(BESIII Collaboration)

1Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2Beihang University, Beijing 100191, People’s Republic of China
3Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4Bochum Ruhr-University, D-44780 Bochum, Germany
5Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6Central China Normal University, Wuhan 430079, People’s Republic of China
7China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
10GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
11Guangxi Normal University, Guilin 541004, People’s Republic of China
12Guangxi University, Nanning 530004, People’s Republic of China
13Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
14Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
15Henan Normal University, Xinxiang 453007, People’s Republic of China
16Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
17Huangshan College, Huangshan 245000, People’s Republic of China
18Hunan University, Changsha 410082, People’s Republic of China
19Indiana University, Bloomington, Indiana 47405, USA
20INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
21INFN and University of Perugia, I-06100 Perugia, Italy
22INFN Sezione di Ferrara, I-44122 Ferrara, Italy
23University of Ferrara, I-44122 Ferrara, Italy
24Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
25Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
26Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
27Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
28KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
29Lanzhou University, Lanzhou 730000, People’s Republic of China
30Liaoning University, Shenyang 110036, People’s Republic of China
31Nanjing Normal University, Nanjing 210023, People’s Republic of China
32Nanjing University, Nanjing 210093, People’s Republic of China
33Nankai University, Tianjin 300071, People’s Republic of China
34Peking University, Beijing 100871, People’s Republic of China
35Seoul National University, Seoul 151-747, Korea
36Shandong University, Jinan 250100, People’s Republic of China
37Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
38Shanxi University, Taiyuan 030006, People’s Republic of China
39State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
40Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
41Tsinghua University, Beijing 100084, People’s Republic of China
42Ankara University, 06100 Tandogan, Ankara, Turkey
43Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey
44Uludag University, 16059 Bursa, Turkey
45Near East University, Nicosia, North Cyprus, 33010 Mersin, Turkey
46University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
47University of Hawaii, Honolulu, Hawaii 96822, USA
48University of Minnesota, Minneapolis, Minnesota 55455, USA
49University of Rochester, Rochester, New York 14627, USA
50University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
51University of Science and Technology of China, Hefei 230026, People’s Republic of China
52University of South China, Hengyang 421001, People’s Republic of China
I. INTRODUCTION

Hadronic decays of charmed mesons open a window to explore the interplay between weak and strong interactions. Based on flavor SU(3) symmetry, different topological amplitudes for two-body hadronic decays of D mesons can be extracted by diagrammatic approach [1–3] or factorization-assisted topological-amplitude approach [4]. Consequently, comprehensive measurements of their branching fractions (BFs) can not only test the theoretical calculations, but also shed light on the understanding of SU(3)-flavor symmetry-breaking effects in D decays [5].

Two-body D hadronic decays have been extensively investigated in previous experiments [6]. However, experimental knowledge of some singly Cabibbo-suppressed (SCS) decays involving four photons, e.g., \(D^0 \to \omega \pi^0, \eta \eta, \eta' \pi^0, \eta' \pi^0, \eta \eta \) and \(\eta' \eta \), is still poor due to low statistics and high backgrounds. The decay \(D^0 \to \omega \eta \) is particularly interesting, since it only occurs via \(W \)-internal emission and \(W \)-exchange, as shown in Fig. 1, and its decay BF is expected to be at the \(10^{-3} \) level [2]. However, it has not yet been measured in any experiment.

Previously, the CLEO Collaboration reported the measurements of the BFs of \(D^0 \to \eta \pi^0, \eta \eta, \eta' \pi^0, \eta' \pi^0, \eta \eta \) [7,8]. During 2010 and 2011, a data sample with an integrated luminosity of 2.93 fb\(^{-1}\) [9] was collected with the BESIII detector at a center-of-mass energy \(\sqrt{s} = 3.773 \) GeV. In \(e^+e^- \) annihilations at this energy, \(D \) mesons are produced in pairs with no additional particles and can serve as an ideal test-bed to systematically study \(D \) decays. With this data sample, the BFs of the two-body hadronic decays \(D^0 \to \pi^\pm \pi^\mp \) [10] and \(D^0 \to \omega \eta, \eta \eta \) [11] have been previously measured using single-tagged and double-tagged events, respectively, in which one and two \(D \) mesons are reconstructed in each event. In this paper, we report the measurements of the BFs for \(D^0 \to \omega \eta, \eta \eta, \eta' \pi^0, \eta \eta \) and \(\eta' \eta \), by analyzing single-tag events using this data sample. Throughout this paper, the inclusion of charge-conjugate final states is implied.

II. BESIII DETECTOR AND MONTE CARLO SIMULATION

The BESIII detector in Beijing, China, is a cylindrical detector with a solid-angle coverage of 93% of 4\(\pi \) that operates at the BEPCII collider consisting of the following five main components. A 43-layer main drift chamber
(MDC) surrounding the beam pipe provides precise determinations of charged particle trajectories and ionization energy losses (dE/dx) for charged particle identification (PID). An array of time-of-flight counters (TOF) is located outside the MDC and provides additional information for PID. A CsI(Tl) electromagnetic calorimeter (EMC) surrounds the TOF and is used to measure energies of electromagnetic showers. A solenoidal superconducting magnet outside the EMC provides a 1 T magnetic field in the central tracking region of the detector. The iron flux return yoke of the magnet is instrumented with 9 layers in the barrel and 8 layers in the end-caps. More details of the BESIII detector are described in Ref. [12].

A GEANT4-based [13] Monte Carlo (MC) simulation software package, which includes the geometrical description of the detector and its response, is used to determine the detection efficiency and to estimate the potential backgrounds. An inclusive MC sample produced at the LUNDCHARM [19]. The inclusive MC sample corresponds to about 10 times the equivalent luminosity of data. To reject beam backgrounds are suppressed by requiring clusters to occur no later than 700 ns from the event start time. To reject photons from bremsstrahlung or from secondary interactions, the two-body D hadronic decays of interest are selected from combinations of π⁺, η, ω and η' mesons reconstructed using π⁺ → γγ, η → γγ, ω → π⁺π⁻π⁰ and η' → π⁺π⁻η decays, respectively. The D⁰ → ηη decay is also reconstructed using one η undergoing a γγ decay and the other decaying to the ηπ⁻π⁺ final state. In the following, we use ηγ and ηπ for the decay modes η → γγ and η → π⁺π⁻π⁰, respectively, but simply use η for the other D⁰ decays with a final-state η to represent the decay η → γγ.

The minimum distance of a charged track to the interaction point (IP) is required to be within 10 cm along the beam direction and within 1 cm in the perpendicular plane. The polar angle θ of a charged track with respect to the positron beam direction is required to satisfy |cos θ| < 0.93. PID is performed by using the dE/dx and TOF measurements to calculate confidence levels for pion and kaon hypotheses, CLx and CLK. Charged pions are required to satisfy CLx > CLK.

Photon candidates are chosen from isolated EMC clusters with energy larger than 25 (50) MeV if the crystal with the maximum deposited energy in that cluster is in the barrel (end-cap) region [12]. Clusters due to electronic noise or beam backgrounds are suppressed by requiring clusters to occur no later than 700 ns from the event start time. To reject photons from bremsstrahlung or from secondary interactions,

III. DATA ANALYSIS

The two-body D hadronic decays of interest are selected from combinations of π⁺, η, ω and η' mesons reconstructed using π⁺ → γγ, η → γγ, ω → π⁺π⁻π⁰ and η' → π⁺π⁻η decays, respectively. The D⁰ → ηη decay is also reconstructed using one η undergoing a γγ decay and the other decaying to the ηπ⁻π⁺ final state. In the following, we use ηγ and ηπ for the decay modes η → γγ and η → π⁺π⁻π⁰, respectively, but simply use η for the other D⁰ decays with a final-state η to represent the decay η → γγ.

The minimum distance of a charged track to the interaction point (IP) is required to be within 10 cm along the beam direction and within 1 cm in the perpendicular plane. The polar angle θ of a charged track with respect to the positron beam direction is required to satisfy |cos θ| < 0.93. PID is performed by using the dE/dx and TOF measurements to calculate confidence levels for pion and kaon hypotheses, CLx and CLK. Charged pions are required to satisfy CLx > CLK.

Photon candidates are chosen from isolated EMC clusters with energy larger than 25 (50) MeV if the crystal with the maximum deposited energy in that cluster is in the barrel (end-cap) region [12]. Clusters due to electronic noise or beam backgrounds are suppressed by requiring clusters to occur no later than 700 ns from the event start time. To reject photons from bremsstrahlung or from secondary interactions,
showers within an angle of 10° of the location of charged particles at the EMC are rejected. For π0 and ηγ, reconstruction, the γγ invariant mass is required to be within (0.115, 0.150) and (0.515, 0.575) GeV/c², respectively. To improve π0 and ηγ momentum resolution, a kinematic fit is performed to constrain the γγ invariant mass to the appropriate world average mass [6]. The four-momenta of the γγ combinations from the kinematic fit are used in further analysis. Since there are two η mesons in the final state of the D⁰ → ηγ decay, the π⁺π⁻η combination with invariant mass closer to the world average η' mass [6] is regarded as the η' candidate. Figure 2 illustrates the distributions of the γγ, π⁺π⁻π⁰ and π⁺π⁻η invariant masses for π⁰ and ηγ, D and η' candidates from data, after above requirements. In all cases, our nominal ΔE requirements are applied, and MBC is required to be in the interval (1.860, 1.870) GeV/c². See the next paragraph for details about the definitions of ΔE and MBC. For ηγ, D and η' signals, the π⁺π⁻π⁰ and π⁺π⁻η invariant masses are required to be within signal regions as shown in Table I.

For each selected D⁰ candidate, two variables, the energy difference ΔE = E_D⁰ - E_{beam}, and the beam energy constrained mass M_{BC} = √(E_{beam}²/c⁴ - |p_D⁰|²/c⁴) are calculated, where E_{beam} is the beam energy, E_D⁰ and |p_D⁰| are the energy and momentum of the D⁰ candidate in the e⁺e⁻ center-of-mass system. In the case of a correct D⁰ candidate, ΔE and M_{BC} will peak around zero and the nominal D⁰ mass [6], respectively. If multiple candidates are found only the combination with the smallest |ΔE| is kept in each single-tag mode. To suppress combinatorial background, mode-dependent ΔE requirements are imposed on the candidates. These correspond approximately to 3σ_{ΔE} around the fitted ΔE peak, where σ_{ΔE} is the fitted resolution of the ΔE distribution. To obtain single-tag D⁰ yields, we fit the M_{BC} distributions for each mode, as shown in Fig. 3.

In these fits, the D⁰ signal is modeled by the MC-simulated shape convolved with a Gaussian function representing the mass resolution difference between data and the MC simulation, and the combinatorial background is described by an ARGUS function [20] with endpoint fixed to 1.8865 GeV/c². The parameters of the Gaussian and ARGUS functions are determined in the fit. The resulting single-tag D⁰ yields, N_{sig}, are summarized in Table II.

For the decays containing an ηγ, D and η' meson in the final state, the non-ηγ, D and η' contribution in the ηγ, D or η' signal region is estimated by using the candidate events within the invariant mass sidebands listed in Table I. To obtain the single-tag D⁰ yields in the sideband regions, N_{sid} (see Table II), the corresponding M_{BC} distributions are fitted using a method similar to that described above. However, due to the low statistics and high backgrounds, only the parameters of the ARGUS function are left free, while the parameters of the smearing Gaussian function are fixed to the values extracted from the M_{BC} fit in the signal region. The non-π⁰ and non-ηγ contributions in the γγ invariant mass spectra are ignored since decays of the form D⁰ → γγX are highly suppressed, and therefore any combinatoric background under the π⁰ or ηγ signals will not peak in M_{BC}.

IV. RESULTS FOR BRANCHING FRACTIONS

Detailed MC studies show that, except for the nonresonant ηγ, D and η' background components, which are estimated from sideband regions, no other background processes peak in the M_{BC} distribution. We may thus determine the BF for the hadronic decay D⁰ → f via

\[B(D⁰ → f) = \frac{N_{net}}{N_{tot}} \cdot \frac{1}{B_{int}}. \]

Here, N_{net} is the net signal yield, which is N_{sig} - N_{sid} (N_{sig}) when a sideband subtraction is (is not) applied to the

![FIG. 3. Fits to the M_{BC} distributions of the (a) D⁰ → αη, (b) D⁰ → ηγ, (c) D⁰ → η'π⁰, (d) D⁰ → ηη, (e) D⁰ → ηγ, and (f) D⁰ → η'η candidate events in data. The points with error bars are data. The blue curves are the total fit results; the red dashed curves are the background components.](image-url)
TABLE II. Summary of the singly tagged D^0 yields (N_{sig}) in the signal (sideband) region in data, the detection efficiencies (ϵ), the decay BFs of the intermediate particles x^0, $\eta_{\gamma(x)}$, ω and η' (B_{int}) [6], which are not included in the detection efficiencies and the measured BFs (B). The uncertainties are statistical only. The symbol ‘-’ denotes that the item is not relevant.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>N_{sig}</th>
<th>N_{sid}</th>
<th>ϵ (%)</th>
<th>B_{int} (%)</th>
<th>B ($\times10^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow \eta\eta$</td>
<td>2961 ± 146</td>
<td>784 ± 97</td>
<td>13.77 ± 0.19</td>
<td>34.65</td>
<td>2.15 ± 0.17</td>
</tr>
<tr>
<td>$D^0 \rightarrow \eta\pi^0$</td>
<td>1695 ± 144</td>
<td>...</td>
<td>35.27 ± 0.30</td>
<td>38.85</td>
<td>0.58 ± 0.05</td>
</tr>
<tr>
<td>$D^0 \rightarrow \eta'\pi^0$</td>
<td>530 ± 48</td>
<td>61 ± 28</td>
<td>14.21 ± 0.12</td>
<td>8.83</td>
<td>0.93 ± 0.11</td>
</tr>
<tr>
<td>$D^0 \rightarrow \eta\eta$</td>
<td>2123 ± 87</td>
<td>...</td>
<td>29.74 ± 0.16</td>
<td>15.45</td>
<td>2.18 ± 0.09</td>
</tr>
<tr>
<td>$D^0 \rightarrow \eta'\eta$</td>
<td>1315 ± 54</td>
<td>61 ± 29</td>
<td>15.10 ± 0.12</td>
<td>17.67</td>
<td>2.22 ± 0.11</td>
</tr>
<tr>
<td>$D^0 \rightarrow \eta'\eta$</td>
<td>170 ± 33</td>
<td>12 ± 25</td>
<td>12.01 ± 0.10</td>
<td>6.63</td>
<td>0.94 ± 0.25</td>
</tr>
</tbody>
</table>

Intermediate mass spectra. The factor n is four for the $D^0 \rightarrow \eta\pi\eta$ decay and two for other decays. The common factor of two accounts for charge conjugation, while the additional factor of two in the $D^0 \rightarrow \eta\pi\eta$ decay accounts for the two possible $\eta\pi\eta$ combinations per D^0 meson decay. $N_{\text{tot}}^{\pi^0}/D^0$ is the total number of $D^0\bar{D}^0$ pairs in data, which is determined to be $(10597 \pm 28 \pm 89) \times 10^7$ [21], ϵ is the detection efficiency, and B_{int} denotes the decay BFs of the intermediate particles x^0, $\eta_{\gamma(x)}$, ω and η' [6], which are not included in the detection efficiencies. The numbers of peaking background events in the M_{BC} distributions are assumed to be equal between signal and sideband regions.

The detection efficiencies are estimated by analyzing signal MC events with the same procedure as data analysis, and are listed in Table II. Detailed studies show that the MC simulated events model data well.

Inserting the numbers of N_{int}, n, $N_{\text{tot}}^{\pi^0}/D^0$ [21], ϵ and B_{int} [6] into Eq. (1), we obtain the resultant BFs shown in Table II, where the uncertainties are statistical only.

V. SYSTEMATIC UNCERTAINTY

Sources of systematic uncertainty in the BF measurements are summarized in Table III and discussed below.

(i) $N_{\text{tot}}^{\pi^0}/D^0$: The uncertainty of the total number of $D^0\bar{D}^0$ pairs, 0.9% [21], is considered as a systematic uncertainty for each decay.

(ii) π^\pm tracking and PID: The π^\pm tracking and PID efficiencies are studied by analyzing double-tagged hadronic $D\bar{D}$ events. The systematic uncertainty for the π^\pm tracking and PID efficiencies each are assigned to be 1.0% per track. Tracking and PID systematics are each treated as fully correlated among themselves, but uncorrelated with each other.

(iii) x^0 and η_{γ} reconstruction: The x^0 reconstruction efficiency is studied by analyzing double-tagged hadronic decays $D^0 \to K^-\pi^+$ and $K^-\pi^+\pi^-\pi^-$ versus $\bar{D}^0 \to K^+\pi^0\pi^0$ and $K^0\pi^0\pi^0$. The systematic uncertainties of both the x^0 reconstruction efficiency and the η_{γ} reconstruction efficiency are found to be 2.0%.

(iv) ω, η_x or η' signal window: The signal mass windows are widened by 2 MeV/c^2 for the ω, η_x or η' used in $D^0 \to \eta\pi\eta$, $\eta'\pi^0$ or $\eta'\eta$ decays. We then re-determine the BFs, and the resulting differences, ranging from 0.5% to 3.3%, are taken as systematic uncertainties.

(v) ΔE requirement: Our ΔE requirements are widened from 3 to 3.5 times the fitted width, and we recalculate the BFs. The resulting differences, ranging from 3.0% to 8.7%, are taken as systematic uncertainties.

(vi) M_{BC} fit: The uncertainties associated with the M_{BC} fits are estimated by comparing the nominal BFs to the measured values with alternative signal yield fits. Variations include alternative total fit ranges of (1.8335,1.8865) or (1.8395,1.8865) GeV/c^2, alternative endpoints of 1.883 or 1.8867 GeV/c^2 for the ARGUS background function, and changes in the detailed method used to extract the MC signal shape. The quadratic sum of changes in the BFs, ranging from 1.5% to 5.3%, are taken as the systematic uncertainties.

(vii) Normalization of the backgrounds in signal/sideband regions (BKG normalization): Our nominal sideband subtraction for peaking backgrounds from nonresonant combinatorics in the ω, η_x and η' spectra assumes that the equal area of the sideband and signal regions gives a correct normalization. This is investigated by using instead a scale factor obtained from fitting the corresponding $\pi^+\pi^-\pi^0$ or $\pi^+\pi^-\eta$ invariant mass spectra in data and integrating the background shape. The relative changes of the BFs, ranging from 0.4% to 1.1% are used as systematic uncertainties.

(viii) Intermediate BFs: The uncertainties on the quoted BFs for $\pi^0 \to \gamma\gamma$, $\eta \to \gamma\gamma$, $\omega \to \pi^+\pi^-\pi^0$, $\eta \to \pi^+\pi^-\pi^0$ and $\eta' \to \pi^+\pi^-\eta$ of 0.03%, 0.5%, 0.8%, 1.2% and 1.6% [6], respectively, are propagated as systematic uncertainties.

(ix) MC statistics: The uncertainties due to limited MC statistics used in determining efficiencies, varying from 0.5% to 1.3%, are included.
TABLE III. Systematic uncertainties (%) of the measured BFs, where com and ind denote the common and independent systematic uncertainties in the measured BFs for $D^0 \rightarrow \eta \eta_\ell$ and $D^0 \rightarrow \eta_\ell \eta_\ell$; the symbol “...” denotes that the uncertainty is not relevant.

<table>
<thead>
<tr>
<th>Source</th>
<th>$D^0 \rightarrow \omega \eta$</th>
<th>$D^0 \rightarrow \eta \pi^0$</th>
<th>$D^0 \rightarrow \eta' \pi^0$</th>
<th>$D^0 \rightarrow \eta_\ell \eta_\ell$</th>
<th>$D^0 \rightarrow \eta_\ell \eta_\ell$</th>
<th>$D^0 \rightarrow \eta' \eta'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{D^0}^{s,fp}$</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>π^\pm tracking</td>
<td>2.0</td>
<td>...</td>
<td>2.0</td>
<td>...</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>π^0 PID</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>π^0 and $\eta(\gamma)$ reconstruction</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>ω, η_ℓ or η' signal window</td>
<td>0.5</td>
<td>...</td>
<td>3.3</td>
<td>...</td>
<td>0.9</td>
<td>...</td>
</tr>
<tr>
<td>ΔE requirement</td>
<td>3.9</td>
<td>4.8</td>
<td>7.5</td>
<td>...</td>
<td>3.1</td>
<td>...</td>
</tr>
<tr>
<td>M_{BC} fit</td>
<td>2.3</td>
<td>5.3</td>
<td>2.5</td>
<td>...</td>
<td>1.5</td>
<td>...</td>
</tr>
<tr>
<td>BKG normalization</td>
<td>0.5</td>
<td>...</td>
<td>1.1</td>
<td>...</td>
<td>...</td>
<td>0.4</td>
</tr>
<tr>
<td>Quoted BF</td>
<td>0.9</td>
<td>0.5</td>
<td>1.7</td>
<td>0.5</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>MC statistics</td>
<td>1.3</td>
<td>0.8</td>
<td>0.9</td>
<td>...</td>
<td>0.5</td>
<td>...</td>
</tr>
</tbody>
</table>

Total: 6.9 8.3 9.6 5.4 6.3 11.2

All the individual systematic uncertainties are summarized in Table III. For the measurements of $D^0 \rightarrow \eta_\ell \eta_\ell$ and $D^0 \rightarrow \eta_\ell \eta_\ell$, the systematic uncertainties are classified into common and independent parts, necessary for the proper combination of these two measurements later. For each decay, the total systematic uncertainty is the quadratic sum of the individual ones.

VI. SUMMARY

Based on an analysis of the singly tagged events using the data sample of 2.93 fb$^{-1}$ taken at $\sqrt{s} = 3.773$ GeV with the BESIII detector, the BFs of the SCS decays $D^0 \rightarrow \omega \eta$, $\eta \pi^0$, $\eta' \pi^0$, $\eta_\ell \eta_\ell$ and $\eta' \eta'$ are measured, and are summarized in Table IV. Here, the first and second uncertainties are statistical and systematic, respectively. The presented $\mathcal{B}(D^0 \rightarrow \eta \eta_\ell)$ is the combination of two individual measurements, $\mathcal{B}(D^0 \rightarrow \eta_\ell \eta_\ell) = (2.18 \pm 0.09 \pm 0.12) \times 10^{-5}$ and $\mathcal{B}(D^0 \rightarrow \eta_\ell \eta_\ell) = (2.22 \pm 0.11 \pm 0.14) \times 10^{-5}$, by using the least squares method [22] and incorporating the common and independent uncertainties between the two modes as shown in Table III.

We compare the measured BFs and the world-average values, as shown in Table IV. The $\mathcal{B}(D^0 \rightarrow \omega \eta)$ is measured for the first time and its magnitude is consistent with the theoretical prediction [2-4], while the other four BFs are consistent with the world-averaged values within uncertainties, and are of comparable or significantly improved ($D^0 \rightarrow \eta \eta$) precision. These measurements provide helpful experimental data to improve our understanding of SU(3)-flavor symmetry breaking effects in D decays [5].

ACKNOWLEDGMENTS

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11235011, 11305180, 11772530, 11335008, 11425524, 11625523, 11635010; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1332201, U1532257, U1532258; CAS under Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45, QYZDJ-SSW-SLH003; 100 Talents Program of CAS; National 1000 Talents Program of China; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS; Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) under Contract No. 530-4CDP03; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Natural Science Foundation of China (NSFC) under Contract No. 11505010; National Science and Technology fund; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1332201, U1532257, U1532258; CAS under Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45, QYZDJ-SSW-SLH003; 100 Talents Program of CAS; National 1000 Talents Program of China; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS; Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) under Contract No. 530-4CDP03; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Natural Science Foundation of China (NSFC) under Contract No. 11505010; National Science and Technology fund; The Swedish Research Council; U.S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504, DE-SC-0012069; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.
[21] D. Toth (for BESIII Collaboration), presented at APS 551 April Meeting 2014, Savannah, Georgia, US, April 5-8, 2014. The number of $D^0\bar{D}^0$ pairs has further been corrected for quantum correlation effects (unpublished).