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The Jordan-Hölder and Krull-Schmidt-Remak theorems for abelian categories

Daniel Ahlsén

Uppsala University
June 2018

Abstract

The Jordan-Hölder and Krull-Schmidt-Remak theorems classify finite groups,
either as direct sums of indecomposables or by composition series. This thesis
defines abelian categories and extends the aforementioned theorems to this context.
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1 Introduction

Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part
of their research into algebraic topology. One of their aims was to give an axiomatic
account of relationships between collections of mathematical structures. This led to
the definition of categories, functors and natural transformations, the concepts that
unify all category theory,

Categories soon found use in module theory, group theory and many other disciplines.
Nowadays, categories are used in most of mathematics, and has even been proposed
as an alternative to axiomatic set theory as a foundation of mathematics.[Law66]

Due to their general nature, little can be said of an arbitrary category. Instead, mathe-
matical theory must focus on a specific type of category, the choice of which is largely
dependent on ones interests. In this work, the categories of choice are abelian cate-
gories. These categories were independently developed by Buchsbaum[Buc55] and
Grothendieck[Gro57].

Grothendieck’s work was especially groundbreaking, as he unified the cohomology
theories for groups and for sheaves, which had similar properies but lacked a formal
connection. This showed that abelian categories was the basis of general framework
for cohomology theories, a powerful incentive for research.

Abelian categories are highly structured, possessing both a matrix calculus and various
generalizations of the isomorphism theorems. This gives rise to a refined structure
theory, which is the topic of this thesis. Of special interest here is the structure of
subobjects to an object in an abelian category, since this structure contains a lot of
information about the objects themselves.

The ultimate aim of a structure theory is to provide theorems that classify some
collection of objects up to isomorphism. Here, two results pertaining to such theorems
are presented. The first is the Jordan-Hölder theorem, which classifies objects by
maximal chains of subobjects. The second is the Krull-Schmidt-Remak theorem,
which gives a classification of objects by linearly independent components.

These theorems do not provide a universal classification theorem for all abelian
categories. The problem with the Jordan-Hölder theorem is that not all objects in an
abelian category has a maximal chain of subobjects, while the problem for the Krull-
Schmidt-Remak theorem is that is requires that the endomorphisms of certain objects
are of a particular form, which is not true for alla objects in an abelian category.
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Fortunately, one can show that every object that can be classified using Jordan-Hölder
can also be classified using Krull-Schmidt-Remak. The extent to which Krull-Schmidt-
Remak can be extended is not discussed further.

The thesis is divided into four chapters, each divided into two sections. The first
chapter covers the basics of category theory and defines subobjects and quotients in
general categories. The aim is to set up the the coming chapters, and fix terminology
etc.

The second chapter defines additive categories, and gives an account of the matrix
calculus it contains. Then, abelian categories are defined and some fundamental prop-
erties are proven, so as to set up the third chapter, which further develops the theory.
In the third chapter, the focus is on developing the theory of exact sequences, an impor-
tant tool in the study of abelian categories, and to further deepen our understanding
the subobject structure of abelian categories.

In the fourth and final chapter, the theory is used to prove the Jordan-Hölder and
Krull-Schmidt-Remak theorems.
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2 Preliminaries

Categories is a general framework for studying mathematical structures and how they
relate to one another.

2.1 Basic Category Theory

This section covers the basics of category theory, in order to fix terminology and
notation. Proofs and detailed examples are omitted. The interested reader should
consider the introductory chapter in Leinster’s book Basic Category Theory[Lei14].

Definition 2.1. A category C consists of a class of objects and a class of morphisms
HomC(A,B) for every object A and B in C, subject to the following constraints.

(i) For each f in HomC(A,B) and g in HomC(B,C) there is a morphism g ◦ f in
HomC(A,C), called the composition of f and g.

(ii) For all f in HomC(A,B), g in HomC(B,C) and h in HomC(C,D), we have

h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

In other words, the composition is associative.

(iii) For all objects A in C, there is an morphism idA in HomC(A,A), called the identity
on A, such that f ◦ idA = f and idA ◦g = g for all morphisms f and g.

The composition g ◦ f is written as gf most of the time, and one usually writes Hom
instead of HomC .

A morphism in Hom(A,A) is called an endomorphism, and the collection of endo-
morphisms on A is denoted End(A). Composition turns End(A) into a monoid, with
the identity as unit object. If f is a morphism in End(A), the morphism f n is the
endomorphism on A defined by

f ◦ f ◦ · · · ◦ f .︸          ︷︷          ︸
n times

By convention, f 0 = idA.
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Definition 2.2. Let f be a morphism in Hom(A,B) in some category. Then A is called
the domain of f , while B is called the codomain of f , written f : A→ B.

Example 2.3. (i) Set is the category of all sets and functions under composition.

(ii) VectK is the category of all vector spaces and linear transformations (over a field
K) under composition.

(iii) R-Mod is the category of all R-modules and module morphisms (over a ring R)
under composition.

(iv) Grp is the category of all groups and group morphisms under composition.

The definition of category does not assume that the collections of objects and mor-
phisms are sets. In some circumstances this can be problematic. For details, consider
[ML98] or [Lei14].

From old categories, new ones arise.

Definition 2.4. Let C and D be categories. The product category C ×D of C and D is the
category such that

(i) the objects of C ×D are the pairs (A,B) with A from C and B from D.

(ii) the morphisms from (A,B) to (A′ ,B′) are pairs of morphisms (f ,g) from C and D,
with f : A→ A′ and g : B→ B′ .

(iii) the identity morphisms id(A,B) are (idA, idB).

(iv) the composition of morphisms (f ,g) and (f ′ , g ′) is (f ′f ,g ′g).

Definition 2.5. Let C be a category. The opposite category Cop of C is the category such
that

(i) the objects of Cop are the objects in C.

(ii) for every morphism f : A→ B, there is a morphism f op : B→ A.

(iii) the identity morphisms idA are idA.

(iv) the composition of morphisms f op : A→ B and gop : B→ C in Cop is the mor-
phism (f g)op : A→ C.

The opposite category is also called the dual category.

For any property of morphisms and objects in a category, there is a corresponding dual
property in the dual category where the morphisms are reversed. So, if a property
holds in a category, then the dual property holds in the dual category.

Since any category is the dual category of its dual category, this means that if a property
holds for all categories, the dual property holds for all categories. In particular, for
every theorem, there is a dual theorem that holds in the dual categories (see [ML98,
p.33-35] for a more complete discussion of this).
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Some caution is needed. If a property holds for a category, the dual property holds
for the dual category. This does not mean that dual property hold for the original
category! Since there is no guarantee that categories and dual categories have similar
properties, this limits the scope of the duality principle.

In an arbitrary category, morphisms are not functions. Thus, there is no concept of sur-
jective, injective or bijective morphisms. Instead, one uses a different terminology.

Definition 2.6. A morphism f is

(i) an epimorphism if gf = hf implies g = h, for all morphisms g,h. Then f is called
epic.

(ii) a monomorphism if f g = f h implies g = h, for all morphisms g,h. Then f is called
monic.

(iii) an isomorphism if there is a morphism g such that f g = idB and gf = idA. Then,
A and B are isomorphic, denoted A ' B.

An isomorphism from an object to itself is called an automorphism.

Note that epimorphisms and monomorphisms are dual concepts: a monomorphism in
a category is an epimorphism in the dual category and vice versa. Isomorphisms are
dual to themselves: isomorphisms are isomorphisms in the dual category as well.

Remark. Not all epimorphisms are surjective, nor are all monomorphisms injective.
Also, bijective morphisms and isomorphisms do not coincide in general. See [IB68,
p.3-7] and [Lei14, p.12] for details.

The following facts will be used liberally throughout the thesis.

Proposition 2.7. Let f : A→ B and g : B→ C be morphisms in a category.

(i) If f and g are epic, so is gf .

(ii) If gf is epic, so is g.

(iii) If f and g are monic, so is gf .

(iv) If gf is monic, so is f .

(v) If f and g are isomorphisms, so if gf .

(vi) All isomorphisms are epic and monic.

Remark. The converse of (vi) is not true: there are morphisms that are not isomor-
phisms, yet still epic and monic.[Lei14, p.12]

Maps between categories that preserve composition are called functors.

Definition 2.8. Let C and D be categories. A covariant functor F : C →D is an assign-
ment of objects in C to D and morphisms in C to morphisms in D such that
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(i) for all A and B in C and f : A→ B, we have F(f ) : F(A)→ F(B).

(ii) for all A in C, we have F(idA) = idF(A).

(iii) for all f : A→ B and g : B→ C, we have F(g ◦ f ) = F(g) ◦F(f ).

A contravariant functor from C to D is a covariant functor from Cop to D.

Definition 2.9. A bifunctor on a category C is a functor from C ×C to C.

Functors are assignments between categories, and can be composed pointwise on
objects and morphisms. This composition has an identity and is associative. Hence,
the collection of categories and functors behaves like a category.

Functors are maps between categories - natural transformations are maps between
functors.

Definition 2.10. Let C and D be categories and F and G functors from C to D. A
natural transformation from F to G assigns a morphism

ηA : F(A)→ G(A)

in D for all A in C, such a that if f is a morphism in C between A and B, the diagram

F(A)
F(f ) //

ηA
��

F(B)

ηB
��

G(A)
G(f )
// G(B)

commutes, i.e ηBF(f ) = G(f )ηA. If ηA is an isomorphism for every A, then η is a natural
isomorphism, denoted F ' G.

Just as with functors, natural transformations can be composed pointwise. Once again,
the composition of two natural transformations is a natural transformation and the
composition is associative.

Two objects in a category are isomorphic to each other if there are invertible morphisms
between them. There is a natural analogue to this condition for categories.

Definition 2.11. Two categories C and D are isomorphic if there are functors F : C →D
and G :D→ C such that FG = idD and GF = idC .

Two categories are isomorphic if and only if they are isomorphic as objects in the cate-
gory of categories. However, isomorphic categories rarely occur in practice. Instead, a
weaker notion is used.

Definition 2.12. Two categories C and D are equivalent if there are functors F : C →D
and G :D→ C such that FG ' idD and GF ' idC .
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Definition 2.13. A functor F from a category C to a category D is

• faithful if the induced map from Hom(A,B) to Hom(F(A),F(B)) defined by map-
ping f to F(f ) is injective.

• full if the induced map from Hom(A,B) to Hom(F(A),F(B)) defined by mapping
f to F(f ) is surjective.

• dense if all objects in D is isomorphic to F(A) for some A in C.

Proposition 2.14. A functor is an equivalence if and only if it is faithful, full and dense.

2.2 Subobjects and Quotients

This thesis is concerned with classifies objects in a category using subobjects. But how
can one speak of subobjects without sets? The idea to define a subobject of an object
as an equivalence class of morphisms.

Let Mono(A) denote the class of monomorphisms with codomain A. If i lies in
Mono(A), the domain of i is denoted Ai .

Definition 2.15. Let A be an object in a category, and suppose that i and j are mor-
phisms in Mono(A). Then i contains j via a morphism f , denoted j ≤ i, if there is a
morphism f such that the diagram

Ai
i // A

Aj

f

OO

j

??

commutes, i.e if if = j.

If i and j contain each other, they are equivalent, denoted i ∼ j. Otherwise, the
containment is proper, denoted j < i.

Proposition 2.16. Suppose that i and j are monomorphisms in Mono(A) and that i
contains j via f . Then f is a monomorphism, and if f ′ satisfy if ′ = j, then f = f ′ .

Proof. If if ′ = j = if , cancel i on both sides and obtain f = f ′ . That f is monic follows
from (iv) in Proposition 2.7.

Proposition 2.17. Let A be an object in a category and suppose that i and j are morphisms
in Mono(A). Then i and j are equivalent if and only there is an isomorphism f such that i
contains j via f .
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Proof. If there is such an isomorphism f , then if = j and i = jf −1, so i and j are
equivalent.

If i and j are equivalent, there are morphisms f1 and f2 such that i = jf2 and j = if1.
Thus, i = if1f2

j = jf2f1
⇔

idAi = f1f2
idAi = f2f1,

so f1 and f2 are isomorphisms.

A preorder is a transitive and reflexive relation on a class of objects. A partial order is
preorder which is antisymmetric.

Any preorder � induces an equivalence relation ≈ on its underlying set via x ≈ y if
and only if x � y and y � x. The set of equivalence classes of ≈ is partially ordered by
comparing representatives using �.

Proposition 2.18. The relation ≤ is a preorder on Mono(A) for every object A

Proof. To show that any object is contained in itself, take f to be the identity.

For transitivity, suppose that i, j and k in Mono(A) satisfy i ≤ j and j ≤ k. By as-
sumption, there are morphisms f and g be such that k = jf and j = ig. Then gf
satisfies

igf = jf = k,

and so i is contained in k.

By definition, ∼ is the equivalence relation induced by the preorder ≤.

Definition 2.19. A subobject of an object A is an equivalence class of Mono(A) under
the relation ∼. The class of subobjects of an object A is denoted SA.

By previous remarks, SA is partially ordered by ≤.

The dual to a subobject is a quotient. As with subobjects, quotients are defined as
equivalence classes of morphisms. If A is an object, let Epi(A) denote the class of
epimorphisms out of A.

Definition 2.20. Let A be an object in a category, and suppose that p and q are
epimorphisms in Epi(A). Then p contains q, denoted q ≤ p, if there is a morphism f
such that the diagram

A

q
��

p // Ap

f

��
Aq

commutes, i.e if f p = q. If p and q contain each other, they are equivalent, denoted
p ∼ q, otherwise it is proper, denoted q < p
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Quotients are entirely dual to subobjects, so the following proofs are omitted.

Proposition 2.21. Suppose that p and q are epimorphisms in Epi(A) and that i contains j
via f . Then f is an epimorphism, and if f ′ satisfy f ′p = q, then f = f ′ .

Proposition 2.22. Let A be an object in a category and suppose that p and q are morphisms
in Epi(A). Then p and q are equivalent if and only there is an isomorphism f such that p
contains q via f .

Proposition 2.23. Let A be an object in a category. Then ≤ is a preorder on Epi(A).

Definition 2.24. A quotient object of an object A is an equivalence class of Epi(A)
under the relation ∼. The class of quotients of A is denoted QA.

Remark. Every object A has at least one subobject and quotient, represented by the
identity morphism. This subobject is identified with A itself, so that one may speak of
A as a subobject and quotient of itself.

As a subobject, it contains every subobject and as a quotient object it is contained in
every quotient object. In other words, A is a lowest upper bound in SA and a greatest
lower bound in QA.

Example 2.25. Every subgroup of the abelian group Z is of the form

nZ = {· · · − 2n,−n,0,n,2n, · · · }

for some unique natural number n. The inclusions jn : nZ→Z are defined by jn(x) = x.

Each subobject of Z is an equivalence class of monomorphisms into Z. Each class
contains precisely one of the morphisms jn. Moreover, jm contains jn if and only if
there is a morphism f : nZ→mZ so that jmf = jn, i.e

mf (x) = nx

for all integers x in Z. This happens only when m divides n, in which case f is defined
via f (x) = (n/m)x. Hence,

jn ≤ jm⇔m|n

and S
Z

is isomorphic as a partial order to Z under the reversed divisibility order.

What about quotients? Let p : Z→ G be a surjective group homomorphism. Then
G = im(p) 'Z/ ker(p).

The kernel of p is a subgroup of Z, and so there is a natural number n such that
ker(p) ' nZ. Consequently, G is isomorphic to Cn = Z/nZ, the cyclic group on n
elements. Thus every quotient of Z is represented by a unique epimorphism pn :Z→
Cn, defined by pn(x) = x+nZ

Suppose that the quotient object pn :Z→ Cn contains another quotient pm :Z→ Cm.
Then there is an epimorphism f : Cn→ Cm, so that f pn = pm, i.e

f (pn(x)) = pm(x)⇔ f (x+nZ) = x+mZ.
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This holds if and only if m divides n, and so

pm ≤ pn⇔m|n

and Q
Z

is isomorphic as a partial order to Z under the divisibility order.

Notice that S
Z

and Q
Z

are order isomorphic up to reversal of the order. This is not
coincidental: it is a special case of Proposition 3.27.
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3 Abelian Categories

Abelian categories are additive categories with additional structure.

3.1 Additive Categories

Additive categories can be seen as the most general type of category that retains a kind
of matrix calculus.

Definition 3.1. An object A in a category C is

(i) initial if for every object B in C there is exactly one morphism from A to B.

(ii) terminal if for every object B in C there is exactly one morphism from B to A.

(iii) null if it is both initial and terminal.

Proposition 3.2. Initial, terminal and null objects are unique up to a unique isomorpism.

Proof. By definition, the only endomorphism on an initial object is the identity mor-
phism. Let I and J be initial objects. Then, there are unique morphisms f : I → J and
g : J→ I , and f g = idJ and gf = idI , so I and J are isomorphic.

The proofs for terminal and null objects are dual.

Example 3.3. (i) In Set , the empty set is an initial object and singleton set is a
terminal object. There is no null object.

(ii) In Grp , the trivial group is a null object. Similarly, the zero module is a null
object in R-Mod.

Definition 3.4. Let 0 be a null object in a category and A and B be objects in the same
category. The null morphism between A and B is the unique morphism given by the
composition of the morphisms A→ 0 and 0→ B.

Example 3.5. In Grp , the null morphism between two groups G and H is the mor-
phism from G to H defined by mapping every element in G to 1H .
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Definition 3.6. A category is preadditive if it has a null object and every set of mor-
phisms between two objects form an abelian group, such that composition is biadditive.
That is,

f (g + h) = f g + f h and (f + g)h = f h+ gh

for all morphisms.

In a preadditive category, the set of endomorphisms on an object is a ring, with
morphism addition as addition and composition as the ring multiplication.

The endomorphism ring is a Z-bimodule, via

nf = f n =


−f − · · · − f n times (if n is negative.)
f + · · ·+ f n times (if n is positive.)
0 (if n is 0.)

Proposition 3.7. In preadditive categories, the following are equivalent for an object A:

(i) A is initial.

(ii) A is terminal.

(iii) idA is the additive identity in the endomorphism ring.

(iv) The endomorphism ring is trivial.

Proof. See [ML98, p.194].

When there is a null object in a category, the null morphism 0 : A→ B and the additive
identity in Hom(A,B) coincide, since 0 is the composition of the additive identity in
Hom(A,0) and Hom(0,A).

Definition 3.8. A direct sum of objects A1, . . . , An in a preadditive category is an object
S along with morphisms

Ak
ik // S

pl // Al

such that
n∑
k=1

ikpk = idS .

and

pl ik = δlk =

idAk if l = k
0 otherwise.

The morphisms ik are called injection morphisms, while the morphisms pl are called
projection morphisms. The objects A1, . . . , An are called direct summands of S, and the
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collection of objects A1, . . . , An, S along with the morphisms is called a direct sum
system.

A direct sum is trivial if every summand is isomorphic to either A or the zero object,
and nontrivial otherwise.

Every direct summand is a subobject of the direct sum, and a proper one if and only if
the direct sum is nontrivial.

Not all subobjects are direct summands. For example, Z cannot be written as a
non-trivial direct sum, but has a lot of subobjects.

Direct sums are self-dual, since every direct sum system gives rise to a direct sum
system in the dual category, by switching projection and injection morphisms.

Proposition 3.9. Any direct sum in a preadditive category is unique up to isomorphism.

Proof. Let S and S ′ be direct sums ofA1, . . . , An, and pk , ik , p′k and i′k the corresponding
injection and projection morphisms. Define f from S to S ′ by

f =
n∑
k=1

i′kpk

and g from S ′ to S by

g =
n∑
k=1

ikp
′
k .

Then

f g =
n∑
j=1

i′jpj

n∑
k=1

ikp
′
k =

n∑
j=1

n∑
k=1

i′jpj ikp
′
k =

n∑
k=1

i′kp
′
k = idS ′

and

gf =
n∑
j=1

ijp
′
j

n∑
k=1

i′kpk =
n∑
j=1

n∑
k=1

ijp
′
j i
′
kpk =

n∑
k=1

ikpk = idS .

Hence, S and S ′ are isomorphic.

The above proposition allows us talk about the direct sum of A1, . . . , An, denoted⊕
Aj . Note that the isomorphism between two direct sums is not unique.

Definition 3.10. A category is additive if it is preadditive and every set of objects has
a direct sum.

Example 3.11. If R is a ring, the category R-Mod is additive. The null object is the
zero module, and direct sum is cartesian product.

Direct sums extends to morphisms.
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Proposition 3.12. Let A1, . . . , An and A′1, . . . , A′n be objects in an additive category
with corresponding projection and injection morphisms pk , ik , p′k and i′k . Suppose fj is a
morphism from Aj to A′j , for every j = 1, . . . ,n.

Then there is a unique morphism, denoted
⊕

fj , from
⊕

Aj to
⊕

A′j , such that the diagram

⊕
Aj

⊕
fj //

pk

��

⊕
A′j

p′k
��

Ak fk
// A′k

commutes for every k.

Proof. Let ⊕
fj =

n∑
j=1

i′jfjpj .

Then

p′k
(⊕

fj
)

= p′k

 n∑
j=1

i′jfjpj

 =
n∑
j=1

p′ki
′
jfjpj = fkpk

for all k. To prove uniqueness, suppose that p′jg = fjpj = p′jg for all j. Then

i′jp
′
jg = i′jp

′
jf

for all j. Summing over j gives

n∑
j=1

i′jp
′
jg =

n∑
j=1

i′jp
′
jf ⇒

 n∑
j=1

i′jp
′
j

g =

 n∑
j=1

i′jp
′
j

f ⇒ idS ′ g = idS ′ f ⇒ g = f .

Remark. There is an dual definition of fj , where one replaces the projection morphisms
with the injection morphisms in the opposite direction, resulting in the diagrams

⊕
Aj

⊕
fj //

⊕
A′j

Ak fk
//

ik

OO

A′k

i′k

OO

and equations (⊕
fj
)
ik = fki

′
k .
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The process of constructing morphisms between direct sums from morphisms between
the summands can be inverted.

Definition 3.13. SupposeA1, . . . ,An andA′1, . . . ,A′m are objects in an additive category,
and that f is a morphism from

⊕
Aj to

⊕
A′k . The component fjk of f is the morphism

from Aj to Ak defined by
fjk = p′kf ij .

The matrix of f is the matrix

[f ] =


f11 · · · f1m
...

. . .
...

fn1 · · · fnm.


Example 3.14. Let A be the direct sum of objects A1, . . . , An in an additive category.
Then

[idA] =


p1 idA i1 · · · pn idA i1

...
. . .

...
p1 idA in · · · pn idA in

 =


idA1

0 · · · 0

0 idA2
0

...
... 0

. . . 0
0 · · · 0 idAn

 .
Similarly, the matrices of the injection and projection morphisms are

[ij ] =
[
0 · · · 0 idAj 0 · · · 0

]
and

[pk] =
[
0 · · · 0 idAk 0 · · ·0

]T
.

Matrices of morphisms can be seen as elements of the abelian group

n∏
j=1

m∏
k=1

Hom(Aj ,A
′
k)

with addition defined componentwise. The identity of this group given by the matrix
whose entries are all zero morphism.

Proposition 3.15. Let A1, . . . , An and A′1, . . . , A′m be objects in an additive category. Then

Hom
(⊕

Aj ,
⊕

A′k
)
'

n∏
j=1

m∏
k=1

Hom(Aj ,A
′
k).

as abelian groups.
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Proof. Define

ϕ : Hom
(⊕

Aj ,
⊕

A′k
)
→

n∏
j=1

m∏
k=1

Hom(Aj ,A
′
k).

by mapping the morphism f :
⊕

Aj →
⊕

A′k to its matrix

ϕ(f ) = [f ] =


f11 · · · f1m
...

. . .
...

fn1 · · · fnm.


If f = 0, then fjk = 0 for all j and k, and hence ϕ preserves the zero matrix. Moreover,
if f and g are morphisms from

⊕
Aj to

⊕
A′k , then

(f + g)jk = p′k(f + g)ij = p′kf ij + p′kgij = fjk + gjk ,

so ϕ is a group morphism. Next, define the map

ψ :
n∏
j=1

m∏
k=1

Hom(Aj ,A
′
k)→Hom

(⊕
Aj ,

⊕
A′k

)
by

ψ



g11 · · · g1m
...

. . .
...

gn1 · · · gnm,


 =

n∑
j=1

m∑
k=1

i′jgjkpk .

Let f be a morphism from
⊕

Aj to
⊕

A′k . Then

ψ(ϕ(f )) = ψ



f11 · · · f1m
...

. . .
...

fn1 · · · fnm,


 = ψ



p′1f i1 · · · p′mf i1
...

. . .
...

p′1f in · · · p′mf in,


 =

=
n∑
j=1

m∑
k=1

i′jp
′
jf ikpk =

 m∑
j=1

i′jp
′
j

f
 n∑
k=1

ikpk

 = f .

Similarly, one can show that ψ(ϕ([fjk])) = [fjk] for all matrices, which establishes that
ϕ is an isomorphism.

The above proposition shows that every morphism in an additive can be viewed as a
matrix. It turns out that composition can be transfered as well.

Proposition 3.16. Let A1, . . . , An, A′1, . . . , Am, and A′′1 , . . . , Ap be objects in an additive
category, with morphisms

f :
⊕

Aj →
⊕

A′k and g :
⊕

A′k →
⊕

A′′l .
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Then, the matrix of the composition

gf :
⊕

Aj →
⊕

A′′l

is given by the matrix

[gf ] =


h11 · · · h1p
...

. . .
...

hn1 · · · hnp


where

hij =
m∑
k=1

gkifjk

for all i and j.

Proof. By definition, fik = p′kf ii and gkj = p′′j gi
′
k . Thus,

(gf )ij = p′′j gf ii =
(
p′′j g

) m∑
k=1

i′kp
′
k

 (f ii) =
m∑
k=1

p′′j gi
′
kp
′
kf ii =

m∑
k=1

gkjfik .

Not only is there a matrix calculus in additive categories, the direct sum is also
functorial.

Proposition 3.17. Let Aj , A′k and A′′l be three n-tuples of objects in an additive category,
and fj : Aj → A′j and f ′j : A′j → A′′j two n-tuples of morphisms. Then(⊕

f ′j
)
◦
(⊕

f ′j
)

=
⊕(

f ′j ◦ fj
)

and ⊕
idAj = id⊕

Aj .

Proof. Straightforward calculation gives

(⊕
f ′j

)
◦
(⊕

f ′j
)

=

 n∑
j=1

i′′j f
′
j p
′
j

 ◦
 n∑
k=1

i′kfkpk

 =
n∑
j=1

n∑
k=1

i′′j f
′
j p
′
j i
′
kfkpk =

=
n∑
j=1

i′′j (f ′j ◦ fj )pj =
⊕(

f ′j ◦ fj
)
.

and ⊕
idAj =

n∑
j=1

ijpj = id⊕
Aj .
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The above result shows that in an additive category C, are functors

⊕n : Cn→C

for every n, defined by

⊕n(A1, . . . ,An) =
n⊕
i=1

Ai

and

⊕n(f1, . . . , fn) =
n⊕
i=1

fi .

Since the composition of two functors is a functor, iteration yields a myriad of functors
that purports to be the direct sum of n. Even if one restricts oneself to iteration of the
bifunctor ⊕2, the number of different direct sum functors of n variables is

(2n)!
(n+ 1)!n!

,

each corresponding to a unique bracketing of n variables.

Can any sense be made of this? The answer is yes - one can show that the direct sum is
a monoidal product on C. Such categories are subject to a coherence theorem, which
essentially states that it does not matter how one places the brackets in a direct sum.

A detailed treatment of these issues is beyond the scope of this thesis, and the reader
is referred to [ML98, p.161-170]. From now on, all direct sums of the same objects
and morphisms are treated as equal, and it is assumed that no problems can arise due
to bracketing of direct summands.

3.2 Abelian Categories

Every morphism between two modules can be described uniquely by its kernel and
image. It is desirable to find a similar decomposition for additive categories. For this
to work, the concept of kernel and image must be redefined using morphisms.

It turns out that, even with a proper account of these concepts, a morphism in additive
category does not necessarily have a kernel or an image. Additive categories that do
are called abelian categories.

Definition 3.18. Let C be a category with a null object and null morphism 0. A kernel
of an morphism f : A→ B is a morphism k : K → A such that f k = 0, and for every
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h : C→ A such that hk = 0, there is a unique h′ : C→ K such that h = kh′ .

K

k ��

f k=0

&&
A

f // B.

C

h′

OO

h
??

f h=0

88

Example 3.19. Suppose that f : A → B is a morphism of abelian group, and let
k : K → A be the inclusion of the preimage of identity.

Clearly, f k = 0. If k′ : K ′→ A satisfies f k′ = 0, then the image of k′ is contained (as a
set) in the image of k.

Since inclusions are injective, each g in the image of k has a unique preimage k−1(g),
such that k(k−1(g)) = g. Define h : K ′→ K by

h(x) = k−1(k′(x)).

Then
(kh)(x) = k(k−1(k′(x))) = k′(x),

i.e kh = k′ . Thus k is the kernel of f .

Definition 3.20. Let C be a category with a null object and null morphism 0. A cokernel
of an morphism f : A→ B is an object C and morphism c : C → C such that cf = 0,
and for every h : B→D such that ch = 0, there is a unique h′ : C→D such that h = h′c.

C

h′

��

A
f //

cf =0
11

hf =0 --

B

c

??

h ��
D

Example 3.21. Let f : V →W be a linear transformation, and let c : V →W/ im(f ) be
defined by c(v) = v + im(f ). Then

cf (v) = c(f (v)) = f (v) + im(f ) = im(f ) = 0,

i.e the composition cf is 0.

Moreover, if c′ from B to C′ satisfies c′f = 0, define h :W/ im(f )→ C′ by

h(v + im(f )) = c′(v).
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To show that this is well defined, suppose that v and w lie in the same equivalence
class of the quotient W/ im(f ). Then there is some u in V such that f (u) = v −w, and
hence

c′(v)− c′(w) = c′(v −w) = c′(f (u)) = 0

since c′f = 0 by assumption. Clearly c′ = hc, and so c is the cokernel of f .

Remark. Kernels and cokernels are duals: the kernel of a morphism is the cokernel of
the dual morphism and vice versa.

Proposition 3.22. Kernels are monic and cokernels are epic.

Proof. Let k be a kernel of a morphism f and suppose that g = kg1 = kg2. By definition
f g = 0, and the diagram.

K

k ��

f k=0

&&
A

f // B

C

g1

OO

g2

OO

g
??

f g=0

88

commutes. The uniqueness condition guarantees that g1 = g2 and so k is monic.

The proof that cokernels are epic is dual.

Proposition 3.23. Kernels and cokernels are unique up to a unique isomorphism.

Proof. Let k and k′ be kernels of f . Then f k and f k′ are both 0, and so there are
morphisms h and h′ such that kh = k′ and k′h′ = k. Consequently,

k′ = kh = k′h′h and k = k′h′ = khh′

and since k′ is monic one can cancel on both sides and find that h and h′ are isomor-
phisms. The proof for cokernels is dual.

Since kernels and cokernels are unique, one speaks of the kernel and cokernel of a
morphism f : A→ B, denoted ker(f ) and cok(f ) respectively.

One way of thinking about the kernel of f is as the largest subobject of the domain
that is mapped to zero by f . Dually, one can think of the cokernel as the smallest
quotient that maps f to zero.

Definition 3.24. An additive category is abelian if

(i) every morphism in the category has a kernel and cokernel.

(ii) every monomorphism is a kernel and every epimorphism is a cokernel.

22



Since direct sums are self-dual, and kernels and monomorphisms are dual to cokernels
and epimorphisms, respectively, the dual of an abelian category is also abelian. Hence,
every theorem for general abelian categories has a dual theorem, obtained by reversing
the morphisms and substituting monic for epic and kernel for cokernel, and vice
versa.

Proposition 3.25. Let f be a morphism in an abelian category. Then

(i) ker(f ) = 0 if and only if f is monic.

(ii) if g is a monomorphism, then ker(gf ) = ker(f ).

(iii) cok(f ) = 0 if and only if f is epic.

(iv) if f is epic and g is a morphism, then cok(gf ) = cok(g).

Proof. (i) Suppose f satisfy ker(f ) = 0 and that two morphisms g and h satisfy
f g = f h. Let l = g − h. Then

f l = f (g − h) = f g − f h = 0.

Thus, there is a morphism h′ such that g − h = h′0 = 0. Thus g = h, so f is monic.

Conversely, suppose that f is monic. Let k satisfy f k = 0 = f 0. Since f is monic,
cancellation yields k = 0, so ker(f ) = 0.

(ii) Suppose that g is monic. Then

gf k = 0⇔ gf k = g0⇔ f k = 0.

for all morphisms k, so ker(gf ) = ker(f ).

The proofs for (iii) and (iv) are dual.

In abelian categories, kernel and cokernels induces maps between the class of subob-
jects and the class of quotients of an object.

Proposition 3.26. Let A be an object in an abelian category.

(i) If i and j in Mono(A) are equivalent, so are cok(i) and cok(j).

(ii) If p and q in Epi(A) are equivalent, so are ker(p) and ker(q).

Proof. If i and j are equivalent there is an isomorphism f such that i = jf , and hence

cok(i) = cok(jf ) = cok(j)

by Proposition 2.7. The second point is done similarly.

Define ker : QA → SA and cok : SA → QA, by mapping p and i to ker(p) and cok(i)
respectively.
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Proposition 3.27. The functions ker and cok are mutually inverse and order reversing.

Proof. Let i and j be subobjects of A, such that i ≤ j via a morphism f . Let c1 be the
cokernel of i and c2 be the cokernel of j. Then

c2i = c2jf = 0,

so there is a morphism g such that gc2 = c1. In other words, cok(j) ≤ cok(i). That ker
is order reversing is proved similarly.

Let i be a monomorphism in Mono(A). Then it is the kernel of some map f . Let c be
the cokernel of i and k the kernel of c.

By assumption f i = 0, and hence there is a map g such that gc = f . Also, ci = 0, so
there is a map h1 such that kh1 = i. Finally,

f k = gck = 0,

so there is a map h2 such that ih2 = k.

A′

i

  
h1

��

C

g

��

A

c
??

f ��
K

k

>>h2

KK

B

Thus i and k are equivalent and represent the same subobject, and thus

i = k = ker(c) = ker(cok(i))

as subobjects. The other direction is proved is similarly.

The above proposition generalize Example 2.25 - the subobject and quotient structure
of an objects are mirror images of each other.

Proposition 3.28. A morphism in an abelian category is an isomorphism if and only if it
is monic and epic.

Proof. Let f be a morphism that is both monic and epic.

Since f is monic, the kernel of f is zero. Hence, a cokernel of ker(f ) is the identity.
However, Proposition 3.27 assures us that f is a cokernel of ker(f ). Hence, there is a
morphism g such that gf is the identity.

The exact same reasoning gives that the kernel of the cokernel of f is the identity, and
that there exists a morphism h such that f h is the identity.

So f is both right and left invertible, and hence an isomorphism.

The other direction is (vi) in Proposition 2.7.
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Cokernels can be extended to subobjects.

Proposition 3.29. Let i, i′, j and j ′ be monomorphisms, such that i ∼ i′ and j ∼ j ′ via
isomorphisms ϕi and ϕj , respectively. Suppose that the subobject represented by i and i′ is
contained in the subobject represented by j and j ′ via monomorphisms f and f ′ .

Then the codomains of cok(f ) and cok(f ′) are isomorphic.

Proof. Consider the diagram

Ai
ϕi //

f

��

i

��

A′i

f ′

��

i′

��
A

Aj

j

??

ϕj
// A′j .

j ′

__

The assumptions that i ∼ i′ and j ∼ j ′ imply that ϕi and ϕj are isomorphisms and the
upper and lower triangle commute. The assumption that i is contained in j means
that f and f ′ are monomorphisms and that the left and right triangle commute.

Hence,
i = i′ϕi = j ′f ′ϕi

and
i = jf = j ′ϕjf .

Equating these expressions and cancelling j ′ yields f ′ϕi = ϕjf . Let c and c′ be the
cokernels of f and f ′ respectively. Then

c′ϕjf = c′f ′ϕi = 0ϕi = 0

and
cϕ−1

j f
′ = cf ϕ−1

i = 0ϕ−1
i = 0.

Hence there are morphisms h and h′ so that the diagram

Ai
f //

ϕi

��

Aj

ϕj

��

c // C

h

		
A′i f ′

// A′j c′
// C′

h′

HH

commutes. Thus, h′c′ϕj = c
hcϕ−1

j = c′
⇔

h′hc = c
hh′c′ = c′

⇔

h′h = idC
hh′ = idC′ .
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Definition 3.30. Let i and j be two subobjects with domains Ai and Aj , such that i is
contained in j via a morphism f . The quotient of j by i, denoted Aj /Ai , is the codomain
of the cokernel of f .

In abelian categories, all morphisms can be decomposed into monomorphisms and
epimorphisms.

Proposition 3.31. Let f be a morphism in an abelian category. Then f = me for an
epimorphism e and monomorphism m. Moreover, m is the kernel of the cokernel of f and e
is the cokernel of the kernel of f .

K
k
// A e

//

f

&&
D m

// B c
// C

Proof. Let f be a morphism in an abelian category. Let c be the cokernel of f and let
m to be the kernel of c.

By definition, cf = 0, and since m is the kernel of c there is a morphism e such that
f =me. By Proposition 3.22, e is epic and m is monic. Moreover,

e = cok(ker(e)) = cok(ker(me)) = cok(ker(f ))

since m is monic.

The canonical decomposition transfers to morphisms.

Proposition 3.32. Consider the commutative square

A
f //

g
��

B

h
��

A′
f ′
// B′

in an abelian category, and let f =me and f ′ =m′e′ be a canonical decomposition. Then
there is a unique ϕ such that diagram

A e
//

g
��

f

''
D m

//

ϕ
��

B

h
��

A′
e′ //

f ′

77D ′
m′ // B′

commutes.
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Proof. Let f , f ′ , g and h be given as above. By Proposition 3.31, there are decomposi-
tions f =me and f ′ =m′e′ . Let u be the kernel of f .

By definition hf u = 0, and thus m′e′gu = 0. Since m is monic, e′gu = 0, and since e is
the cokernel of u, there is a unique morphism ϕ such that e′g = ϕe.

K
u // A e

//

g
��

f

''
D

ϕ
��

m
// B

h
��

A′
e′
// D ′

m′
// B′ .

Moreover,
m′ϕe =m′e′g = hme,

and since e is epic, m′ϕ = hm.

Proposition 3.33. The canonical decomposition of a morphism in an abelian category is
unique up to a unique isomorphism.

Proof. Apply Proposition 3.32 to the square

A e
//

idA
��

f

&&
D m

//

ϕ

��

B

idB
��

A
e′ //

f

88D
m′ // B

to find the isomorphism ϕ.

Definition 3.34. Let f be a morphism in an abelian category, and f =me its canonical
decomposition. The image of f , denoted im(f ) is the monomorphism m. The coimage
of f , denoted coim(f ), is the epimorphism e.

Since the coimage and image of a morphism are unique up to a unique isomorphism,
they define a quotient and a subobject of A and B respectively.

Definition 3.35. A span into an object A in a category is a pair of morphisms with
common codomain A. A cospan from an object B is a pair of morphisms with common
domain B.
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Definition 3.36. Let f and g be a span into A. A pullback of f and g is a cospan f ′

and g ′ such that gf ′ = f g ′, with the property that if f ′′ and g ′′ is a cospan such that
gf ′′ = f g ′′ , then there is a unique morphism h such that f ′′ = f ′h and g ′′ = g ′h.

B
f

��
D ′

h //

g ′′
11

f ′′ --

D

g ′
??

f ′ ��

A

C

g

??

Definition 3.37. Let h and k be a cospan from A. A pushout of h and k is a span h′

and k′ such that k′h = h′k, with the property that if h′′ and k′′ is a span that satisfy
hk′′ = kh′′ , then there is a unique morphism p such that ph′ = h′′ and pk′ = k′′ .

B
k′

��

k′′

&&
A

h
??

k ��

D
p // D ′

C
h′

??

h′′

88

Pullbacks and pushout are dual to each other, as are span and cospans.

Proposition 3.38. Pullbacks and pushouts are unique up to a unique isomorphism.

Proof. Suppose that there are two pullbacks of the same span. Then there are unique
maps h and h′ such that the diagram

B
f

��
P ′

h
**

g ′′
11

f ′′ --

P

g ′
??

f ′ ��

h′
kk A

C

g

??

commutes. Hence f ′ = f ′hh′ and g ′ = ghh′ , and the diagram

B
f

��
P

h′h //

g ′
11

f ′ --

P

g ′
??

f ′ ��

A

C

g

??
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commutes. If one replaces h′h by idP , the diagram still commutes and thus the
uniqueness criterion implies that h′h = idP . Similarly, hh′ = idP ′ , and so h is an
isomorphism.

Pullbacks and pushouts can be composed.

Proposition 3.39. Suppose that the diagram

A

u
��

f // C

u′

��

g // E

u′′

��
B

f ′
// D

g ′
// F.

commute. Then

(i) if the two inner squares are pullback/pushouts, then so is the outer square.

(ii) if the inner left-hand square is a pushout, the outer square is a pushout if and only if
the inner right-hand square is a pushout.

(iii) if the inner right-hand square is a pullback, the outer square is a pullback if and only
if the inner left-hand square is a pullback.

Proof. (i) Suppose that the two inner square are pushouts. Suppose that h and h′

satisfies h′u = hgf .

Since the left-hand square is a pushout, there is a unique morphism ϕ so that
ϕf ′ = h′ and ϕu′ = hg. Since the right-hand square is a pushout as well, there is
a unique ψ so that ψg ′ = ϕ and ψu′′ = h.

But then
ψg ′f ′ = ϕf ′ = h′ .

Since ψ is unique, this mean that the outer square is a pushout. The proof for
pullbacks is dual.

(ii) Suppose that the inner left-hand and the outer squares are pushouts. Let h and
h′ be such that h′u′ = hg. Then

hgf = h′u′f = h′f ′u

and since the outer square is a pushout, there is a unique ϕ so that ϕg ′f ′ = h′f ′

and ϕu′′ = h. Then
ϕg ′f ′u = h′f ′u = hgf

and
ϕu′′g = hg = ϕg ′u′ = h′u′ .
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So there is a pushout

C
u′

��

hg

""
A

f
??

u
��

D
h′

**

ϕg ′
44 P

B
f ′

??

ϕg ′f ′

<<

and uniqueness implies that ϕg ′ = h, so the right-hand square is a pushout. The
other implication is proved in (i).

(iii) Dual to (ii).

Proposition 3.40. In an abelian category, every span have a pullback and every cospan
have a pushout.

Proof. Let f and g be a span with domains B andC and common codomainA. Consider
the direct sum system

B
i ,,
B⊕C

p
ii

q
))
C

j
ll

and let h = f p − gq. Let k be the kernel of h.

Since k is the kernel of h,

0 = hk = (f p − gq)k = f pk − gqk,

i.e f pk = gqk. Moreover, if g ′ and f ′ are such that f g ′ = gf ′ , let h′ = ig ′ − jf ′ . Then

hh′ = (f p − gq)(ig ′ − jf ′) = f g ′ − gf ′ = 0,

and since k is the kernel of h there is a unique map h′′ such that kh′′ = ig ′ − jf ′ .

B
f

""
i
		

K ′
h′′ //

g ′
22

f ′ ,,

K

<<

k //

""

B⊕C

p

HH

q

		

h // A

C

g

<<

j

HH

This yields pkh′′ = g ′ and qkh′′ = g ′, which shows that pk and qk is the pullback of f
and g.
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For the pushout, suppose that f and g has common domain A and codomains B and C
respectively. Let h = if − jg and c be the cokernel of h. One can show, using a similar
argument as above, that ci and cj is the pushout of f and g.
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4 Structure Theory of Abelian
Categories

The topic of chapter is the structure theory of abelian categories, a preparation for the
proofs of the Jordan-Hölder and Krull-Schmidt-Remak theorems.

4.1 Exact Sequences

Exact sequences are the bread and butter of abelian categories.

Definition 4.1. A sequence of morphisms

· · ·A2
d2 // A1

d1 // A0
d0 // A−1

d−1 // · · ·

in an abelian category is exact at An if im(dn) = ker(dn−1). A sequence is exact if it is
exact at every object in the sequence.

Many properties of morphisms are characterized via exact sequences.

Proposition 4.2. Let

0 // A
f // B

g // C // 0

be a sequence of morphisms. Then

(i) 0→ A→ B is exact if and only if f is monic.

(ii) 0→ A→ B→ C is exact if and only if f is the kernel of g.

(iii) A→ B→ 0 is exact if and only if f is epic.

(iv) A→ B→ C→ 0 is exact if and only if g is the cokernel of f .

(v) 0→ A→ B→ 0 is exact if and only if f is an isomorphism.

(vi) 0→ A→ B→ C→ 0 is exact if and only if f is the kernel of g and g is the cokernel
of f .
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Observe that if a sequence of morphisms is exact, the dual of that sequence is also
exact.

Definition 4.3. An exact sequence of the form

0 0 // A
f // B

g // C
0 // 0

is called a short exact sequence.

The simplest examples of short exact sequences are of the form

0 // A
i // A⊕B

p // B // 0

where p and i are the projection and injection maps. They are characterized thus.

Proposition 4.4 (Splitting lemma). For all exact sequences

0 // A
f // B

g // C // 0

the following statements are equivalent.

(i) The middle object B is a direct sum of A and C, such that f is an injection morphism
and g a projection morphism.

(ii) There is a morphism l (called a left split) from B to A such that lf = idA.

(iii) There is a morphism r (called a right split) from C to B such that gr = idC

Proof. (i) In a direct sum system, injection morphisms and projection morphism is
are right/left splits respectively.

(ii) Suppose that an exact sequence

0 // A
f // B

g // C // 0

has a right split r such that gr = idC . Let p = idB−rg. By definition,

gp = g − grg = g − g = 0.

Since f is the kernel of g, there is a morphism l, such that f l = p, i.e f l = idB−rg.

Thus f l+rg = idB. Since gr = idC by assumption, it suffices to prove that lf = idA
and lr = 0 to show that B is the direct sum of A and C. Yet

f lf = (idB−rg)f = f − rgf = f − 0 = f ,

and since f is monic, lf = idA. Also,

f lr = (idB−rg)r = r − rgr = r − r = 0,

and since f is monic lr = 0. This shows that l, r, f and g form a direct sum
system for A⊕C.
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(iii) Dual to (ii).

Remark. The splitting lemma implies that if

A
f // A′

g // A

is such that h = gf is an automorphism, then A is a direct summand of A′. For if c is
the cokernel of f , the sequence

0 // A
f // A′

c // B // 0

is exact, and h−1g, is a left split of f , i.e A′ ' A⊕B.

Pullbacks and pushouts in abelian categories can be described in terms of exact
sequences.

Proposition 4.5. Consider the diagram

A
f ′ //

g ′

��

C

g

��
B

f
// D.

and the direct sum system

B
i ,,
B⊕C

p
ii

q
**
C.

j
ll

Let t = jf ′ + ig ′ and s = f p − gq. Then

(i) the square commutes if and only if st = 0.

(ii) the square is a pullback if and only if

0 // A
t // B⊕C s // D

is exact, i.e t is the kernel of s.

(iii) the square is a pushout if and only if

A
t // B⊕C s // D // 0

is exact, i.e s is the cokernel of t.

Proof. Note that pt = g ′ and qt = f ′ , and si = f and sj = −g.
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(i) The square is commutative if and only if

0 = f g ′ − g ′f = sipt + sjqt = s(ip+ jq)t = st.

(ii) Assume that the square is a pullback. Suppose that k is such that sk = 0. Then

0 = sk = s(ip+ jq)k = sipk + sjqk = f pk − gqk,

i.e f pk = gqk. Since the square is a pullback, there is a unique morphism h such
that f ′h = qk and g ′h = pk. Hence qth = qk and pth = pk, and so

th = (jq+ ip)th = jqth+ ipth = jqk + ipk = (jq+ ip)k = k.

This shows that t is a kernel of s, so the sequence is exact.

Conversely, suppose that t is the kernel of s and that there are morphism f ′′ and
g ′′ such that gf ′′ = f g ′′ . Define r = ig ′′ + jf ′′ . Then pr = g ′′ , qr = f ′′ , and

sr = (f p − gq)(ig ′′ + jf ′′) = f pig ′′ − gqjf ′′ = f g ′′ − gf ′′ = 0.

Since t is the kernel of s, there is a unique m : U → A such that tm = r, so
ptm = pr and qtm = qr, i.e g ′m = g ′′ and f ′m = f ′′ . This shows that the square is
a pullback.

(iii) Dual to the proof above.

Proposition 4.6. Consider the pullback

P
f ′ //

g ′

��

C

g

��
B

f
// A.

in an abelian category. If f is monic, so is f ′ , and if f is epic, so is f ′ .

Proof. Suppose that f is monic. Let h and h′ be morphisms from P ′ to P , such that
f ′h = f ′h′. Then gf ′h = gf ′h′, and since the diagram commutes f g ′h = f g ′h′. Since
f is monic, g ′h = g ′h′. Since the diagram is a pullback, the uniqueness property
guarantees that h = h′ .

Suppose that f is epic and consider the direct sum system

B
i ,,
B⊕C

p
ii

q
**
C.

j
ll
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In the proof of Proposition 3.40, it was shown that if k is the kernel of h = f p − gq,
then f ′ = qk and g ′ = pk.

Suppose that uh = 0 for some morphism u. Then

0 = uh = uhi = u(f p − gq)i = uf pi = uf

and since f is epic, u = 0. Thus, h is epic as well. Thus, the sequence

0 // P
k // B⊕C h // A // 0

is exact, i.e h is the cokernel of k. Suppose that uf ′ = 0 for some morphism u. Then

0 = uf ′ = uqk

and hence there is morphism u′ such that uq = u′h. Thus

0 = uqi = u′hi = u′(f p − gq)i = u′f pi = u′f .

Since f is epic, u′ is 0, and
uq = u′h = 0.

Since q is epic u = 0, which shows that f ′ is epic.

The nine lemma is a generalization of the isomorphism theorems. The following proof
is due to Popescu [Pop73] and [Fre64].

Proposition 4.7. Consider the commutative diagram

A
g //

f
��

C

f ′

��

hf ′

��
0 // B

g ′
// D

h
// E

such that the bottom row is exact. The square is a pullback if and only if the sequence

0 // A
g // C

hf ′ // E

is exact, i.e g is the kernel of hf .

Proof. Suppose that the square is a pullback. Since the diagram is commutative and
the bottom row is exact,

hf ′g = hg ′f = 0.

Let s be a morphism such that hf ′s = 0. Since the bottom row is exact, g ′ is the kernel
of h. Since hf ′s = 0 by assumption, there is a unique morphism t so that f ′s = g ′t.
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Moreover, since the square is a pullback, there is a unique r so that gr = s. Thus, g is
the kernel of hf ′ .

Conversely, suppose that g is the kernel of hf ′ .

Let s and t be morphisms such that f ′s = g ′t. Since the diagram is commutative,

hf ′s = hg ′t = 0,

and since g is the kernel of hf ′ , there is a unique morphism r so that s = gr.

U
s

""
r

��

t ��
A

g //

f
��

C

f ′

��

hf ′

��
0 // B

g ′
// D

h
// E

The diagram is commutative, so

g ′f r = f ′gr = f ′s = g ′t

and since g ′ is monic, cancellation yields t = f r. This shows that the square is a
pullback.

Proposition 4.8. Consider the commutative diagram

A
g //

f
��

C
p //

f ′

��

E

s
��

// 0

0 // B
g ′
// D

p′
// F // 0

such that the right square is a pullback and the rows are exact. Then s is monic. If f ′ is epic
then s is an isomorphism.

Proof. Let r be such that sr = 0. Let u and v be the pullback of p and r.

Since the right square is a pullback and the bottom row is exact, Proposition 4.7
implies that g is the kernel of p′f ′ . Moreover,

p′f ′v = spv = sru = 0.
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Hence, there is a map t so that gt = v.

U
t

��
v
��

u // K

r
��

A
g //

f
��

C
p //

f ′

��

E

s
��

// 0

0 // B
g ′
// D

p′
// F // 0

Thus,
ru = pv = pgt = 0

since p is the cokernel of g. Moreover, the morphism p is epic, and thus u is epic, so
r = 0, which show that s is monic.

If f ′ is epic, the composition p′f ′ = sp is epic, and so s is epic. Since s is always monic,
s is an isomorphism.

Proposition 4.9. Consider the commutative diagram

0

��

0

��

0

��
0 // A

h //

f
��

D
k //

f ′

��

G

f ′′

��
0 // B

h′ //

g
��

E
k′ //

g ′

��

H

0 // C
h′′ //

��

F

0

with exact columns and exact middle row. Then the upper row is exact if and only if the
bottom row is exact (i.e h′′ is monic).

Proof. Suppose that the upper row is exact. The right column is exact, the diagram
commutes and f ′′ is monic, so

h = ker(k) = ker(f ′′k) = ker(f ′k′).
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Hence, Proposition 4.7 implies that the square

A
h //

f
��

D

f ′′

��
B

h′
// E

is a pullback. Thus, the diagram

0 // A
f //

h
��

B

h′

��

g // C

h′′

��

// 0

0 // D
f ′
// E

g ′
// F

has exact rows, with the right square being a pullback diagram. Thus h′′ is monic and
the bottom row is exact.

Conversely, suppose that the bottom row is exact, i.e h′′ is monic. Then,

f = ker(g) = ker(h′′g) = ker(g ′h′),

so the sequence

0 // A
f // B

g ′h′ // F

is exact. Thus, the top right square is a pullback. Let r be a morphism such that kr = 0.
Then

k′f ′r = f ′′kr = 0,

and since the middle row is exact, h′ is the kernel of k′, and and there is a unique
morphism t such that h′t = f ′t.

Since the top right square is a pullback, there is a unique morphism s so that hs = r,
which show that h is the kernel of k and the top row is exact.
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Proposition 4.10 (Nine lemma). Consider the commutative diagram

0

��

0

��

0

��
0 // A //

��

D //

��

G //

��

0

0 // B //

��

E //

��

H //

��

0

0 // C //

��

F //

��

I //

��

0

0 0 0

with exact columns and exact middle row. Then the top row is exact if and only if the bottom
row is exact.

Proof. Direct application of Proposition 4.9 and its dual yields the conclusion.

The strength of the nine lemma is evident in ease of which it proves the second
isomorphism theorem.

Proposition 4.11 (Second isomorphism theorem). Suppose that i and j represent subob-
jects of A, so that i contains j via a morphism f : Aj → Ai . Then exists there a commutative
diagram

0 // Ai

u

��

i // A
c //

u′

��

A/Ai //

u′′

��

0

0 // Ai /Aj k
// A/Aj p

// (A/Aj )/(Ai /Aj ) // 0

such that the rows are exact, u′′ is an isomorphism, and u and u′ are the cokernels of f and
j respectively. Moreover, the morphisms k and p are unique with this property.

Proof. Let u = cok(f ), u′ = cok(j) and c = cok(i).

By assumption, j = if . Hence
u′if = uj = 0,

and since u is the cokernel of f , there is a unique morphism k so that u′i = ku. Let p
be the cokernel of k. Then u′i = ku implies that

pu′i = pku = 0,
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and hence there is a unique morphism u′′ that satisfies u′′p = pu′ . Thus, the diagram

0

��

0

��

0

��
0 // Aj

f //

id
��

Ai

i

��

u // Ai /Aj

k

��

// 0

0 // Aj j
//

��

A

c

��

u′ // A/Aj //

p

��

0

0 // 0 // A/Ai

��

u′′
// (A/Aj )/(Ai /Aj )

��

// 0

0 0

is commutative. By assumption, the columns and the middle and upper rows are exact.
Hence the lowest is exact as well, and u′′ is an isomorphism.

4.2 The Subobject Lattice

Subobjects and quotients were defined for general categories in Section 2.2. It is time
to return to topic in the case of abelian categories. But first, some order theory is
required.

Until further notice, ≤ refers to an arbitrary partial order on some underlying set.

Definition 4.12. Let x and y be objects in a partial order.

A greatest lower bound of x and y is an element z such that z ≤ x and z ≤ y, with the
property that if w satisfy w ≤ x and w ≤ y, then w ≤ z.

Dually, a lowest upper bound of x and y is an element z so that x ≤ z and y ≤ z, with the
property that if w satisfy x ≤ w and y ≤ w, then z ≤ w.

Definition 4.13. A lattice is a partial order in which every pair of elements have a
greatest lower bound and lowest upper bound.

The greatest lower bound and lowest upper bound of two elements x and y are unique
if they exist, and are denoted x∧ y and x∨ y, respectively. The symbols ∧ and ∨ are
known as meet and join, respectively.

Example 4.14. The power set of a set is a lattice, where the meet is intersection and
the join is union.
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Lattices have been studied extensively by Birkhoff in [Bir67]. In the introduction,
proofs can be found of the following three propositions.

Proposition 4.15. In any lattice, the meet and join satisfies

(i) x∧ x = x and x∨ x = x.

(ii) x∧ y = y ∧ x and x∨ y = y ∨ x.

(iii) x∧ (y ∧ z) = (x∧ y)∧ z and x∨ (y ∨ z) = (x∨ y)∨ z.

(iv) x∧ (x∨ y) = x∨ (x∧ y) = x

for all lattice elements x,y and z. Moreover, x ≤ y is equivalent to each of the conditions

x∧ y = x and x∨ y = y.

Proposition 4.16. For all elements x,y and z in a lattice, if y ≤ z, then

x∧ y ≤ x∧ z and x∨ y ≤ x∨ z.

Proposition 4.17 (Modular inequality). For all elements x,y and z in a lattice, if x ≤ z,
then

x∨ (y ∧ z) ≤ (x∨ y)∧ z.

Remark. In a lattice, the meet and the join can be seen as binary operations. Indeed,
lattices can be characterized as a set with two binary operations that satisfy (i)-(iv) of
Proposition 4.15.[Bir67, p.10]

Definition 4.18. A lattice is modular if x ≤ z implies that

x∨ (y ∧ z) = (x∨ y)∧ z.

for all lattice elements x, y and z.

The term modular lattice comes from module theory: the set of submodules of a
module is a modular lattice.

Definition 4.19. An element > in a lattice is called a top if x ≤ > for every element x
in the lattice. An element ⊥ is a bot if ⊥ ≤ x for every x in the lattice. A lattice with a
top and bot is called bounded.

Example 4.20. The lattice of subsets of a set S has both a top and bot, given by > = S
and ⊥ = ∅.

The top and bot are unique if they exist. Every element x in such lattices satisfy
>∧ x = x, >∨ x =>, ⊥∨ x = x and ⊥∧ x =⊥.

Definition 4.21. A complement of an element x in a bounded lattice is an element c
such that x∧ c =⊥ and x∨ c =>.
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Example 4.22. In the lattice of subsets of a set S, every subset X has a unique comple-
ment given by S \X.

Example 4.23. Complements are in general not unique. In the bounded lattice

>

x

??

z

``

y

OO

⊥

WW

??

both y and z are complements of x.

Complements provide a neat characterization of modular lattices using intervals.

Definition 4.24. Let x and y be objects in a lattice such that x ≤ y. The interval from x
to y, denoted [x,y], is the set of objects z such that x ≤ z and z ≤ y.

Note that intervals are always bounded lattices, and so one can speak of a complement
in an interval.

Proposition 4.25. A lattice is modular if and only if every interval I has the property that
if an element c in I has two complements a and b such that a ≤ b, then a = b.

Proof. Suppose that the lattice is modular and that an object c has two complements a
and b, such that a ≤ b. Then

a = a∨⊥ = a∨ (c∧ b) = (a∨ c)∧ b =>∧ b = b

via modularity.

Conversely, suppose that an object c has the property that all its comparable comple-
ments are equal. Let a1 = a∨ (c∧ b) and a2 = (a∨ c)∧ b.

By the modular inequality, a1 ≤ a2. Then

a1 ∧ c = ((c∧ b)∨ a)∧ c ≥ (c∧ b)∨ (a∧ c) = c∧ b

since a ≤ b. Also, a1 ≤ b, so a1 ∧ c ≤ b∧ c, and so a1 ∧ c = c∧ b. Furthermore,

a2 ∧ c = ((a∨ c)∧ b)∧ c = (a∨ c)∧ (b∧ c) = b∧ c = c∧ b.
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On the other hand,

a2 ∨ c = ((a∨ c)∧ b)∨ c ≤ (a∨ c)∧ (b∨ c) = a∨ c

and since a ≤ a2, we have a2 ∨ c ≤ a∨ c, whence a∨ c = a2 ∨ c. Finally,

a1 ∨ c = a∨ (c∧ b)∨ c = (c∧ b)∨ (a∨ c) = a∨ c.

This shows that a1 and a2 are complements of c in the interval [b∧ c,a∨ c], and so by
assumption they are equal, i.e

a∨ (c∧ b) = (a∨ c)∧ b.

From now on, ≤ refers to the containment relation on subobjects and quotients.

Proposition 4.26. Let A be an object of an abelian category. Then the class of subobjects of
A, partially ordered by containment, is a lattice.

Proof. If i and j are subobjects of A, they form a span. Let i′ and j ′ be the pullback of
this span.

D
j ′ //

i′

��

Ai

i
��

Aj j
// A

Let
k = j ′i = i′j.

By Proposition 4.6, the morphisms i′ and j ′ are monic, and hence k is. Thus, k
represents a subobject of A, which is contained in i and j.

Suppose that k′ is an object that is contained in both i and j. Then there are morphisms
i′′ and j ′′ so that

k′ = ji′′ = ij ′′

and since the square is a pullback, there exists a unique morphism h so that i′′ = hi′

and j ′′ = hj ′′ . Thus, k′ is contained in k, which show that k is the greatest lower bound
of i and j.

Moreover, the morphisms i′ and j ′ forms a cospan, which has a pushout i′′ and j ′′

Ai ∧Aj
j ′ //

i′

��

Ai

i′′

��
Aj

j ′′
// P .
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The dual of Proposition 4.6 ensures that i′′ and j ′′ are monic. Moreover, the definition
of the pullback, yields ii′ = jj ′ , and hence there is unique morphism p such that pi′′ = i
and pj ′′ = j. Thus, p is a subobject of A that contains both i and j.

Suppose that s is a subobject which contains i and j, i.e there are morphisms f1 and f2
such that i = sf1 and j = sf2. Then

sf1i
′ = ii′ = jj ′ = sf2j

′

and since s is monic, f1i′ = f2j ′ . Since the square is a pushout, there is a morphism h
such that f1 = hi′′ and f2 = hj ′′ . Composing by s on the left yields

i = sf1 = shi′′

and
j = sf2 = shj ′′ .

By the uniqueness criterion of pushouts, sh = p, and thus p is a subobject of s.

Henceforth, the class of subobjects of an object is refered to as the subobject lattice. The
meet of two subobjects is called the intersection, and the join is called their product.

Remark. By duality, the greatest lower bound of two quotients p and q of an object is
given by the pushout of those quotients, and by Proposition 3.27, there are unique
subobjects i and j such that p = cok(i) and q = cok(j).

Moreover, since the map cok is bijective and order reversing, the cokernel of i ∨ j is
the greatest lower bound of cok(i) and cok(j). This means that the pushout of p and q
is given by the cokernel of i ∨ j, i.e

A
q //

p

��

A/Aj

p′

��
A/Ai

q′
// A/(Ai ∨Aj ).

is a pushout.

Proposition 4.27. Suppose that i and j are subobjects of an object A. Then there exists a
commutative diagram

0 // Ai ∧Aj
j ′ //

i′

��

Aj
p //

j ′′

��

Aj /Ai ∧Aj //

u

��

0

0 // Ai
i′′
// Ai ∨Aj q

// (Ai ∨Aj )/Ai // 0

with exact rows such that u is an isomorphism.
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Proof. Consider the commutative diagram

0

��

0

��

0

��
0 // Ai ∧Aj

i′

��

j ′ // Aj
q //

j

��

Aj /Ai ∧Aj

k′

��

// 0

0 // Ai
i //

p

��

A
q′ //

p′

��

A/Ai

c′

��

// 0

0 // Ai /(Ai ∧Aj ) k
//

��

A/Aj c
//

��

C

��

// 0

0 0

where i, i′, j and j ′ are defined as in Proposition 4.26, and p, p′, q and q′ are the
cokernels of i′ , j, j ′ and i respectively.

The morphism k exists and is unique, since

p′ii′ = p′jj ′ = 0

and p is the cokernel of i′ , and that k′ exist is proved similarly. The morphism c′ is the
cokernel of k′ , and the morphism c exists and is unique, since

c′q′j = c′k′q = 0

and p′ is the cokernel of j. By definition, the columns and the two top rows are exact,
and so the bottom one is also exact. Then,

c = cok(k) = cok(kp)

since p is epic, and by the dual of Proposition 4.7 the bottom-right square is a pushout.
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Hence, C is isomorphic to A/(Ai ∨Aj ), and so the diagram

0

��

0

��

0

��
0 // Ai ∧Aj

i′

��

j ′ // Aj
q //

j

��

Aj /Ai ∧Aj

k′

��

// 0

0 // Ai
i //

p

��

A
q′ //

p′

��

A/Ai

c′

��

// 0

0 // Ai /(Ai ∧Aj ) k
//

��

A/Aj c
//

��

A/(Ai ∨Aj )

��

// 0

0 0

is commutative with exact rows. To finish the proof, let A = Ai ∨Aj .

Morphisms between two objects can be extended to morphisms between the corre-
sponding subobject lattices.

Definition 4.28. Let morphism f : A→ B be a morphism. The preimage f −1(i) of a
monomorphism i : Bi → B is the monomorphism i′ in the pullback

A′
f ′ //

i′

��

Bi

i
��

A
f
// B.

The image of a monomorphism i into A is the image of f i.

Proposition 4.29. Let f : A→ B be a morphism.

(i) If i and i′ are monomorphisms into A such that i ≤ i′ , then f (i) ≤ f (i′).

(ii) If j and j ′ are monomorphisms into B such that j ≤ j ′ , then f −1(j) ≤ f −1(j ′).

Proof. (i) Since i is contained in i′, there is a morphism ϕ′ such that i = i′ϕ. In
other words, the diagram

Ai
f i //

ϕ

��

B

id
��

Aj
f i′
// B

47



commutes. By Proposition 3.32 there is a commutative diagram

Ai
e //

ϕ

��

im(f i) m //

h
��

B

id
��

Aj
e′
// im(f i′)

m′
// B.

Hence f (i) is contained in f (i′).

(ii) Consider the pullback diagrams

Aj
f ′ //

f −1(j)
��

Bj

j

��

A′j
f ′′ //

f −1(j ′)
��

B′j

j ′

��
A

f
// B A

f
// B.

Since j is contained in j ′ , there is a morphism ϕ : Bj → B′j such that j = j ′ϕ.

Also, jf ′ = f f −1(j), and so j ′(ϕf ′) = f f −1(j).

By the universal property of pullbacks, there is a unique morphism h so that
f ′′h = ϕf ′ and f −1(j ′)h = f −1(j). Hence, f −1(j) is contained in f −1(j ′).

Since i ∼ j if and only if i ≤ j and j ≤ i, any morphism f : A → B induce order
preserving maps

f (−) : SA→SB and f −1(−) : SB→SA.

Proposition 4.30. Let f : A→ B be a morphism. Then

(i) any subobject i of A satisfies f −1(f (i)) ≤ i.

(ii) any subobject j of B satisfies f (f −1(j)) ≤ j.

(iii) the morphism f is monic if and only if f −1(f (i)) = i for all subobjects i of A.

(iv) the morphism f is epic if and only if f (f −1(j)) = j for all subobjects j of B.

Proof. (i) Write f i as f (i)e, where f (i) is the image of f i and e is the coimage of f i.
Then i′ = f −1(f (i)) is defined via the pullback diagram

A′i
f ′ //

i′

��

Bk

f (i)
��

A
f
// B.
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Since f (i)e = f i and the diagram is a pullback, there is a map h such that ih = i′

and f ′h = e. Thus
i ≤ i′ = f −1(f (i)).

(ii) The subobject j ′ = f −1(j) is defined via the pullback

A′j
f ′ //

j ′

��

Bj

j

��
A

f
// B.

The image of j ′ is defined as the image m of f j ′. Let e be the coimage of f j ′.
Then f j ′ =me, and if k′ is the kernel of f j ′ = jf ′ , then

e = cok(ker(f j ′)) = cok(k).

Then
0 = f j ′k = jf ′k

and since j is monic, f ′k = 0. Thus, there is a morphism h such that f ′ = he.

K
k // A′j

j ′

��

f ′ //

e

��

Bj

j

��

B′j
m

��

h
@@

A
f

// B.

Moreover,
me = jf ′ = jhe,

and since e is epic, m = jh and

j ≤m = f (f −1(j).

(iii) Suppose that f is monic. Then f i is monic, and so f (i) = f i. The preimage i′′ of
i′ is given by the pullback

A′′j
f ′ //

i′′

��

Ai

f i

��
A

f
// B
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whence f i′′ = f if ′. Since f is monic, i′′ = if ′, and so i′′ ≤ i. In conjuntion with
(i), one finds that f −1(f (i)) = i as subobjects.

For the converse, let k be the kernel of f . Then f k = 0, and so f (k) = 0. Hence

f −1((f (k)) = f −1(0) = 0.

Thus k = 0, and f is monic.

(iv) If f is epic, the morphism f ′ = he from (ii) is epic and hence h is. Since h is
always monic, h is an isomorphism and hence f (f −1(j)) = j as subobjects.

For the converse, note that f −1(B) = A for all morphisms f . Thus f (f −1(B)) =
im(f ), and so f (f −1(k)) = k implies that im(f ) = B, so f is epic.

The consequences of this is that

(i) if f is monic, then f (−) is injective and f −1(−) is surjective.

(ii) if f is epic, then f (−) is surjective and f −1(−) is injective.

(iii) if f is an isomorphism, f and f −1 are lattice isomorphism.

Proposition 4.31. Let A be an object in an abelian category, and i a subobject of A. Then
there is a lattice isomorphism from SAi to the interval [0, i], and a lattice isomorphism from
SA/Ai to [i,A].

Proof. The morphism i defines an injective map i(−) from SAi to SA, given by i(f ) = if
for all subobjects f of Ai . A subobject j lies in [0, i] if and only if j is contained in i, if
and only if there is a monomorphism f such that

j = if = i(f ).

Hence, the image of i(−) is the interval [0, i], and SAi and [0, i] are lattice isomorphic.

For the other part, let c : A→ A/Ai be the cokernel of i. Then c−1(−) is a injective map
from SA/Ai to SA, since c is surjective.

To show that SA/Ai is lattice isomorphic to [i,A], it suffices to show that the image of
c−1(−) is [i,A], i.e that a subobject of A is the left hand side of a pullback of a subobject
of A/Ai precisely when the subobject contains i.

Suppose that j is a subobject of A/Ai . The subobject j ′ = c−1(j) is defined by the
pullback

A′j
c′ //

j ′

��

Aj

j

��
A c

// A/Ai
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and since ic = 0 = j0, the universal property of pullbacks implies that there is a
morphism h such that j ′h = i, i.e i ≤ j ′ = c−1(j).

Conversely, suppose that j is a subobject of A such that i ≤ j via a morphism f . Using
a similar argument as in the proof of Proposition 4.11, one can construct an exact,
commutative diagram

0

��

0

��

0

��
0 // Ai

f //

id
��

Aj
e //

j

��

Aj /Ai

m

��

// 0

0 // Ai
i //

j

��

A
c //

c′

��

A/Ai

c′′

��

// 0

0 // A/Aj
u //

��

A/Aj //

��

0

0 0.

Since the diagram is exact and u is an isomorphism,

j = ker(c′) = ker(uc′) = ker(c′′c),

i.e the sequence

0 // Aj
j // A

c′′c // A/Aj

is exact. By Proposition 4.7, the square

Aj
e //

j

��

Aj /Ai

m

��
A c

// A/Ai

is a pullback, so j lies in the image of c−1(−).

The above proposition shows that any interval [i, j] in the subobject lattice of an object
is isomorphic to the subobject lattice of Aj /Ai . This is key to proving that the subobject
lattice of an object in an abelian category is modular.

But first, the time has come to return to complements.

Proposition 4.32. Suppose that i and j are subobjects of A such that i∧j = 0 and i∨j = A.
Then there are morphisms p and q so that i, j, p and q forms a direct sum system.
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Proof. Consider the direct sum system

Ai

i1 --
Ai ⊕Aj

p1

jj

p2
**
Aj .

i2

mm

Let h = ip1+jp2. The image of h is i∨j (see the proof of Proposition 4.26). Calculations
yields hi1 = i and hi2 = j.

By assumption, i ∨ j = A, and so h is epic.

Let k satisfy hk = 0. Then ip1k + jp2k = 0, which imply that

ip1k = −jp2k = j(−p2k).

Since i ∧ j = 0, the pullback of i and j is 0, and thus p1k = 0 and p2k = 0. Thus

i1p1k = i2p2k = 0,

and so
0 = i1p1k + i2p2k = (i1p1 + i2p2)k = k.

Hence h is monic, and an isomorphism. Let p = p1h
−1 and q = p2h

−1. Then

idA = hh−1 = i(p1h
−1) + j(p2h

−1) = ip+ qp.

Moreover,
pi = p1h

−1hi1 = p1i1 = idA1

and similarly qj = p2i2 = idA2
. Finally, iq = i1p2 = 0 and jp = i2p1 = 0, and so i, j, p

and q form a direct sum system.

Proposition 4.33. Let i be a subobject of A. Suppose that j and j ′ are complements of i in
the subobject lattice, and j ≤ j ′ . Then j = j ′ .

Proof. Suppose that i : Ai → A has complements j : Aj → A and j ′ : A′j → A, such that
j ≤ j ′ via a monomorphism f : Aj → A′j such that j ′f = j. By Proposition 4.32, there is
are direct sum systems

Aj
j

55 A
p
uu

q
55 Ai

i
vv

and

A′j
j ′
55 A

p′
uu

q′
44 Ai .

i
uu

Hence
jp+ ip = idA = j ′q′ + ip′ .
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Substituting j ′f for j multiplying from the left by q′ yields

q′j ′f q+ q′ip = q′j ′q′ + q′ip′

and so f q = q′ . Since q′ is epic, Proposition 2.7 ensures that f is epic, and hence f is
an isomorphism, i.e j = j ′ as subobjects.

Proposition 4.34. The subobject lattice of an object A is modular.

Proof. Let i and j be subobjects of A and consider the interval [i, j] in SA. Suppose
that k is a subobject in [i, j] with complements c and c′ such that c ≤ c′ .

The interval [i, j] is lattice isomorphic to SAj /Ai , and since complements are preserved
under isomorphism, the complements c and c′ are equal. Thus SA is modular.
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5 Classification Theorems

The Jordan-Hölder theorem asserts that if an object has a maximal chain of subobjects,
then all maximal chains of subobjects are equivalent. However, the theorem does not
assert that every object in an abelian category has such a chain, and in fact many do
not.

The Krull-Schmidt-Remak theorem has a similar problem. Fortunately, one can show
that if the Jordan-Hölder theorem applies, then so does the Krull-Schmidt-Remak
theorem. At the end of the thesis, an example is given where the Krull-Schmidt-Remak
theorem applies in a context outside abelian categories.

5.1 The Jordan-Hölder Theorem

The Jordan-Hölder theorem classifies object up to isomorphism, using maximal chain
of subobjects.

Definition 5.1. An nonzero object in an abelian category is simple if every subobject
of it is equivalent to either zero or the identity.

Proposition 5.2. Let i and j be two subobjects of an objectA and suppose that i is contained
in j. Then, the following are equivalent.

(i) i is properly contained in j.

(ii) Aj /Ai is nonzero.

(iii) SAj /Ai has at least two members.

Proof. If i and j are equivalent via a morphism f , then f is an isomorphism and
cok(f ) = 0, i.e Aj /Ai = 0. Conversely, if cok(f ) = 0, then f is epic. Since f always
monic, it is both monic and epic, and hence an isomorphism. Consequently, i and j
are equivalent.

The third equivalence follows from that [i, j] is isomorphic to the subobject lattice of
Aj /Ai , which has one member if and only if i and j are equal.

Remark. An object is simple if and only if its subobject lattice contains exactly two
subobjects.
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Proposition 5.3. Suppose that i and j are subobjects of an object in an abelian category
such that i is properly contained in j. Then there is a subobject k such that

i < k < j

if and only if Aj /Ai is not simple.

Proof. Let A be an object with subobjects i and j. Then Aj /Ai is not simple if and only
if there is a chain of subobjects

0 < q < Aj /Ai .

Since the subobject lattice SAj /Ai is isomorphic to [i, j], this holds if and only if there is
a subobject k of A such that i < k < j.

Remark. It is clear that if the subobject i < j are such that Aj /Ai is simple, and

i ≤ k1 ≤ · · · ≤ kn < j

for subobjects k1, . . . , kn, then kl is equal to precisely one i and j for all l. Moreover, if
kl = j for some l, then kl+1 = j.

Definition 5.4. A filtration of an object A in an abelian category is a sequence

0 = i0 ≤ i1 ≤ i2 ≤ · · · ≤ in−1 ≤ in = A

of subobjects of A. The quotients ij+1/ij are called factors. A filtration is proper if every
containment relation is proper.

Remark. Clearly, a filtration is proper if and only if all factors are nonzero.

Definition 5.5. A refinement of a filtration

0 = i0 ≤ i1 ≤ i2 ≤ · · · ≤ in−1 ≤ in = A.

is an filtration
0 = j0 ≤ j1 ≤ j2 ≤ · · · ≤ jn−1 ≤ jm = A.

such that ik is equal to a unique jl for all k.

Remark. In group theory, filtrations are called normal series, and Jordan-Hölder series
are called composition series.

Definition 5.6. A filtration

0 = i0 ≤ i1 ≤ i2 ≤ · · · ≤ in−1 ≤ in = A.

of an object A in an abelian category is maximal if

ij ≤ k ≤ ij+1⇒ k = ij or k = ij+1

for all j. A maximal filtration that is proper is a Jordan-Hölder series.

55



Proposition 5.7. A filtration is maximal if and only if all its factors are simple or zero and
Jordan-Hölder if and only if every factor is simple.

Proof. Apply Proposition 5.3 and Proposition 5.2 inductively.

Proposition 5.8. The nonzero factors of a Jordan-Hölder series are the same as those of
each of its refinements.

Proof. Let A be an object and

0 = i0 < i1 < i2 < · · · < in−1 < in = A.

a Jordan-Hölder series. Let

0 = j0 ≤ j1 ≤ j2 ≤ · · · ≤ jn−1 ≤ jm = A.

be a refinement of ik . For every k there is a number pk so that ik = jpk . For each k,
consider the subsequence

ik = jpk ≤ jpk+1 ≤ · · · ≤ jpk+1−1 ≤ jpk+1
= ik+1.

This lies in the interval [ik , ik+1]. Since ik+1/ik is simple, this interval contains only two
members. So either jpk+l = ik or jpk+l = ik+1 for all l, and so the quotient jpk+l+1/jpk+l is
either 0 or ik+1/ik . T

he latter case can only happen once, since the sequence is increasing, which shows
that a refinement of ik does not contain any new, nonzero factors.

Definition 5.9. Two filtrations

0 = i0 ≤ i1 ≤ · · · ≤ in ≤ A

and
0 = j0 ≤ j1 ≤ · · · ≤ jm ≤ A,

with factors are equivalent if n = m and there is a bijection σ such that ik+1/ik and
jσ (k)+1/jσ (k) for all k.

Example 5.10. Let Cn denote the cyclic group on n elements. The filtrations

0 = C1 ≤ C2 ≤ C6 ≤ C12

and
0 = C1 ≤ C2 ≤ C4 ≤ C12

have factors C2, C2 and C3 in different orders. Hence, they are equivalent.

Note that two filtrations can be equivalent, despite the subobjects in the filtration
being different.
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The Jordan-Hölder theorem states that in an abelian category, all Jordan-Hölder series
are equivalent.

Proposition 5.11 (Zassenhaus’ lemma). Let i, i′, j and j ′ be subobjects of A, such that
i′ ≤ i and j ′ ≤ j. Then

(i ∧ j)∨ i′

(i ∧ j ′)∨ i′
=

(i ∧ j)∨ j ′

(i′ ∧ j)∨ j ′

as quotients of A.

Proof. Let s = i ∧ j and t = i′ ∨ (i ∧ j ′). Since j ′ ≤ j, the subobject i ∧ j contains i ∧ j ′,
and hence (i ∧ j)∨ i′ contains (i ∧ j ′). Therefore,

s∨ t = (i ∧ j)∨ (i′ ∨ (i ∧ j ′)) = ((i ∧ j)∨ i′)∨ (i ∧ j ′) = (i ∧ j)∨ i′ = i′ ∨ (i ∧ j).

On the other hand, i ∧ j ′ is contained in i ∧ j, and

t∧ s = ((i∧ j ′)∨ i′)∧ (i∧ j) = (i∧ j ′)∨ (i′ ∧ (i∧ j)) = (i∧ j ′)∨ ((i′ ∧ i)∧ j) = (i∧ j ′)∨ (i′ ∧ j)

via the modular law. The third isomorphisms theorem yields

i′ ∨ (i ∧ j)
i′ ∨ (i ∧ j ′)

=
s∨ t
t

=
s

s∧ t
=

i ∧ j
(i ∧ j ′)∨ (i′ ∧ j)

.

Switching i for j and i′ for j ′ in the above argument, yields

j ′ ∨ (j ∧ i)
j ′ ∨ (j ∧ i′)

=
j ∧ i

(j ∧ i′)∨ (j ′ ∧ i)
=

i ∧ j
(i ∧ j ′)∨ (i′ ∧ j)

=
i′ ∨ (i ∧ j)
i′ ∨ (i ∧ j ′)

.

Remark. Zassenhaus’ lemma is sometimes called butterfly lemma, due to the shape of
the diagram of subobjects involved:

A′i ∨ (Ai ∧Aj ) A′j ∨ (Aj ∧Ai)

Ai ∧Aj

66hh

A′i ∨ (Ai ∧A′j )

OO

A′j ∨ (Aj ∧A′i)

OO

A′i

::

(Ai ∧A′j )∨ (Aj ∧A′i)

OO

66hh

A′j

dd

Aj ∧A′i

66
dd

Ai ∧A′j

::hh
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Zassenhaus’ lemma gives a smooth proof of the following theorem.

Proposition 5.12 (Schreier’s refinement theorem). Any two filtrations of an object in an
abelian category have refinements that are equivalent to each other.

Proof. Let A be an object in an abelian category with filtrations

0 = i0 ≤ i1 ≤ · · · ≤ im−1 ≤ im = A

and
0 = j0 ≤ j1 ≤ · · · ≤ jn−1 ≤ jn = A.

Every number 0 ≤ a ≤ nm − 1 can be written uniquely as a = ns + t for 0 ≤ s ≤ m − 1
and 0 ≤ t ≤ n− 1, and as a =mp + k for unique numbers 0 ≤ p ≤ n− 1 and 0 ≤ k ≤m− 1.
Moreover, the map

σ : {0, . . . ,nm− 1} → {0, . . . ,nm− 1}

defined by σ (ns+ t) =mt + s is bijective.

Define the filtrations
0 = k0 ≤ k1 ≤ · · · ≤ knm−1 ≤ pnm = A

and
0 = p0 ≤ p1 ≤ · · · ≤ pnm−1 ≤ pnm = A

by
knr+s = ir ∨ (ir+1 ∧ js)

and
pms+r = js ∨ (js+1 ∧ ir )

for 0 ≤ s ≤ n− 1 and 0 ≤ r ≤m− 1, and set kmn = pnm = A.

Then, knr = ir and pms = js for all r and s. In particular, k0 = 0 and p0 = 0.

Moreover, ir+1 ∧ js is contained in ir+1 for all s. Thus

ir = knr ≤ knr+1 ≤ · · · ≤ knr+(n−1) ≤ kn(r+1) = ir+1

for all r. Similarly, js+1 ∧ ir is contained in js+1 for all r, and

js = pms ≤ pms+1 ≤ · · · ≤ pms+(m−1) ≤ pm(s+1) = js+1.

In other words, knr+s and pm+r are refinements of ik and jl .

Let i′ = ir , i = ir+1, j ′ = js and j = js+1. Then i′ ≤ i and j ′ ≤ j. Moreover,

knr+s = i′ ∨ (i ∧ j ′), knr+s+1 = i′ ∨ (i ∧ j)

and
pms+r = j ′ ∨ (j ∧ i′), pms+r+1 = j ′ ∨ (j ∧ i)
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Zassenhaus’ lemma yields

knr+s+1

knr+s
=
i′ ∨ (i ∧ j)
i′ ∨ (i ∧ j ′)

=
j ′ ∨ (j ∧ i)
j ′ ∨ (j ∧ i′)

=
pms+r+1

pms+r
=

pσ (nr+s)

pσ (nr+s)+1
.

Since σ is a bijection, this shows that the refinements knr+s and pms+r are equivalent.

Proposition 5.13 (Jordan-Hölder theorem). All Jordan-Hölder series of an object are
equivalent.

Proof. By Schreier’s refinement theorem, all Jordan-Hölder series have refinements
that are equivalent. These refinements have the same nonzero factors as the original
Jordan-Hölder series, by Proposition 5.8, and since they are all equivalent to each
other they all have the same nonzero factor.

Hence, all Jordan-Hölder series have the same nonzero factors, and since all factors of
a Jordan-Hölder series are nonzero they are equivalent.

Since all Jordan-Hölder series are equivalent, they have the same length.

Definition 5.14. An object is of finite length if it has a Jordan-Hölder series. The length
of an object of finite length is the number of objects in any of its Jordan-Hölder series.

Example 5.15. A vector space over a field K is of finite length if and only if it is
isomorphic to Kn for some n, in which case it has length n. A Jordan-Hölder series for
Kn is given by

0 < K < K2 < · · · < Kn−1 < Kn.

Example 5.16. The Jordan-Hölder theorem is a generalization of the fundamental
theorem of arithmetic.

Let Cn denote the cyclic group on n elements. Then Cn has finite length, since it is
finite, and abelian. Moreover, every subgroup of Cn is cyclic, and if Cm is a subgroup
of Cn then m divides n and the quotient Cn/Cm is isomorphic to Cn/m. Finally, Cn is
simple if and only if n is prime.

Consider a Jordan-Hölder series

0 = Cn0
< Cn1

< · · · < Cnm+1
< Cnm = Cn.

The factors are simple cyclic groups of order nk/nk+1 = pk , where pk is prime. Iteration
yields n = p0p1 · · ·pm−1. Hence, the factors of a Jordan-Hölder series of the cyclic group
Cn correspond to a prime factorizations of n.

Since two cyclic groups are isomorphic if and only if they have the same order,
two Jordan-Hölder series of Cn are equivalent if and only if they correspond to the
same prime factorization of n. Thus, the Jordan-Hölder theorem implies that prime
factorization of any natural number is unique up to permutation.
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Remark. Not all objects in an abelian category have a Jordan-Hölder series. Indeed,
any filtration

0 = 0Z < pn−1Z < pn−2Z < · · · < p1Z <Z

of Z has a proper refinement

0 = 0Z < 2pn−1Z < pn−1Z < pn−2Z < · · · < p1Z <Z.

5.2 The Krull-Schmidt-Remak Theorem

The Krull-Schmidt-Remak theorem does not apply to all abelian categories, but only
those where the objects have a particular form. Here, it is assumed that they are
Artinian.

Definition 5.17. An object A in a category is Artinian if there is no infinite, descending
sequence of proper subobjects of A. A category is Artinian if each of its objects are
Artinian.

Remark. Most of the ideas in this section is from Atiyah [Ati56], who proved the
Krull-Schmidt-Remak theorem in slightly more general circumstances.

Example 5.18. A vector space is Artinian if and only if it is has finite dimension. The
group of integers is not Artinian.

Definition 5.19. An object in an additive category is decomposable if it is a direct sum
of nonzero subobjects of itself. Otherwise, it is called indecomposable.

Example 5.20. The only indecomposable vector spaces have dimension one.

All simple objects are indecomposable. In general, the reverse is not true. For example,
Z has many proper subobjects, but is indecomposable.

Every endomorphism generates chains of subobjects.

Proposition 5.21. Let f be an endomorphism of an object A in an abelian category. Then
ker(f n) is contained in ker(f n+1) and im(f n+1) is contained in im(f n) for all n.

Proof. Let kn and kn+1 be the kernel of f n and f n+1 respectively. Then

knf
n+1 = knf

nf = 0,

so there is a morphism h such that kn = kn+1h. Hence ker(f n) is contained in ker(f n+1).

For the second containment, consider the commuting square

A

f
��

f n+1
// A

id
��

A
f n
// A.
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and let f n =mnen and f n+1 =mn+1en+1 be the canonical decomposition of f n and f n+1.
By Proposition 3.32, there is a morphism ϕ so that the diagram

A
en+1 //

f

��

im(f n+1)
mn+1 //

ϕ

��

A

id
��

A en
// im(f n) mn

// A

commutes. In particular, mn+1 =mnϕ, so im(f n+1) is contained in im(f n).

Proposition 5.22 (Fitting’s lemma). Suppose that A is an Artinian object and f is an
endomorphism on A. Then there is a positive integer n such that

A = im(f n)⊕ker(f n).

Proof. By Proposition 5.21, any endomorphism on A gives rise to a sequence

· · · ≤ im(f n) ≤ · · · ≤ im(f 2) ≤ im(f )

of subobjects of A. The subobject morphisms mn : im(f n)→ A are defined via the
canonical decomposition f n =mnen, and the containment morphisms in+1 are defined
by the diagram

A
en+1 //

f

��

im(f n+1)
mn+1 //

in+1

��

A

id
��

A en
// im(f n) mn

// A

from Proposition 5.21. Similarly, the commutative square

A

id
��

f n // A

f
��

A
f n+1
// A

yields a decomposition
A en

//

id
��

im(f n) mn
//

pn+1
��

A

f

��
A

en+1// im(f n+1)
mn+1 // A.

This gives the identities en+1 = pn+1en and mn+1 =mnin+1. Applying these inductively
yields

mnenmn = f nmn
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and by repe

mn(in+1 · · · i2np2n · · ·pn+1) =m2np2n · · ·pn+1 = f m2n−1p2n−1 · · ·pn+1 = · · · = f nmn.

Equating the two expressions yields

mnenmn =mnin+1 · · · i2np2n · · ·pn+1.

and since mn is monic, one has

enmn = in+1 · · · i2np2n · · ·pn+1.

Suppose that A is Artinian. Then for large enough n, all morphisms in and pn are
isomorphisms, and hence σn = enmn is an isomorphism as well.

Hence, the morphism mnσ
−1
n is a right split for the short exact sequence

0 // ker(f n)
kn // A

en // im(f n) // 0,

since
enmnσ

−1
n = σnσ

−1
n = idim(f n) .

By the splitting lemma, A is isomorphic to ker(f n)⊕ im(f n).

Definition 5.23. An endomorphism f in a preadditive category is nilpotent if f n = 0
for some n.

Note that in abelian categories, f n = 0 if and only if ker(f n) is the domain of f .

Proposition 5.24. Any endomorphism on an Artinian object which is indecomposable in
an abelian category is either nilpotent or an automorphism.

Proof. Let A be such an object and f an automorphism. By Fitting’s lemma, A =
im(f n)⊕ker(f n) for some n. SinceA is indecomposable, either im(f n) = 0 or ker(f n) = 0.
In the first case, ker(f n) = A and f is nilpotent.

In the latter case, ker(f i) = 0 for all positive integers i, since the kernels form an
ascending sequence of subobjects of A. Similarly, im(f i) = A for all positive integers
i, since the images form a descending sequence of subobjects. Thus im(f ) = A and
ker(f ) = 0, and f is an automorphism.

Proposition 5.25. If f1, . . . , fn is a sequence of endomorphisms in an abelian category on
an Artinian object which is indecomposable and

n∑
i=1

fi

is an automorphism, then fi is an automorphism for some i.
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Proof. Induction on n. If n = 2,
f1 + f2 = g

for some automorphism g. Multiplying by g−1 yields

g−1f1 + g−1f2 = idA .

Since g is an automorphism, it suffices to show that either f ′1 = g−1f1 or f ′2 = g−1f2 is
an automorphism.

By Fitting’s Lemma, f ′1 and f ′2 are either automorphisms or nilpotent. Suppose that
both are nilpotent. Then there is some m such that f ′m1 = 0 and f ′m2 = 0.

If f ′1 + f ′2 = idA, then f ′2 = id−f ′1 , and so

f ′1f
′

2 = f ′1 (id−f ′1 ) = f1 − f ′21 = (id−f ′1 )f ′1 = f ′2f
′

1 .

Since f ′1 and f ′2 commute, the binomial theorem can be applied.

(f ′1 + f ′2 )2m = idmA = idA⇔ idA =
2m∑
k=0

(
2m
k

)
f ′2m−k1 f ′k2 = 0.

Since A is nonzero, this contradicts Proposition 3.7 and so either f ′1 or f ′2 is an auto-
morphism.

For the induction step, suppose that the statement holds for all sums of length p and
that

p+1∑
i=1

fi = fp+1 +
p∑
i=1

fi

is an automorphism. Then either fp+1 or
∑p
i=1 fi is an automorphism, and the induction

hypothesis gives the result.

Proposition 5.26. Any object in an Artinian category can be written as a direct sum of
indecomposable subobjects.

Proof. An object is bad if it cannot be written as a direct sum of indecomposable
objects. The task is to show that if A is bad, it cannot be Artinian, by constructing
an infinite sequence A0, A1, A2, . . . , of bad objects, such that A0 = A and An+1 is are
nontrivial direct summands of An for all n.

Suppose that A is bad, and let A0 = A. Assume that objects A0, . . . , Ap have been
chosen so that every Ai is bad, and Ai+1 is a nontrivial direct summand of Ai .

Since Ap is bad, it is not indecomposable, and so there is a nontrivial direct sum

Ap = B⊕C
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of Ap. Suppose neither B nor C is bad. Write B and C as sums

B =
n⊕
j=1

Bj and C =
m⊕
k=1

Ck

of indecomposable objects. Then

Ap = B1 ⊕B2 ⊕ · · · ⊕Bn ⊕C1 ⊕ · · · ⊕Cm

is the direct sum of indecomposable objects, which contradicts the assumption that
Ap was bad. So at least one of B and C is bad. Let Ap+1 be one of them. Then Ap+1 is
bad and a nontrivial direct summand of Ap, which completes the induction.

Proposition 5.27 (Krull-Schmidt-Remak). Let A be an object in an Artinian category,
with decompositions

A =
n⊕
j=1

Aj and A =
m⊕
k=1

A′k

into indecomposable subobjects. Then n = m, and there is a permutation σ such that
Aj ' A′σ (j) for all j.

Proof. Suppose A has two decompositions

A =
n⊕
j=1

Aj and A =
m⊕
k=1

A′k .

where Aj and A′k are indecomposable. Without loss of generality, n ≤m.

When n = 1, the object A is indecomposable and the theorem holds. Suppose that the
theorem holds for some p ≥ 2, and that

A =
p+1⊕
j=1

Aj and A =
m⊕
k=1

A′k .

for some indecomposables, with m ≥ p+ 1.

Let ij , i′k , pj and p′k be the injection and projection morphisms defining the direct sums.
Define fs = p1i

′
sp
′
si1 for s = 1, . . . ,m. Then

m∑
s=1

fs = p1

 m∑
s=1

i′sp
′
s

 i1 = p1 (idA) i1 = idA1
.

By Proposition 5.25, there is some fs which is an isomorphism. Decomposing fs gives
yields the diagram

A1
i′1p1

// A′s isp
′
s

// A1
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and by the remark after Proposition 4.4, A1 is a direct summand of A′s. But A′s is
indecomposable, so A1 and A′s are isomorphic. Let

B =
p+1⊕
j=2

Aj and B′ =
m⊕

k=1,k,s

A′k .

By definition
A ' A1 ⊕B ' A′s ⊕B′ .

Let p, i, i′ and p′ denote the projection and injection morphisms corresponding to B
and B′, and ϕ the isomorphism from A1 ⊕B to A1 ⊕B′. If f = p′ϕi from B to B′, the
diagram

A1 ⊕B
p

))

ϕ

��

B
i
mm

f =p′ϕi
��

A′s ⊕B′
p′

**
B′

i′
mm

commutes. Moreover, f is an isomorphism with inverse g = pϕ−1i′ , since

f g = p′ϕipϕ−1i′ = idB′

and
gf = pϕ−1i′p′ϕi = idB .

Thus, B and B′ are isomorphic, and the induction hypothesis applies.

Remark. If an object has a Jordan-Hölder series it must be Artinian, since no proper
sequence of subobjects of an object can be longer than a Jordan-Hölder series. Thus
the Krull-Schmidt-Remak theorem holds in all abelian categories of finite length.

The Krull-Schmidt-Remak theorem can be extended to other categories than abelian
categories of finite length. For example, let R be a commutative, Noetherian and
complete local ring, and A an R algebra which is finitely generated as a module over R.
Then the Krull-Schmidt-Remak theorem holds for the class of finitely generated left
A-modules.[Rei03, p.88]
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