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Abstract

The Jordan-Hoélder and Krull-Schmidt-Remak theorems classify finite groups,
either as direct sums of indecomposables or by composition series. This thesis
defines abelian categories and extends the aforementioned theorems to this context.
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1 Introduction

Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part
of their research into algebraic topology. One of their aims was to give an axiomatic
account of relationships between collections of mathematical structures. This led to
the definition of categories, functors and natural transformations, the concepts that
unify all category theory,

Categories soon found use in module theory, group theory and many other disciplines.
Nowadays, categories are used in most of mathematics, and has even been proposed
as an alternative to axiomatic set theory as a foundation of mathematics.[Law66]

Due to their general nature, little can be said of an arbitrary category. Instead, mathe-
matical theory must focus on a specific type of category, the choice of which is largely
dependent on ones interests. In this work, the categories of choice are abelian cate-
gories. These categories were independently developed by Buchsbaum[Buc55]] and
Grothendieck[[Gro57].

Grothendieck’s work was especially groundbreaking, as he unified the cohomology
theories for groups and for sheaves, which had similar properies but lacked a formal
connection. This showed that abelian categories was the basis of general framework
for cohomology theories, a powerful incentive for research.

Abelian categories are highly structured, possessing both a matrix calculus and various
generalizations of the isomorphism theorems. This gives rise to a refined structure
theory, which is the topic of this thesis. Of special interest here is the structure of
subobjects to an object in an abelian category, since this structure contains a lot of
information about the objects themselves.

The ultimate aim of a structure theory is to provide theorems that classify some
collection of objects up to isomorphism. Here, two results pertaining to such theorems
are presented. The first is the Jordan-Hélder theorem, which classifies objects by
maximal chains of subobjects. The second is the Krull-Schmidt-Remak theorem,
which gives a classification of objects by linearly independent components.

These theorems do not provide a universal classification theorem for all abelian
categories. The problem with the Jordan-Holder theorem is that not all objects in an
abelian category has a maximal chain of subobjects, while the problem for the Krull-
Schmidt-Remak theorem is that is requires that the endomorphisms of certain objects
are of a particular form, which is not true for alla objects in an abelian category.



Fortunately, one can show that every object that can be classified using Jordan-Holder
can also be classified using Krull-Schmidt-Remak. The extent to which Krull-Schmidt-
Remak can be extended is not discussed further.

The thesis is divided into four chapters, each divided into two sections. The first
chapter covers the basics of category theory and defines subobjects and quotients in
general categories. The aim is to set up the the coming chapters, and fix terminology
etc.

The second chapter defines additive categories, and gives an account of the matrix
calculus it contains. Then, abelian categories are defined and some fundamental prop-
erties are proven, so as to set up the third chapter, which further develops the theory.
In the third chapter, the focus is on developing the theory of exact sequences, an impor-
tant tool in the study of abelian categories, and to further deepen our understanding
the subobject structure of abelian categories.

In the fourth and final chapter, the theory is used to prove the Jordan-Hélder and
Krull-Schmidt-Remak theorems.



2 Preliminaries

Categories is a general framework for studying mathematical structures and how they
relate to one another.

2.1 Basic Category Theory

This section covers the basics of category theory, in order to fix terminology and
notation. Proofs and detailed examples are omitted. The interested reader should
consider the introductory chapter in Leinster’s book Basic Category Theory[Leil4l.

Definition 2.1. A category C consists of a class of objects and a class of morphisms
Hom(A, B) for every object A and B in C, subject to the following constraints.

(i) For each f in Hom¢(A, B) and ¢ in Hom¢(B, C) there is a morphism go f in
Home¢ (A, C), called the composition of f and g.

(ii) For all f in Hom¢(A, B), g in Home(B, C) and h in Hom¢(C, D), we have

ho(gof)=(hog)of.
In other words, the composition is associative.

(iii) For all objects A in C, there is an morphism id4 in Hom¢(A, A), called the identity
on A, such that f oidy = f and id4 og = ¢ for all morphisms f and g.

The composition g o f is written as gf most of the time, and one usually writes Hom
instead of Homg.

A morphism in Hom(A, A) is called an endomorphism, and the collection of endo-
morphisms on A is denoted End(A). Composition turns End(A) into a monoid, with
the identity as unit object. If f is a morphism in End(A), the morphism f” is the
endomorphism on A defined by

fofo-of.
—_———
n times

By convention, f° =id,.



Definition 2.2. Let f be a morphism in Hom(A, B) in some category. Then A is called
the domain of f, while B is called the codomain of f, written f : A — B.

Example 2.3. (i) Set is the category of all sets and functions under composition.

(ii) Vectg is the category of all vector spaces and linear transformations (over a field
K) under composition.

(iii) R-Mod is the category of all R-modules and module morphisms (over a ring R)
under composition.

(iv) Grp is the category of all groups and group morphisms under composition.

The definition of category does not assume that the collections of objects and mor-
phisms are sets. In some circumstances this can be problematic. For details, consider
[MLO98] or [Leil4].

From old categories, new ones arise.

Definition 2.4. Let C and D be categories. The product category C x D of C and D is the
category such that

(i) the objects of C x D are the pairs (A, B) with A from C and B from D.
(ii) the morphisms from (A, B) to (A’, B’) are pairs of morphisms (f,g) from C and D,
with f:A—>A’and ¢g: B — B’.
(iii) the identity morphisms id, p) are (id4,idp).
(iv) the composition of morphisms (f,g) and (f’,¢")is (f'f,g’)-

Definition 2.5. Let C be a category. The opposite category C°P of C is the category such
that

(i) the objects of C°P are the objects in C.

(ii) for every morphism f : A — B, there is a morphism f° : B — A.

(iii) the identity morphisms idy are idy.

)
)
)
(iv) the composition of morphisms f°? : A — B and ¢g°? : B — C in C°P is the mor-
phism (fg)? : A — C.

The opposite category is also called the dual category.

For any property of morphisms and objects in a category, there is a corresponding dual
property in the dual category where the morphisms are reversed. So, if a property
holds in a category, then the dual property holds in the dual category.

Since any category is the dual category of its dual category, this means that if a property
holds for all categories, the dual property holds for all categories. In particular, for
every theorem, there is a dual theorem that holds in the dual categories (see [ML98]
p.33-35] for a more complete discussion of this).



Some caution is needed. If a property holds for a category, the dual property holds
for the dual category. This does not mean that dual property hold for the original
category! Since there is no guarantee that categories and dual categories have similar
properties, this limits the scope of the duality principle.

In an arbitrary category, morphisms are not functions. Thus, there is no concept of sur-
jective, injective or bijective morphisms. Instead, one uses a different terminology.

Definition 2.6. A morphism f is

(i) an epimorphism if gf = hf implies ¢ = h, for all morphisms g, h. Then f is called
epic.

(ii) a monomorphism if fg = fhimplies g = h, for all morphisms g, h. Then f is called
monic.

(iii) an isomorphism if there is a morphism g such that fg=1idp and gf =idy. Then,
A and B are isomorphic, denoted A ~ B.

An isomorphism from an object to itself is called an automorphism.

Note that epimorphisms and monomorphisms are dual concepts: a monomorphism in
a category is an epimorphism in the dual category and vice versa. Isomorphisms are
dual to themselves: isomorphisms are isomorphisms in the dual category as well.

Remark. Not all epimorphisms are surjective, nor are all monomorphisms injective.
Also, bijective morphisms and isomorphisms do not coincide in general. See [[B68,
p.3-7] and [Leil4} p.12] for details.

The following facts will be used liberally throughout the thesis.
Proposition 2.7. Let f : A — Band g: B— C be morphisms in a category.
(i) If f and g are epic,sois gf.
(ii) If ¢f is epic, sois g.
(iii) If f and g are monic, so is gf .
(iv) If ¢f is monic, so is f.
(v) If f and g are isomorphisms, so if gf.
(vi) All isomorphisms are epic and monic.

Remark. The converse of (vi) is not true: there are morphisms that are not isomor-
phisms, yet still epic and monic.[Leil4} p.12]

Maps between categories that preserve composition are called functors.

Definition 2.8. Let C and D be categories. A covariant functor F : C — D is an assign-
ment of objects in C to D and morphisms in C to morphisms in D such that



(i) forall Aand BinCand f : A — B, we have F(f): F(A) — F(B).
(ii) for all Ain C, we have F(id4) = idF(a).
(iii) forall f:A— Band ¢g: B— C, we have F(go f)=F(g)o F(f).
A contravariant functor from C to D is a covariant functor from C°P to D.
Definition 2.9. A bifunctor on a category C is a functor from C xC to C.
Functors are assignments between categories, and can be composed pointwise on

objects and morphisms. This composition has an identity and is associative. Hence,
the collection of categories and functors behaves like a category.

Functors are maps between categories - natural transformations are maps between
functors.

Definition 2.10. Let C and D be categories and F and G functors from C to D. A
natural transformation from F to G assigns a morphism

na s F(A) = G(A)

in D for all A in C, such a that if f is a morphism in C between A and B, the diagram

Fa) 4 sy

A L’]B

G(A)

Q

Sl
L
=

commutes, i.e 1gF(f) = G(f)na. If 174 is an isomorphism for every A, then # is a natural
isomorphism, denoted F =~ G.

Just as with functors, natural transformations can be composed pointwise. Once again,
the composition of two natural transformations is a natural transformation and the
composition is associative.

Two objects in a category are isomorphic to each other if there are invertible morphisms
between them. There is a natural analogue to this condition for categories.

Definition 2.11. Two categories C and D are isomorphic if there are functors F: C — D
and G: D — C such that FG =idp and GF =1id¢.

Two categories are isomorphic if and only if they are isomorphic as objects in the cate-
gory of categories. However, isomorphic categories rarely occur in practice. Instead, a
weaker notion is used.

Definition 2.12. Two categories C and D are equivalent if there are functors F :C — D
and G:D — C such that FG ~idp and GF ~id,.



Definition 2.13. A functor F from a category C to a category D is

* faithful if the induced map from Hom(A, B) to Hom(F(A), F(B)) defined by map-
ping f to F(f) is injective.

* full if the induced map from Hom(A, B) to Hom(F(A), F(B)) defined by mapping
f to F(f) is surjective.

* dense if all objects in D is isomorphic to F(A) for some A in C.

Proposition 2.14. A functor is an equivalence if and only if it is faithful, full and dense.

2.2 Subobjects and Quotients

This thesis is concerned with classifies objects in a category using subobjects. But how
can one speak of subobjects without sets? The idea to define a subobject of an object
as an equivalence class of morphisms.

Let Mono(A) denote the class of monomorphisms with codomain A. If i lies in
Mono(A), the domain of i is denoted A;.

Definition 2.15. Let A be an object in a category, and suppose that i and j are mor-
phisms in Mono(A). Then i contains j via a morphism f, denoted j < i, if there is a

morphism f such that the diagram
_r
A

If i and j contain each other, they are equivalent, denoted i ~ j. Otherwise, the
containment is proper, denoted j < i.

2

A
f

_—

>

]

commutes, i.e if if =7j.

Proposition 2.16. Suppose that i and j are monomorphisms in Mono(A) and that i
contains j via f. Then f is a monomorphism, and if f’ satisfy if’ = j, then f = f’.

Proof. If if’=j=if, cancel i on both sides and obtain f = f’. That f is monic follows
from (iv) in Proposition O

Proposition 2.17. Let A be an object in a category and suppose that i and j are morphisms
in Mono(A). Then i and j are equivalent if and only there is an isomorphism f such that i
contains j via f.



Proof. If there is such an isomorphism f, then if = jand i = jf~!, so i and j are
equivalent.

If i and j are equivalent, there are morphisms f; and f, such thati=jf, and j =if;.
Thus,

i=ifif - ida, = fif2

j=jhh idy, = fof1,

so f1 and f, are isomorphisms. O

A preorder is a transitive and reflexive relation on a class of objects. A partial order is
preorder which is antisymmetric.

Any preorder < induces an equivalence relation = on its underlying set via x = p if
and only if x < and v < x. The set of equivalence classes of = is partially ordered by
comparing representatives using <.

Proposition 2.18. The relation < is a preorder on Mono(A) for every object A

Proof. To show that any object is contained in itself, take f to be the identity.

For transitivity, suppose that i, j and k in Mono(A) satisfy i < j and j < k. By as-
sumption, there are morphisms f and g be such that k = jf and j = ig. Then gf
satisfies

igf=jf =k
and so 7 is contained in k. O

By definition, ~ is the equivalence relation induced by the preorder <.

Definition 2.19. A subobject of an object A is an equivalence class of Mono(A) under
the relation ~. The class of subobjects of an object A is denoted Sj4.

By previous remarks, S4 is partially ordered by <.

The dual to a subobject is a quotient. As with subobjects, quotients are defined as
equivalence classes of morphisms. If A is an object, let Epi(A) denote the class of
epimorphisms out of A.

Definition 2.20. Let A be an object in a category, and suppose that p and g are
epimorphisms in Epi(A). Then p contains q, denoted g < p, if there is a morphism f
such that the diagram

A—p>Ap

NJ

A

commutes, i.e if fp = g. If p and g contain each other, they are equivalent, denoted
p ~ g, otherwise it is proper, denoted g < p

10



Quotients are entirely dual to subobjects, so the following proofs are omitted.

Proposition 2.21. Suppose that p and q are epimorphisms in Epi(A) and that i contains j
via f. Then f is an epimorphism, and if f’ satisfy f'p = q, then f = f’.

Proposition 2.22. Let A be an object in a category and suppose that p and q are morphisms
in Epi(A). Then p and q are equivalent if and only there is an isomorphism f such that p
contains q via f.

Proposition 2.23. Let A be an object in a category. Then < is a preorder on Epi(A).

Definition 2.24. A quotient object of an object A is an equivalence class of Epi(A)
under the relation ~. The class of quotients of A is denoted Q4.

Remark. Every object A has at least one subobject and quotient, represented by the
identity morphism. This subobject is identified with A itself, so that one may speak of
A as a subobject and quotient of itself.

As a subobject, it contains every subobject and as a quotient object it is contained in
every quotient object. In other words, A is a lowest upper bound in S4 and a greatest
lower bound in Q4.

Example 2.25. Every subgroup of the abelian group Z is of the form
nZ={--—2n,-n,0,n,2n,---}

for some unique natural number n. The inclusions j, : nZ — Z are defined by j,(x) = x.

Each subobject of Z is an equivalence class of monomorphisms into Z. Each class
contains precisely one of the morphisms j,. Moreover, j,, contains j, if and only if
there is a morphism f : nZ — mZ so that j,,f = j,, i.e

mf(x)=nx

for all integers x in Z. This happens only when m divides #, in which case f is defined
via f(x) = (n/m)x. Hence,
Jn < jm e min

and Sy is isomorphic as a partial order to Z under the reversed divisibility order.

What about quotients? Let p: Z — G be a surjective group homomorphism. Then
G =1im(p) = Z/ker(p).

The kernel of p is a subgroup of Z, and so there is a natural number n such that
ker(p) =~ nZ. Consequently, G is isomorphic to C, = Z/nZ, the cyclic group on n
elements. Thus every quotient of Z is represented by a unique epimorphism p, : Z —
C,, defined by p,(x) =x+nZ

Suppose that the quotient object p,, : Z — C,, contains another quotient p,, : Z — C,,.
Then there is an epimorphism f : C,, — C,, so that fp, =p,,, i.e

f(pn(x)) =pp(x) & f(x+nZ)=x+mZ.

11



This holds if and only if m divides 1, and so
Pm < pp & min

and Qy is isomorphic as a partial order to Z under the divisibility order.

Notice that Sy and Qy are order isomorphic up to reversal of the order. This is not
coincidental: it is a special case of Proposition[3.27]

12



3 Abelian Categories
Abelian categories are additive categories with additional structure.

3.1 Additive Categories

Additive categories can be seen as the most general type of category that retains a kind
of matrix calculus.

Definition 3.1. An object A in a category C is
(i) initial if for every object B in C there is exactly one morphism from A to B.
(ii) terminal if for every object B in C there is exactly one morphism from B to A.

(iii) nullif it is both initial and terminal.

Proposition 3.2. Initial, terminal and null objects are unique up to a unique isomorpism.

Proof. By definition, the only endomorphism on an initial object is the identity mor-
phism. Let I and ] be initial objects. Then, there are unique morphisms f : I — J and
g:J—1I,and fg=id; and gf =id}, so I and ] are isomorphic.

The proofs for terminal and null objects are dual. O

Example 3.3. (i) In Set, the empty set is an initial object and singleton set is a
terminal object. There is no null object.

(ii) In Grp, the trivial group is a null object. Similarly, the zero module is a null
object in R-Mod.

Definition 3.4. Let 0 be a null object in a category and A and B be objects in the same
category. The null morphism between A and B is the unique morphism given by the
composition of the morphisms A — 0 and 0 — B.

Example 3.5. In Grp , the null morphism between two groups G and H is the mor-
phism from G to H defined by mapping every element in G to 1.

13



Definition 3.6. A category is preadditive if it has a null object and every set of mor-
phisms between two objects form an abelian group, such that composition is biadditive.
That is,

flg+h)=fg+fh and (f+g)h=fh+gh
for all morphisms.
In a preadditive category, the set of endomorphisms on an object is a ring, with
morphism addition as addition and composition as the ring multiplication.

The endomorphism ring is a Z-bimodule, via

—f —---—f ntimes (if n is negative.)
nf=fn=3f+--+f ntimes (if nis positive.)
0 (if nis 0.)

Proposition 3.7. In preadditive categories, the following are equivalent for an object A:
(i) Aisinitial.
(ii) A is terminal.
(iii) idy is the additive identity in the endomorphism ring.

(iv) The endomorphism ring is trivial.
Proof. See [ML98], p.194]. O

When there is a null object in a category, the null morphism 0: A — B and the additive
identity in Hom(A, B) coincide, since 0 is the composition of the additive identity in
Hom(A, 0) and Hom(0, A).

Definition 3.8. A direct sum of objects Ay, ..., A, in a preadditive category is an object
S along with morphisms

A g P g,
such that i
Zikpk =idg.
k=1
and
L idy, ifl=k
i = O = k
Prik Ik 0 otherwise.

The morphisms iy are called injection morphisms, while the morphisms p; are called
projection morphisms. The objects Ay, ..., A, are called direct summands of S, and the

14



collection of objects Ay, ..., A,, S along with the morphisms is called a direct sum
system.

A direct sum is trivial if every summand is isomorphic to either A or the zero object,
and nontrivial otherwise.

Every direct summand is a subobject of the direct sum, and a proper one if and only if
the direct sum is nontrivial.

Not all subobjects are direct summands. For example, Z cannot be written as a
non-trivial direct sum, but has a lot of subobjects.

Direct sums are self-dual, since every direct sum system gives rise to a direct sum
system in the dual category, by switching projection and injection morphisms.

Proposition 3.9. Any direct sum in a preadditive category is unique up to isomorphism.

Proof. Let S and S’ be direct sums of Ay, ..., A,, and py, i, p,’( and i}i the corresponding
injection and projection morphisms. Define f from S to S’ by

n
f= Zilipk
k=1

and g from S’ to S by

k=1
Then
n n n n n
7 7 .) .
fg= Zl,p] ixpy = Zl,-pjzkpk szpk = idg
j= k=1 j=1 k=1 k=1
and
n n n n n
_ ) o e o —id
§f =) ijp;) Pk = ipiixPk =) ikpx =ids.
=1 k= =T k=1 k=1
Hence, S and S’ are isomorphic. O
The above proposition allows us talk about the direct sum of Ay, ..., A, denoted

EDAj. Note that the isomorphism between two direct sums is not unique.

Definition 3.10. A category is additive if it is preadditive and every set of objects has
a direct sum.

Example 3.11. If R is a ring, the category R-Mod is additive. The null object is the
zero module, and direct sum is cartesian product.

Direct sums extends to morphisms.

15



Proposition 3.12. Let Ay, ..., A, and A’l, ..., A}, be objects in an additive category
with corresponding projection and injection morphisms py, iy, p and i,. Suppose f; is a
morphism from A; to A;-,for every j=1,...,n.

Then there is a unique morphism, denoted € f;, from €D Aj to (D A, such that the diagram

D ,
EBA]-—LEBAJ.

|

Ay —— A
k Tr k

commutes for every k.

Proof. Let

n

D= L iifer

=1

ri(EPf)=ri [Zij-fjpj] =) piiifip; = fipx
= =

for all k. To prove uniqueness, suppose that p}g = fipj = p;g for all j. Then

Then

iipig=ipif
for all j. Summing over j gives
" n " n
iipig=) iipif = [ i}P}]g = [ i}p}]f =idyg=ids f=g=f.
=1 j=1 j=1 j=1
O

Remark. There is an dual definition of f;, where one replaces the projection morphisms
with the injection morphisms in the opposite direction, resulting in the diagrams

D ,
@A]-—L@Aj

1t

and equations

(EB 1) ik = fii-

16



The process of constructing morphisms between direct sums from morphisms between
the summands can be inverted.

Definition 3.13. Suppose A4, ..., A, and Ai, ..., Aj, are objects in an additive category,
and that f is a morphism from EBA]- to @ A;. The component fjx of f is the morphism
from A; to Ay defined by

fik = Pifij-
The matrix of f is the matrix
fir o fim
=]
fnl fnm-

Example 3.14. Let A be the direct sum of objects Ay, ..., A, in an additive category.
Then

. . . . idAl 0 0
pridaiy -+ ppidaiy 0 id 0
idal=| .. = 142
plidAin pnidAin 0 - 0
0 idy,

Similarly, the matrices of the injection and projection morphisms are
[ij]=[0 -~ 0 idy 0 - 0]
and

pel=[0 ~ 0 idy 0 0]

Matrices of morphisms can be seen as elements of the abelian group
n m
]_[ ]_[Hom(Aj,A;)
j=1 k=1

with addition defined componentwise. The identity of this group given by the matrix
whose entries are all zero morphism.

Proposition 3.15. Let Ay, ..., A, and Ai, ..., Ay, be objects in an additive category. Then

Hom (P 4, P A;) = m Hom(A;, A}).
=1

j=1k

as abelian groups.

17



Proof. Define

3
3

(p:Hom(EBA]-,EBA;C)H Hom(Aj, Ay).

j=1 k=1

by mapping the morphism f : @Aj - @AI’( to its matrix
fiv o fim
pf)=U1=: -
fnl fnm-

If f =0, then f; = 0 for all j and k, and hence ¢ preserves the zero matrix. Moreover,

if f and g are morphisms from @ A; to @ A;, then

(f +8)jk = pp(f +8)ij = prfij +pr&ij = fix + gjkr

so ¢ is a group morphism. Next, define the map

o [T om0 Hom( G, B4

j=1 k=1
by
gll glm n m
I
gnt t &nmy j=1 k=1

Let f be a morphism from B A; to P A;. Then
fit o fim pifiv - pwfi
Pl N=yf 0 0 =9 e : =
fnl fnm: p;fin p;’nfin'

n m m n
= ipifipe =) iip}|f [Zikpk] =.
j=1 k=1 j=1 k=1
Similarly, one can show that ¥(¢([fjx])) = [ fj] for all matrices, which establishes that
@ is an isomorphism. 0
The above proposition shows that every morphism in an additive can be viewed as a

matrix. It turns out that composition can be transfered as well.

Proposition 3.16. Let Ay, ..., Ay, A}, ..., Ay, and A, ..., A, be objects in an additive
category, with morphisms

fEPA->Pa, and ¢ (Pa->Par

18



Then, the matrix of the composition
sf DA~ DA

hy o e hyp

[¢f]= .
hnl T hn

m
hij = ngifjk
k=1

is given by the matrix

pP
where

foralliand j.

Proof. By definition, fi = p, fi; and gx; = p]’-’gi;. Thus,

m

(8f)ij =p}efir = (p}’g)[zi;ip;i] (fi)=) pjgitpifii=) &if
k=1 k=1

k=1
0

Not only is there a matrix calculus in additive categories, the direct sum is also
functorial.

Proposition 3.17. Let A, A; and A} be three n-tuples of objects in an additive category,
and f;: Aj — A;. and f]-’ : A} - A}’ two n-tuples of morphisms. Then

(D) (Dr)=D( )
Pids, =idgy 4, -

Proof. Straightforward calculation gives

(D7) (D)= [Zf}'ﬁp}] o [Ziéfkpk] = il £ piix fipk =
= '

n
k=1 =1 k=1

=) i o fipi=EP(F o f).
j=1

and

=
=

and
n

Pida, =) iipj=idgya,-

Jj=1

19



The above result shows that in an additive category C, are functors
®,:C">C

for every n, defined by
®u(A,- An) = P A;

and
On(firer fu) = @fl
i=1
Since the composition of two functors is a functor, iteration yields a myriad of functors

that purports to be the direct sum of n. Even if one restricts oneself to iteration of the
bifunctor @,, the number of different direct sum functors of n variables is

(2n)!
(n+1)n!

each corresponding to a unique bracketing of n variables.

Can any sense be made of this? The answer is yes - one can show that the direct sum is
a monoidal product on C. Such categories are subject to a coherence theorem, which
essentially states that it does not matter how one places the brackets in a direct sum.

A detailed treatment of these issues is beyond the scope of this thesis, and the reader
is referred to [ML98] p.161-170]. From now on, all direct sums of the same objects
and morphisms are treated as equal, and it is assumed that no problems can arise due
to bracketing of direct summands.

3.2 Abelian Categories

Every morphism between two modules can be described uniquely by its kernel and
image. It is desirable to find a similar decomposition for additive categories. For this
to work, the concept of kernel and image must be redefined using morphisms.

[t turns out that, even with a proper account of these concepts, a morphism in additive
category does not necessarily have a kernel or an image. Additive categories that do
are called abelian categories.

Definition 3.18. Let C be a category with a null object and null morphism 0. A kernel
of an morphism f : A — B is a morphism k : K — A such that fk =0, and for every
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h:C — A such that hk = 0, there is a unique h’: C — K such that h = kh’.

Example 3.19. Suppose that f : A — B is a morphism of abelian group, and let
k : K — A be the inclusion of the preimage of identity.

Clearly, fk =0. If k' : K’ — A satisfies fk’ = 0, then the image of k’ is contained (as a
set) in the image of k.

Since inclusions are injective, each ¢ in the image of k has a unique preimage k~'(g),
such that k(k~!(g)) = g. Define h: K’ — K by

Then
(kh)(x) = k(k™! (K'(x))) = K'(x),

i.e kh =k’. Thus k is the kernel of f.

Definition 3.20. Let C be a category with a null object and null morphism 0. A cokernel
of an morphism f : A — B is an object C and morphism ¢ : C — C such that cf =0,
and for every h : B — D such that ch = 0, there is a unique ' : C — D such that h = h’c.

Example 3.21. Let f : V — W be a linear transformation, and let ¢ : V. — W/im(f) be
defined by ¢(v) = v +im(f). Then

i.e the composition cf is 0.

Moreover, if ¢’ from B to C’ satisfies ¢’f = 0, define h: W/im(f) — C’ by

h(v+im(f)) =c(v).
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To show that this is well defined, suppose that v and w lie in the same equivalence
class of the quotient W/im(f). Then there is some u in V such that f(u)=v - w, and

hence
¢(v) ' (w) = (v =w) = (f(u)) = 0

since ¢’f = 0 by assumption. Clearly ¢’ = hc, and so ¢ is the cokernel of f.

Remark. Kernels and cokernels are duals: the kernel of a morphism is the cokernel of
the dual morphism and vice versa.

Proposition 3.22. Kernels are monic and cokernels are epic.

Proof. Let k be a kernel of a morphism f and suppose that ¢ = kg, = kg,. By definition

fg =0, and the diagram.
\k\\

Fk=0
f

S A——>B

g

commutes. The uniqueness condition guarantees that ¢g; = g, and so k is monic.

K
&2

The proof that cokernels are epic is dual. O
Proposition 3.23. Kernels and cokernels are unique up to a unique isomorphism.

Proof. Let k and k’ be kernels of f. Then fk and fk’ are both 0, and so there are
morphisms h and h’ such that kh = k” and k’h’ = k. Consequently,

k'=kh=k'Wh and k=k'h =khh’
and since k" is monic one can cancel on both sides and find that h and b’ are isomor-
phisms. The proof for cokernels is dual. O
Since kernels and cokernels are unique, one speaks of the kernel and cokernel of a
morphism f : A — B, denoted ker(f) and cok(f) respectively.

One way of thinking about the kernel of f is as the largest subobject of the domain
that is mapped to zero by f. Dually, one can think of the cokernel as the smallest
quotient that maps f to zero.

Definition 3.24. An additive category is abelian if
(i) every morphism in the category has a kernel and cokernel.

(ii) every monomorphism is a kernel and every epimorphism is a cokernel.
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Since direct sums are self-dual, and kernels and monomorphisms are dual to cokernels
and epimorphisms, respectively, the dual of an abelian category is also abelian. Hence,
every theorem for general abelian categories has a dual theorem, obtained by reversing
the morphisms and substituting monic for epic and kernel for cokernel, and vice
versa.

Proposition 3.25. Let f be a morphism in an abelian category. Then
(i) ker(f)=0if and only if f is monic.
(ii) if g is a monomorphism, then ker(gf) = ker(f).
(iii) cok(f)=0ifand only if f is epic.
(iv) if f is epic and g is a morphism, then cok(gf) = cok(g).

Proof. (i) Suppose f satisfy ker(f) = 0 and that two morphisms ¢ and # satisfy
fg=fh.Letl=g—h. Then

fl=f(g-h=fg-fh=0.
Thus, there is a morphism #’ such that g—h =h’0=0. Thus g =4, so f is monic.

Conversely, suppose that f is monic. Let k satisfy fk =0 = f0. Since f is monic,
cancellation yields k = 0, so ker(f) = 0.

(ii) Suppose that g is monic. Then
¢fk=0ogfk=g¢g0 fk=0.
for all morphisms k, so ker(gf) = ker(f).
The proofs for (iii) and (iv) are dual. O

In abelian categories, kernel and cokernels induces maps between the class of subob-
jects and the class of quotients of an object.

Proposition 3.26. Let A be an object in an abelian category.
(i) If i and j in Mono(A) are equivalent, so are cok(i) and cok(j).
(ii) If p and g in Epi(A) are equivalent, so are ker(p) and ker(q).
Proof. 1f i and j are equivalent there is an isomorphism f such that i = jf, and hence
cok(i) = cok(jf) = cok(j)

by Proposition[2.7] The second point is done similarly. O

Define ker : Q4 — Sy and cok : S, — Qy4, by mapping p and i to ker(p) and cok(7)
respectively.
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Proposition 3.27. The functions ker and cok are mutually inverse and order reversing.

Proof. Let i and j be subobjects of A, such that i < j via a morphism f. Let ¢; be the
cokernel of i and ¢, be the cokernel of j. Then

Czi = Czjf = O,
so there is a morphism g such that gc; = ¢1. In other words, cok(j) < cok(7). That ker
is order reversing is proved similarly.

Let i be a monomorphism in Mono(A). Then it is the kernel of some map f. Let ¢ be
the cokernel of i and k the kernel of c.

By assumption fi = 0, and hence there is a map g such that gc = f. Also, ¢i =0, so
there is a map h; such that kh; =i. Finally,

fk=gck=0,

so there is a map h, such that ih, = k.

\/

hl

/\

Thus 7 and k are equivalent and represent the same subobject, and thus
i =k =ker(c) =ker(cok(i))

as subobjects. The other direction is proved is similarly. O

The above proposition generalize Example - the subobject and quotient structure
of an objects are mirror images of each other.

Proposition 3.28. A morphism in an abelian category is an isomorphism if and only if it
is monic and epic.

Proof. Let f be a morphism that is both monic and epic.

Since f is monic, the kernel of f is zero. Hence, a cokernel of ker(f) is the identity.
However, Proposition assures us that f is a cokernel of ker(f). Hence, there is a
morphism g such that gf is the identity.

The exact same reasoning gives that the kernel of the cokernel of f is the identity, and
that there exists a morphism h such that f# is the identity.

So f is both right and left invertible, and hence an isomorphism.

The other direction is (vi) in Proposition[2.7} O
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Cokernels can be extended to subobjects.

Proposition 3.29. Let i, i’, j and j’ be monomorphisms, such that i ~i’ and j ~ j’ via
isomorphisms ¢; and @;, respectively. Suppose that the subobject represented by i and i’ is
contained in the subobject represented by j and j’ via monomorphisms f and f’.

Then the codomains of cok(f) and cok(f’) are isomorphic.

Proof. Consider the diagram

The assumptions that i ~i” and j ~ j” imply that ¢; and ¢@; are isomorphisms and the
upper and lower triangle commute. The assumption that i is contained in j means
that f and f’ are monomorphisms and that the left and right triangle commute.

Hence,
i=i'pi=j'f'pi
and
i=jf=j'pf
Equating these expressions and cancelling j" yields f'q; = ¢;f. Let c and ¢’ be the
cokernels of f and f’ respectively. Then

pif =cf'pi=0p; =0
and
cpif'=cfpit =07 =0.

Hence there are morphisms & and 4’ so that the diagram

A,-—f>A-—C>C

]

W

Al A

f! c

commutes. Thus,

We'gj=c - h'he=c - h'h=idc
hcqoj_1 =c hh'c’ =c¢’ hh’ =idcr.
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O

Definition 3.30. Let i and j be two subobjects with domains A; and A}, such that i is
contained in j via a morphism f. The quotient of j by i, denoted A;/A;, is the codomain
of the cokernel of f.

In abelian categories, all morphisms can be decomposed into monomorphisms and
epimorphisms.

Proposition 3.31. Let f be a morphism in an abelian category. Then f = me for an
epimorphism e and monomorphism m. Moreover, m is the kernel of the cokernel of f and e
is the cokernel of the kernel of f.

f
P
K A D B C
k e m c

Proof. Let f be a morphism in an abelian category. Let c be the cokernel of f and let
m to be the kernel of c.

By definition, cf = 0, and since m is the kernel of ¢ there is a morphism e such that
f = me. By Proposition e is epic and m is monic. Moreover,

e = cok(ker(e)) = cok(ker(me)) = cok(ker(f))

since m is monic. O

The canonical decomposition transfers to morphisms.

Proposition 3.32. Consider the commutative square
A —f> B
‘I
A/ ﬁ“ BI
f

in an abelian category, and let f = me and f’ = m’e’ be a canonical decomposition. Then
there is a unique @ such that diagram

commutes.
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Proof. Let f, f’, g and h be given as above. By Proposition there are decomposi-
tions f = me and f’ = m’e’. Let u be the kernel of f.

By definition hfu = 0, and thus m’e’gu = 0. Since m is monic, ¢’gu = 0, and since e is
the cokernel of u, there is a unique morphism ¢ such that ¢’g = ge.

f
— T
K——=A D B
e : m
gl 3 jh
Y
A/ o D/ ﬁ“ B/
e m
Moreover,
m’'pe=m'e’g = hme,
and since e is epic, m’p = hm. O

Proposition 3.33. The canonical decomposition of a morphism in an abelian category is
unique up to a unique isomorphism.

Proof. Apply Proposition to the square

f
N

- s> D—>
e m

. B
<P lidB
;Y ,
B

e m
_c.p-".

~_
f

E-.
<

to find the isomorphism ¢. O

Definition 3.34. Let f be a morphism in an abelian category, and f = me its canonical
decomposition. The image of f, denoted im(f) is the monomorphism m. The coimage
of f, denoted coim(f), is the epimorphism e.

Since the coimage and image of a morphism are unique up to a unique isomorphism,
they define a quotient and a subobject of A and B respectively.

Definition 3.35. A span into an object A in a category is a pair of morphisms with
common codomain A. A cospan from an object B is a pair of morphisms with common
domain B.
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Definition 3.36. Let f and g be a span into A. A pullback of f and g is a cospan f’
and g’ such that gf’ = f¢’, with the property that if f” and g” is a cospan such that
¢f” = fg”, then there is a unique morphism h such that f” = f’h and g”" = ¢’h.

Definition 3.37. Let h and k be a cospan from A. A pushout of h and k is a span i’
and k’ such that k’h = h’k, with the property that if /" and k” is a span that satisfy
hk” = kh”, then there is a unique morphism p such that ph’ = h” and pk’ = k”.

Pullbacks and pushout are dual to each other, as are span and cospans.

Proposition 3.38. Pullbacks and pushouts are unique up to a unique isomorphism.

Proof. Suppose that there are two pullbacks of the same span. Then there are unique
maps h and 4’ such that the diagram

TN
N

commutes. Hence f” = f’hh’ and ¢’ = ghh’, and the diagram

, B
PLP A

N A
XC
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commutes. If one replaces h’h by idp, the diagram still commutes and thus the
uniqueness criterion implies that h’h = idp. Similarly, hh’ = idp:, and so h is an
isomorphism. O

Pullbacks and pushouts can be composed.

Proposition 3.39. Suppose that the diagram

f g

——C ——

A
Ml u/
B

— D —

f g

<~
=,

]

commute. Then
(i) if the two inner squares are pullback/pushouts, then so is the outer square.

(ii) if the inner left-hand square is a pushout, the outer square is a pushout if and only if
the inner right-hand square is a pushout.

(iii) if the inner right-hand square is a pullback, the outer square is a pullback if and only
if the inner left-hand square is a pullback.

Proof. (i) Suppose that the two inner square are pushouts. Suppose that h and 1’
satisfies h'u = hgf.

Since the left-hand square is a pushout, there is a unique morphism ¢ so that
@f’ =h" and @u’ = hg. Since the right-hand square is a pushout as well, there is
a unique ¥ so that ¢’ = ¢ and Yu” = h.

But then

P f =pf =1
Since ¢ is unique, this mean that the outer square is a pushout. The proof for
pullbacks is dual.

(ii) Suppose that the inner left-hand and the outer squares are pushouts. Let  and
h’ be such that h’u’ = hg. Then

hgf =hu'f=hf"u
and since the outer square is a pushout, there is a unique ¢ so that pg’f’ =h'f’

and @u” = h. Then
@8 flu=hf'u=hgf

and

(Pu//g — hg — (pg/ul — h/ul.
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So there is a pushout

C hg
f u’
h/
A -1
4
B pg'f’

and uniqueness implies that ¢ g’ = h, so the right-hand square is a pushout. The
other implication is proved in (i).

(ili) Dual to (ii).
O

Proposition 3.40. [n an abelian category, every span have a pullback and every cospan
have a pushout.

Proof. Let f and g be a span with domains B and C and common codomain A. Consider
the direct sum system

i q
— —
B BeC C
P j

and let h = fp—gq. Let k be the kernel of h.
Since k is the kernel of A,

0=hk=(fp-gqk=fpk-gqk,

i.e fpk = ggk. Moreover, if ¢’ and f’ are such that fg'=gf’, let i’ =ig’—jf’. Then
W' =(fp-gallig’=jf')=fg' -gf =0,

and since k is the kernel of 4 there is a unique map h” such that kh” =ig’—jf’.

, B
p i
Mgk cl2a

NN

This yields pkh” = g’ and gkh” = g’, which shows that pk and gk is the pullback of f
and g.



For the pushout, suppose that f and g has common domain A and codomains B and C
respectively. Let h =if — jg and ¢ be the cokernel of #. One can show, using a similar
argument as above, that ci and cj is the pushout of f and g. O
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4 Structure Theory of Abelian
Categories

The topic of chapter is the structure theory of abelian categories, a preparation for the
proofs of the Jordan-Hélder and Krull-Schmidt-Remak theorem:s.

4.1 Exact Sequences

Exact sequences are the bread and butter of abelian categories.

Definition 4.1. A sequence of morphisms

d d d d_
<Ay 2 A 1 Ao 0 A 1

in an abelian category is exact at A, if im(d,,) = ker(d,_;). A sequence is exact if it is
exact at every object in the sequence.

Many properties of morphisms are characterized via exact sequences.

Proposition 4.2. Let

0 A B——=C 0

be a sequence of morphisms. Then
(i) 0 > A — Bis exact if and only if f is monic.
(ii) 0 > A — B — Cisexact ifand only if f is the kernel of g.
(iii) A — B — 0 is exact if and only if f is epic.
(iv) A— B— C — 0isexact if and only if g is the cokernel of f.
(v) 0 > A — B— 0isexactif and only if f is an isomorphism.

(vi) 0 > A — B— C— 0isexact ifand only if f is the kernel of g and g is the cokernel
of f.
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Observe that if a sequence of morphisms is exact, the dual of that sequence is also
exact.

Definition 4.3. An exact sequence of the form

0 f 4 0

0 A B C

is called a short exact sequence.
The simplest examples of short exact sequences are of the form

0—>A—">A@BL >B— >0

where p and 7 are the projection and injection maps. They are characterized thus.

Proposition 4.4 (Splitting lemma). For all exact sequences

f g

0 A B C 0

the following statements are equivalent.

(i) The middle object B is a direct sum of A and C, such that f is an injection morphism
and g a projection morphism.

(ii) There is a morphism | (called a left split) from B to A such that | f =id4.
(iii) There is a morphism r (called a right split) from C to B such that gr =id¢
Proof. (i) In a direct sum system, injection morphisms and projection morphism is
are right/left splits respectively.

(ii) Suppose that an exact sequence

0 Al.op % ¢ 0

has a right split » such that gr =id¢. Let p =idg—rg. By definition,
gp=8-88=8-8=0.
Since f is the kernel of g, there is a morphism [, such that f/ =p,i.e fl =idg-rg.

Thus fl+rg =idp. Since gr = id¢ by assumption, it suffices to prove that I f =id4
and /7 = 0 to show that B is the direct sum of A and C. Yet

flf =(dpg-rg)f =f-rgf=f-0=f,
and since f is monic, [ f =id,. Also,
flr=(idg-rg)r=r—rgr=r—r=0,

and since f is monic /7 = 0. This shows that /, r, f and g form a direct sum
system for A@ C.
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(iii) Dual to (ii).

Remark. The splitting lemma implies that if

At &

A

is such that h = gf is an automorphism, then A is a direct summand of A’. For if c is
the cokernel of f, the sequence

f c

0 A A’ B 0

is exact, and h_lg, is a left split of f,i.e A”~ A®B.

Pullbacks and pushouts in abelian categories can be described in terms of exact
sequences.

Proposition 4.5. Consider the diagram

A f
g’l
B

L .C
|
D

_

and the direct sum system

Lett=jf'+ig¢" ands= fp—gq. Then
(i) the square commutes if and only if st = 0.

(i) the square is a pullback if and only if

0—=A—'>BepC—=D

is exact, i.e t is the kernel of s.

(iii) the square is a pushout if and only if

is exact, i.e s is the cokernel of t.

Proof. Note that pt = ¢’ and gt = f’, and si = f and sj = —g.
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(i) The square is commutative if and only if
0=fg —¢'f =sipt+sjqt =s(ip+jg)t = st.
(ii) Assume that the square is a pullback. Suppose that k is such that sk = 0. Then
0=sk=s(ip+jq)k =sipk+sjqk = fpk — gqk,

i.e fpk = ggk. Since the square is a pullback, there is a unique morphism # such
that f’h = gk and ¢’h = pk. Hence qth = gk and pth = pk, and so

th={(jg+ip)th=jqth+ipth=jgk+ipk = (jq+ip)k =k.

This shows that t is a kernel of s, so the sequence is exact.

Conversely, suppose that ¢t is the kernel of s and that there are morphism f” and
¢” such that gf” = fg”. Define r =ig” + jf”. Then pr=g¢”, qr = f”, and

sr=(fp—gq)ig”+jf") = fpig"-gqjf" = f¢"-¢f" =0.
Since t is the kernel of s, there is a unique m : U — A such that tm =r, so

ptm=prand gtm=qr,i.e ¢'m=g¢"” and f'm = f”. This shows that the square is
a pullback.

(iii) Dual to the proof above.

Proposition 4.6. Consider the pullback

P C
1
B A.

in an abelian category. If f is monic, so is f’, and if f is epic, so is f’.

f/

>

_

f

Proof. Suppose that f is monic. Let h and i’ be morphisms from P’ to P, such that
f’h=f'h. Then gf'h = gf’h’, and since the diagram commutes fg’h = fg’h’. Since
f is monic, ¢’k = ¢g’h’. Since the diagram is a pullback, the uniqueness property
guarantees that h = ',

Suppose that f is epic and consider the direct sum system
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In the proof of Proposition [3.40} it was shown that if k is the kernel of h = fp —gg,
then f’ =gk and g’ = pk.

Suppose that uh = 0 for some morphism u. Then
O=uh=uhi=u(fp-gq)i=ufpi=uf
and since f is epic, u = 0. Thus, h is epic as well. Thus, the sequence

0 p—k Bect s 0

is exact, i.e h is the cokernel of k. Suppose that uf’ = 0 for some morphism u. Then
O=uf'=ugqgk
and hence there is morphism u’ such that ug = u’h. Thus
O=ugi=u'hi=u'(fp-gq)i=u'fpi=u'f.

Since f is epic, u’ is 0, and
ug=u'h=0.

Since g is epic u = 0, which shows that f” is epic. O
The nine lemma is a generalization of the isomorphism theorems. The following proof
is due to Popescu [Pop73| and [Fre64.

Proposition 4.7. Consider the commutative diagram

A 8

AN

D E
g h

such that the bottom row is exact. The square is a pullback if and only if the sequence

h 7
0 Ao Mk

is exact, i.e g is the kernel of hf.

Proof. Suppose that the square is a pullback. Since the diagram is commutative and
the bottom row is exact,
hf'g=hg'f =0.

Let s be a morphism such that hf’s = 0. Since the bottom row is exact, ¢’ is the kernel
of h. Since hf’s = 0 by assumption, there is a unique morphism ¢ so that f’s = ¢’t.
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Moreover, since the square is a pullback, there is a unique r so that gr =s. Thus, g is
the kernel of hf”.

Conversely, suppose that ¢ is the kernel of i f”.

Let s and ¢ be morphisms such that f’s = ¢’t. Since the diagram is commutative,
hf's=hg't=0,

and since g is the kernel of hf’, there is a unique morphism r so that s = gr.

The diagram is commutative, so
§fr=fgr=f's=g¢"t

and since ¢’ is monic, cancellation yields t = fr. This shows that the square is a
pullback. 0

Proposition 4.8. Consider the commutative diagram

such that the right square is a pullback and the rows are exact. Then s is monic. If f’ is epic
then s is an isomorphism.

Proof. Let r be such that sr = 0. Let u and v be the pullback of p and r.

Since the right square is a pullback and the bottom row is exact, Proposition
implies that g is the kernel of p’f’. Moreover,

p'f'v=spv=sru=0.
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Hence, there is a map t so that gt =v.

U Y>K
‘v r
5 v
A2 c P E 0
0 B——=D——>F 0
&g p

Thus,
ru=pv=pgt=0

since p is the cokernel of g. Moreover, the morphism p is epic, and thus u is epic, so
r =0, which show that s is monic.

If f’is epic, the composition p’f’ = sp is epic, and so s is epic. Since s is always monic,
s is an isomorphism. O

Proposition 4.9. Consider the commutative diagram

0 0 0
0 A—lop_k (l;
f 5 f”l
0 B—"oF K. p
g I
0—>C-oF

with exact columns and exact middle row. Then the upper row is exact if and only if the
bottom row is exact (i.e h”’ is monic).

Proof. Suppose that the upper row is exact. The right column is exact, the diagram
commutes and f” is monic, so

h = ker(k) = ker(f"k) = ker(f'k).
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Hence, Proposition [4.7]implies that the square

h

A——=D
fj l o
B——=E
"
is a pullback. Thus, the diagram
0 Al g2 ¢ 0
lh lh/ lh,,
0 D——sE——F
f g

has exact rows, with the right square being a pullback diagram. Thus #” is monic and
the bottom row is exact.

Conversely, suppose that the bottom row is exact, i.e #” is monic. Then,
f =ker(g) =ker(h”g) =ker(g'h’),
so the sequence

/h/
0 At gk

is exact. Thus, the top right square is a pullback. Let r be a morphism such that kr = 0.
Then
kK'f'r=f"kr=0,

and since the middle row is exact, i’ is the kernel of k’, and and there is a unique
morphism t such that h’t = f’t.

Since the top right square is a pullback, there is a unique morphism s so that ks =7,
which show that 4 is the kernel of k and the top row is exact. O
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Proposition 4.10 (Nine lemma). Consider the commutative diagram

0 0 0
0 A D G 0
0 B E H 0
0 C F I 0
0 0 0

with exact columns and exact middle row. Then the top row is exact if and only if the bottom
row is exact.

Proof. Direct application of Proposition[4.9]and its dual yields the conclusion. [

The strength of the nine lemma is evident in ease of which it proves the second
isomorphism theorem.

Proposition 4.11 (Second isomorphism theorem). Suppose that i and j represent subob-
jects of A, so that i contains j via a morphism f : A; — A;. Then exists there a commutative
diagram

0 A—1 oA S AA— 50
I
0 ——=Ai/A; T—A/Aj — (A/A))/(Ai/Aj) —=0

such that the rows are exact, u” is an isomorphism, and u and u’ are the cokernels of f and
j respectively. Moreover, the morphisms k and p are unique with this property.

Proof. Let u = cok(f), u’ = cok(j) and ¢ = cok(i).

By assumption, j =if. Hence
uwif=uj=0,

and since u is the cokernel of f, there is a unique morphism k so that u’i = ku. Let p
be the cokernel of k. Then u’i = ku implies that

pu'i = pku =0,
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and hence there is a unique morphism u” that satisfies u”’p = pu’. Thus, the diagram

0 0 0
f u
0 A A; Ai/A; 0
id i k
0—>A; ——>A—" > A/ 0
j
c P
0 0 AJA; —= (AIAD/(AI/A}) —= 0

is commutative. By assumption, the columns and the middle and upper rows are exact.
Hence the lowest is exact as well, and ©” is an isomorphism. O

4.2 The Subobject Lattice

Subobjects and quotients were defined for general categories in Section [2.2] It is time
to return to topic in the case of abelian categories. But first, some order theory is
required.

Until further notice, < refers to an arbitrary partial order on some underlying set.

Definition 4.12. Let x and p be objects in a partial order.

A greatest lower bound of x and p is an element z such that z < x and z <y, with the
property that if w satisfy w < x and w <y, then w < z.

Dually, a lowest upper bound of x and v is an element z so that x < z and y < z, with the
property that if w satisfy x <w and y < w, then z< w.

Definition 4.13. A lattice is a partial order in which every pair of elements have a
greatest lower bound and lowest upper bound.

The greatest lower bound and lowest upper bound of two elements x and v are unique
if they exist, and are denoted x Ay and x V v, respectively. The symbols A and V are
known as meet and join, respectively.

Example 4.14. The power set of a set is a lattice, where the meet is intersection and
the join is union.
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Lattices have been studied extensively by Birkhoff in [Bir67]. In the introduction,
proofs can be found of the following three propositions.

Proposition 4.15. In any lattice, the meet and join satisfies
(i) xAx=xand xVx=x.

(ii) xAYV=vAxand xVy=7pVx.

(iii) xAN(yAz)=(xAY)AzandxV(yVz)=(xVYy)Vz

(lv) xA(xVY)=xV(xAy)=x
for all lattice elements x,y and z. Moreover, x <y is equivalent to each of the conditions

XAy=x and xVy=7.

Proposition 4.16. For all elements x,y and z in a lattice, if y < z, then

XAV<XxAz and xVy<xVz

Proposition 4.17 (Modular inequality). For all elements x,v and z in a lattice, if x < z,
then
XV(@WAzZ)S(XVD)Az

Remark. In alattice, the meet and the join can be seen as binary operations. Indeed,
lattices can be characterized as a set with two binary operations that satisfy (i)-(iv) of

Proposition [Bir67) p.10]
Definition 4.18. A lattice is modular if x <z implies that
XV(@AzZ)=(xVY)Az

for all lattice elements x, y and z.

The term modular lattice comes from module theory: the set of submodules of a
module is a modular lattice.

Definition 4.19. An element T in a lattice is called a top if x < T for every element x
in the lattice. An element 1 is a bot if | < x for every x in the lattice. A lattice with a
top and bot is called bounded.

Example 4.20. The lattice of subsets of a set S has both a top and bot, given by T =S
and 1 =0.

The top and bot are unique if they exist. Every element x in such lattices satisfy
TAX=X, TVx=T,LVx=xand LAx=1.

Definition 4.21. A complement of an element x in a bounded lattice is an element ¢
suchthatxAc=1landxVc=T.
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Example 4.22. In the lattice of subsets of a set S, every subset X has a unique comple-
ment given by S\ X.

Example 4.23. Complements are in general not unique. In the bounded lattice

T

Ve \T
\/

both v and z are complements of x.

Complements provide a neat characterization of modular lattices using intervals.

Definition 4.24. Let x and p be objects in a lattice such that x <y. The interval from x
to v, denoted [x,v], is the set of objects z such that x <z and z < yp.

Note that intervals are always bounded lattices, and so one can speak of a complement
in an interval.

Proposition 4.25. A lattice is modular if and only if every interval I has the property that
if an element c in I has two complements a and b such that a < b, then a = b.

Proof. Suppose that the lattice is modular and that an object ¢ has two complements a
and b, such that a < b. Then

a=aV.Ll=aV(cAb)=(@Vc)Ab=TAb=b

via modularity.

Conversely, suppose that an object ¢ has the property that all its comparable comple-
ments are equal. Leta; =aV (cAb)anda, =(aVc)Ab.

By the modular inequality, a; < a,. Then
agAc=((cAb)va)Ac=(cAb)V(aAc)=cAb
since a <b. Also, a; <b,soa; Ac<bAc,and so a; Ac=cAb. Furthermore,

ayAc=((avVe)Ab)Ac=(aVc)A(bAc)=bAc=cAb.
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On the other hand,
aaVe=((ave)Ab)ve<(avVe)A(bVe)=aVe
and since a < a,, we have a, Vc<aVc, whence aVc=a, Vc. Finally,
agVec=aV(cAb)Vc=(cAb)V(aVc)=aVe.

This shows that a; and a, are complements of ¢ in the interval [b A c,a V c], and so by
assumption they are equal, i.e

av(cAb)=(aVc)Ab.

From now on, < refers to the containment relation on subobjects and quotients.

Proposition 4.26. Let A be an object of an abelian category. Then the class of subobjects of
A, partially ordered by containment, is a lattice.

Proof. If i and j are subobjects of A, they form a span. Let i’ and j’ be the pullback of
this span.

Let

k=ji=1j.
By Proposition the morphisms i’ and j’ are monic, and hence k is. Thus, k
represents a subobject of A, which is contained in 7 and j.

Suppose that k” is an object that is contained in both i and j. Then there are morphisms
i” and j” so that
k/:jz'//: l']'//

and since the square is a pullback, there exists a unique morphism & so that i” = hi’
and j” = hj”. Thus, k’ is contained in k, which show that k is the greatest lower bound
of i and j.

Moreover, the morphisms i’ and j’ forms a cospan, which has a pushout i” and j”

Az‘/\A/']—>Ai
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The dual of Proposition 4.6 ensures that i” and j” are monic. Moreover, the definition
of the pullback, yields ii” = jj’, and hence there is unique morphism p such that pi”’ =i
and pj” =j. Thus, p is a subobject of A that contains both i and j.

Suppose that s is a subobject which contains i and j, i.e there are morphisms f; and f,
such that i =sf; and j =sf,. Then

shi'=ii' =jj =sfof

and since s is monic, f;i’ = f,j’. Since the square is a pushout, there is a morphism h
such that fj = hi” and f, = hj”. Composing by s on the left yields

i=sf; =shi”
and
j=sh=shj”
By the uniqueness criterion of pushouts, sh = p, and thus p is a subobject of s. O

Henceforth, the class of subobjects of an object is refered to as the subobject lattice. The
meet of two subobjects is called the intersection, and the join is called their product.

Remark. By duality, the greatest lower bound of two quotients p and g of an object is
given by the pushout of those quotients, and by Proposition there are unique
subobjects i and j such that p = cok(i) and g = cok(j).

Moreover, since the map cok is bijective and order reversing, the cokernel of i V j is
the greatest lower bound of cok(i) and cok(j). This means that the pushout of p and g
is given by the cokernel of i v j, i.e

A—T s a/4,

I~

AJA; —— A/(A; V A)).
q

is a pushout.

Proposition 4.27. Suppose that i and j are subobjects of an object A. Then there exists a
commutative diagram

J P

0 —— A; AA; A Aj/A; NAj — 0

(.

0 Ai AZVAJ?-(AIVA])/AIﬁ-O

i

with exact rows such that u is an isomorphism.
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Proof. Consider the commutative diagram

0 0 0
OéAl/\A/' ! A] ! Aj/Ai/\AJéO
i’ ] k’

0 A ’ A—" /A, 0
p p’ ¢’

0 0

where 7, i, j and j” are defined as in Proposition and p, p’, g and g’ are the
cokernels of i/, j, j” and i respectively.

The morphism k exists and is unique, since
plii’=p'jj’=0

and p is the cokernel of i’, and that k’ exist is proved similarly. The morphism ¢’ is the
cokernel of k’/, and the morphism c exists and is unique, since

Clq/]':C/qu:O

and p’ is the cokernel of j. By definition, the columns and the two top rows are exact,
and so the bottom one is also exact. Then,

¢ = cok(k) = cok(kp)

since p is epic, and by the dual of Proposition[4.7)the bottom-right square is a pushout.
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Hence, C is isomorphic to A/(A; V Aj), and so the diagram

0 0 0
0—> A AA — = A — S A /A NA ——0
i ] k’
0 A; ’ A T A/A 0
p p’ ¢
0 ——= Ai/(Aj ANAj) ——= A/Aj —= A/(A;V Aj) —= 0
0 0
is commutative with exact rows. To finish the proof, let A=A; V A;. O

Morphisms between two objects can be extended to morphisms between the corre-
sponding subobject lattices.

Definition 4.28. Let morphism f : A — B be a morphism. The preimage f~'(i) of a
monomorphism 7 : B; = B is the monomorphism i’ in the pullback

The image of a monomorphism 7 into A is the image of fi.
Proposition 4.29. Let f : A — B be a morphism.
(i) If i and i’ are monomorphisms into A such that i <i’, then f(i) < f(i’).
(ii) If j and j’ are monomorphisms into B such that j < j’, then f=1(j) < f~1(j).

Proof. (i) Since i is contained in i’, there is a morphism ¢’ such that i = i’¢p. In
other words, the diagram
A
|
A ——

] £

fi
—

<@
Q.

47



commutes. By Proposition there is a commutative diagram

A —= im(fi) 2>

T

Aj ——im(fi") ——
e m

Hence f(i) is contained in f(i’).

(ii) Consider the pullback diagrams

f/ . : f// /

Since j is contained in j’, there is a morphism ¢ : B; — B} such that j = j/¢.

Also, jf"=ff~!(j),and so j'(pf") = f£7().

By the universal property of pullbacks, there is a unique morphism # so that
f’h=qf and f~1(j')h = f~1(j). Hence, f~!(j) is contained in f~1(j’).

O
Since i ~ j if and only if i < j and j < 7, any morphism f : A — B induce order

preserving maps
f(=):8S4—Sg and fl(=):S85— Sa.

Proposition 4.30. Let f : A — B be a morphism. Then
(i) any subobject i of A satisfies f~1(f(i)) < i.
(ii) any subobject j of B satisfies f(f~1(j)) < j.
(iii) the morphism f is monic if and only if f='(f(i)) = i for all subobjects i of A.
(iv) the morphism f is epic if and only if f(f~1(j)) = j for all subobjects j of B.
Proof. (i) Write fi as f(i)e, where f(i) is the image of f7 and e is the coimage of fi.
Then i’ = f~1(f(i)) is defined via the pullback diagram

’

A;—>Bk

i’l Lf(i)

A——B.
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(iii)

Since f(i)e = fi and the diagram is a pullback, there is a map h such that ih =i’
and f’h =e. Thus

i<i'=f7Hf().
The subobject j’ = f~!(j) is defined via the pullback

f/

A}—)B

j’l l]’

A——B.

The image of j” is defined as the image m of fj’. Let e be the coimage of f;’.
Then fj’ = me, and if k’ is the kernel of fj" =jf’, then

e = cok(ker(fj")) = cok(k).

Then
0=fik=jf'k

and since j is monic, f’k = 0. Thus, there is a morphism h such that f’ =

A} B;
N
] B]. ]
X
A—— 8B
f
and since e is epic, m = jh and

j<m=f(f"

Moreover,

Suppose that f is monic. Then fi is monic, and so f(i) = fi. The preimage i” of
i’ is given by the pullback

A
] I]
A——B



whence fi” = fif’. Since f is monic, i” =if’, and so i” <i. In conjuntion with
(i), one finds that f~'(f(i)) = i as subobjects.

For the converse, let k be the kernel of f. Then fk =0, and so f(k) = 0. Hence

Thus k=0, and f is monic.

(iv) If f is epic, the morphism f’ = he from (ii) is epic and hence h is. Since h is
always monic, / is an isomorphism and hence f(f~!(j)) = j as subobjects.

For the converse, note that f~!(B) = A for all morphisms f. Thus f(f~'(B)) =
im(f), and so f(f~!(k)) = k implies that im(f) = B, so f is epic.

O

The consequences of this is that
(i) if f is monic, then f(-) is injective and f~!(~) is surjective.
(ii) if f is epic, then f(~) is surjective and f~!(~) is injective.
(iii) if f is an isomorphism, f and f~! are lattice isomorphism.
Proposition 4.31. Let A be an object in an abelian category, and i a subobject of A. Then

there is a lattice isomorphism from Sy, to the interval [0,7], and a lattice isomorphism from
Saya, to [i, Al

Proof. The morphism i defines an injective map i(~) from Sy, to Sy, given by i(f) =if
for all subobjects f of A;. A subobject j lies in [0, 7] if and only if j is contained in i, if
and only if there is a monomorphism f such that

Hence, the image of i(~) is the interval [0,], and S4,; and [0, ] are lattice isomorphic.

For the other part, let c : A — A/A; be the cokernel of i. Then ¢~!(~) is a injective map
from Sy/4, to Su, since c is surjective.

To show that Sy, is lattice isomorphic to [i, A], it suffices to show that the image of

c~1(=)is [i,A], i.e that a subobject of A is the left hand side of a pullback of a subobject
of A/A; precisely when the subobject contains i.

Suppose that j is a subobject of A/A;. The subobject j* = c7!(j) is defined by the
pullback

A — 4



and since ic = 0 = jO, the universal property of pullbacks implies that there is a
morphism & such that j'h =1, i.e i <j =c1(j).

Conversely, suppose that j is a subobject of A such that i < j via a morphism f. Using
a similar argument as in the proof of Proposition one can construct an exact,
commutative diagram

0 0 0
f e
0 Aj A; Aj/A; 0
id j m
0 Aj—— A —5 A/A; 0
] C/ C//
0 A/A; —— A/A; 0
0 0

Since the diagram is exact and u is an isomorphism,
j =ker(c’) =ker(uc’) = ker(c”c),

i.e the sequence
j 7

0 A; A—— A/A;
is exact. By Proposition[4.7} the square
A —= Aj/A,
I
is a pullback, so j lies in the image of ¢! (-). O

The above proposition shows that any interval [7, j] in the subobject lattice of an object
is isomorphic to the subobject lattice of A;/A;. This is key to proving that the subobject
lattice of an object in an abelian category is modular.

But first, the time has come to return to complements.

Proposition 4.32. Suppose that i and j are subobjects of A such that iAj=0andiVj=A.
Then there are morphisms p and q so that i, j, p and q forms a direct sum system.



Proof. Consider the direct sum system

iy p2
P1 i

Let h=1ip+jp,. Theimage of his iV ] (see the proof of Proposition|(4.26). Calculations
yields hi; =i and hi; =j.

By assumption, i V j = A, and so } is epic.

Let k satisfy hk = 0. Then ip k + jp,k = 0, which imply that

ipik =—jp2k = j(=p2k).
Since i A j =0, the pullback of i and j is 0, and thus p1k = 0 and p,k = 0. Thus

i1prk=1ip2k =0,
and so
0=iiprk+ipok = (iypy +irp2)k =k.
Hence & is monic, and an isomorphism. Let p = p;h~! and g = poh~!. Then
ida=hh™ =i(prh™") + j(pah™") = ip +qp.
Moreover,
pz = plh_lhil = plil = idAl
and similarly gj = pyi; =id,,. Finally, ig =i;p, =0 and jp =i,p; =0,and so i, j, p
and g form a direct sum system. O

Proposition 4.33. Let i be a subobject of A. Suppose that j and j" are complements of i in
the subobject lattice, and j < j’. Then j =j’.

Proof. Suppose that i: A; — A has complements j: A; — A and j’: A;. — A, such that
j <j’ viaa monomorphism f : A; — A;- such that j'f = j. By Proposition there is
are direct sum systems

p i
L
A; AT A
~ S~——
] q
and
A
’ —
AJ. —_ A A;.
J q
Hence

jp+ip=ida=j'qg’ +ip’.



Substituting j'f for j multiplying from the left by ¢’ yields

q9'j'fa+q'ip=q7q +q'ip’
and so fg =¢’. Since ¢’ is epic, Proposition[2.7]ensures that f is epic, and hence f is
an isomorphism, i.e j = j" as subobjects. O
Proposition 4.34. The subobject lattice of an object A is modular.
Proof. Let i and j be subobjects of A and consider the interval [7,j] in Sy. Suppose
that k is a subobject in [, j] with complements ¢ and ¢’ such that ¢ < ¢’.

The interval [7, j] is lattice isomorphic to Saj/4;0 and since complements are preserved
under isomorphism, the complements ¢ and ¢’ are equal. Thus S4 is modular. O



5 Classification Theorems

The Jordan-Holder theorem asserts that if an object has a maximal chain of subobjects,
then all maximal chains of subobjects are equivalent. However, the theorem does not
assert that every object in an abelian category has such a chain, and in fact many do
not.

The Krull-Schmidt-Remak theorem has a similar problem. Fortunately, one can show
that if the Jordan-Holder theorem applies, then so does the Krull-Schmidt-Remak
theorem. At the end of the thesis, an example is given where the Krull-Schmidt-Remak
theorem applies in a context outside abelian categories.

5.1 The Jordan-Hé6lder Theorem

The Jordan-Holder theorem classifies object up to isomorphism, using maximal chain
of subobjects.

Definition 5.1. An nonzero object in an abelian category is simple if every subobject
of it is equivalent to either zero or the identity.

Proposition 5.2. Let i and j be two subobjects of an object A and suppose that i is contained
in j. Then, the following are equivalent.

(i) i1is properly contained in j.
(i1) Aj/A,- is nonzero.

(iii) SA;/Ai has at least two members.

Proof. 1f i and j are equivalent via a morphism f, then f is an isomorphism and
cok(f) =0, i.e Aj/A; = 0. Conversely, if cok(f) = 0, then f is epic. Since f always
monic, it is both monic and epic, and hence an isomorphism. Consequently, i and j
are equivalent.

The third equivalence follows from that [7, j] is isomorphic to the subobject lattice of
Aj/A;j, which has one member if and only if i and j are equal. O

Remark. An object is simple if and only if its subobject lattice contains exactly two
subobjects.



Proposition 5.3. Suppose that i and j are subobjects of an object in an abelian category
such that i is properly contained in j. Then there is a subobject k such that

i<k<j
if and only if A;/A; is not simple.
Proof. Let A be an object with subobjects 7 and j. Then A;/A; is not simple if and only

if there is a chain of subobjects
0< q < AJ/A,

Since the subobject lattice SA/‘/AI' is isomorphic to [i, j], this holds if and only if there is
a subobject k of A such that i <k <. O

Remark. It is clear that if the subobject i < j are such that A;/A; is simple, and
i<k < <k,<j

for subobjects kq, ..., k,, then k; is equal to precisely one 7 and j for all /. Moreover, if
k; = j for some [, then k;,1 =j.

Definition 5.4. A filtration of an object A in an abelian category is a sequence
0=i0§i1Sl'zﬁ"'fin_lﬁl'nZA

of subobjects of A. The quotients ij,/i; are called factors. A filtration is proper if every
containment relation is proper.

Remark. Clearly, a filtration is proper if and only if all factors are nonzero.
Definition 5.5. A refinement of a filtration
0:i0Si1 SizS"'Sinfl Sin:A-

is an filtration
O=jo<p1<p<<jp1<jm=A

such that iy is equal to a unique j; for all k.

Remark. In group theory, filtrations are called normal series, and Jordan-Hélder series
are called composition series.

Definition 5.6. A filtration
O=ip<ip<ip < <iy Sip = A
of an object A in an abelian category is maximal if
ij<k<ij=k=ijork=ij,

for all j. A maximal filtration that is proper is a Jordan-Holder series.



Proposition 5.7. A filtration is maximal if and only if all its factors are simple or zero and
Jordan-Holder if and only if every factor is simple.

Proof. Apply Proposition and Proposition|5.2|inductively. O

Proposition 5.8. The nonzero factors of a Jordan-Holder series are the same as those of
each of its refinements.

Proof. Let A be an object and

0=ip<i] <ip<---<iy,_<i,=A.
a Jordan-Holder series. Let

0=jo<j1<j2< < jp1 S jm=A

be a refinement of ix. For every k there is a number py so that iy = j,, . For each k,
consider the subsequence
Ik = ij < ijH =05 jpk+rl = ij+1 = ksl

This lies in the interval [iy, i1 ]. Since iy, /ik is simple, this interval contains only two
members. So either j, . =i or j, 4 =iry for all [, and so the quotient jp, 4141/jp, 41 15
either O or 73 /if. T

he latter case can only happen once, since the sequence is increasing, which shows
that a refinement of i, does not contain any new, nonzero factors. O

Definition 5.9. Two filtrations
0=ig<ih <---<ip, <A

and
O0=jo<j1 < <ju<A

with factors are equivalent if n = m and there is a bijection ¢ such that i, /i, and
Jo(k)+1/Jo (k) for all k.

Example 5.10. Let C,, denote the cyclic group on n elements. The filtrations
0=C; <Cr<Ce<Cyy

and
O:C1§C2SC4SC12

have factors C,, C, and Cj in different orders. Hence, they are equivalent.

Note that two filtrations can be equivalent, despite the subobjects in the filtration
being different.



The Jordan-Holder theorem states that in an abelian category, all Jordan-Holder series
are equivalent.

Proposition 5.11 (Zassenhaus’ lemma). Let i, i’, j and j’ be subobjects of A, such that
i"<iandj <j. Then

GAHVI AV

GANT ANV

as quotients of A.
Proof. Lets=iAjand t =i’V (i Aj’). Since j’ < j, the subobject i A j contains i A j’,
and hence (i A j) Vi’ contains (i A j'). Therefore,

sVE=(ANVE'VIENT)=((GA)VI)VEN]) =GNV =" V(iA]).

On the other hand, i A j” is contained in i A j, and
(RS =((FAT)VIVAGAD) = GATIVEAGAD) = ATV ADAG) = ATV A)
via the modular law. The third isomorphisms theorem yields

i"V(iANj) sVt s inNj
i'V(IN) ot sAt (i/\j’)v(i’/\j)'

Switching i for j and i’ for j” in the above argument, yields

JVGATD) JAT iN] "V (iAj)

PVGAT) TGNV GAD T GEAP)VEAG) VAT

O

Remark. Zassenhaus’ lemma is sometimes called butterfly lemma, due to the shape of
the diagram of subobjects involved:

ATV (Aj NA;j) V(A AA))

\/

Ai NA;

A/\A A/\A

/ \/ N,

AiNA; A NA;



Zassenhaus’ lemma gives a smooth proof of the following theorem.

Proposition 5.12 (Schreier’s refinement theorem). Any two filtrations of an object in an
abelian category have refinements that are equivalent to each other.

Proof. Let A be an object in an abelian category with filtrations
O=ip<ip <+ <ip g <ipy=A

and
Ozjo Sjlﬁ"'ﬁjn_l Sjn = A.

Every number 0 < a < nm—1 can be written uniquelyasa=ns+tfor0<s<m-1
and 0<t<n-1,and as a = mp +k for unique numbers 0 <p<n-land 0<k<m-1.
Moreover, the map

o:4{0,...,nm—-1} —>{0,...,nm—1}

defined by o(ns +t) = mt +s is bijective.

Define the filtrations
OZkO Skl S"'Sknm—l < Pnm =A

and
0=po<p1 <+ <Ppm-1 < Pum =4
by
knr+s =iV (ir+1 A ]s)
and

Pmser =Js V (js+1 Aip)
for0<s<n-land 0<r<m-1,and set k,,, = ppm = A.
Then, k,, =i, and p,,s = j; for all r and s. In particular, kg = 0 and pg = 0.

Moreover, i,,1 A j is contained in i,,4 for all s. Thus
ip=kpy Skpppp <00 < knr+(n—1) < kn(r+1) =lry
for all r. Similarly, js,1 A i, is contained in j,; for all r, and
Js = Pms S Pms+1 < S Pinse(m-1) < Pm(s+1) = Js1-
In other words, k., and p,,, are refinements of iy and jj.
Leti’=1i,,i=1i,41,j =jsand j=js. Theni’ <iand j’ <j. Moreover,
knres =1 VAT, Kupyser =1 V(iA])

and
Pms+r = ]',V (]/\ Z'/), Pms+r+1 Zj’V (]/\ i)



Zassenhaus’ lemma yields

Knrest1 _ i"V(iAj) _ J V(A _ Pmstr+1 _ Po(nr+s)

knr+s i’V(i/\]") j'V(j/\i') Pms+r po(nr+s)+1‘

Since o is a bijection, this shows that the refinements k,, s and p,,s,, are equivalent.
O

Proposition 5.13 (Jordan-Hoélder theorem). All Jordan-Holder series of an object are
equivalent.

Proof. By Schreier’s refinement theorem, all Jordan-Holder series have refinements
that are equivalent. These refinements have the same nonzero factors as the original
Jordan-Hdélder series, by Proposition and since they are all equivalent to each
other they all have the same nonzero factor.

Hence, all Jordan-Hélder series have the same nonzero factors, and since all factors of
a Jordan-Holder series are nonzero they are equivalent. O

Since all Jordan-Hoélder series are equivalent, they have the same length.

Definition 5.14. An object is of finite length if it has a Jordan-Holder series. The length
of an object of finite length is the number of objects in any of its Jordan-Hoélder series.

Example 5.15. A vector space over a field K is of finite length if and only if it is
isomorphic to K" for some 7, in which case it has length n. A Jordan-Holder series for
K" is given by

0<K<K?’<--<K"l<K"

Example 5.16. The Jordan-Holder theorem is a generalization of the fundamental
theorem of arithmetic.

Let C, denote the cyclic group on n elements. Then C, has finite length, since it is
finite, and abelian. Moreover, every subgroup of C, is cyclic, and if C,, is a subgroup
of C, then m divides n and the quotient C,/C,, is isomorphic to C,,,. Finally, C,, is
simple if and only if # is prime.

Consider a Jordan-Holder series

0=Cy, <Cy <---<C <C, =C,.

M1

The factors are simple cyclic groups of order ny/ny,1 = px, where py is prime. Iteration
yields n = pgpy -+~ pm—1- Hence, the factors of a Jordan-Hélder series of the cyclic group
C, correspond to a prime factorizations of #.

Since two cyclic groups are isomorphic if and only if they have the same order,
two Jordan-Hoélder series of C,, are equivalent if and only if they correspond to the
same prime factorization of n. Thus, the Jordan-Hélder theorem implies that prime
factorization of any natural number is unique up to permutation.



Remark. Not all objects in an abelian category have a Jordan-Hdélder series. Indeed,
any filtration
0=0Z<pp1Z<pyr2Z<--<pZ<Z

of Z has a proper refinement

0=0Z<2py \Z<py\Z<pprZ<--<p1Z<Z.

5.2 The Krull-Schmidt-Remak Theorem

The Krull-Schmidt-Remak theorem does not apply to all abelian categories, but only
those where the objects have a particular form. Here, it is assumed that they are
Artinian.

Definition 5.17. An object A in a category is Artinian if there is no infinite, descending
sequence of proper subobjects of A. A category is Artinian if each of its objects are
Artinian.

Remark. Most of the ideas in this section is from Atiyah [Ati56], who proved the
Krull-Schmidt-Remak theorem in slightly more general circumstances.

Example 5.18. A vector space is Artinian if and only if it is has finite dimension. The
group of integers is not Artinian.

Definition 5.19. An object in an additive category is decomposable if it is a direct sum
of nonzero subobjects of itself. Otherwise, it is called indecomposable.

Example 5.20. The only indecomposable vector spaces have dimension one.

All simple objects are indecomposable. In general, the reverse is not true. For example,
Z has many proper subobjects, but is indecomposable.

Every endomorphism generates chains of subobjects.
Proposition 5.21. Let f be an endomorphism of an object A in an abelian category. Then

ker(f") is contained in ker(f"*) and im(f™*") is contained in im(f") for all n.

Proof. Let k,, and k,; be the kernel of f" and f"*! respectively. Then
knfnJrl =k.f"f =0,

so there is a morphism h such that k,, = k,,, h. Hence ker(f") is contained in ker(f"*!).

For the second containment, consider the commuting square
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and let " =m,e, and ™! = m,, e, be the canonical decomposition of f" and f"*!.
By Proposition there is a morphism ¢ so that the diagram

A €n+1 il’l’l(fn+1) Mpyt1

A
fl @L lid
A?—im(f”)ﬁA

mpy

commutes. In particular, m,,; = m,p, so im(f"*!) is contained in im(f"). O

Proposition 5.22 (Fitting’s lemma). Suppose that A is an Artinian object and f is an
endomorphism on A. Then there is a positive integer n such that

A=im(f")@ker(f").

Proof. By Proposition any endomorphism on A gives rise to a sequence

e <im(f) < - <im(F2) < im(f)

of subobjects of A. The subobject morphisms m,, : im(f") — A are defined via the
canonical decomposition f" = mye,, and the containment morphisms i, are defined
by the diagram

A Cn+1 im(f””) Mpt1 A

R

from Proposition Similarly, the commutative square

fn

A——A
id f

A——A
fn+l

yields a decomposition

idt Pn+lL f
Cntl. n+1\Mn+1
A——=im(f"") —— A.

This gives the identities ¢,,1 = py, 1€, and m, 1 = m,i, 1. Applying these inductively
yields

_n
Mmpe,my, = f"'my
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and by repe
. . _ _ o
My(ine1 - 12nP2n"*Prr1) = ManPon Pl = f Mon-1P2n1" Pne1 =+ = [ 1My,
Equating the two expressions yields
My€pyMpy = Mplpi1 - 12nP2n" " Pn+l-
and since m,, is monic, one has
enMy = ing1 "'i2rzp2n"'pn+1'

Suppose that A is Artinian. Then for large enough #, all morphisms i, and p, are
isomorphisms, and hence 0, = ¢,,m,, is an isomorphism as well.

Hence, the morphism m,0,,! is a right split for the short exact sequence

kl’l n .
0 — ker(f") > A —2 im(f") — 0,
since
eamuo,t = 0,0, = idim(f)-
By the splitting lemma, A is isomorphic to ker(f")®im(f"). O

Definition 5.23. An endomorphism f in a preadditive category is nilpotent if f" =0
for some n.

Note that in abelian categories, f" = 0 if and only if ker(f") is the domain of f.
Proposition 5.24. Any endomorphism on an Artinian object which is indecomposable in

an abelian category is either nilpotent or an automorphism.

Proof. Let A be such an object and f an automorphism. By Fitting’s lemma, A =
im(f")@ker(f") for some n. Since A is indecomposable, either im(f") = 0 or ker(f") = 0.
In the first case, ker(f”) = A and f is nilpotent.

In the latter case, ker(f) = 0 for all positive integers i, since the kernels form an
ascending sequence of subobjects of A. Similarly, im(f') = A for all positive integers
i, since the images form a descending sequence of subobjects. Thus im(f) = A and
ker(f)=0, and f is an automorphism. O

Proposition 5.25. If f, ..., f, is a sequence of endomorphisms in an abelian category on
an Artinian object which is indecomposable and

>
i1

is an automorphism, then f; is an automorphism for some i.
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Proof. Induction on n. If n =2,
h+f=¢
for some automorphism g. Multiplying by ¢~! yields

g h+g ! fo=ida.

Since g is an automorphism, it suffices to show that either f/ = ¢! f; or f; =¢7!f, is
an automorphism.

By Fitting’s Lemma, f and f, are either automorphisms or nilpotent. Suppose that
both are nilpotent. Then there is some m such that f{" =0 and f,”" = 0.

If f/ + f) =id,, then f) =id~f/, and so
AR =fld=f)=fi- 1’2 =({d-f)f = f{.

Since f and f, commute, the binomial theorem can be applied.

2m
) ) . . . 2m 2m— )
(ﬁ+gﬁm:ng:mAcndA:Z:(kyfmkfk:o
k=0

Since A is nonzero, this contradicts Propositionand so either f/ or fJ is an auto-
morphism.

For the induction step, suppose that the statement holds for all sums of length p and

that
p+1 p

Y fi=fon+) f
i=1 i=1

is an automorphism. Then either f,,; or Z‘;le f; is an automorphism, and the induction
hypothesis gives the result. O

Proposition 5.26. Any object in an Artinian category can be written as a direct sum of
indecomposable subobjects.

Proof. An object is bad if it cannot be written as a direct sum of indecomposable
objects. The task is to show that if A is bad, it cannot be Artinian, by constructing
an infinite sequence Ay, Ay, A,, ..., of bad objects, such that Ay = A and A, is are
nontrivial direct summands of A,, for all n.

Suppose that A is bad, and let Ay = A. Assume that objects Ay, ..., A, have been
chosen so that every A; is bad, and A;,; is a nontrivial direct summand of A;.

Since Ap is bad, it is not indecomposable, and so there is a nontrivial direct sum

A,=BaC
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of A,. Suppose neither B nor C is bad. Write B and C as sums

of indecomposable objects. Then
Ap =B®B,®---&B,oC;®---0C,,

is the direct sum of indecomposable objects, which contradicts the assumption that
Ap was bad. So at least one of Band C is bad. Let A, be one of them. Then A, is
bad and a nontrivial direct summand of Ap, which completes the induction.

Proposition 5.27 (Krull-Schmidt-Remak). Let A be an object in an Artinian category,

with decompositions
n m
A=EP4a; and A=P4;

into indecomposable subobjects. Then n = m, and there is a permutation o such that
Aj = A(’j(].) forall j.

Proof. Suppose A has two decompositions

A:éA]- and A:éAl’«
=1 k=1

where A; and A} are indecomposable. Without loss of generality, n < m.

When n =1, the object A is indecomposable and the theorem holds. Suppose that the
theorem holds for some p > 2, and that

p+1

A=EPA; and A= éA;.
k=1

j=1
for some indecomposables, with m > p + 1.

Let i}, iy, p; and p; be the injection and projection morphisms defining the direct sums.
Define f; = pyi.piiy fors=1,...,m. Then

m

m
Zfs =p1 [Ziﬁpg]il =p1(ida)i; =idy, -
s=1 1

S=

By Proposition there is some f; which is an isomorphism. Decomposing f; gives
yields the diagram

Al ﬁ“ A; ﬁ Al
np1 IsPs
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and by the remark after Proposition Ay is a direct summand of A,. But A is
indecomposable, so A} and A] are isomorphic. Let

p+1 m
B=Ha; and B'= P 4
j=2 k=1,k#s

By definition
A~A ®@B~A,®B.

Let p, i, i’ and p’ denote the projection and injection morphisms corresponding to B
and B’, and ¢ the isomorphism from A; @ B to A; @ B’. If f = p’¢i from B to B, the
diagram

4

A @B ___ B

i
WL , jf—p’@i
p

Al®B =B
l~/

commutes. Moreover, f is an isomorphism with inverse ¢ = pgp~'i’, since
fg=p'pipp™'i' =idp

and
8f =pe™'i'p'pi=idp.

Thus, B and B’ are isomorphic, and the induction hypothesis applies. O

Remark. If an object has a Jordan-Holder series it must be Artinian, since no proper
sequence of subobjects of an object can be longer than a Jordan-Hélder series. Thus
the Krull-Schmidt-Remak theorem holds in all abelian categories of finite length.

The Krull-Schmidt-Remak theorem can be extended to other categories than abelian
categories of finite length. For example, let R be a commutative, Noetherian and
complete local ring, and A an R algebra which is finitely generated as a module over R.
Then the Krull-Schmidt-Remak theorem holds for the class of finitely generated left
A-modules.[Rei03] p.88]
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