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Abstract: In the spirit of our earlier paper [10] and Zhang and Wang [16], we introduce the matrix of multiplica-
tive g-Appell polynomials of order M € Z. This is the representation of the respective g-Appell polynomials in
ke-ke basis. Based on the fact that the g-Appell polynomials form a commutative ring [11], we prove that this
set constitutes a g-Lie group with two dual g-multiplications in the sense of [9]. A comparison with earlier
results on g-Pascal matrices gives factorizations according to [7], which are specialized to g-Bernoulli and
g-Euler polynomials. We also show that the corresponding g-Bernoulli and g-Euler matrices form g-Lie sub-
groups. In the limit g — 1 we obtain corresponding formulas for Appell polynomial matrices. We conclude by
presenting the commutative ring of generalized g-Pascal functional matrices, which operates on all functions
fecy.
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1 Introduction

In this paper we will introduce several new concepts, some of which were previosly known only in the g-
case from the articles of the author. By the logarithmic method for g-calculus, this transition will be almost
automatic, with the g-addition being replaced by ordinary addition. Some of the matrix formulas in this paper
were previosly published for Bernoulli polynomials in [16] and for Pascal matrices in [17]. In the article [9] g-
Lie matrix groups with two dual multiplications, and in [8] the concept multiplicative g-Appell polynomial
were introduced. Now the interesting situation occurs, that the formula [16, p. 1623] for Bernoulli polynomial
matrices, which are multiplicative Appell polynomial matrices, also holds for the latter ones. Thus we devote
Section 2 to Lie groups of Appell matrices and to the new morphism formula (18). But first we repeat the
summation matrix G, ;(x) and the difference matrix F,, ;(x) and all the other matrices from [15] in Section 1.

To prepare for the matrix factorizations of the g-Lie matrices in Section 4, we present the relevant g-Pascal
and g-unit matrices from [7] in Section 3. In Subsection 4.2 we first repeat the matrix forms of the g-Bernoulli
and g-Euler polynomials from [10] to prepare for the computation of their inverses and factorizations. The
main purpose of Section 4 is the introduction of the multiplicative g-Appell polynomial matrix and its func-
tional equation, a general so-called g-morphism. In Section 4.1 generalizations of factorizations of Bernoulli
matrices to g-Appell polynomial matrices are presented. Finally, in Section 5 the existence of a commutative
ring of generalized g-Pascal polynomial functional matrices is proved.

We start our presentation with a brief repetition of some of our matrices.
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Definition 1. Matrix elements will always be denoted (i, j). Here i denotes the row and j denotes the column.
The matrix elements range from O to n — 1. The matrices I, Sn, An, Dn, Sn(x) and Dn(x) are defined by

I, = diag(1,1,...,1) )
. 1, ifj<i,
Sn(i, j) = { i ] i )
0, ifj>i,
. [d ifj=1,
An(D, f) = - 3)
0, otherwise
Dn(i, i) = 1 forall i, (4)
Dn(i+1,i)=-1, fori=0,...,n-2 (5)
Dn(i,j) =0, ifj>iorj<i-1 (6)
C X, ifj <,
S0, f) = { nst @)
o, ifj > i,
Dn(x;i,i)=1,i=0,...,n-1, Dy(x;i+1,i)=-x, fori=0,...,n-2, ®

Dn(x;i,j) =0, whenj>iorj<i-1.

We note that D, is a special case of Dx(x), and Sy, is a special case of Sp(x).
The summation matrix G, (x) and its inverse, the difference matrix F,, ;(x), are defined by [15, p. 52,54]:

- I_ of S
Gn,k(x) = |: ?’;)k Sk(X) :| ] k = 3’ ey n’ GH,H(X) = Si‘l(x)a n> 2,
A ©)
Foxl0 = { "6" D, } ,k=3,...,n, Fon(x) =Dn(x),n > 2.
2 The Lie group of Appell matrices
We first define Appell polynomials and multiplicative Appell polynomials.
Definition 2. Let A denote the set of real sequences {uy};-, such that
o v
>l <o, (10)
v=0

for some convergence radius r > 0.

Definition 3. For f,(t) € R[[¢t]], let p, € A and let pf,") denote the Appell numbers of degree v and order n € Z
with the following generating function

Ful =3 ol ()
v=0

v
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DE GRUYTER On the g-Lie group of g-Appell matrices = 95

Definition 4. For every formal power series fx(t) = h(t)", let py¢,, € Aandlet p(") denote the multiplicative

Appell numbers of degree v and order n € Z with the following generating function

=S

no" =3 L, (12

v=0

Definition 5. For every formal power series f(t) = h(t)" given by (12), the multiplicative Appell polynomials
(n)

or py¥ (x) polynomials of degree v and order n € Z have the following generating function
fa(t)e* = Z o £ pi ). 13)
v=0

The proof of the following formula is relegated to (43).

Theorem 2.1. Assume that M and K are the x-order and y-order, respectively.

PGy =37 (k) &IPS ). (14)

k=0

Definition 6. We will use the following vector forms for the Appell polynomials and numbers:

Ma(x) = (po(0), p1(X), ..., Pna (), (15)

Definition 7. The multiplicative Appell polynomial matrix of order M € Z is defined by
Py 00, ) = (})pé”,’)(x), O<ijen-1. (17)
We refer to (56) for the proof of the next theorem.

Theorem 2.2. In the following formula we assume that M and K are the x-order and y-order, respectively.

M (x +y) = BM0pP(y). (18)

Theorem 2.3. The multiplicative Appell polynomial matrzces (M, () with elements p(M) (x) is an Abelian ma-
trix Lie group with multiplication given by (18) and inverse p,, M (_y).

Proof. The set M is closed under the operation () by (18). The group element p;, M) (_y) is inverse to p(M) (x) by
the subtraction of real numbers. The unit element is the unit matrix I,. The associativity and commutativity
follow by (18). O

3 The g-Pascal matrix and the g-unit matrices

Definition 8. The g-Pascal matrix Py, 4(x) [7] is given by the familiar expression
Pr,q(i, D) = (;) X7 iz]. (19)
q

The following special case is often used.

Brought to you by | Uppsala University Library
Authenticated
Download Date | 7/24/18 11:58 AM



96 —— Thomas Ernst

Definition 9.
Pn,q = Pn,q(1).

We now recall some formulas from [7].

Definition 10. The matrices P, j 4(x), Py 4 * (x) and P, ;. ; * (x) are defined by

I_ oT
Prig() = [ nok P q(¥) ] ’

Pk,q * (X; 19]) = (;) (qX)i_j, 19] = 0) ceey k- 1y
q

Lk o

Pn,k,q *(x) = [ 0 Prg* (x)

:|, k=3,...,n, Pn,n,q*(X)EPn’q*(X).

Let the two matrices Ij 4(x), and its inverse, E; 4(x), be given by:
L 06i,)=1,i=0,...,k-1, L ;06i+1,)=x(g"" - 1), i=0...,k-1,
Ix,q(x; 1, j) = O for other i, j.

Erg0G1,) = (i + 1;q)ix7, i 2], Ex 4(x:1, j) = O for other i, .

Similarly, let the two matrices I, ; ,(x), and its inverse, E, ; 4(x), be given by:

S L oT
Lk g0 = [ n-k

, 1 = In.
0 Ik,q(x) :| n,n,q(X) n

Ix oOF S
En,k,q(x) = 0 Ek q(x) . En,n,q(x) = In.

DE GRUYTER

(20)

(21)

(22)

(23)

(24)

(25)

(26)

We call I, x 4(x) the g-unit matrix function. We will use a slightly g-deformed version of the D- and F-matrices:

Dig*(6i,i)=1,i=0,...,k-1, Dy, *(i+1,i) =-xq',i=0,...,k-1,
Dig*(x;i,j) =0, ifj>iorj<i-1.

— I o’
F * = nk .
k" @) [ 0 Dig*() }

The g—summation matrices are defined by
QE ((1‘-1;1) +ji- j)) X, ifjsi,
0, ifj>i,

S I of
G *(x)=| "k .
n,k,q 69] |: 0 Gk,q * (x) :|

Gk*(X) =

We have the inverse relation:
Fn,k,q * (X)_1 = Gn,k,q * (X)

The inverse of P ; * (x) is given by

(Prg * (0)1(0,)) = (;) (07¢),ij=0,... k- 1.

q

@7)

(28)

(29)

(30)

€3))
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The following matrix will be used in formula (52).
Definition 11. The g-Cauchy matrix is given by
Wn,q()(, J) = (x Bq jg)'. (32

Theorem 3.1. [7]. A g-analogue of [15, p.53 (1)]. If n = 3, the q-Pascal matrix Py, q(x) can be factorized by the
summation matrices and by the q-unit matrices as

3

Pn,g(0) = [ | (Takq00Gnk(¥) G 2.g * (), (33)
k=n

where the product is taken in decreasing order of k.

Theorem 3.2. [7]. A g-analogue of [15, p. 54]. The inverse of the q-Pascal matrix is given by

Prg() ™ =Fraq* () H(m(X)En,k,q(X))- (34)
k=3

4 The g-Lie group of g-Appell polynomial matrices
We first repeat and extend some definitions from [9].

Definition 12. A g-Lie group (Gn,q,-,-,» Ig) 2 Eq(gq), is a possibly infinite set of matrices € GL4(n, R), and a
manifold, with two multiplications: -, the usual matrix multiplication, and the twisted -4, which is defined
separately. Each g-Lie group has a unit, denoted by Ig, which is the same for both multiplications. Each ele-
ment @ € Gn,q has an inverse @1 with the property @ -; @1 = 1I,.

Definition 13. If (G4, -1, '1:¢) and (G3, -2, *2.4) are two g-Lie groups, then (G, xG,, -, +¢) is a g-Lie group called
the product g-Lie group. This has group operations defined by

(811, 821) - (812, 822) = (811 *1 812, 821 *2 822), (35)
and

(811,821) *q (812, 822) = (811 *1:q 8125 821 *2:q 822)- (36)

Definition 14. If (Gn,q, -, *¢) is a g-Lie group and Hy,q is a nonempty subset of Gn,q, then (Hz,q, *, *¢) is called
a g-Lie subgroup of (Gn,g, *, *¢) if
1.

(D'lIIEHn,q and(p'qweHn’q fOI‘aH cD,'PeHn,q. (37)

@' € Hp,qforall @ € Hy,q. (38)
3. Hp,qis asubmanifold of Gn,g.

Definition 15. An invertible mapping f : (Gn,q, *1, *1:¢) — (Hn,q, *2, *2:¢) is called a g-Lie group morphism
between (Gn,g; *1, *1:¢) and (Hn,gq, -2, *2:¢) if

f(@ 1) = f($) 2 f(), and f(¢ -1.q ) = f() 2.4 f(). (39)

It is obvious that (Z, +) is a g-Lie group with only one operation. We will use this fact in formula (61).
The most general form of polynomial in this article is the g-Appell polynomial, which we will now define.
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98 —— Thomas Ernst DE GRUYTER

Definition 16. Let A4 denote the set of real sequences {uyv,q};~, such that

oo

Z'uv q|{v} | oo’ (40)
for some g-dependent convergence radius r = r(q) > 0, where 0 < g < 1.

Definition 17. Assume that h(t, q), h(t, ¢)' € R[[t]]. For fa(t, q) = h(t, @)", let @y 4 € A4 and let cD(V',% denote
the multiplicative g—Appell number of degree v and order n given by the generating function

oo

falt, q) = Z vy @og=1, neZ. (41)
O

Definition 18. For every formal power series fy(t, g) given by (41), the multiplicative g—Appell polynomials
or @4 polynomials of degree v and order n have the following generating function:

falt, PEq(xt) = oM (x), n e Z. 42)

t
< k!

Theorem 4.1. In the following formula we assume that M and K are the x-order and y-order, respectively.

v
v
A CEEDY (k) DPRODL, ). (43)
k=0 q
Proof. This is proved in the same way as in [4, 4.242, p. 136]. O

The following vector forms for g-Appell polynomials and numbers will be used in formulas (80), (81), (101)
and (102).

Definition 19.
Png(X) = (@g 4(X), D1,4(X), ..., Py1 400, (44)
¢n,q = ¢n,q(0)- (45)

Definition 20. Define the g-Appell polynomial matrix by

Dn,q(X)(i,j) = (;) @i (), 0<i,jsn-1. (46)
q

Definition 21. The multiplicative g-Appell polynomial matrices (My,q) with elements 55,1‘2 (x)of order M € Z
are defined by

—(M .. ]
<D§1,q)(X)(1,J) = (;) (D(I_Vf)q()c) O<i,jsn-1. (47)
q

Definition 22. The multiplicative g-Appell number matrices or the g-transfer matrices (Mg4) with elements
5%; of order M € Z are defined by

(i, 5) = DLN(0)G, ), 0 <i,j<n-1. (48)

Theorem 4.2. A g-analogue of [2, (3.9), p. 432]

(pgqu)( ) = (D%)fn(x), where (49)
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DE GRUYTER On the g-Lie group of g-Appell matrices =—— 99

L) =1, x,x%, ..., x"HT, (50)

We define a generalization of formulas (82) and (103).

Definition 23. The shifted g-Appell polynomial matrix @y, ¢(x) is defined by

Dn,q(X)(i, ) = @i g(x @qJy), 0<i,jsn-1. (51)

Corollary 4.3. A generalization of [10]. The shifted q-Appell polynomial matrix can be written as the product
of the q-Appell number matrix and the q-Cauchy matrix.

(Dn’q(x) = an,q Wn’q(X). (52)
Proof. We show that the matrix indices are equal.

L . .
Z <k> D;_,q(x Bg ]q)k = @; 4(x Dq jg)- (53)
q

k=0

We remark that a special case of this equation can be found in [16, p. 1631].
In [7] we proved the formula

Pn,q(S Dq t) = Pn,q(S)Pn,q(t), s,teR. (54)

This can be generalized to
Theorem 4.4. We assume that M and K are the x-order and y-order, respectively. The formula (43) can be
rewritten in the following matrix form, where - on the RHS denotes matrix multiplication.

—(M+K) —(M) —(K)
Dy (XBqy) = Dy g(X) - Dy o). (55)

For the following proof, compare with [16, p. 1624].
Proof. We compute the (i, j) matrix element of the matrix multiplication on the RHS.

i . . i ..
i » k X i i-j M K
Z (k) Cbg_k)’q(X) (]) d)i_}’q()’) = <1> Z <k _]) (Dg—k),q(x)(p;(—;,q(y)
q q a

k=j q k=j

AL R ‘
_ (1 1-]J M) X (i . )
B (1) Z( k ) O 1 (0P = <}> DM (x g y) = LHS.
1 q

q k=0

(56)

O

By formula (47), the 5%; (x) are matrices with matrix elements g-Appell polynomials multiplied by g-binomial
coefficients, and we arrive at the next crucial definition.

Definition 24. We define the second matrix multiplication -4 by

—(M) —(K) —(M+K)
cDn,q(x) q CDn,q()’) = (Dgz,qu (x Hgq y). (57)

Theorem 4.5. The set (Myx,q, *, *q, In) is a g-Lie group with multiplications given by (55) and (57), and inverse
Eﬁljl(f’)(—x). The unit element is the unit matrix I.
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100 —— Thomas Ernst DE GRUYTER

Proof. The set My,q is closed under the two operations by (55) and (57). By (57) we have

(M) ( M)

D00 g By (=x) = Day(6) = In, (58)

which shows the existence of an inverse element and a unit.
The associative law reads:

M K M K
(@000 B0 4 Brly(2) = Bg0) - (Bry) -4 Bry(2)) (59)
which is equivalent to
M+K M K
By P 0q ) By 2) = g " (x g (v Hq 2). (60)
However, formula (60) follows from the associativity of the two g-additions. O

Definition 25. In the definition of product g-Lie group, put
(:Rq;'s'q) = (Rq, @q,EE\q)X(Z, +)- (61)

It is clear that formulas (55) and (57) defines a g-Lie group morphism from Ry to My 4.

Let

—=(M) (M)

(@9000)" = B0 - B0 - - 400, (6

where the right hand side denotes the product of k equal matrices 5511\2 (x).
In [7] we proved the formula

Pln<,q = Pn,q(Eq)~ (63)
This can be generalized to
(M) —(kM)
(@900 - 3% (k. (64)
Furthermore, the formulas in [16, p. 1624] can be generalized to the special cases
—(M) —M)  —=(1) —(k)
(@) =3, (@) -3, (65)

4.1 Two factorizations

We show that our g-Appell polynomials allow simple extensions to factorizations by Fibonacci number ma-
trices. The first Fibonacci numbers F; have the following values:

k=0|k=1|k=2|k=3|k=4|k=5|k=6
1 1

o
N
w
(€]
(o]

Definition 26. [12] We use the following notation for the matrix form of the Fibonacci numbers: F,(i, j) =
Fi—j'

It follows that [12, p. 205]

Fli,)=1,i=0,...,n-1, F,1(i+1,))=-1i=0,...,n-2,

e o . Lo . (66)
Fp(i+2,)=-1i=0,...,n-3, F, (i,j) = 0 otherwise.

Definition 27. The matrix Mjy,4(x) has matrix elements

my; = (;) Dij,q(x) - (i;.1> Di_j-1,4(0) - <i}2> Di_j—2,4(0). (67)
q q q
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DE GRUYTER On the g-Lie group of g-Appell matrices = 101

For the following formula, compare with [16, p. 1627], where the corresponding formula for the Bernoulli
matrix was given. Note that we do not need the order of the polynomials.

Theorem 4.6. The g-Appell polynomial matrix can be factorized as
an,q(x) = ?nMn,q(X)- (68)

Proof. It would suffice to prove that
%15n,q(x) = Mn,q(x)- (69)
The matrix index of the left hand side is given by

n-

1
Tn' Prg(), ) =Y Tn' (i, K) (’;) Pr ()
k=0 q

i i-1 i-2
= <]> D;_jq(x) - j ) (Di-j-1,q(X)—< j ) D;_j_, 4(x) = RHS.
q q q

We shall now prove a similar formula.

(70)

Definition 28. The matrix R, 4(x) has matrix elements

Tij = (;) Di_j,q(x) - (j:1> Di_j1,4(x) - (]-JfZ) Di_j-2,4(x). (71)
q q q

For the following formula, compare with [17, p. 2372], where the corresponding formula for Pascal matrices
was given.

Theorem 4.7. The g-Appell polynomial matrix can be factorized as

5n,q(x) = 92n,q(X)-'}Pn- (72)

Proof. It suffices to prove that
5n,q(x)ff';l = -(Rn,q(x)- (73)

The matrix index of the left hand side is given by

n-1 /.
Png(0)Tn' (1) = (,’() Di_,q()Fn' (K, J)
q

k=0

= <]l) D;_j q(x) - <]J: 1) Di_j1,400 - <}.+lz> D;_j_5 4(x) = RHS.
q q q

(74)

4.2 g-Bernoulli and g-Euler polynomials
We will also consider the special cases g-Bernoulli and g-Euler polynomials.

Definition 29. There are two types of g-Bernoulli polynomials, called Bywa,y,4(x), NWA g-Bernoulli polyno-
mials, and Byyc,y,4(x), JHC g-Bernoulli polynomials. They are defined by the two generating functions
—~ t"Bnwa,v,q(*)

t = _—
mEq(xt)—; oy <2 75)
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102 —— Thomas Ernst DE GRUYTER

and

S}

t t'Byrc,v,q(X)
————Eq(xt) = ——==d |t < 27, (76)
GROERACRD By it
q v=0
Definition 30. The Ward g-Bernoulli numbers are given by

Bnwa,n,q = Brwa,n,q(0). (77)

The Jackson g-Bernoulli numbers are given by
B]HC,n,q = B]HC,n,q(O)- (78)

The following table lists some of the first Ward g-Bernoulli numbers.

n=0 n=1 n=2 n=3
-A+q)7 | (31D | A -9)P ({2} T({4}g)

n=14
7"(1-q’-2¢° - q" + ¢°)({2}3{3}4{5}) "
To save space, we will use the following abbreviation in equations (80) - (84), (87), (88), (91), (95), (97), (98),
(101)-(105), (108)-(109), (112)-(114).

NWA = NWA v JHC. (79)

We will use the following vector forms for the g-Bernoulli polynomials corresponding to g-analogues of [1, p.
239].

bywa,n,q(X) = (Bnwa,o0,¢4(X), Bawa,1,4(X), ..., BNWA,n—l,q(X))T- (80)
The corresponding vector forms for numbers are
T
bywa,n,qg = (Bywa,o0,q> BNwA,1,g5 - - - » BNWA,n-1,¢) - (81)

Let us introduce the NWA and JHC shifted g-Bernoulli matrices.

Definition 31. o
Brwan,g(0) = (bxwa,g(0) E(@g)bywa,q(0 -+ + E(@g)" " bywa (), (82)

where E(eaq)ﬁq(x") =(xogn-1g"
We will need two similar matrices based on the Bywa and Bjyc polynomials and numbers.

Definition 32. Two g-analogues of [3, p. 193]. The NWA and JHC g-Bernoulli polynomial matrices are defined
by

= .. i ..
Bnwa,n,q(0(, j) = (]) Bnwa,izj,q(¥),0<i,j<n-1. (83)
q

Definition 33. The NWA and JHC g-Bernoulli number matrices are defined by

- .. i ..
Bnwa,n,q(i,)) = (}) Bywa,i-j,q» 0 <i,jsn—-1. (84)
a
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DE GRUYTER On the g-Lie group of g-Appell matrices = 103

Definition 34. The matrix Dywa,n,q has matrix elements

1 i . . .
dnwa,ij = { U (})q ifizj, (85)
h 0 otherwise.

Definition 35. The matrix Djyc ,,4 has matrix elements

(H;l) . o ‘
gtz 7 (1
dic,ij = § {11k (;)qlflzl, -
0 otherwise.

Theorem 4.8. The inverses of the q-Bernoulli number matrices are given by

- -1
(Bxwa,ng) = Dnwa,n,g- (87)

This implies that )
Bawang = Dhwan g (88)

The following proof is very similar to [16, p. 1624].

Proof. For the NWA case, take away the factor q(kgl) and corresponding g-powers in the following equations.
We show that Bjyc,n,Djrc,n,q is €qual to the unit matrix. We know that

n (k+1)
Z {k + 1} (n) BIHC,n—k,q = 8n,0- (89)

Then we have

i (k+1 ) . k
q 1
Eaf5f o),
i (k+1 1) l—]
Z {k+1-jlq j BIHC,i—k,q (90)

_(i 2]: g+ ) B ™ (1) 6y
]' £ {k+ 1}(] JHC,i-j-k,q ] i-j,0°
q q q

O
n [10] we considered the following g-analogues of [16, p. 1625]
Bwa,n,g(X @ ¥) = Pn,g(X)Bxwa,n,q()- 91)
These can be generalized to

Theorem 4.9.

Dn,q(x Bqy) = Png(X)Dn,q(y). (92)
In particular,

6n,q(x) = Pn,q(X)an,q- (93)

For the following proof one should compare with [16, p. 1625].

Brought to you by | Uppsala University Library
Authenticated
Download Date | 7/24/18 11:58 AM



104 —— Thomas Ernst DE GRUYTER

i . o[ . i o -
> (,i) X k(;) Diej,q¥) = (;) Z <,1<_]]> XKD )
=j q q q k=j q

ij

- (;) Z (ii) Xi—;—k(x)cbk,q(y) = (;) @ j.4(x Bqy) = LHS.
q k=0 q p

Proof.

(94)

O

Theorem 4.10. Two g-analogues of [16, p. 1626] The inverses of the q-Bernoulli polynomial matrices are given
by

= -1 = -1 _ _

(Bawa,n,g®)) ™ = (Bywang)  Prg(®) ™" = Dywan,gPrg() " (95)

When the order is increased, for y = 0 in (55), we multiply the g-transfer matrix by 5%) (x). When the order
is constant, in (93), we multiply the g-transfer matrix by the g-Pascal matrix.
We can now find a factorization of the g-Appell polynomial matrix and its inverse.

Theorem 4.11. A g-analogue and generalization of [16, p. 1626].

3
D q(6) = [ [ (Tn,10,g(00G, k() Gr,2.4 * (0 Pn,g, (96)
k=n

where the product is taken in decreasing order of k.
A factorization of the two gq-Bernoulli matrices.

(Brwang®) " = DxwangFrzg * 00 [ [Frx (OB 1 (0)). (97)
k=3

Proof. Use formulas (33), (34) and (93). O

We now return to the g-Lie groups. We find that

Theorem 4.12. The functions of q-Bernoulli polynomial matrices
(Bnwa,g» *s *q> In) and (Byuc, g, +» g, In) with elements

Buwa,n,q(X) (98)
are g-Lie subgroups of Myx,q.

Proof. The sets B are closed under the two operations by (55) and (57). The existence of inverses follows as
for My,q.
O

Definition 36. There are two types of g-Euler polynomials, called Fywa,y,q(x), NWA g-Euler polynomials,
and Fyyc,y 4(x), JHC g-Euler polynomials. They are defined by the following two generating functions:

2E4(xt) i tv
= Fnwav,q(X), || < m, (99)
1 Vg
Eq()+1 = vid!
and
2E;(xt) o t"
E (i) T1T 2 Vlg1 HCvg s [l <. (100)
é v=0 q-
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Definition 37. We will use the following vector forms for these polynomials.

fauwa,n,g(X) = (Fxwa,0,4(0), Fywa, 1,40, ..+, FNWA,n—l,q(X))T- (101)

The corresponding g-Euler number vectors are
T
fawa,ng = (FNwa,0,q> FNwA,1,g5 - - - » FNWA,n-1,4) " - (102)
Let us introduce the two shifted g-Euler matrices.

Definition 38. L
Frwan,g ) = (Fxwa, g0 E@g)fawa,g(0) « - E(@¢)" " fywa,q(x)). (103)

We will need two similar matrices, based on the Fywa polynomials.

Definition 39. The two g-Euler polynomial matrices are defined by

Fxwa,n,g(, j) = (;) frwa,i-j,q (0. (104)

q
Definition 40. The NWA and JHC g-Euler matrices are defined by
= .. i ..
Fnwa,n,q(i,]) = <]> Fywa,i-j,q- 0 si,jsn-1. (105)
q
Definition 41. The matrix Cywa,n,q has matrix elements

1[1+6i0) (;i)q ifi>j,

CNWA,i,j = (106)
0 otherwise.
Definition 42. The matrix Cjyc »,4 has matrix elements
l[(H) 5 } i ifisi
g\ +6; 0| (5) ifizj,
CHC,i,j = 2 ) v (])‘1 (107)
0 otherwise.
Theorem 4.13. The inverses of the q-Euler number matrices are given by
= -1
(Fnwa,n,g) = CNwa,n,q- (108)
This implies that .
Fxwa,n,g = GIIfIWA,n,q- (109)

Proof. For the NWA case, replace the factor q(g) by 1. We show that F]HC,n,q CHe,n,q is equal to the unit matrix.

We know that
n

K (n
Z q(Z) (k) F]HC,n—k,q + FIHC,n,q = 2511,0- (110)
k=0 q
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Introduce a function G(k). Then we have

Z (;) Fiuc,i-k,g Gk = §) <;<>
k=j q q

= (;) Z (,l(__]]> Fjuc,i-k,g Gk =) (111)
q

q k=j

i\ <> (i-J by(110) [
- () Z( k]) Fitc,i-jk,g U0 = () 8ij0-
s j
q k=0 q q

It is now obvious that G(k) = } [q(g) + 6,(,0} solves this equation for JHC and similar for NWA. O
Theorem 4.14. Compare with [16, p. 1626] The inverses of the q-Euler polynomial matrices are given by

— -1 = -1 - -

(Fxwang®) ™ = (Fxwang)  Prg(0)™" = CawangPrqg(0) ™. (112)

Theorem 4.15. A factorization of the two gq-Euler matrices.

(FNWA,n,q(X))_l = CNwa,n,qFn,2,¢ * (X) H(m(X)En,k,q(X))- (113)
k=3

We now return to the g-Lie groups.

Theorem 4.16. The sets of g-Euler polynomial matrices (Fxwa,q, *» *q> In) and (Fyuc, ¢, *» *q, In) with elements

Fnwa,n,q(X) (114)

are g-Lie subgroups of My,q.

5 Arelated ring of matrices

We first recall the commutative ring of g—Appell polynomials.

Definition 43. [11] We denote the set of all g—Appell polynomials (in the variable x) by Ax;q.
Let @y, q(x) and ¥y, q(x) be two elements in Ay;q. Then the operations € and () are defined as follows:

((Dq(x) @ qu(X))n = (qu(X) + 'Pq(X))n, (115)
(@400 () Yg(0)n = (@g(x) Bq Yq(x))" = ; (Z) Dy, g () P, g (X). (116)
= q

We keep the usual priority between € and (.
Theorem 5.1. [8], [11] (Ax;q, @, () is a commutative ring.
In the following, for clarity, we sometimes write f(t) for f(¢, q).

Definition 44. Let f(t) € R[[x]]. The g-deformed Leibniz functional matrix is given by

DL f(t,9)

Cnlf6 I = 4 om0 005 no1. 1)
o, otherwise
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Let the operator € : R[[x]] — R[[x]] be defined by
ef(x) = f(gx). (118)
We infer that by the g-Leibniz formula [5]

(LH,Q)[f(t, q)g(t, CI)] = (LH,CI)[f(t9 CI)] ‘e (LH,Q)[g(t9 Q)], (119)

where in the matrix multiplication for every term which includes D’,} f, we operate with €X on g. We denote
this by -¢. This operator can also be iterated, compare with [5].
For the following considerations, compare with [6], [13, p. 232] and [14, p. 67].

Definition 45. Assume that f(t) € R[[x]]. The i, j entries of the generalized g-Pascal functional matrix
PFn,qlf(t, q)] of size n x n are

N DIf(t, q) ifi>j;
Pqlft, @G, ) = (’)q 0/ (&0 J i,j=0,1,2...,n-1. (120)
0, otherwise
The function f(¢) is called invertible if f(0) # 0.
Example 1. When f(t) = Eq4(at) we have
Pn,qlf(t, @)1 = Pn,q[Eq(at)] = Pn,q(a). (121)

Theorem 5.2. [6] Formulas for the generalized q-Pascal functional matrix.

Prglf () + 8(0)] = Pglf (O] + Pn,qlg(D)],

(122)
Prglf (0] -e Pn,qlg(O)] = Pn,qlf()g(D)].

Definition 46. [6] Assume that f(¢) is invertible. If the inverse (f(t)"1)® exists for k < n, we can define the
g-inverse of the generalized g-Pascal functional matrix as

[Puglf(t, 1) = Puglf(t, 1 1. (123)
Inspired by this, we make the following definition:
Definition 47. The operations € and (©) are defined as follows:

Pr,qlF (O] €D Pr,qlg(O] = Pn,qlf (1) + g(D]. (124)

Prglf (01 () Prqlg(O)] = P,qglf (O)] ¢ Pn,qlg(D] = Prq[F (D], (125)

We keep the usual priority between € and (.
The generalized g-Pascal polynomial functional matrix (PF, f(t), @, O, On, In) is the set of all Pn q[f]
with the operations P and () and units O and I.

Theorem 5.3. Assume that Oy is the unit for @, and that I, is the unit for (). The generalized q-Pascal poly-
nomial functional matrix

(ﬂ)gj, f(t)) @9 @, On, In) (126)

is a commutative ring.
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Proof. We presume that Pn, ¢[f], Pn,qlg] and Pn q4[h] are three elements in PF corresponding to f(t), g(t) and
h(t) respectively.
We first show that @ is well-defined. Assume that f(t) + g(t) # 0. Then

Prqlf (O] EP Pnqlg(®)] € P, (127)

The associative law for €D reads:

PnqlF(O) D (Pn.als@) P Prglh(0)])
= (PnalFO1 D Pnale(®]) D Pnalh(OD).

This follows from the associativity of +.
The commutative law for €p reads:

Prqlf(O1EPD Pr.qlg(O)] = Pnqlg(O1 ED Pr,qlF (O], (129)

This follows from the commutativity of +. The identity element with respect to & is the zero matrix O,. We
have

(128)

Prqlf (O] ED On = Prqlf Q). (130)

There exists —Pn, ¢[f(t)] such that
Prglf(O1ED ~Pn,qlf(B)] = On. (131)

This follows from the corresponding property of real numbers.
Then we show that (©) is well-defined.
Assume that f(t)g(t) # 0. Then we have

Prglf(O1 () Pn.qlg(O] by(125) € PF. (132)

The associative law for () reads:

PnglfO1 O (Pnals@] O Prglh(0)])

(133)
= (PralfO) O Puals(®]) O Pnalh(OD).
This follows from the associativity of the multiplication -.
The commutative law for () reads:
Prglf(O1C) Prqlg(O)] = Pnglg(O1 () PrqglF (O], (134)
This follows from the commutativity of the multiplication -.
The identity element with respect to (©) is the identity matrix I. We have
PrqlfO1 () Tn = Pr,qlf (). (135)

The distributive law reads:
PualfO1C) (Pnal5(O] D Prglh(e))
= Puglf ()@ + h(O)] = PaglF(O(E) + F(OR(D)] (136)
= (PralFO1 O Paals(©]) D (PualfO) O Pualh(@)) .

This follows from the distributive law of real numbers.
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6 Conclusion

We have united and g-deformed formulas from papers by Arponen, Aceto et al., Yang et al. and Zhang et al.
to give a first synthesis of g-Appell polynomial matrices, which were previously only known in special cases.
Some of the formulas for g-Pascal matrices and their factorizations are generalized as well as formulas for g-
Bernoulli and g-Euler matrices. We have given the first concrete examples of g-Lie subgroups, and constructed
a similar ring of matrices with many pleasant properties.

Acknowledgement: Ithank Karl-Heinz Fieseler for his kind assistance.
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