigates how
closely the predicted SFS matches the observed one.

Our general approach can be applied to a wide range of
species where the amount and impact of beneficial mutations
on patterns of polymorphism and divergence varies widely
[as uncovered by Galtier (2016)]. Our method allows for
accurate detection of whether beneficial mutations are pre-
sent in the data, and an LRT can be used to decide if a full or
strictly deleterious DFE should be inferred. Importantly, we

also show that estimating a full DFE, and thus learning about
the property of beneficial mutations and expected amounts of
adaptive substitution, is possible without relying on divergence
data. We also note that alternative statistics with different prop-
erties for measuring molecular adaptation, such as vA (the rate
of adaptive evolution relative to the mutation rate) and Kaþ

(the rate of adaptive amino acid substitution), can be used
(Gossmann et al. 2010; Castellano et al. 2016). These might
be better suited for studying various aspects of adaptation
(Castellano et al. 2016). It remains to be investigated how
reliably they can be estimated using our framework.
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