Jämförelse mellan CPT-sondering och CRS-försök med avseende på deformationsegenskaper

Zoran Taloyan
Jämförelse mellan CPT-sondering och CRS-försök med avseende på deformationsegenskaper

Zoran Taloyan
Abstract

Comparison Between CPT-probing and CRS-Testing with Respect to Deformation Properties
Zoran Taloyan

Deformation modules explain how a material or an area behave or deform when different amount of stresses act on it. CRS-testing, which compresses samples with a constant deformation rate, gives us modules like M_0 and M_L, with the help of routine examinations. CPT-probing, on the other hand, penetrate a conical tip through stratigraphy and gives us the elasticity module. These methods are very different in many ways, like what parameters, modules, deformation groups and use, are given. CRS-testing is conducted in a laboratory, with samples taken from specific depths, while CPT-probing is conducted in the field, with information about the whole stratigraphy is given. To directly compare these two methods modules are not possible. Due to CONRAD that evaluates and present CPT-probing results, does not evaluate elasticity modules for clay, but only for frictional soils. They complement each other very well due to in areas like Uppsala, which has a great depth of clay, shows with CRS-testing that clay is present but when CPT starts to register elasticity modules, shows that we moved in to frictional soil. With this, deformation properties can be shown for the whole stratigraphy in a drill point. Drill points from Kronåsen and Kungsängen in Uppsala municipality, and in Fyrklövern from Upplands Väsby municipality has been evaluated with respect to deformation properties and the results shows great differences in the deformation modules between themselves.

Key words: CRS-testing, CPT-probing, deformation modules, Upplands-Väsby clay, Uppsala clay, comparison

Independent Project in Earth Science, 1GV029, 15 credits, 2018
Supervisors: Teddy Johansson, Esra Bayoglu Flener and Lars Maersk Hansen
Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala (www.geo.uu.se)

The whole document is available at www.diva-portal.org
Sammanfattning

Jämförelse mellan CPT-sondering och CRS-försök med avseende på deformationsegenskaper
Zoran Taloyan

Nyckelord: CRS-försök, CPT-sondering, deformationsmoduler, Upplands-Väsbylera, Uppsalalera, jämförelse

Självständigt arbete i Geovetenskap, 1GV029, 15 hp, 2018
Handledare: Teddy Johansson, Esra Bayoglu Flener och Lars Maersk Hansen
Institutionen för geovetenskaper, Uppsala Universitet, Villavägen 16, 752 36 Uppsala (www.geo.uu.se)

Hela publikationen finns tillgänglig på www.diva-portal.org
Innehållsförteckning

1. Inledning 1
2. Syfte 3
 2.1 Avgränsning 3
3. Områdesbeskrivning 4
4. Bakgrund 5
 4.1 Cone Penetration Testing (CPT) 5
 4.2 Constant Rate of Strain (CRS) 6
5. Moduler 7
 5.1 Elasticitetsmodul \(E \) och kontraktionstalet \(V \) 7
 5.2 Kompressionsmodul, \(M \) 8
6. Cone Penetration Testing (CPT) 10
 6.1 Utrustning 10
 6.2 Utförande 11
 6.3 Parametrar 12
 6.3.1 Spetstryck, \(q_c/q_t \) 12
 6.3.2 Mantelfriktion, \(f_t/f_s \) 12
 6.3.3 Portryck, \(u \) 13
 6.4 CONRAD 14
7. Constant Rate of Strain (CRS) 15
 7.1 Utrustning 15
 7.2 Utförande 15
 7.3 Parametrar 16
 7.3.1 Vertikalspänning och kompression 16
 7.3.2 Vertikalspänning och kompressionsmodul 16
 7.3.3 Vertikalspänning och konsolideringskoefficient 16
 7.3.4 Vertikalspänning och portryck 17
 7.3.5 Kompression och permeabilitet 17
8. Undersökt jord 18
 8.1 Området Kungsängen, Uppsala Kommun 18
 8.1.1 Jordlagerföljd för borrpunkter 22
 8.2 Området Kronåsen, Uppsala Kommun 23
 8.2.1 Jordlagerföljd för borrpunkter 26
9. Metod 28
10. Resultat 30
 10.1 Resultat för området Kungsängen, Uppsala kommun 30
 10.2 Resultat för området Kronåsen, Uppsala kommun 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3 Resultat för området Fyrklövern, Upplands Väsby kommun</td>
<td>36</td>
</tr>
<tr>
<td>11. Diskussion</td>
<td>38</td>
</tr>
<tr>
<td>11.1 Felkällor</td>
<td>40</td>
</tr>
<tr>
<td>12. Slutsats</td>
<td>41</td>
</tr>
<tr>
<td>Tackord</td>
<td>42</td>
</tr>
<tr>
<td>Referenser</td>
<td>43</td>
</tr>
<tr>
<td>Bilagor</td>
<td>45</td>
</tr>
<tr>
<td>Bilaga A – Cone Penetration Testing</td>
<td>45</td>
</tr>
<tr>
<td>Bilaga B – Constant Rate of Strain</td>
<td>47</td>
</tr>
</tbody>
</table>
1. Inledning

Många problemställningar som en ingenjör eller geotekniker handskas med i geotekniska sammanhang hör oftast till sättning och/eller stabilitetsproblem (Larsson et al., 2007). En väsentlig del i geoteknikens område är deformation, som kan delas upp i två huvudgrupper mellan volymändring och formändring (Larsson, 2008). Ett material kan deformeras på två olika sätt, där det ena sättet kallas för plastiska deformationer som förklarar att ett material inte går tillbaka till sin ursprungliga form efter att den varit utsatt för last. Medan för den andra deformationen, som kallas för elastisk deformation, går materialet tillbaka till sin ursprungliga form även efter den varit utsatt för last (Fäldt & Tengblad, 2011).

Det är även viktigt att skilja på lera och sand i geotekniska sammanhang, just för att sand tillhör friktionsjord som attraheras av friktionskrafter mellan jordpartiklar. Lera tillhör istället kohesionsjordar, för att attraktionskraften som verkar mellan jordpartiklar är kohesionen, som "häftar" samman partiklarna (Statens Geotekniska Institut, 2018).
2. Syfte

Tillgängliga moduler såsom:
- Elasticitetsmodul (E) och kontraktionstalet (V)
- Kompressionsmodul (M)
kommer att användas på två provtagningsplatser som skall undersökas med två olika sonderingsmetoder. Närmodell bestämt för CRS-försök (Constant Rate of Strain), som framförallt ger information om deformation, portryck, effektivspänning, kompression etc. (Standardiseringskommissionen i Sverige, 1991).

Även CPT-sondering (Cone Penetration Testing), som ger information om jordlagerföljd, spetsstryck, mantelfriktion och även i vissa fall portryck (Larsson, 2015) kommer att undersökas.

Arbetet är skrivet under handledning av Bjerking AB i Uppsala, där företaget har av intresse om man skulle kunna dra paralleller mellan moduler och hur en viss typ av lera beter sig utifrån deras avsättningsmiljö och spänningshistoria med två olika metoder.

2.1 Avgränsning

Avgränsning för uppsatsen är att Kungsången och Kronåsen, i Uppsala kommun kommer att studeras mer ingående vad gäller lerans egenskaper och jordlagerföljd i dessa områden. Medan för Fyrklövern i Upplands Väsby kommun, kommer endast områdets moduler att studeras. Just för att kunna försöka ta reda på skillnader i deformationsegenskaper mellan två skilda områden, eftersom Kungsången och Kronåsen är relativt nära varandra och därmed finns chansen att dessa kan vara en aning homogena i sina moduler.
3. Områdesbeskrivning

Uppsala har tidigare varit under vatten från den senaste istiden. Detta har resulterat i att stora lerdjup som blivit avsatt från sötvatten hittas här, bestående av varvig- och postglacial lera där även vissa leror har en del av gyttjigt innehåll. Dessa lerdjup kan på vissa områden ha en mächtighet på över 100 meter. Denna lera som ofta påträffas i Uppsala innehåller sulfid, och kallas därför ofta för sulfidlera (Zervens, 2017).

4. Bakgrund

4.1 Cone Penetration Testing (CPT)

Metoden bidrar med information för alla kornstorlekar fram till övergången till grusfraktionen (Larsson, 2015) >2mm för kornstorlekar (IEG, 2010). Ytterligare en egenskap som gjort CPT-sondering till en väl etablerad metod är att kunna tillhandahålla information, in-situ, om jordlagerföljden samt för att registrera värden för jordars geotekniska egenskaper (Svenska Geotekniska Föreningen, 1992).

En begränsning för metoden är när konen kommer i interferens med stenar, grovkorniga moräner, gruslager, berg och med fasta sandlager. Då får vi ett sonderingsstopp som resultat av denna interferens (Larsson, 2015).

Principen är denna, att den koniska sonden drives ned på undersökningsplatsen med en konstant neddrivningshastighet på 20mm/s, med en spets på 1000 \(\text{mm}^2 \) för tvärsnittsarean. Själva vinkeln på spetsen som drives ned är på 60° och det är denna spets som är absolut vital för att kunna tillhandahålla information som neddrivningsmotstånd (spetstryck), mantelfriktion och portryck (Svenska Geotekniska Föreningen, 1992).

Om portryck är en önskad parameter vid provning, benämns försöket till CPTU, som nämnts här ovan (Larsson, 2008). Under processen vid testning registreras mätningar elektriskt och ger oss värden som visar hur dessa tre parametrar förändras med ett ökande djup, parallellt med att sonden drives ned (Figur 1) (Larsson, 2015).

Figur 1. Förenklad skiss över komponenter för CPT-sondering © Geotech AB
4.2 Constant Rate of Strain (CRS)

Hos kohesionsjordar bestämt kompressionsegenskaper och deformerings rutinmässigt med en metod kallad ödometerförsök, som Terzaghi föreslog på 1920-talet. Metoden har blivit en av de mer etablerade och vanligaste metoderna vid undersökning av jordprovers deformationsegenskaper (Sällfors & Andreasson, 1986).

Det finns för visso två olika typer av ödometerförsök, där fokus i uppsatsen kommer läggas på den ena av dessa två typer. Constant Rate of Strain-försök (CRS-försök) som med en konstant hastighet deformerar prover kontinuerligt (figur 2). Vid användandet av metoden, registreras försökvärden automatiskt i en dator för att vid ett senare tillfälle kunna tolkas, analyseras och bearbetas (Sällfors & Andreasson, 1986).

![Diagram](image)

Figur 2. Principskiss för Ödometerförsök, där ett försök med konstant deformationshastighet resulterar i ett CRS-försök © Statens Geotekniska Institut (SGI).
5. Moduler

5.1 Elasticitetsmodul (E) och kontraktionstalet (V)

Elasticitetsmodulen och kontraktionstalet är en modul som inte är helt representativ för verkligheten. Men även om modulen är en aning skenbar så använder man fortfarande Elasticitetsmodulen och kontraktionstalet, på grund utav dess användbarhet gällande de relevanta parametrar som kan ge en god överensstämmelse mellan de beräknade- och uppmätta deformationerna.

Denna modul kommer som en härledning från skjuvmodulen, kombinerat med tryckmodulen. Vilket kommer ge sambandet:

$$E = 2G(1 + V)$$

Trycket från den högsta principiella stressen (σ_1) (Larsson, 2008), ger en elasticitet som visar på hur återgående ett prov är vid senare avlastning (Fäldt & Tengblad, 2011). När det högsta trycket verkar från en sida av ett prov, komprimeras materialet med en formändring som resultat. Skillnaden mellan det vanliga tillståndet, utan komprimering och det deformerede tillståndet ger parametern ε_1 (Larsson, 2008) som illustreras i figur 3.

![Diagram](image)

Figur 3. Deformation för bestämmande av Elasticitetsmodulen © Statens Geotekniska Institut (SGI).
5.2 Kompressionsmodul, \((M)\)

Denna modul kallas även för "ödometermodulen" i vissa fall och används framförallt till sättningserberäkningar, när information om hur stor last vi kan utsätta materialet i fråga för (Larsson, 2008). I modulen är principen den att horisontella deformationer förhindras från att ske, samtidigt som det effektiva vertikaltrycket ökar kontinuerligt för ett prov (Figur 4) (Larsson, 1995).

Definitionen för kompressionsmodulen definieras enligt nedanstående ekvationer, och i båda dessa fall gäller fortfarande ingen horisontell deformering (Larsson, 2008).

For tangentmodul: \[M = \frac{\delta \sigma'}{\delta \varepsilon_v} \]

For sekantmodul: \[M = \frac{\Delta \sigma'}{\Delta \varepsilon_v} \]

I figurer som presenteras i kompressionsmodulen, finns det en sektion av kurvan som visar tydligt att kompressionen ökar drastiskt när ett visst effektivt vertikaltryck har uppnåtts (Sällfors & Andreasson, 1986). Denna övergångsfas vid drastiskt ökad kompression som visas är förkonsolideringstrycket \((\sigma'_c)\) (Larsson, 2008), som är ett lerprovs så kallat "minne", menat med att det är det maximala trycket som en specifik lera har varit utsatts för, i ett ostört stadium (Sällfors & Andreasson, 1986).

Vid utvärdering av kurvan som ges från förhållandet mellan relativ kompression \((\varepsilon)\) och effektivspanning \((\sigma')\) kan kompressionsmodulen \((M)\) bearbetas för olika variationer i kurvan som uppvisas, och därmed redovisa olika moduler (Larsson, 2008).

På grund utav att CRS-försök är hastighetsberoende så parallellförflyttas den efterkommande sträckan \((c)\) från förkonsolideringstrycket \((\sigma'_c)\) till vänster i den kurva som erhålls vid försöket (Sällfors & Andreasson, 1986). Dessa variationer i kurvan som observeras grafiskt bidrar till att utforma diverse moduler som beskriv här nedan.

Sträcken som observeras i kurvan från försöktets början till förkonsolideringstrycket \((\sigma'_c)\), denna sträcka ger storheten: \(M = M_0 \) för \((\sigma' < \sigma'_c)\). Där den effektiva spänningen \((\sigma')\) är mindre än förkonsolideringstrycket \((\sigma'_c)\) (Moritz, 1995) (Sällfors & Andreasson, 1986). För att utvärdera vad modulen \(M_0\) har för värde, för odränerad skjuvhållfasthet \((\tau_{fu})\) så används följande ekvation: \(M_0 = 250 * \tau_{fu} \) (Moritz, 1995).

När förkonsolideringstrycket \((\sigma'_c)\) väl är passerat p.g.a. successiv ökning i vertikaltryck, övergår kurvan till en modul med storhet: \(M = M_L \), med den effektiva spänningen \((\sigma')\) som är mindre än punkten då gränstrycket får modulen att börja öka igen \((\sigma'_L)\) (Moritz, 1995) (Sällfors & Andreasson, 1986).

Från punkten då gränstrycket börjar öka ges en modul med storheten: \(M = M' (\sigma' - a) \) för \((\sigma' > \sigma'_L)\). Där komponenterna i ekvationen utgörs av, \(a\) som är en rätt linje som tangerar gränstrycket \((\sigma'_L)\). \(M'\) är kompressionsmodulstalet som fås genom:
$M' = \frac{\Delta M}{\Delta \sigma'}$ och sedan anges till sist den effektiva spänningen (σ') som är större än gränstrycket då modulen upphör att vara konstant (σ'_L) (Sällfors & Andreasson, 1986). Så genom att se till relationen som verkar mellan ökning i effektiv stress och ökning i modulen, ges M' (Moritz, 1995). De olika modulerna sammanfattas och illustreras i figur 4.

![Figur 4. Bestämmande av moduler M_L, M_0, M' (höger) beroende på spänning som verkar (vänster) © Statens Geotekniska Institut (SGI).]
6. Cone Penetration Testing (CPT)

6.1 Utrustning

Väsentlig utrustning vid CPT-sondering är framförallt en neddrivningsanordning som pressar ned sonden i konstant hastighet på 20 mm/s. Det får absolut inte förekomma några slag eller rotation av stängerna som pressas ned, därmed är det viktigt att anordningen är väl förankrad utan risk för att hamna ur sin vertikala position. Neddrivningsanordningen måste även vara försedd med en slaglängd på minst en meters långd (Larsson, 2008).

När sondstäger skall väljas till sondering, måste man tag i beaktning vilket signalöverföringssystem som används vid registrering av måtdata in-situ och hur stor kraft som kommer verka på sondstängerna vid neddrivning (Larsson, 2008). Sondstäger adderas succesivt ju längre ned konens spets körs ned, med en rekommenderad maximal böjning för de fem nedersta metrarna på 0,5 mm från ändpunkterna. Ovanför dessa nedersta fem metrar får sondstäger maximalt ha en böjning på 1 mm (Svenska Geotekniska Föreningen, 1992).

Ovanför den koniska spetsens geometri, finns ett filter placerat som måste ha samma diameter eller större än konens spets. Filtret får inte avvika i form av en mindre diameter än spetsen. Det finns olika typer av filter gjort av olika material, men det rekommenderade filtret är av brons eller rostfritt stål med en porstorlek på 2–20 μm (Svenska Geotekniska Föreningen, 1992).

Konens spets består av två huvuddelar, en konisk del och en cylindrisk del. Den cylindriska delen har en tjocklek på 10 mm, där ett filter kan utgöra 5 av dessa 10 mm. Den koniska delen har en tvärskärmsarea på 1000 mm² och en spetsvinkel på 60° (Larsson, 2015). Vanligen har hela spetsen en diameter på 35,7 mm och en höjd på 30,9 mm (Svenska Geotekniska Föreningen, 1992).

Dessa skall förhindra att olika jordpartiklar inte trängs in vid neddrivning av sondering. Spalter skall vara mindre än 5 mm och inga krafter får överföras till mätelementen (Svenska Geotekniska Föreningen, 1992).

Friktionshylsan sitter ovanför konens spets och har en längd på ca 133,7 mm och en total mantelyta på 15 000 mm². Diametern måste även överensstämma med delar som finns under friktionshylsan (konens spets, alt. Filter). Som en konsekvens av friktionshylsens diameter kan portrycket påverkas och då gäller följande samband (Svenska Geotekniska Föreningen, 1992):

\[d_{\text{Friktionshylsa}} \geq d_{\text{Filter}} \geq d_{\text{Spets}} \]
6.2 Utförande

Glycerin används även i icke vattenmättad jord, och om ingen förborrning av jordskorpan finns inplanerad vid sonderingstillfället. Annars utöver dessa fall, kan och används främst vatten för att få spetsen vattenfylld (Svenska Geotekniska Föreningen, 2013).

Nästa steg vid provning är att se till att sonden följer en vertikalitet, vilket innebär att sonden skall vara så vertikal som möjligt, med en tillåten maximal avvikelse på 2 % i sin vertikalitet (Svenska Geotekniska Föreningen, 1992).

Hastighet för neddrivning av sonden skall enligt Internationella geotekniska föreningens (ISSFME) rekommendation vara 20 mm/s, med en tillåten avvikelse på $\pm 10\%$, vilket motsvarar ± 2 millimeters avvikelse. Om provningen genomförs utan registrering av porttryck, kan hastigheten av neddrivning vara 20 mm/s men med en maximal avvikelse på $\pm 25\%$, motsvarade ± 5 millimeters avvikelse (Svenska Geotekniska Föreningen, 1992).

Intervall för avläsning av parametrar skall registreras vanligtvis varje 50mm för spetstryck och mantelfriktion, medan avläsning för porttryck brukar vanligtvis varje 20:e eller 10:e mm eftersträvas (Svenska Geotekniska Föreningen, 1992).

Var sjätte månad sker normalt en kalibreringskontroll av mätsystemet (Swedish Standards Institute, 2013). Där man vill kunna säkerställa att kalibreringen är korrekt.
för parametrar såsom: portryck, spetstryck och mantelfriktion mot tryckgivare och kraftgivare. (Larsson, 2015)

6.3 Parametrar

6.3.1 Spetstryck, \(q_c/q_t \)

Spetstrycket erhålls genom att dividera axikraften som verkar mot konens spets med tvärsnittsareaen för själva konen, som normalt sett har som tidigare beskrivits en tvärsnittsarea på 1000 mm². Själva kraften, som är mätbar är kraften per ytenhet (Svenska Geotekniska Föreningen, 1992).

Det finns även en alternativ beteckning för spetstryck, som har beteckningen \(q_c \). Med \(q_c \) menas det med en CPT-sondering utan en portyckmätning. Principen att spetstrycket mäts med en kraftgivare vid konens spets gäller även för beteckningen \(q_t \), som syftar till ett CPT-försök med ett korrigerat värde för de felkällor som uppstår, från olika håll när vattentrycket verkar på konens spets (Larsson, 2015).

Denna felkälla måste således korrigeras för porvattentrycket vid obalanserade vattentryck, som sker som en konsekvens av sondens konstruktion. Då vattentrycket som i sin tur verkar på spetsen och friktionshylsan, och därmed kommer påverka mätningen för spetstryck och mantelfriktion. Så denna korrigering för spetstryck med normal filterplacering \(u_2 \) görs genom:

\[
\begin{align*}
\text{Areafaktor} (a) & \approx \frac{(A_T - A_L)}{A_T} \\
q_t & \approx q_c + u_2(1 - a)
\end{align*}
\]

(Swedish Standards Institute, 2013) (Larsson, 2015). Därmed sker en korrigering för konens spets genom ekvationer som används för att erhålla det korrepta totala spetstrycket, som anges i Mega Pascal (MPa) (Larsson, 2015):

\[
q_t = \frac{\text{Totalt spetstryck}}{\text{Tvärsnittsarea}}
\]

\[
q_c = \frac{\text{Okorrigerat måtvrde för spetskraft}}{\text{Tvärsnittsarea}}
\]

6.3.2 Mantelfriktion, \(f_t / f_s \)

Genom att dividera friktionskraften som verkar med mantelytan erhålls mantelfriktionen (Svenska Geotekniska Föreningen, 1992). Den huvudsakliga
beteckningen är \(f_t \), men även parametern \(f_s \) används, dock när parametern är korrigerad för vattentryck (Swedish Standards Institute, 2013).

Mätvärden korrigeras för specifika vattentryck för att få korrekt värden för den totala mantelfriktionen. Denna korrigering genomförs då obalanserade vattentryck påverkar friktionshylsans ändytor. Ekvationerna anges i enheter kilopascal (kPa) eller megapascal (MPa) (Larsson, 2015):

\[
f_t = \frac{\text{Total friktionskraft}}{\text{Mantelyta}}
\]

\[
f_s = \frac{\text{Okorrigerat mätvärde för friktionskraft}}{\text{Mantelyta}}
\]

Som beskrivet ovan, så korrigeras mantelfriktionen vid obalanserade porvattentryck genom (Larsson, 2015):

\[
\text{Areafaktor } (b) = \frac{(A_L - A_0)}{A_S}
\]

\[
f_t \approx f_s - \left[u_2 \cdot b + 0,3 \cdot \Delta u_2 \left(\frac{1}{15} - b \right) \right]
\]

6.3.3 Portryck, \((u) \)

Under sondering, uppmäts portrycket genom ekvationen:

\[
u = u_0 + \Delta u.
\]

De olika komponenterna i ekvationen representerar genererat portryck(\(\Delta u \)) och jämviktsportryck(\(u_0 \)). Det adderade resultatet av dessa två parametrar genererar motsvarande registerat portryck(\(u \)) (Larsson, 2015).

Jämviktsportrycket(\(u_0 \)) anger portrycket på en viss höjd in-situ medan genererat portryck är förändringen i portryck (\(u_0 - u \)) som uppstår av anledningen till sondering (Svenska Geotekniska Föreningen, 1992). Ovanför konen används ett filter, som får parameterbeteckningar: \(u_1, u_2, u_3 \) beroende på filtrets placering i sonden (figur 5). \(u_1 \) representerar den alternativa filterplaceringen halvvägs upp på konens spetsiga del (\(\Delta u_1 = u_1 - u \)). \(u_2 \) representerar den normala filterplaceringen (\(\Delta u_2 = u_2 - u \)) och \(u_3 \) representerar portryck uppmätta vid friktion hylsans överkant (\(\Delta u_3 = u_3 - u \)). Enheten för ekvationerna är kilopascal (kPa) (Larsson, 2005).

6.4 CONRAD

7. Constant Rate of Strain (CRS)

7.1 Utrustning

7.2 Utförande

När CRS-försöket väl skall genomföras och ett prov placerats i ödometeranordningen, så skall provet efter färdig montering och uppfyllandet av genomförandets kriterier, deformeras under en konstant hastighet. Med registrering av vertikallast, vertikal deformerning och porttryck som resultat (Sällfors & Andreasson, 1986).

En tryckpress justeras vid försökets början för att laststängen skall beröra kraftgivaren som finns monterad på anordningen. Innan själva startandet av deformeringen så sätts en lämplig deformeringshastighet, som vanligtvis är på ca 0.0025mm/min. Under en 24-timmars period med denna deformeringshastighet erhålls 18 % deformerning. Men det skiljer för olika typer av leror, gyttjiga- och lösa leror bör deformeras under en lägre hastighet (Sällfors & Andreasson, 1986). Under deformerning bör det uppmätta porttrycket vara 10 % lägre än totaltrycket, med tillåtelse att vara över 10 % under ett fåtal gånger under genomförandets gång, men aldrig över 20 % (Sällfors & Andreasson, 1986).

Med tiden kan kraftgivaren och tryckgivaren ändra noll-värden, så därmed bör dessa givare kontrolleras regelbundet under genomförandets gång. Vad gäller registreringsutrustningen som läser av och lagrar kontinuerligt data, bör den sättas till ca 200 avläsningstillfällen för vertikallasten, deformationen och porttrycket (Sällfors & Andreasson, 1986).

På Bjerking AB, säger Sadeghi1, kan deformeringshastigheten korrigeras om det finns några osäkerheter i erhållnen kurva, t.ex. om kurvan är för stor i jämförelse med tidigare resultat eller när ett prov har en hög vattenhalt eller hög konflytgräns. Bjerking AB har som praxis att sänka deformeringshastigheten till 0,0015 mm/min om sådana fall som ovan förekommer.

1 Ali Reza Sadeghi, enheten för Mät, GIS & Geoteknik, Bjerking AB, 2018-03-02.
7.3 Parametrar

Ödometerförsök, oberoende om det är med stegvis belastning eller med konstant deformationshastighet, så genomförs metoden rutinmässigt enbart på ostörda finkorniga jordar som tagits upp med standardkolvtagare. Genom att placera ödometern i en press, med en konstant deformationshastighet så erhålls tid, last, deformation från ett provtillfälle. Även portrycket registreras kontinuerligt vid provets underlyta (Larsson, 2008). En parameter som är av stort intresse vid CRS-försök är just förkonsolideringstrycket (σ'_c) för att utvärdera kompressionsegenskaper (Sällfors & Andreasson, 1986). Denna tas fram genom att dra två räta linjer, där kurvan är som mest krökt och kurvans bas som kommer bilda en likbent triangel. Punkten där triangelns bas och den översta räta linjen korsar varandra kommer utgöra förkonsolideringstrycket.

7.3.1 Vertikalspänning och kompression
Detta samband som ett CRS-försök bidrar med, görs genom:

$$\sigma' = \frac{P}{A} - \left(\frac{2}{3}\right) * u_b$$

Ovanstående parametrar utgörs av den vertikala effektiva spänningen (σ'), A är areaen för provet, P är den vertikala kraften som registreras och u_b är portrycket som registreras i den odränerade ytan i provet (Standardiseringskommissionen i Sverige, 1991).

7.3.2 Vertikalspänning och kompressionsmodul
Genom relationen som finns mellan relativ kompression (ε) och effektivspänning (σ') kan kompressionsmodulen (M) bearbetas för olika variationer i kurvan som uppvisas när ett CRS-försök körs, och därmed redovisa olika moduler såsom M_0 och M_L (Larsson, 2008).

7.3.3 Vertikalspänning och konsolideringskoefficient
Konsolideringskoefficienten är produkten som ges mellan permeabilitet och kompressionsmodulen:

$$C_v = \frac{M+k}{g*Q_w}$$
med k som permeabilitet, M som kompressionsmodulen, g som acceleration och Q_w som är vattnets densitet (Standardiseringskommissionen i Sverige, 1991).

7.3.4 Vertikalspänning och portryck
Filtret som finns installerat i Ödometeranordningen stängs under ett prov som förankrats och därmed mäter man det odränerade provets portryck när vertikalspänningen fortsätter att verka med en konstant hastighet av deformation (Larsson, 2008).

7.3.5 Kompression och permeabilitet

Dessa samband som ett CRS-försök ger, kommer alltså från en konstant deformationshastighet ($0.0025mm/min$) som verkar på prov, där vertikalspänningen är den huvudsakliga komponenten när deformationsegenskaper skall representeras i en linjär skala (Standardiseringskommissionen i Sverige, 1991).

Figur 6. Utvärdering för förkonsolideringstrycket σ'_C (vänster) och modulers relation till förkonsolideringstrycket (höger) © Statens Geotekniska Institut (SGI).
8. Undersökt jord

8.1 Området Kungsängen, Uppsala Kommun

Borpunkter 1A, 1B, 1C och 1D har undersökts i området Kungsängen med både CPT-sondering, och CRS-försök som utförs i laboratorium. Även rutinundersökning har genomförts för dessa borpunkter för att taga reda på grundläggande egenskaper som detta område har.

Figur 7. Provtagningsområde för borpunkter 1A, 1B, 1C och 1D i Kungsängen, Uppsala © Sveriges Geologiska Undersökning(SGU).
Figur 8. Uppmätt vattenkvot för alla borrpunkter tagna i Kungsängen, Uppsala.

Figur 11. Uppmätt densitet för alla borrpunkter från Kungsången, för olika djup.
8.1.1 Jordlagerföljd för borrpunkter

I figurer nedan presenteras de berörda borrpunkterna från området Kungsängen, med data tagna från rutinundersökning. Tabellerna förklarar vad för typ av lera dessa borrpunkter innehåller, där de olika färgerna är tolkade lager för de olika jordlagren.

Tabell 1. Jordlagerföljd för borrpunkt 1A, från rutinundersökning

<table>
<thead>
<tr>
<th>Djup (m)</th>
<th>Färg:</th>
<th>Beskrivning:</th>
<th>Notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grå</td>
<td>Siltig gyttjig lera</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Grå</td>
<td>Lera</td>
<td>Enstaka tunna silt-skikt</td>
</tr>
<tr>
<td>31</td>
<td>Brun-grå</td>
<td>Varvig lera</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Brun-grå</td>
<td>Varvig lera</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Brun-grå</td>
<td>Varvig lera</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Brun-grå</td>
<td>Varvig lera</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Brun-grå</td>
<td>Varvig lera</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 2. Jordlagerföljd för borrpunkt 1B, från rutinundersökning

<table>
<thead>
<tr>
<th>Djup (m)</th>
<th>Färg:</th>
<th>Beskrivning:</th>
<th>Notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grå</td>
<td>Lera</td>
<td>Enstaka växtdelar</td>
</tr>
<tr>
<td>5</td>
<td>Grå</td>
<td>Lera</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td>Skalrester</td>
</tr>
<tr>
<td>21</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Brun-grå</td>
<td>Varvig lera</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Brun-grå</td>
<td>Varvig lera</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Brun-grå</td>
<td>Varvig lera</td>
<td>Något sandig</td>
</tr>
</tbody>
</table>

Tabell 3. Jordlagerföljd för borrpunkt 1C, från rutinundersökning

<table>
<thead>
<tr>
<th>Djup (m)</th>
<th>Färg:</th>
<th>Beskrivning:</th>
<th>Notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grå</td>
<td>Sulfidfläckig lera</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td>Skalrester</td>
</tr>
<tr>
<td>21</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td>Skalrester</td>
</tr>
<tr>
<td>30</td>
<td>Grå</td>
<td>Varvig lera</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Brun-grå</td>
<td>Varvig lera</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Grå</td>
<td>Varvig lera</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 4. Jordlagerföljd för borrpunkt 1D, från rutinundersökning

<table>
<thead>
<tr>
<th>Djup (m):</th>
<th>Färg:</th>
<th>Beskrivning:</th>
<th>Notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Grå</td>
<td>Sulfidhaltig lera</td>
<td>Skalrester</td>
</tr>
<tr>
<td>14</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Brun-grå</td>
<td>Varvigt lera</td>
<td>Enstaka tunna</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>siltskikt</td>
</tr>
<tr>
<td>38</td>
<td>Grå</td>
<td>Varvigt lera</td>
<td>Enstaka tunna</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>siltskikt</td>
</tr>
<tr>
<td>48</td>
<td>Grå-brun</td>
<td>Varvigt lera</td>
<td>Med sandkorn</td>
</tr>
</tbody>
</table>

8.2 Området Kronåsen, Uppsala Kommun

Borrpunkter 2A, 2B, 2C och 2D har undersömts genom rutinundersökning i området Kronåsen för att taga reda på egenskaper för dessa borrpunkter och med både CPT-sondering och CRS-försök, där den senare metoden har genomförts i laboratorium.

Figur 15. Konflytgräns för alla fyra borrpunkter tagna i Kronåsen, Uppsala.

Figur 17. Uppmätt densitet för alla borrpunkter från Kronåsen, för olika djup.
Figur 18. Ostörd skjuvhållfasthet för alla fyra borrpunkter i Kronåsen, Uppsala.

8.2.1 Jordlagerföljd för borrpunkter

I figurer nedan presenteras de berörda borrpunkterna från området Kronåsen, med data tagna från rutinundersökning. Tabellerna förklarar vad för typ av lera dessa borrpunkter innehåller, där de olika färgerna är tolkade lager för de olika jordlagren.

Tabell 5. Jordlagerföljd för borrpunkt 2A, från rutinundersökning

<table>
<thead>
<tr>
<th>Djup (m)</th>
<th>Färg:</th>
<th>Beskrivning:</th>
<th>Notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Svart-grå</td>
<td>Sulfidhaltig lera</td>
<td>Skalrester</td>
</tr>
</tbody>
</table>

Tabell 6. Jordlagerföljd för borrpunkt 2B, från rutinundersökning

<table>
<thead>
<tr>
<th>Djup (m)</th>
<th>Färg:</th>
<th>Beskrivning:</th>
<th>Notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Grå-svart</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 7. Jordlagerföljd för borrpunkt 2C, från rutinundersökning

<table>
<thead>
<tr>
<th>Djup(m)</th>
<th>Färg:</th>
<th>Beskrivning:</th>
<th>Notation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,5</td>
<td>Grå</td>
<td>Rostfläckig sulfidfläckig lera</td>
<td></td>
</tr>
<tr>
<td>19,5</td>
<td>Grå-svart</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>29,5</td>
<td>Grå</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>39,5</td>
<td>Grå-svart</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 8. Jordlagerföljd för borrpunkt 2D, från rutinundersökning

<table>
<thead>
<tr>
<th>Djup (m)</th>
<th>Färg</th>
<th>Beskrivning</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grå-grön</td>
<td>Rostfläckig gyttjig lera</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Grå</td>
<td>Gyttig lera</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Grå-svart</td>
<td>Sulfidhaltig lera</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Grå-svart</td>
<td>Sulfidhaltig lera</td>
<td>Skalrester</td>
</tr>
<tr>
<td>27</td>
<td>Grå-svart</td>
<td>Sulfidhaltig lera</td>
<td>Skalrester</td>
</tr>
</tbody>
</table>
9. Metod

Arbetet påbörjades genom att läsa igenom material som berört dessa frågor som uppsatsen sätter fokus på, där källor från Sveriges Geotekniska Institut har varit dominerande. Efter bearbetning av material, reflektion och skrivning har inventering av arkiv hos Bjerking AB skett, då information och letande av passande borrpunkter diskuterats. För att kunna göra en jämförelse mellan de två metoder, med fokus på moduler och egenskaper, måste både CPT-sondering och CRS-försök genomförts för de valda borrpunkterna.

För CRS-försöks resultat och moduler så ges parametrar såsom M_L och M_0. Denna M_0 modul utvärderas och är en standardparameter som brukar inkluderas när ett labbresultat erhålls från CRS-försök. M_L ges redan efter ett CRS-försök, men M_0 måste antigen beräknas fram med hjälp av ekvation \(M_0 = 250 \cdot \tau_{fU} \) (Moritz, 1995), som återfinns i kap 5.2 Kompressionsmodul (M), eller genom att visuellt uppskatta M_0 från kompressionsmodulkurvor som erhålls från CRS-försök.

M_0 har funnits uppskattade för Fyrklövern i Upplands Väsby, för tre av Kungsängens borrpunkter och för tre borrpunkter i Kronåsen har det fattats 2 borrpunkters uppskattning av M_0. Därmed har uppskattning för M_0 gjorts för borrpunkt 1A i Kungsängen och för 2D i Kronåsen genom att visuellt uppskatta M_0 från erhållna kurvor från CRS-försök som körts för dessa punkter. Dessa två borrpunkter fått sina M_0 uppskattade.

En vanlig praxis när kolvprover tas ute i fält är att göra en rutinundersökning på prover i laboratorium för att erhålla grundläggande information om dess egenskaper. Mer specifikt undersöks och erhålls: densitet (\(\rho \)), sensitivitet (S_i), vattenkvot (w), konflytgräns (W_L) och skjuvhållfasthet (T_{fu}), där de två sistnämnda parametrarna är av stor vikt för att utvärdera modul M_0 om man ser till att räkna ut värdet för M_0.

När värden för M_0, M_L och E-moduler för varje enskild borrpunkt har erhållits, så har både utvärdering och redovisning av diagram gjorts med Excel. Först gjordes redovisning av moduler för varje enskild borrpunkt, för att sedan inkludera alla borrpunkters moduler för varje område till ett och samma diagram. Detta gjordes för att kunna få en representativ bild över ett större område. Excels Scatter-diagram har använts med borrpunkternas djup (m) som representerar Y-axel och kilopascal som representeras med X-axel. Då dessa tre moduler har enhet kilopascal (kPa) har dem kunnat kombineras till samma diagram för varje enskild borrpunkt.

M_L-medelvärde har räknats ut för varje område. Det totala M_L-värdet för alla borrpunkter, har dividerats med antal provtagningar för att kunna få fram ett
medelvärde. Detta gjordes för att kunna jämföra M_L-värdet mellan dessa berörda områden.

När resultaten blivit färdig producerade, så har modul-diagram ställts mot deras jordlagerföljder för borrpunkter, för att kunna tolkas för varför vissa värden av moduler påträffats var och varför i de olika djupen. Deformationsegenskaper för området Fyrklövern i Upplands Väsby kommun, har producerats specifikt för att kunna jämföra moduler för två vitt skilda områden, för att se om det kan observeras några större skillnader i om. att Kungsängen och Kronåsen är relativt nära varandra geografiskt och kan vara någorlunda homogena.
10. Resultat

10.1 Resultat för området Kungsängen, Uppsala kommun

Figur 19. Moduler M_L och M_0 för borrpunkt 1A.

Figur 20. Moduler M_L och M_0 för borrpunkt 1B.
Figur 21. Moduler M_L och M_0 för borrpunkt 1C.

Figur 22. Moduler M_L, M_0 och E (Elasticitetsmodul) för borrpunkt 1D.
Figur 23. Moduler M_L (mörkblå), M_D (gul) och E (Elasticitets-modul) (grön) för alla borrpunkter i området Kungsängen.

Tabell 9. Medelvärde för M_L för alla borrpunkter i Kungsängen

<table>
<thead>
<tr>
<th>Borrpunkter för Kungsängen</th>
<th>M_L-Värde</th>
<th>Antal provtagningar</th>
<th>M_L-medelvärde</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>22 045 kPa</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>17 283 kPa</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>12 451 kPa</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1D</td>
<td>16 095 kPa</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Alla punkter</td>
<td>67 874 kPa</td>
<td>33</td>
<td>$(67 874) / 33 = 2058.8$ kPa</td>
</tr>
</tbody>
</table>
10.2 Resultat för området Kronåsen, Uppsala kommun

Figur 24. Moduler M_L, M_0 och E (Elasticitetsmodul) för borrpunkt 2A.

Figur 25. Moduler M_L, M_0 och E (Elasticitetsmodul) för borrpunkt 2B.
Figur 26. Moduler M_L, M_0 och E (Elasticitetsmodul) för borrpunkt 2C.

Figur 27. Moduler M_L, M_0 och E (Elasticitetsmodul) för borrpunkt 2D.
Figur 28. Moduler M_L (mörkblå), M_0 (gul) och E (Elasticitets-modul) (grön) för alla borrpunkter i området Kronåsen.

Tabell 10. Medelvärde för M_L för alla borrpunkter i Kronåsen

<table>
<thead>
<tr>
<th>Borrpunkter för Kronåsen</th>
<th>M_L-värde</th>
<th>Antal provtagningar</th>
<th>M_L-medelvärde</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>9677 kPa</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>4335 kPa</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>9968 kPa</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>7169 kPa</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Alla punkter</td>
<td>31 149 kPa</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

$$ = \frac{(31149)}{16} = 1946.8 \text{ kPa}$$
10.3 Resultat för området Fyrklävern, Upplands Väsby kommun

Figur 29. Moduler M_L, M_0 och E (Elasticitets-modul) för borrpunkt 3A.

Figur 30. Moduler M_L, M_0 och E (Elasticitets-modul) för borrpunkt 3B.
Figur 31. Moduler M_L (mörkblå), M_0 (gul) och E (Elasticitets-modul) (grön) för alla borppunkter i området Fyrklävern.

Tabell 11. Medelvärde för M_L för alla borppunkter i Fyrklävern

<table>
<thead>
<tr>
<th>Borppunkter i Fyrklävern</th>
<th>M_L-värde</th>
<th>Antal provtagningar</th>
<th>M_L-medelvärde</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A</td>
<td>9071 kPa</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>7193 kPa</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Alla punkter</td>
<td>16 264 kPa</td>
<td>5</td>
<td>$= \frac{16 264}{5} = 3 252.8 , kPa$</td>
</tr>
</tbody>
</table>
11. Diskussion

Det som är genomförbart med att kunna kombinera dessa moduler som CRS-försök och CPT-sondering utvärderar och producerar, är att genom att få en sammanställning mellan modulerna, kan det erhållas en bättre utvärdering för deformationsegenskaper. Både lagerföljden för deformationer i de berörda borrpunkten och jordlagerföljden blir säkrare, för att kunna konstatera var och när friktionsjord befinner sig och påträffas i en jordlagerföljd som går att se t.ex. i figur 28.

Elasticitetsmoduler för borrpunkter 1A, 1B och 1C har inte blivit utvärderade från tidigare CONRAD körningar, och har inte heller kunnat utvärderas med programvaran under skrivandets gång. En anledning till varför E-moduler inte blivit utvärderade för dessa tre borrpunkter kan helt enkelt vara att friktionsjord inte har påträffats under en CPT-sondering på dessa provtagningsplatser, och därför finns inga data för elasticitetsmoduler. Det är fullt möjligt då mäktigheten i Uppsala för lera kan överstiga 100 meter på vissa områden (Zervens, 2017). Därmed blir en avgränsning i uppsatsen att rådata för tre av de valda borrpunkterna 1A, 1B och 1C för området Kungsängen inte har kunnat användas eller produceras.

Så om möjligheten finns att använda både Cone Penetration Testing och Constant Rate of Strain på- och för en undersökningsplats, skulle dessa komplementera varandra väljligt bra. Resultatet för Kronåsen och Kungsängen, med deras moduler förklarar att genom att kombinera dem i samma diagram, blir det möjligt att istället för att endast ha deformationsegenskaper för vissa djup av en borrpunkt så ges egenskaper för lera och friktionsjord för en hela jordlagerföljden.

Moduler \(M_0 \) och \(M_L \) visar även på att lera förekommer hela vägen ned till 55 meters djup för Kungsängen när figur 22 studeras. Vi kan se att E-moduler påträffas för ett större djup än 55 meter och om man ställer modulen för borrpunkt 1D mot dess jordlagerfölj i tabell 4, så kan man se att fr.o.m. 48 meter djup har vi varviga lera som innehåller sandkorn. Så här kan det antas att det vi närmat oss en övergångsfas till grovknäglade sediment och därmed till friktionsjord.

Om \(M_0 \), som förklarar vilket tryck som leran historisk sett varit maximalt utsatt för (Sällfors & Andreasson, 1986), jämförs mellan figur 23 för Kungsängen och figur 28 för Kronåsen med figur 31 för Fyrklövern. Det kan beaktas för två vitt skilda områden, mellan ”Uppsalalera” (Kungsängen och Kronåsen) och ”Upplands Väsbylera” (Fyrklövern), att lerdjupet skiljer sig väldigt mycket, med en mycket lägre mächtighet av lera för Upplands Väsby. Men förkonsolideringstrycket är högre för Upplands Väsby än för Kronåsen och Kungsängen. \(M_0 \) för Upplands Väsby pendlar mellan 1685 - 13333 kPa, för kronåsen är alla provtagningpunkter under 10 000 kPa för \(M_0 \) och för Kungsängen är det endast två provtagningpunkter som överstiger 10 000 kPa, som går att se i figur 19 och figur 20. ”Uppsalalera” verkar ha ett lägre förkonsolideringstryck och därmed har en lägre tryckkapacitet för att deformeras.

När \(M_L \) jämförs mellan dessa tre områden, kan man se att Kungsängen har det högsta \(M_L \) värdet med 5858 kPa på ett 55 meters djup (figur 20), Kronåsen har det högsta \(M_L \)-värde på ett 40 meter djup med 4011 kPa (figur 24). Fyrklövernens \(M_L \)-värde är nästan lika högt som för Kungsängen, med 5714 kPa på ett 4 meters djup (figur 30). Men när medelvärdet för \(M_L \) jämförs mellan områdena, ser man klar och
tydligt att Fyrklövern i Upplands Väsby (tabell 11) har avsevärt mycket högre M_L-medelvärde än för Uppsalalera (tabell 9) (tabell 10). Det skiljer sig över en megapascal mellan Kungsängen, som har det näst högsta M_L-medelvärdet, med Fyrklövern. Så trycket som är högre än förkonsolideringstrycket (σ'_C), men mindre än trycket där modulen börjar öka igen är högst hos Fyrklövern och därmed behöver högst tryck för att fortsätta deformeras när förkonsolideringstrycket är passerat.

11.1 Felkällor

- M_0 har tolkats visuellt för borrpunkt 1A, Kungsängen och 2D, Kronåsen genom erhållna CRS-försök. Så när förkonsolideringstrycket är passerat för dessa leror kan skilja sig en aning och är därmed inte angett med ett exakt värde.

- M_0 blir för lågt med CRS-försök (Larsson, 2008), och är därför för låga i resultat-delen i om. att ekvation $M_0 = 250 \times \tau_{fu}$ inte användes vid uppskattning av M_0.

- Elasticitetsmoduler för 1A, 1B och 1C har inte kunnat erhållas, vare sig från CONRAD-körningar eller från tidigare utvärderingar.
12. Slutsats

Dessa två metoder som uppsatsen har fokuserat på, med avseende på moduler och jämförelsen mellan dessa, så görs följande slutsats:

- Det skulle kunna göras ytterligare forskning kring relationen mellan M_0, M_L och E-moduler. Detta förutsätter då att programvaran CONRAD, vid en senare uppgradering skulle börja utvärdera Elasticitetsmoduler för lera.

- Det går inte att jämföra CRS-försök och CPT-sondering, enbart med deras moduler. En kombination av dessa skulle övergripande kunna förklara deformationsegenskaper för en provningsplats, framförallt då E-moduler som erhålls från CONRAD, i kombination med CRS-försöktets moduler M_0 och M_L, ger en bättre bild för var vi har lera respektive friktionsjord i en jordlagerföljd och för jordlagers deformationsegenskaper.

- Gemensamt för metodernas erhållna parametrar är att båda undersöker och mäter portryck.

- I Kungsängen tyder modulerna på att jordlagerföljden övergår från lera till friktionsjord på ett ~ 55 meters djup.

- I Kronåsen verkar övergångsfasen från lera till friktionsjord vara på $\sim 51 – 52$ meters djup, med en stor koncentration av skalrester på ett $\sim 22 – 29$ meters djup.

- Metoderna är väldigt olika varandra, vad gäller erhållna parametrar och deformation av prover, då dessa metoder tillhör olika huvudgrupper av deformation, blir det problematiskt att jämföra dem sinsemellan.

- Fyrklövern har generellt avsevärt högre tryckkapacitet vad gäller M_0 jämfört med Kungsängen och Kronåsen och därmed varit utsatt för högst maximalt tryck.

- Fyrklövern har det högsta M_L-medelvärdet, och därmed behöver högst tryck för att fortsätta deformeras när förkonsolideringstrycket är passerat.
Tackord

Referenser

http://www.bygg.uppsala.se/contentassets/cfed9f2f767c49af9b11f9b778b26457/programhandling_bn_2009-02-02.pdf [2018-03-22]

http://www.upplandsvasby.se/download/18.433d6ef615ca4bffb1a15c77/1499426218038/Geoteknisk+sammanst%C3%A4llning+Fyrkl%C3%B6vern.pdf [2018-04-12]

http://www.swedgeo.se/globalassets/publikationer/info/pdf/sgi-i1.pdf [2018-03-05]

http://www.swedgeo.se/globalassets/publikationer/info/pdf/sgi-i15.pdf [2018-03-06]

http://www.swedgeo.se/globalassets/publikationer/rapporter/pdf/sgi-r49.pdf [2018-03-23]

http://www.swedgeo.se/globalassets/publikationer/rapporter/pdf/sgi-r47.pdf [2018-03-27]

Bilagor

Bilaga A – Cone Penetration Testing

Figur 35. Förberedelse av prov inför CRS-försök, med portrycksmätare installerad (Foto: Zoran Taloyan, 2018).
