DE GRUYTER Spec. Matrices 2018; 6:93–109

Research Article Open Access

Thomas Ernst*

On the q-Lie group of q-Appell polynomial matrices and related factorizations

https://doi.org/10.1515/spma-2018-0009 Received October 10, 2017; accepted February 2, 2018

Abstract: In the spirit of our earlier paper [10] and Zhang and Wang [16], we introduce the matrix of multiplicative q-Appell polynomials of order $M \in \mathbb{Z}$. This is the representation of the respective q-Appell polynomials in ke-ke basis. Based on the fact that the q-Appell polynomials form a commutative ring [11], we prove that this set constitutes a q-Lie group with two dual q-multiplications in the sense of [9]. A comparison with earlier results on q-Pascal matrices gives factorizations according to [7], which are specialized to q-Bernoulli and q-Euler polynomials. We also show that the corresponding q-Bernoulli and q-Euler matrices form q-Lie subgroups. In the limit $q \to 1$ we obtain corresponding formulas for Appell polynomial matrices. We conclude by presenting the commutative ring of generalized q-Pascal functional matrices, which operates on all functions $f \in C_q^n$.

Keywords: q-Lie group; multiplicative q-Appell polynomial matrix; commutative ring; q-Pascal functional matrix

MSC: Primary 17B99; Secondary 17B37, 33C80, 15A23

1 Introduction

In this paper we will introduce several new concepts, some of which were previosly known only in the q-case from the articles of the author. By the logarithmic method for q-calculus, this transition will be almost automatic, with the q-addition being replaced by ordinary addition. Some of the matrix formulas in this paper were previosly published for Bernoulli polynomials in [16] and for Pascal matrices in [17]. In the article [9] q-Lie matrix groups with two dual multiplications, and in [8] the concept multiplicative q-Appell polynomial were introduced. Now the interesting situation occurs, that the formula [16, p. 1623] for Bernoulli polynomial matrices, which are multiplicative Appell polynomial matrices, also holds for the latter ones. Thus we devote Section 2 to Lie groups of Appell matrices and to the new morphism formula (18). But first we repeat the summation matrix $\overline{G}_{n,k}(x)$ and the difference matrix $\overline{F}_{n,k}(x)$ and all the other matrices from [15] in Section 1.

To prepare for the matrix factorizations of the q-Lie matrices in Section 4, we present the relevant q-Pascal and q-unit matrices from [7] in Section 3. In Subsection 4.2 we first repeat the matrix forms of the q-Bernoulli and q-Euler polynomials from [10] to prepare for the computation of their inverses and factorizations. The main purpose of Section 4 is the introduction of the multiplicative q-Appell polynomial matrix and its functional equation, a general so-called q-morphism. In Section 4.1 generalizations of factorizations of Bernoulli matrices to q-Appell polynomial matrices are presented. Finally, in Section 5 the existence of a commutative ring of generalized q-Pascal polynomial functional matrices is proved.

We start our presentation with a brief repetition of some of our matrices.

^{*}Corresponding Author: Thomas Ernst: Department of Mathematics, Uppsala University, P.O. Box 480, SE-751 06 Uppsala, Sweden, E-mail: thomas@math.uu.se

Definition 1. Matrix elements will always be denoted (i, j). Here i denotes the row and j denotes the column. The matrix elements range from 0 to n - 1. The matrices I_n , S_n , A_n , D_n , $S_n(x)$ and $D_n(x)$ are defined by

$$I_n \equiv \operatorname{diag}(1, 1, \dots, 1) \tag{1}$$

$$S_n(i,j) \equiv \begin{cases} 1, & \text{if } j \leq i, \\ 0, & \text{if } j > i, \end{cases}$$
 (2)

$$A_n(t)(i,j) \equiv \begin{cases} t^i, & \text{if } j = i, \\ 0, & \text{otherwise} \end{cases}$$
 (3)

$$D_n(i,i) \equiv 1 \text{ for all } i, \tag{4}$$

$$D_n(i+1, i) \equiv -1, \text{ for } i = 0, \dots, n-2$$
 (5)

$$D_n(i,j) \equiv 0, \text{ if } j > i \text{ or } j < i-1$$
(6)

$$S_n(x)(i,j) \equiv \begin{cases} x^{i-j}, & \text{if } j \leq i, \\ 0, & \text{if } j > i, \end{cases}$$
(7)

$$D_n(x; i, i) \equiv 1, i = 0, ..., n - 1, D_n(x; i + 1, i) \equiv -x, \text{ for } i = 0, ..., n - 2,$$

 $D_n(x; i, j) \equiv 0, \text{ when } j > i \text{ or } j < i - 1.$
(8)

We note that D_n is a special case of $D_n(x)$, and S_n is a special case of $S_n(x)$.

The summation matrix $\overline{G_{n,k}}(x)$ and its inverse, the difference matrix $\overline{F_{n,k}}(x)$, are defined by [15, p. 52,54]:

$$\overline{G_{n,k}}(x) \equiv \begin{bmatrix} I_{n-k} & 0^T \\ 0 & S_k(x) \end{bmatrix}, k = 3, \dots, n, \overline{G_{n,n}}(x) \equiv S_n(x), n > 2,
\overline{F_{n,k}}(x) \equiv \begin{bmatrix} I_{n-k} & 0^T \\ 0 & D_k(x) \end{bmatrix}, k = 3, \dots, n, \overline{F_{n,n}}(x) \equiv D_n(x), n > 2.$$
(9)

2 The Lie group of Appell matrices

We first define Appell polynomials and multiplicative Appell polynomials.

Definition 2. Let \mathcal{A} denote the set of real sequences $\{u_{\nu}\}_{\nu=0}^{\infty}$ such that

$$\sum_{\nu=0}^{\infty} |u_{\nu}| \frac{r^{\nu}}{\nu!} < \infty, \tag{10}$$

for some convergence radius r > 0.

Definition 3. For $f_n(t) \in \mathbb{R}[[t]]$, let $p_v \in \mathcal{A}$ and let $p_v^{(n)}$ denote the Appell numbers of degree v and order $n \in \mathbb{Z}$ with the following generating function

$$f_n(t) = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} p_{\nu}^{(n)}.$$
 (11)

Definition 4. For every formal power series $f_n(t) = h(t)^n$, let $p_{\mathcal{M},\nu} \in \mathcal{A}$ and let $p_{\mathcal{M},\nu}^{(n)}$ denote the multiplicative Appell numbers of degree ν and order $n \in \mathbb{Z}$ with the following generating function

$$h(t)^{n} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} p_{\mathcal{M},\nu}^{(n)}.$$
 (12)

Definition 5. For every formal power series $f_n(t) = h(t)^n$ given by (12), the multiplicative Appell polynomials or $p_v^{(n)}(x)$ polynomials of degree v and order $n \in \mathbb{Z}$ have the following generating function

$$f_n(t)e^{xt} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\nu!} p_{\nu}^{(n)}(x).$$
 (13)

The proof of the following formula is relegated to (43).

Theorem 2.1. Assume that M and K are the x-order and y-order, respectively.

$$p_{\nu}^{(M+K)}(x+y) = \sum_{k=0}^{\nu} {\nu \choose k} p_{k}^{(M)}(x) p_{\nu-k}^{(K)}(y).$$
(14)

Definition 6. We will use the following vector forms for the Appell polynomials and numbers:

$$\Pi_n(x) \equiv (p_0(x), p_1(x), \dots, p_{n-1}(x))^T,$$
(15)

$$\Pi_n \equiv \Pi_n(0).$$
(16)

Definition 7. The multiplicative Appell polynomial matrix of order $M \in \mathbb{Z}$ is defined by

$$\overline{p}_n^{(M)}(x)(i,j) \equiv \binom{i}{j} p_{i-j}^{(M)}(x), \ 0 \le i, j \le n-1.$$
 (17)

We refer to (56) for the proof of the next theorem.

Theorem 2.2. In the following formula we assume that M and K are the x-order and y-order, respectively.

$$\overline{p}_n^{(M+K)}(x+y) = \overline{p}_n^{(M)}(x)\overline{p}_n^{(K)}(y). \tag{18}$$

Theorem 2.3. The multiplicative Appell polynomial matrices (\mathcal{M}, \bigcirc) with elements $\overline{p}_n^{(M)}(x)$ is an Abelian matrix Lie group with multiplication given by (18) and inverse $\overline{p}_n^{(-M)}(-x)$.

Proof. The set \mathfrak{M} is closed under the operation \odot by (18). The group element $\overline{p}_n^{(-M)}(-x)$ is inverse to $\overline{p}_n^{(M)}(x)$ by the subtraction of real numbers. The unit element is the unit matrix I_n . The associativity and commutativity follow by (18).

3 The q-Pascal matrix and the q-unit matrices

Definition 8. The *q*-Pascal matrix $P_{n,q}(x)$ [7] is given by the familiar expression

$$P_{n,q}(i,j)(x) \equiv \binom{i}{j}_q x^{i-j}, i \ge j.$$
 (19)

The following special case is often used.

Definition 9.

$$P_{n,q} \equiv P_{n,q}(1). \tag{20}$$

We now recall some formulas from [7].

Definition 10. The matrices $\overline{P_{n,k,q}}(x)$, $P_{k,q} \star (x)$ and $\overline{P_{n,k,q}} \star (x)$ are defined by

$$\overline{\mathbf{P}_{n,k,q}}(x) \equiv \begin{bmatrix} \mathbf{I}_{n-k} & \mathbf{0}^T \\ \mathbf{0} & \mathbf{P}_{k,q}(x) \end{bmatrix}, \tag{21}$$

$$P_{k,q} * (x; i, j) = {i \choose j}_{q} (qx)^{i-j}, i, j = 0, \dots, k-1,$$
(22)

$$\overline{P_{n,k,q}} \star (x) \equiv \begin{bmatrix} I_{n-k} & 0^T \\ 0 & P_{k,q} \star (x) \end{bmatrix}, k = 3, \dots, n, \overline{P_{n,n,q}} \star (x) \equiv P_{n,q} \star (x).$$
 (23)

Let the two matrices $I_{k,q}(x)$, and its inverse, $E_{k,q}(x)$, be given by:

$$I_{k,q}(x;i,i) \equiv 1, i = 0, \dots, k-1, \ I_{k,q}(x;i+1,i) \equiv x(q^{i+1}-1), \ i = 0, \dots, k-1,$$

$$I_{k,q}(x;i,j) \equiv 0 \text{ for other } i,j.$$

$$E_{k,q}(x;i,j) \equiv \langle j+1; q \rangle_{i-j} x^{i-j}, \ i \geq j, E_{k,q}(x;i,j) \equiv 0 \text{ for other } i,j.$$
(24)

Similarly, let the two matrices $\overline{\mathrm{I}_{n,k,q}}(x)$, and its inverse, $\overline{\mathrm{E}_{n,k,q}}(x)$, be given by:

$$\overline{I_{n,k,q}}(x) \equiv \begin{bmatrix} I_{n-k} & 0^T \\ 0 & I_{k,q}(x) \end{bmatrix}, \overline{I_{n,n,q}}(x) \equiv I_n.$$
 (25)

$$\overline{\mathbf{E}_{n,k,q}}(x) \equiv \begin{bmatrix} \mathbf{I}_{n-k} & \mathbf{0}^T \\ \mathbf{0} & \mathbf{E}_{k,q}(x) \end{bmatrix}, \ \overline{\mathbf{E}_{n,n,q}}(x) \equiv \mathbf{I}_n. \tag{26}$$

We call $\overline{I_{n,k,q}}(x)$ the q-unit matrix function. We will use a slightly q-deformed version of the D- and F-matrices:

$$D_{k,q} * (x; i, i) \equiv 1, i = 0, \dots, k-1, D_{k,q} * (x; i+1, i) \equiv -xq^{i}, i = 0, \dots, k-1, D_{k,q} * (x; i, j) \equiv 0, \text{ if } j > i \text{ or } j < i-1.$$
(27)

$$\overline{\mathbf{F}_{n,k,q}} \star (\mathbf{x}) \equiv \begin{bmatrix} \mathbf{I}_{n-k} & \mathbf{0}^T \\ \mathbf{0} & \mathbf{D}_{k,q} \star (\mathbf{x}) \end{bmatrix}. \tag{28}$$

The q-summation matrices are defined by

$$G_{k} \star (x) \equiv \begin{cases} \operatorname{QE}\left(\binom{i-j+1}{2} + j(i-j)\right) x^{i-j}, & \text{if } j \leq i, \\ 0, & \text{if } j > i, \end{cases},$$

$$\overline{G_{n,k,q}} \star (x) \equiv \begin{bmatrix} I_{n-k} & 0^{T} \\ 0 & G_{k,q} \star (x) \end{bmatrix}.$$
(29)

We have the inverse relation:

$$\overline{\mathbf{F}_{n,k,q}} \star (x)^{-1} = \overline{\mathbf{G}_{n,k,q}} \star (x). \tag{30}$$

The inverse of $P_{k,q} \star (x)$ is given by

$$(P_{k,q} * (x))^{-1} (i,j) = {i \choose j}_q (-x)^{i-j} q^{{i-j+1 \choose 2}}, i,j = 0, \dots, k-1.$$
(31)

The following matrix will be used in formula (52).

Definition 11. The q-Cauchy matrix is given by

$$W_{n,q}(x)(i,j) \equiv (x \oplus_q \overline{j_q})^i. \tag{32}$$

Theorem 3.1. [7]. A q-analogue of [15, p.53 (1)]. If $n \ge 3$, the q-Pascal matrix $P_{n,q}(x)$ can be factorized by the summation matrices and by the q-unit matrices as

$$P_{n,q}(x) = \prod_{k=n}^{3} \left(\overline{I_{n,k,q}}(x) \overline{G_{n,k}}(x) \right) \overline{G_{n,2,q}} * (x), \tag{33}$$

where the product is taken in decreasing order of k.

Theorem 3.2. [7]. A q-analogue of [15, p. 54]. The inverse of the q-Pascal matrix is given by

$$P_{n,q}(x)^{-1} = \overline{F}_{n,2,q} * (x) \prod_{k=3}^{n} (\overline{F}_{n,k}(x) \overline{E}_{n,k,q}(x)).$$
 (34)

4 The q-Lie group of q-Appell polynomial matrices

We first repeat and extend some definitions from [9].

Definition 12. A q-Lie group $(G_{n,q,\cdot,\cdot,q}, I_g) \supseteq E_q(\mathfrak{g}_q)$, is a possibly infinite set of matrices $\in GL_q(n,\mathbb{R})$, and a manifold, with two multiplications: \cdot , the usual matrix multiplication, and the twisted \cdot_q , which is defined separately. Each q-Lie group has a unit, denoted by I_g , which is the same for both multiplications. Each element $\Phi \in G_{n,q}$ has an inverse Φ^{-1} with the property $\Phi \cdot_q \Phi^{-1} = I_g$.

Definition 13. If $(G_1, \cdot_1, \cdot_{1:q})$ and $(G_2, \cdot_2, \cdot_{2:q})$ are two q-Lie groups, then $(G_1 \times G_2, \cdot, \cdot_q)$ is a q-Lie group called the product q-Lie group. This has group operations defined by

$$(g_{11}, g_{21}) \cdot (g_{12}, g_{22}) = (g_{11} \cdot_1 g_{12}, g_{21} \cdot_2 g_{22}),$$
 (35)

and

$$(g_{11}, g_{21}) \cdot_q (g_{12}, g_{22}) = (g_{11} \cdot_{1:q} g_{12}, g_{21} \cdot_{2:q} g_{22}).$$
 (36)

Definition 14. If $(G_{n,q}, \cdot, \cdot_q)$ is a q-Lie group and $H_{n,q}$ is a nonempty subset of $G_{n,q}$, then $(H_{n,q}, \cdot, \cdot_q)$ is called a q-Lie subgroup of $(G_{n,q}, \cdot, \cdot_q)$ if 1.

$$\Phi \cdot \Psi \in H_{n,q} \text{ and } \Phi \cdot_q \Psi \in H_{n,q} \text{ for all } \Phi, \Psi \in H_{n,q}.$$
 (37)

2.

$$\Phi^{-1} \in H_{n,q} \text{ for all } \Phi \in H_{n,q}.$$
 (38)

3. $H_{n,q}$ is a submanifold of $G_{n,q}$.

Definition 15. An invertible mapping $f:(G_{n,q},\cdot_1,\cdot_{1:q})\to (H_{n,q},\cdot_2,\cdot_{2:q})$ is called a q-Lie group morphism between $(G_{n,q},\cdot_1,\cdot_{1:q})$ and $(H_{n,q},\cdot_2,\cdot_{2:q})$ if

$$f(\phi \cdot_1 \psi) = f(\phi) \cdot_2 f(\psi), \text{ and } f(\phi \cdot_{1:a} \psi) = f(\phi) \cdot_{2:a} f(\psi).$$
 (39)

It is obvious that $(\mathbb{Z}, +)$ is a q-Lie group with only one operation. We will use this fact in formula (61).

The most general form of polynomial in this article is the q-Appell polynomial, which we will now define.

Definition 16. Let \mathcal{A}_q denote the set of real sequences $\{u_{\nu,q}\}_{\nu=0}^{\infty}$ such that

$$\sum_{\nu=0}^{\infty} |u_{\nu,q}| \frac{r^{\nu}}{\{\nu\}_q!} < \infty, \tag{40}$$

for some *q*-dependent convergence radius r = r(q) > 0, where 0 < q < 1.

Definition 17. Assume that h(t, q), $h(t, q)^{-1} \in \mathbb{R}[[t]]$. For $f_n(t, q) = h(t, q)^n$, let $\Phi_{v,q} \in \mathcal{A}_q$ and let $\Phi_{v,q}^{(n)}$ denote the multiplicative q-Appell number of degree v and order n given by the generating function

$$f_n(t,q) = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\{\nu\}_q!} \Phi_{\nu,q}^{(n)}, \ \Phi_{0,q} = 1, \ n \in \mathbb{Z}.$$
 (41)

Definition 18. For every formal power series $f_n(t, q)$ given by (41), the multiplicative q-Appell polynomials or Φ_q polynomials of degree ν and order n have the following generating function:

$$f_n(t,q)E_q(xt) = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\{\nu\}_q!} \Phi_{\nu,q}^{(n)}(x), \ n \in \mathbb{Z}.$$
 (42)

Theorem 4.1. In the following formula we assume that M and K are the x-order and y-order, respectively.

$$\Phi_{\nu,q}^{(M+K)}(x \oplus_q y) = \sum_{k=0}^{\nu} \binom{\nu}{k}_q \Phi_{k,q}^{(M)}(x) \Phi_{\nu-k,q}^{(K)}(y). \tag{43}$$

Proof. This is proved in the same way as in [4, 4.242, p. 136].

The following vector forms for q-Appell polynomials and numbers will be used in formulas (80), (81), (101) and (102).

Definition 19.

$$\phi_{n,q}(x) \equiv (\Phi_{0,q}(x), \Phi_{1,q}(x), \dots, \Phi_{n-1,q}(x))^T,$$
 (44)

$$\phi_{n,q} \equiv \phi_{n,q}(0). \tag{45}$$

Definition 20. Define the q-Appell polynomial matrix by

$$\overline{\Phi}_{n,q}(x)(i,j) \equiv \begin{pmatrix} i \\ j \end{pmatrix}_{q} \Phi_{i-j,q}(x), \ 0 \le i,j \le n-1. \tag{46}$$

Definition 21. The multiplicative q-Appell polynomial matrices $(\mathcal{M}_{x,q})$ with elements $\overline{\mathcal{D}}_{n,q}^{(M)}(x)$ of order $M \in \mathbb{Z}$ are defined by

$$\overline{\Phi}_{n,q}^{(M)}(x)(i,j) \equiv \binom{i}{j}_{q} \Phi_{i-j,q}^{(M)}(x), \ 0 \le i,j \le n-1.$$
(47)

Definition 22. The multiplicative q-Appell number matrices or the q-transfer matrices (\mathcal{M}_q) with elements $\overline{\Phi}_{n,q}^{(M)}$ of order $M \in \mathbb{Z}$ are defined by

$$\overline{\Phi}_{n,q}^{(M)}(i,j) \equiv \overline{\Phi}_{n,q}^{(M)}(0)(i,j), \ 0 \le i,j \le n-1.$$
(48)

Theorem 4.2. A q-analogue of [2, (3.9), p. 432]

$$\overline{\Phi}_{n,a}^{(M)}(x) = \overline{\Phi}_{n,a}^{(M)} \xi_n(x), \text{ where}$$
 (49)

$$\xi_n(x) \equiv (1, x, x^2, \dots, x^{n-1})^T.$$
 (50)

We define a generalization of formulas (82) and (103).

Definition 23. The shifted *q*-Appell polynomial matrix $\widetilde{\Phi}_{n,q}(x)$ is defined by

$$\widetilde{\Phi_{n,q}(x)}(i,j) \equiv \Phi_{i,q}(x \oplus_q \overline{j}_q), \ 0 \le i,j \le n-1.$$
(51)

Corollary 4.3. A generalization of [10]. The shifted q-Appell polynomial matrix can be written as the product of the q-Appell number matrix and the q-Cauchy matrix.

$$\widetilde{\Phi_{n,q}(x)} = \overline{\Phi}_{n,q} W_{n,q}(x). \tag{52}$$

Proof. We show that the matrix indices are equal.

$$\sum_{k=0}^{i} {i \choose k}_q \Phi_{i-k,q}(x \oplus_q \bar{j}_q)^k = \Phi_{i,q}(x \oplus_q \bar{j}_q).$$
 (53)

We remark that a special case of this equation can be found in [16, p. 1631].

In [7] we proved the formula

$$P_{n,q}(s \oplus_q t) = P_{n,q}(s)P_{n,q}(t), \ s, t \in \mathbb{R}.$$
(54)

This can be generalized to

Theorem 4.4. We assume that M and K are the x-order and y-order, respectively. The formula (43) can be rewritten in the following matrix form, where \cdot on the RHS denotes matrix multiplication.

$$\overline{\Phi}_{n,q}^{(M+K)}(x \oplus_q y) = \overline{\Phi}_{n,q}^{(M)}(x) \cdot \overline{\Phi}_{n,q}^{(K)}(y). \tag{55}$$

For the following proof, compare with [16, p. 1624].

Proof. We compute the (i, j) matrix element of the matrix multiplication on the RHS.

$$\sum_{k=j}^{i} {i \choose k}_{q} \Phi_{i-k,q}^{(M)}(x) {k \choose j}_{q} \Phi_{k-j,q}^{(K)}(y) = {i \choose j}_{q} \sum_{k=j}^{i} {i-j \choose k-j}_{q} \Phi_{i-k,q}^{(M)}(x) \Phi_{k-j,q}^{(K)}(y)
= {i \choose j}_{q} \sum_{k=0}^{i-j} {i-j \choose k}_{q} \Phi_{i-j-k,q}^{(M)}(x) \Phi_{k,q}^{(K)}(y) = {i \choose j}_{q} \Phi_{i-j,q}^{(M+K)}(x \oplus_{q} y) = \text{LHS}.$$
(56)

By formula (47), the $\overline{\Phi}_{n,q}^{(M)}(x)$ are matrices with matrix elements q-Appell polynomials multiplied by q-binomial coefficients, and we arrive at the next crucial definition.

Definition 24. We define the second matrix multiplication \cdot_q by

$$\overline{\Phi}_{n,q}^{(M)}(x) \cdot_q \overline{\Phi}_{n,q}^{(K)}(y) \equiv \overline{\Phi}_{n,q}^{(M+K)}(x \boxplus_q y). \tag{57}$$

Theorem 4.5. The set $(\mathcal{M}_{x,q}, \cdot, \cdot_q, I_n)$ is a q-Lie group with multiplications given by (55) and (57), and inverse $\overline{\Phi}_{n,q}^{(-M)}(-x)$. The unit element is the unit matrix I_n .

Proof. The set $\mathcal{M}_{x,q}$ is closed under the two operations by (55) and (57). By (57) we have

$$\overline{\Phi}_{n,q}^{(M)}(x) \cdot_q \overline{\Phi}_{n,q}^{(-M)}(-x) = \overline{\Phi}_{n,q}^{(0)}(\theta) = I_n, \tag{58}$$

which shows the existence of an inverse element and a unit.

The associative law reads:

$$\left(\overline{\Phi}_{n,q}^{(M)}(x) \cdot \overline{\Phi}_{n,q}^{(K)}(y)\right) \cdot_{q} \overline{\Phi}_{n,q}^{(J)}(z) = \overline{\Phi}_{n,q}^{(M)}(x) \cdot \left(\overline{\Phi}_{n,q}^{(K)}(y) \cdot_{q} \overline{\Phi}_{n,q}^{(J)}(z)\right), \tag{59}$$

which is equivalent to

$$\overline{\Phi}_{n,q}^{(M+K+J)}((x\oplus_q y)\boxplus_q z)=\overline{\Phi}_{n,q}^{(M+K+J)}(x\oplus_q (y\boxplus_q z)). \tag{60}$$

However, formula (60) follows from the associativity of the two q-additions.

Definition 25. In the definition of product q-Lie group, put

$$(\mathfrak{R}_q, \cdot, \cdot_q) \equiv (\mathbb{R}_q, \oplus_q, \boxplus_q) \times (\mathbb{Z}, +). \tag{61}$$

It is clear that formulas (55) and (57) defines a q-Lie group morphism from \Re_q to $\Re_{x,q}$.

Let

$$\left(\overline{\Phi}_{n,q}^{(M)}(x)\right)^{k} \equiv \overline{\Phi}_{n,q}^{(M)}(x) \cdot \overline{\Phi}_{n,q}^{(M)}(x) \cdot \dots \cdot \overline{\Phi}_{n,q}^{(M)}(x), \tag{62}$$

where the right hand side denotes the product of k equal matrices $\overline{\Phi}_{n,q}^{(M)}(x)$.

In [7] we proved the formula

$$P_{n,q}^k = P_{n,q}(\overline{k}_q). \tag{63}$$

This can be generalized to

$$\left(\overline{\Phi}_{n,q}^{(M)}(x)\right)^k = \overline{\Phi}_{n,q}^{(kM)}(\overline{k}_q x). \tag{64}$$

Furthermore, the formulas in [16, p. 1624] can be generalized to the special cases

$$\left(\overline{\Phi}_{n,q}^{(M)}\right)^k = \overline{\Phi}_{n,q}^{(kM)}, \ \left(\overline{\Phi}_{n,q}^{(1)}\right)^k = \overline{\Phi}_{n,q}^{(k)}. \tag{65}$$

4.1 Two factorizations

We show that our q-Appell polynomials allow simple extensions to factorizations by Fibonacci number matrices. The first Fibonacci numbers F_k have the following values:

k = 0	k = 1	k = 2	k = 3	k = 4	<i>k</i> = 5	k = 6
0	1	1	2	3	5	8

Definition 26. [12] We use the following notation for the matrix form of the Fibonacci numbers: $\mathcal{F}_n(i,j) \equiv F_{i-j}$.

It follows that [12, p. 205]

$$\mathcal{F}_n^{-1}(i,i) \equiv 1, i = 0, \dots, n-1, \ \mathcal{F}_n^{-1}(i+1,i) \equiv -1 \ i = 0, \dots, n-2, \mathcal{F}_n^{-1}(i+2,i) \equiv -1 \ i = 0, \dots, n-3, \ \mathcal{F}_n^{-1}(i,j) = 0 \ \text{otherwise.}$$
(66)

Definition 27. The matrix $\mathfrak{M}_{n,q}(x)$ has matrix elements

$$m_{i,j} = \binom{i}{j}_{q} \Phi_{i-j,q}(x) - \binom{i-1}{j}_{q} \Phi_{i-j-1,q}(x) - \binom{i-2}{j}_{q} \Phi_{i-j-2,q}(x). \tag{67}$$

For the following formula, compare with [16, p. 1627], where the corresponding formula for the Bernoulli matrix was given. Note that we do not need the order of the polynomials.

Theorem 4.6. The q-Appell polynomial matrix can be factorized as

$$\overline{\Phi}_{n,q}(x) = \mathcal{F}_n \mathcal{M}_{n,q}(x). \tag{68}$$

Proof. It would suffice to prove that

$$\mathcal{F}_n^{-1}\overline{\Phi}_{n,q}(x) = \mathcal{M}_{n,q}(x). \tag{69}$$

The matrix index of the left hand side is given by

$$\mathcal{F}_{n}^{-1}\overline{\Phi}_{n,q}(x)(i,j) = \sum_{k=0}^{n-1} \mathcal{F}_{n}^{-1}(i,k) \binom{k}{j}_{q} \Phi_{k-j,q}(x)
= \binom{i}{j}_{q} \Phi_{i-j,q}(x) - \binom{i-1}{j}_{q} \Phi_{i-j-1,q}(x) - \binom{i-2}{j}_{q} \Phi_{i-j-2,q}(x) = \text{RHS}.$$
(70)

We shall now prove a similar formula.

Definition 28. The matrix $\Re_{n,q}(x)$ has matrix elements

$$r_{i,j} = \binom{i}{j}_{q} \Phi_{i-j,q}(x) - \binom{i}{j+1}_{q} \Phi_{i-j-1,q}(x) - \binom{i}{j+2}_{q} \Phi_{i-j-2,q}(x). \tag{71}$$

For the following formula, compare with [17, p. 2372], where the corresponding formula for Pascal matrices was given.

Theorem 4.7. The q-Appell polynomial matrix can be factorized as

$$\overline{\Phi}_{n,a}(x) = \Re_{n,a}(x) \Im_n. \tag{72}$$

Proof. It suffices to prove that

$$\overline{\Phi}_{n,q}(x)\mathcal{F}_n^{-1} = \mathcal{R}_{n,q}(x). \tag{73}$$

The matrix index of the left hand side is given by

$$\overline{\Phi}_{n,q}(x)\mathcal{F}_{n}^{-1}(i,j) = \sum_{k=0}^{n-1} \binom{i}{k}_{q} \Phi_{i-k,q}(x)\mathcal{F}_{n}^{-1}(k,j)
= \binom{i}{j}_{q} \Phi_{i-j,q}(x) - \binom{i}{j+1}_{q} \Phi_{i-j-1,q}(x) - \binom{i}{j+2}_{q} \Phi_{i-j-2,q}(x) = \text{RHS}.$$
(74)

4.2 q-Bernoulli and q-Euler polynomials

We will also consider the special cases q-Bernoulli and q-Euler polynomials.

Definition 29. There are two types of q-Bernoulli polynomials, called $B_{NWA,\nu,q}(x)$, NWA q-Bernoulli polynomials, and $B_{JHC,\nu,q}(x)$, JHC q-Bernoulli polynomials. They are defined by the two generating functions

$$\frac{t}{(E_q(t)-1)}E_q(xt) = \sum_{\nu=0}^{\infty} \frac{t^{\nu}B_{\text{NWA},\nu,q}(x)}{\{\nu\}_q!}, |t| < 2\pi.$$
 (75)

and

$$\frac{t}{(\mathbf{E}_{\frac{1}{n}}(t)-1)}\mathbf{E}_{q}(xt) = \sum_{\nu=0}^{\infty} \frac{t^{\nu}\mathbf{B}_{\mathrm{JHC},\nu,q}(x)}{\{\nu\}_{q}!}, \ |t| < 2\pi.$$
 (76)

Definition 30. The Ward q-Bernoulli numbers are given by

$$B_{\text{NWA},n,q} \equiv B_{\text{NWA},n,q}(0). \tag{77}$$

The Jackson *q*-Bernoulli numbers are given by

$$B_{JHC,n,q} \equiv B_{JHC,n,q}(0). \tag{78}$$

The following table lists some of the first Ward q-Bernoulli numbers.

n =		n = 2	n = 3
1	$-(1+q)^{-1}$	$q^2({3}_q!)^{-1}$	$(1-q)q^3(\{2\}_q)^{-1}(\{4\}_q)^{-1}$

$$n = 4$$

$$q^{4}(1 - q^{2} - 2q^{3} - q^{4} + q^{6})(\{2\}_{q}^{2}\{3\}_{q}\{5\}_{q})^{-1}$$

To save space, we will use the following abbreviation in equations (80) - (84), (87), (88), (91), (95), (97), (98), (101)-(105), (108)-(109), (112)-(114).

$$NWA = NWA \vee JHC. \tag{79}$$

We will use the following vector forms for the q-Bernoulli polynomials corresponding to q-analogues of [1, p. 239].

$$b_{\text{NWA},n,q}(x) \equiv (B_{\text{NWA},0,q}(x), B_{\text{NWA},1,q}(x), \dots, B_{\text{NWA},n-1,q}(x))^T.$$
 (80)

The corresponding vector forms for numbers are

$$b_{\text{NWA},n,q} \equiv (B_{\text{NWA},0,q}, B_{\text{NWA},1,q}, \dots, B_{\text{NWA},n-1,q})^T.$$
 (81)

Let us introduce the NWA and JHC shifted q-Bernoulli matrices.

Definition 31.

$$\mathcal{B}_{\text{NWA},n,q}(x) \equiv (b_{\text{NWA},q}(x) \ \mathbb{E}(\oplus_q)b_{\text{NWA},q}(x) \ \cdots \ \mathbb{E}(\oplus_q)^{\overline{n-1}_q}b_{\text{NWA},q}(x)), \tag{82}$$

where $E(\oplus_q)^{\overline{n-1}_q}(x^n) \equiv (x \oplus_q \overline{n-1}_q)^n$.

We will need two similar matrices based on the B_{NWA} and B_{IHC} polynomials and numbers.

Definition 32. Two q-analogues of [3, p. 193]. The NWA and JHC q-Bernoulli polynomial matrices are defined by

$$\overline{B}_{\text{NWA},n,q}(x)(i,j) \equiv \begin{pmatrix} i \\ j \end{pmatrix}_q B_{\text{NWA},i-j,q}(x), 0 \le i, j \le n-1.$$
(83)

Definition 33. The NWA and JHC q-Bernoulli number matrices are defined by

$$\overline{B}_{\text{NWA},n,q}(i,j) \equiv \begin{pmatrix} i \\ j \end{pmatrix}_q B_{\text{NWA},i-j,q}, 0 \le i, j \le n-1.$$
(84)

Definition 34. The matrix $\mathfrak{D}_{\mathrm{NWA},n,q}$ has matrix elements

$$d_{\text{NWA},i,j} \equiv \begin{cases} \frac{1}{\{i-j+1\}_q} {i \choose j}_q & \text{if } i \ge j, \\ 0 & \text{otherwise.} \end{cases}$$
 (85)

Definition 35. The matrix $\mathfrak{D}_{\mathrm{JHC},n,q}$ has matrix elements

$$d_{\mathrm{JHC},i,j} \equiv \begin{cases} \frac{q^{\binom{i-j+1}{2}}}{\binom{i}{i-j+1}_q} \binom{i}{j}_q & \text{if } i \geq j, \\ 0 & \text{otherwise.} \end{cases}$$
 (86)

Theorem 4.8. The inverses of the q-Bernoulli number matrices are given by

$$\left(\overline{\mathbf{B}}_{\mathrm{NWA},n,q}\right)^{-1} = \mathcal{D}_{\mathrm{NWA},n,q}.$$
 (87)

This implies that

$$\overline{\mathbf{B}}_{\mathrm{NWA},n,q}^{k} = \mathcal{D}_{\mathrm{NWA},n,q}^{k}. \tag{88}$$

The following proof is very similar to [16, p. 1624].

Proof. For the NWA case, take away the factor $q^{\binom{k+1}{2}}$ and corresponding q-powers in the following equations. We show that $\overline{\mathrm{B}}_{\mathrm{IHC},n,q} \mathcal{D}_{\mathrm{IHC},n,q}$ is equal to the unit matrix. We know that

$$\sum_{k=0}^{n} \frac{q^{\binom{k+1}{2}}}{\{k+1\}_q} \binom{n}{k}_q B_{\text{JHC},n-k,q} = \delta_{n,0}.$$
 (89)

Then we have

$$\sum_{k=j}^{i} \frac{q^{\binom{k+1-j}{2}}}{\{k+1-j\}_{q}} \binom{i}{k}_{q} B_{JHC,i-k,q} \binom{k}{j}_{q}
= \binom{i}{j}_{q} \sum_{k=j}^{i} \frac{q^{\binom{k+1-j}{2}}}{\{k+1-j\}_{q}} \binom{i-j}{k-j}_{q} B_{JHC,i-k,q}
= \binom{i}{j}_{q} \sum_{k=0}^{i-j} \frac{q^{\binom{k+1}{2}}}{\{k+1\}_{q}} \binom{i-j}{k}_{q} B_{JHC,i-j-k,q} \stackrel{\text{by}(89)}{=} \binom{i}{j}_{q} \delta_{i-j,0}.$$
(90)

In [10] we considered the following q-analogues of [16, p. 1625]

$$\overline{B}_{NWA,n,q}(x \oplus_{q} y) = P_{n,q}(x)\overline{B}_{NWA,n,q}(y). \tag{91}$$

These can be generalized to

Theorem 4.9.

$$\overline{\Phi}_{n,q}(x \oplus_q y) = P_{n,q}(x)\overline{\Phi}_{n,q}(y). \tag{92}$$

In particular,

$$\overline{\Phi}_{n,q}(x) = P_{n,q}(x)\overline{\Phi}_{n,q}. \tag{93}$$

For the following proof one should compare with [16, p. 1625].

104 **DE GRUYTER** Thomas Ernst

Proof.

$$\sum_{k=j}^{i} {i \choose k}_{q} x^{i-k} {k \choose j}_{q} \Phi_{k-j,q}(y) = {i \choose j}_{q} \sum_{k=j}^{i} {i-j \choose k-j}_{q} x^{i-k} \Phi_{k-j,q}(y)$$

$$= {i \choose j}_{q} \sum_{k=0}^{i-j} {i-j \choose k}_{q} x^{i-j-k}(x) \Phi_{k,q}(y) = {i \choose j}_{q} \Phi_{i-j,q}(x \oplus_{q} y) = \text{LHS}.$$
(94)

Theorem 4.10. Two q-analogues of [16, p. 1626] The inverses of the q-Bernoulli polynomial matrices are given bν

 $(\overline{B}_{NWA,n,q}(x))^{-1} = (\overline{B}_{NWA,n,q})^{-1} P_{n,q}(x)^{-1} = \mathcal{D}_{NWA,n,q} P_{n,q}(x)^{-1}.$ (95)

When the order is increased, for y=0 in (55), we multiply the q-transfer matrix by $\overline{\Phi}_{n,q}^{(M)}(x)$. When the order is constant, in (93), we multiply the q-transfer matrix by the q-Pascal matrix.

We can now find a factorization of the q-Appell polynomial matrix and its inverse.

Theorem 4.11. A q-analogue and generalization of [16, p. 1626].

$$\overline{\Phi}_{n,q}(x) = \prod_{k=n}^{3} \left(\overline{I}_{n,k,q}(x) \overline{G}_{n,k}(x) \right) \overline{G}_{n,2,q} \star (x) \overline{\Phi}_{n,q}, \tag{96}$$

where the product is taken in decreasing order of k.

A factorization of the two q-Bernoulli matrices.

$$\left(\overline{\mathbf{B}}_{\mathrm{NWA},n,q}(x)\right)^{-1} = \mathcal{D}_{\mathrm{NWA},n,q}\overline{\mathbf{F}_{n,2,q}} \star (x) \prod_{k=3}^{n} (\overline{\mathbf{F}_{n,k}}(x)\overline{\mathbf{E}_{n,k,q}}(x)). \tag{97}$$

Proof. Use formulas (33), (34) and (93).

We now return to the q-Lie groups. We find that

Theorem 4.12. The functions of q-Bernoulli polynomial matrices

 $(\mathcal{B}_{NWA,q}, \cdot, \cdot_q, I_n)$ and $(\mathcal{B}_{JHC,q}, \cdot, \cdot_q, I_n)$ with elements

$$\overline{B}_{NWA,n,q}(x) \tag{98}$$

are q-Lie subgroups of $\mathcal{M}_{x,a}$.

Proof. The sets \mathcal{B} are closed under the two operations by (55) and (57). The existence of inverses follows as for $\mathcal{M}_{x,q}$.

Definition 36. There are two types of q-Euler polynomials, called $F_{NWA,v,q}(x)$, NWA q-Euler polynomials, and $F_{IHC,\nu,q}(x)$, JHC q-Euler polynomials. They are defined by the following two generating functions:

$$\frac{2E_q(xt)}{E_q(t)+1} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\{\nu\}_q!} F_{\text{NWA},\nu,q}(x), |t| < \pi,$$
(99)

and

$$\frac{2E_q(xt)}{E_{\frac{1}{q}}(t)+1} = \sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\{\nu\}_q!} F_{JHC,\nu,q}(x), |t| < \pi.$$
 (100)

Definition 37. We will use the following vector forms for these polynomials.

$$f_{\text{NWA},n,q}(x) \equiv (F_{\text{NWA},0,q}(x), F_{\text{NWA},1,q}(x), \dots, F_{\text{NWA},n-1,q}(x))^T.$$
 (101)

The corresponding q-Euler number vectors are

$$f_{\text{NWA},n,q} \equiv (F_{\text{NWA},0,q}, F_{\text{NWA},1,q}, \dots, F_{\text{NWA},n-1,q})^T.$$
 (102)

Let us introduce the two shifted q-Euler matrices.

Definition 38.

$$\mathcal{F}_{\text{NWA},n,q}(x) \equiv (f_{\text{NWA},q}(x) \ \text{E}(\oplus_q) f_{\text{NWA},q}(x) \ \cdots \ \text{E}(\oplus_q)^{\overline{n-1}_q} f_{\text{NWA},q}(x)). \tag{103}$$

We will need two similar matrices, based on the $F_{\text{\scriptsize NWA}}$ polynomials.

Definition 39. The two *q*-Euler polynomial matrices are defined by

$$\overline{F}_{\text{NWA},n,q}(x)(i,j) \equiv \begin{pmatrix} i \\ j \end{pmatrix}_{q} f_{\text{NWA},i-j,q}(x). \tag{104}$$

Definition 40. The NWA and JHC q-Euler matrices are defined by

$$\overline{F}_{\text{NWA},n,q}(i,j) \equiv \begin{pmatrix} i \\ j \end{pmatrix}_q F_{\text{NWA},i-j,q}, 0 \le i, j \le n-1.$$
(105)

Definition 41. The matrix $\mathcal{C}_{NWA,n,q}$ has matrix elements

$$c_{\text{NWA},i,j} \equiv \begin{cases} \frac{1}{2} \left[1 + \delta_{i-j,0} \right] {i \choose j}_q & \text{if } i \ge j, \\ 0 & \text{otherwise.} \end{cases}$$
 (106)

Definition 42. The matrix $\mathcal{C}_{JHC,n,q}$ has matrix elements

$$c_{\mathrm{JHC},i,j} \equiv \begin{cases} \frac{1}{2} \left[q^{\binom{i-j}{2}} + \delta_{i-j,0} \right] \binom{i}{j}_q & \text{if } i \geq j, \\ 0 & \text{otherwise.} \end{cases}$$
 (107)

Theorem 4.13. The inverses of the q-Euler number matrices are given by

$$\left(\overline{F}_{\text{NWA},n,q}\right)^{-1} = \mathcal{C}_{\text{NWA},n,q}.$$
(108)

This implies that

$$\overline{\mathbf{F}}_{\mathrm{NWA},n,q}^{-k} = \mathcal{C}_{\mathrm{NWA},n,q}^{k}. \tag{109}$$

Proof. For the NWA case, replace the factor $q^{\binom{k}{2}}$ by 1. We show that $\overline{F}_{JHC,n,q} \mathcal{C}_{JHC,n,q}$ is equal to the unit matrix. We know that

$$\sum_{k=0}^{n} q^{\binom{k}{2}} \binom{n}{k}_{q} F_{JHC, n-k, q} + F_{JHC, n, q} = 2\delta_{n, 0}.$$
 (110)

Introduce a function G(k). Then we have

$$\sum_{k=j}^{i} {i \choose k}_{q} F_{JHC,i-k,q} G(k-j) {k \choose j}_{q}$$

$$= {i \choose j}_{q} \sum_{k=j}^{i} {i-j \choose k-j}_{q} F_{JHC,i-k,q} G(k-j)$$

$$= {i \choose j}_{q} \sum_{k=0}^{i-j} {i-j \choose k}_{q} F_{JHC,i-j-k,q} G(k) \stackrel{\text{by}(110)}{=} {i \choose j}_{q} \delta_{i-j,0}.$$
(111)

It is now obvious that $G(k) = \frac{1}{2} \left[q^{\binom{k}{2}} + \delta_{k,0} \right]$ solves this equation for JHC and similar for NWA.

Theorem 4.14. Compare with [16, p. 1626] The inverses of the q-Euler polynomial matrices are given by

$$(\overline{F}_{NWA,n,q}(x))^{-1} = (\overline{F}_{NWA,n,q})^{-1} P_{n,q}(x)^{-1} = C_{NWA,n,q} P_{n,q}(x)^{-1}.$$
 (112)

Theorem 4.15. A factorization of the two q-Euler matrices.

$$\left(\overline{\mathbf{F}}_{\mathrm{NWA},n,q}(x)\right)^{-1} = \mathcal{C}_{\mathrm{NWA},n,q}\overline{\mathbf{F}}_{n,2,q} \star (x) \prod_{k=3}^{n} \left(\overline{\mathbf{F}}_{n,k}(x)\overline{\mathbf{E}}_{n,k,q}(x)\right). \tag{113}$$

We now return to the q-Lie groups.

Theorem 4.16. The sets of q-Euler polynomial matrices $(\mathcal{F}_{NWA,q}, \cdot, \cdot_q, I_n)$ and $(\mathcal{F}_{IHC,q}, \cdot, \cdot_q, I_n)$ with elements

$$\overline{\mathbf{F}}_{\mathrm{NWA},n,q}(\mathbf{x})\tag{114}$$

are q-Lie subgroups of $\mathcal{M}_{x,q}$.

5 A related ring of matrices

We first recall the commutative ring of q-Appell polynomials.

Definition 43. [11] We denote the set of all q-Appell polynomials (in the variable x) by $\mathcal{A}_{x;q}$. Let $\Phi_{n,q}(x)$ and $\Psi_{n,q}(x)$ be two elements in $\mathcal{A}_{x;q}$. Then the operations \bigoplus and \bigodot are defined as follows:

$$(\Phi_q(x) \bigoplus \Psi_q(x))_n \equiv (\Phi_q(x) + \Psi_q(x))_n, \tag{115}$$

$$(\Phi_q(x) \bigodot \Psi_q(x))_n \equiv (\Phi_q(x) \oplus_q \Psi_q(x))^n = \sum_{k=0}^n \binom{n}{k}_q \Phi_{n-k,q}(x) \Psi_{k,q}(x). \tag{116}$$

We keep the usual priority between \bigoplus and \bigcirc .

Theorem 5.1. [8], [11] $(A_{x;q}, \bigoplus, \bigcirc)$ is a commutative ring.

In the following, for clarity, we sometimes write f(t) for f(t, q).

Definition 44. Let $f(t) \in \mathbb{R}[[x]]$. The *q*-deformed Leibniz functional matrix is given by

$$(\mathcal{L}_{n,q})[f(t,q)](i,j) \equiv \begin{cases} \frac{D_{q,t}^{i-j}f(t,q)}{\{i-j\}_q!} & \text{if } i \ge j; \\ 0, & \text{otherwise} \end{cases} i, j = 0, 1, 2 \dots, n-1.$$
 (117)

Let the operator $\epsilon : \mathbb{R}[[x]] \to \mathbb{R}[[x]]$ be defined by

$$\epsilon f(x) \equiv f(qx).$$
 (118)

We infer that by the q-Leibniz formula [5]

$$(\mathcal{L}_{n,q})[f(t,q)g(t,q)] = (\mathcal{L}_{n,q})[f(t,q)] \cdot_{\varepsilon} (\mathcal{L}_{n,q})[g(t,q)], \tag{119}$$

where in the matrix multiplication for every term which includes $D_q^k f$, we operate with ϵ^k on g. We denote this by \cdot_{ϵ} . This operator can also be iterated, compare with [5].

For the following considerations, compare with [6], [13, p. 232] and [14, p. 67].

Definition 45. Assume that $f(t) \in \mathbb{R}[[x]]$. The i, j entries of the generalized q-Pascal functional matrix $\mathfrak{PF}_{n,q}[f(t,q)]$ of size $n \times n$ are

$$\mathcal{P}_{n,q}[f(t,q)](i,j) \equiv \begin{cases} \binom{i}{j}_q \mathcal{D}_{q,t}^{i-j} f(t,q) & \text{if } i \ge j; \\ 0, & \text{otherwise} \end{cases} i, j = 0, 1, 2 \dots, n-1.$$
(120)

The function f(t) is called invertible if $f(0) \neq 0$.

Example 1. When $f(t) \equiv E_a(at)$ we have

$$\mathcal{P}_{n,q}[f(t,q)] \equiv \mathcal{P}_{n,q}[\mathcal{E}_q(at)] = \mathcal{P}_{n,q}(a). \tag{121}$$

Theorem 5.2. [6] Formulas for the generalized q-Pascal functional matrix.

$$\mathcal{P}_{n,q}[f(t) + g(t)] = \mathcal{P}_{n,q}[f(t)] + \mathcal{P}_{n,q}[g(t)],$$

$$\mathcal{P}_{n,q}[f(t)] \cdot_{\epsilon} \mathcal{P}_{n,q}[g(t)] = \mathcal{P}_{n,q}[f(t)g(t)].$$
(122)

Definition 46. [6] Assume that f(t) is invertible. If the inverse $(f(t)^{-1})^{(k)}$ exists for k < n, we can define the q-inverse of the generalized q-Pascal functional matrix as

$$\left[\mathcal{P}_{n,q}[f(t,q)]\right]^{-1} \equiv \mathcal{P}_{n,q}[f(t,q)]^{-1}$$
. (123)

Inspired by this, we make the following definition:

Definition 47. The operations \bigoplus and \bigcirc are defined as follows:

$$\mathcal{P}_{n,q}[f(t)] \bigoplus \mathcal{P}_{n,q}[g(t)] \equiv \mathcal{P}_{n,q}[f(t) + g(t)]. \tag{124}$$

$$\mathcal{P}_{n,q}[f(t)] \bigodot \mathcal{P}_{n,q}[g(t)] \equiv \mathcal{P}_{n,q}[f(t)] \cdot_{\epsilon} \mathcal{P}_{n,q}[g(t)] = \mathcal{P}_{n,q}[f(t)g(t)]. \tag{125}$$

We keep the usual priority between \bigoplus and \bigcirc .

The generalized q-Pascal polynomial functional matrix $(\mathcal{PF}, f(t), \bigoplus, \odot, \mathcal{O}_n, I_n)$ is the set of all $\mathcal{P}_{n,q}[f]$ with the operations \bigoplus and \odot and units \mathcal{O}_n and I_n .

Theorem 5.3. Assume that O_n is the unit for \bigoplus , and that I_n is the unit for \bigodot . The generalized q-Pascal polynomial functional matrix

$$(\mathcal{PF}, f(t), \bigoplus, \bigodot, \mathcal{O}_n, I_n)$$
 (126)

is a commutative ring.

Proof. We presume that $\mathcal{P}_{n,q}[f]$, $\mathcal{P}_{n,q}[g]$ and $\mathcal{P}_{n,q}[h]$ are three elements in \mathcal{PF} corresponding to f(t), g(t) and h(t) respectively.

We first show that \bigoplus is well-defined. Assume that $f(t) + g(t) \neq 0$. Then

$$\mathcal{P}_{n,q}[f(t)] \bigoplus \mathcal{P}_{n,q}[g(t)] \in \mathcal{PF}, \tag{127}$$

The associative law for \bigoplus reads:

$$\mathcal{P}_{n,q}[f(t)] \bigoplus \left(\mathcal{P}_{n,q}[g(t)] \bigoplus \mathcal{P}_{n,q}[h(t)] \right) \\
= \left(\mathcal{P}_{n,q}[f(t)] \bigoplus \mathcal{P}_{n,q}[g(t)] \right) \bigoplus \mathcal{P}_{n,q}[h(t)]).$$
(128)

This follows from the associativity of +.

The commutative law for \bigoplus reads:

$$\mathcal{P}_{n,q}[f(t)] \bigoplus \mathcal{P}_{n,q}[g(t)] = \mathcal{P}_{n,q}[g(t)] \bigoplus \mathcal{P}_{n,q}[f(t)]. \tag{129}$$

This follows from the commutativity of +. The identity element with respect to \bigoplus is the zero matrix \mathcal{O}_n . We have

$$\mathcal{P}_{n,q}[f(t)] \bigoplus \mathcal{O}_n = \mathcal{P}_{n,q}[f(t)]. \tag{130}$$

There exists $-\mathcal{P}_{n,q}[f(t)]$ such that

$$\mathcal{P}_{n,q}[f(t)] \bigoplus -\mathcal{P}_{n,q}[f(t)] = \mathcal{O}_n. \tag{131}$$

This follows from the corresponding property of real numbers.

Then we show that \bigcirc is well-defined.

Assume that $f(t)g(t) \neq 0$. Then we have

$$\mathcal{P}_{n,q}[f(t)] \bigodot \mathcal{P}_{n,q}[g(t)] \text{ by}(125) \in \mathcal{PF}. \tag{132}$$

The associative law for \odot reads:

$$\mathcal{P}_{n,q}[f(t)] \bigodot \left(\mathcal{P}_{n,q}[g(t)] \bigodot \mathcal{P}_{n,q}[h(t)] \right) \\
= \left(\mathcal{P}_{n,q}[f(t)] \bigodot \mathcal{P}_{n,q}[g(t)] \right) \bigodot \mathcal{P}_{n,q}[h(t)]).$$
(133)

This follows from the associativity of the multiplication .

The commutative law for \bigcirc reads:

$$\mathcal{P}_{n,q}[f(t)] \bigodot \mathcal{P}_{n,q}[g(t)] = \mathcal{P}_{n,q}[g(t)] \bigodot \mathcal{P}_{n,q}[f(t)]. \tag{134}$$

This follows from the commutativity of the multiplication .

The identity element with respect to \odot is the identity matrix I_n . We have

$$\mathcal{P}_{n,q}[f(t)] \bigodot \mathbf{I}_n = \mathcal{P}_{n,q}[f(t)]. \tag{135}$$

The distributive law reads:

$$\mathcal{P}_{n,q}[f(t)] \bigodot \left(\mathcal{P}_{n,q}[g(t)] \bigoplus \mathcal{P}_{n,q}[h(t)] \right)
= \mathcal{P}_{n,q}[f(t)(g(t) + h(t))] = \mathcal{P}_{n,q}[f(t)g(t) + f(t)h(t)]
= \left(\mathcal{P}_{n,q}[f(t)] \bigodot \mathcal{P}_{n,q}[g(t)] \right) \bigoplus \left(\mathcal{P}_{n,q}[f(t)] \bigodot \mathcal{P}_{n,q}[h(t)] \right).$$
(136)

This follows from the distributive law of real numbers.

6 Conclusion

We have united and q-deformed formulas from papers by Arponen, Aceto et al., Yang et al. and Zhang et al. to give a first synthesis of q-Appell polynomial matrices, which were previously only known in special cases. Some of the formulas for q-Pascal matrices and their factorizations are generalized as well as formulas for q-Bernoulli and q-Euler matrices. We have given the first concrete examples of q-Lie subgroups, and constructed a similar ring of matrices with many pleasant properties.

Acknowledgement: I thank Karl-Heinz Fieseler for his kind assistance.

References

- [1] L. Aceto and D. Trigiante, The matrices of Pascal and other greats, Amer. Math. Monthly 108 no. 3 (2001), 232-245
- [2] L. Aceto, H.R. Malonek and G. Tomaz, A unified matrix approach to the representation of Appell polynomials, *Integral Transforms Spec. Funct.* 26 no. 6 (2015), 426–441
- [3] T.Arponen, A matrix approach to polynomials, Linear Algebra Appl. 359 (2003), 181–196
- [4] T. Ernst, A comprehensive treatment of q-calculus, Birkhäuser 2012
- [5] T. Ernst, *q*-Leibniz functional matrices with connections to *q*-Pascal and *q*-Stirling matrices. *Adv. Studies Contemp. Math.* 22 no. 4, (2012), 537-555
- [6] T. Ernst, q-Pascal and q-Wronskian matrices with implications to q-Appell polynomials. J. discrete math. Article ID 450481, 10 p. (2013)
- [7] T. Ernst, Faktorisierungen von q-Pascalmatrizen (Factorizations of q-Pascal matrices). Algebras Groups Geom. 31 no. 4, (2014), 387-405
- [8] T. Ernst, A solid foundation for q-Appell polynomials. ADSA 10, (2015), 27-35
- [9] T. Ernst, On the q-exponential of matrix q-Lie algebras. Spec. Matrices 5, (2017), 36-50
- [10] T. Ernst, On several q-special matrices, including the q-Bernoulli and q-Euler matrices. To appear in Linear Algebra Appl.
- [11] T. Ernst, A new semantics for special functions. Submitted.
- [12] G.-Y. Lee, J.-S. Kim and S.-G.Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices. *Fibonacci Quart.* 40, (2002), 203-211
- [13] Y. Yang and C. Micek, Generalized Pascal functional matrix and its applications. Linear Algebra Appl. 423 no. 2-3, (2007), 230-245
- [14] Y. Yang and H. Youn, Appell polynomial sequences: a linear algebra approach. J. Algebra Number Theory Appl. 13 no. 1, (2009), 65–98
- [15] Z. Zhang, The linear algebra of the generalized Pascal matrix. Linear Algebra Appl. 250, (1997), 51–60
- [16] Z. Zhang and J. Wang, Bernoulli matrix and its algebraic properties. Discrete Appl. Math. 154 no. 11, (2006), 1622-1632
- [17] Z. Zhang and X. Wang, A factorization of the symmetric Pascal matrix involving the Fibonacci matrix. *Discrete Appl. Math.* 155 no. 17, (2007), 2371-2376