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Abstract: In the spirit of our earlier paper [10] and Zhang andWang [16],we introduce thematrix ofmultiplica-
tive q-Appell polynomials of orderM ∈ Z. This is the representation of the respective q-Appell polynomials in
ke-ke basis. Based on the fact that the q-Appell polynomials form a commutative ring [11], we prove that this
set constitutes a q-Lie group with two dual q-multiplications in the sense of [9]. A comparison with earlier
results on q-Pascal matrices gives factorizations according to [7], which are specialized to q-Bernoulli and
q-Euler polynomials. We also show that the corresponding q-Bernoulli and q-Euler matrices form q-Lie sub-
groups. In the limit q → 1we obtain corresponding formulas for Appell polynomialmatrices.We conclude by
presenting the commutative ring of generalized q-Pascal functionalmatrices, which operates on all functions
f ∈ C∞q .
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1 Introduction
In this paper we will introduce several new concepts, some of which were previosly known only in the q-
case from the articles of the author. By the logarithmic method for q-calculus, this transition will be almost
automatic,with the q-addition being replaced by ordinary addition. Someof thematrix formulas in this paper
were previosly published for Bernoulli polynomials in [16] and for Pascal matrices in [17]. In the article [9] q-
Lie matrix groups with two dual multiplications, and in [8] the concept multiplicative q-Appell polynomial
were introduced. Now the interesting situation occurs, that the formula [16, p. 1623] for Bernoulli polynomial
matrices, which are multiplicative Appell polynomial matrices, also holds for the latter ones. Thus we devote
Section 2 to Lie groups of Appell matrices and to the new morphism formula (18). But �rst we repeat the
summation matrix Gn,k(x) and the di�erence matrix Fn,k(x) and all the other matrices from [15] in Section 1.

Toprepare for thematrix factorizations of the q-Liematrices in Section 4,wepresent the relevant q-Pascal
and q-unit matrices from [7] in Section 3. In Subsection 4.2 we �rst repeat the matrix forms of the q-Bernoulli
and q-Euler polynomials from [10] to prepare for the computation of their inverses and factorizations. The
main purpose of Section 4 is the introduction of the multiplicative q-Appell polynomial matrix and its func-
tional equation, a general so-called q-morphism. In Section 4.1 generalizations of factorizations of Bernoulli
matrices to q-Appell polynomial matrices are presented. Finally, in Section 5 the existence of a commutative
ring of generalized q-Pascal polynomial functional matrices is proved.

We start our presentation with a brief repetition of some of our matrices.
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De�nition 1. Matrix elements will always be denoted (i, j). Here i denotes the row and j denotes the column.
The matrix elements range from 0 to n − 1. The matrices In, Sn, An, Dn, Sn(x) and Dn(x) are de�ned by

In ≡ diag(1, 1, . . . , 1) (1)

Sn(i, j) ≡
{
1, if j ≤ i,
0, if j > i,

(2)

An(t)(i, j) ≡
{
ti , if j = i,
0, otherwise

(3)

Dn(i, i) ≡ 1 for all i, (4)

Dn(i + 1, i) ≡ −1, for i = 0, . . . , n − 2 (5)

Dn(i, j) ≡ 0, if j > i or j < i − 1 (6)

Sn(x)(i, j) ≡
{
xi−j , if j ≤ i,
0, if j > i,

(7)

Dn(x; i, i) ≡ 1, i = 0, . . . , n − 1, Dn(x; i + 1, i) ≡ −x, for i = 0, . . . , n − 2,
Dn(x; i, j) ≡ 0, when j > i or j < i − 1.

(8)

We note that Dn is a special case of Dn(x), and Sn is a special case of Sn(x).
The summation matrix Gn,k(x) and its inverse, the di�erence matrix Fn,k(x), are de�ned by [15, p. 52,54]:

Gn,k(x) ≡
[

In−k 0T

0 Sk(x)

]
, k = 3, . . . , n, Gn,n(x) ≡ Sn(x), n > 2,

Fn,k(x) ≡
[

In−k 0T

0 Dk(x)

]
, k = 3, . . . , n, Fn,n(x) ≡ Dn(x), n > 2.

(9)

2 The Lie group of Appell matrices
We �rst de�ne Appell polynomials and multiplicative Appell polynomials.

De�nition 2. LetA denote the set of real sequences {uν}∞ν=0 such that

∞∑
ν=0
|uν|

rν
ν! < ∞, (10)

for some convergence radius r > 0.

De�nition 3. For fn(t) ∈ R[[t]], let pν ∈ A and let p(n)ν denote the Appell numbers of degree ν and order n ∈ Z
with the following generating function

fn(t) =
∞∑
ν=0

tν
ν!p

(n)
ν . (11)
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De�nition 4. For every formal power series fn(t) = h(t)n, let pM,ν ∈ A and let p(n)
M,ν denote themultiplicative

Appell numbers of degree ν and order n ∈ Z with the following generating function

h(t)n =
∞∑
ν=0

tν
ν!p

(n)
M,ν . (12)

De�nition 5. For every formal power series fn(t) = h(t)n given by (12), the multiplicative Appell polynomials
or p(n)ν (x) polynomials of degree ν and order n ∈ Z have the following generating function

fn(t)ext =
∞∑
ν=0

tν
ν!p

(n)
ν (x). (13)

The proof of the following formula is relegated to (43).

Theorem 2.1. Assume that M and K are the x-order and y-order, respectively.

p(M+K)
ν (x + y) =

ν∑
k=0

(
ν
k

)
p(M)
k (x)p(K)ν−k(y). (14)

De�nition 6. We will use the following vector forms for the Appell polynomials and numbers:

Πn(x) ≡ (p0(x), p1(x), . . . , pn−1(x))T , (15)

Πn ≡ Πn(0). (16)

De�nition 7. The multiplicative Appell polynomial matrix of order M ∈ Z is de�ned by

p(M)
n (x)(i, j) ≡

(
i
j

)
p(M)
i−j (x), 0 ≤ i, j ≤ n − 1. (17)

We refer to (56) for the proof of the next theorem.

Theorem 2.2. In the following formula we assume that M and K are the x-order and y-order, respectively.

p(M+K)
n (x + y) = p(M)

n (x)p(K)n (y). (18)

Theorem 2.3. The multiplicative Appell polynomial matrices (M,
⊙

) with elements p(M)
n (x) is an Abelian ma-

trix Lie group with multiplication given by (18) and inverse p(−M)
n (−x).

Proof. The setM is closed under the operation
⊙

by (18). The group element p(−M)
n (−x) is inverse to p(M)

n (x) by
the subtraction of real numbers. The unit element is the unit matrix In. The associativity and commutativity
follow by (18).

3 The q-Pascal matrix and the q-unit matrices
De�nition 8. The q-Pascal matrix Pn,q(x) [7] is given by the familiar expression

Pn,q(i, j)(x) ≡
(
i
j

)
q

xi−j , i ≥ j. (19)

The following special case is often used.
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De�nition 9.
Pn,q ≡ Pn,q(1). (20)

We now recall some formulas from [7].

De�nition 10. The matrices Pn,k,q(x), Pk,q * (x) and Pn,k,q * (x) are de�ned by

Pn,k,q(x) ≡
[

In−k 0T

0 Pk,q(x)

]
, (21)

Pk,q * (x; i, j) =
(
i
j

)
q

(qx)i−j , i, j = 0, . . . , k − 1, (22)

Pn,k,q * (x) ≡
[

In−k 0T

0 Pk,q * (x)

]
, k = 3, . . . , n, Pn,n,q * (x) ≡ Pn,q * (x). (23)

Let the two matrices Ik,q(x), and its inverse, Ek,q(x), be given by:

Ik,q(x; i, i) ≡ 1, i = 0, . . . , k − 1, Ik,q(x; i + 1, i) ≡ x(qi+1 − 1), i = 0 . . . , k − 1,
Ik,q(x; i, j) ≡ 0 for other i, j.

Ek,q(x; i, j) ≡ 〈j + 1; q〉i−jxi−j , i ≥ j, Ek,q(x; i, j) ≡ 0 for other i, j.

(24)

Similarly, let the two matrices In,k,q(x), and its inverse, En,k,q(x), be given by:

In,k,q(x) ≡
[

In−k 0T

0 Ik,q(x)

]
, In,n,q(x) ≡ In . (25)

En,k,q(x) ≡
[

In−k 0T

0 Ek,q(x)

]
, En,n,q(x) ≡ In . (26)

We call In,k,q(x) the q-unitmatrix function.Wewill use a slightly q-deformed version of the D- and F-matrices:

Dk,q * (x; i, i) ≡ 1, i = 0, . . . , k − 1, Dk,q * (x; i + 1, i) ≡ −xqi , i = 0, . . . , k − 1,
Dk,q * (x; i, j) ≡ 0, if j > i or j < i − 1.

(27)

Fn,k,q * (x) ≡
[

In−k 0T

0 Dk,q*(x)

]
. (28)

The q–summation matrices are de�ned by

Gk * (x) ≡

QE
((i−j+1

2
)
+ j(i − j)

)
xi−j , if j ≤ i,

0, if j > i,
,

Gn,k,q * (x) ≡
[

In−k 0T

0 Gk,q * (x)

]
.

(29)

We have the inverse relation:
Fn,k,q * (x)−1 = Gn,k,q * (x). (30)

The inverse of Pk,q * (x) is given by

(Pk,q * (x))−1(i, j) =
(
i
j

)
q

(−x)i−jq(
i−j+1
2 ), i, j = 0, . . . , k − 1. (31)
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The following matrix will be used in formula (52).

De�nition 11. The q-Cauchy matrix is given by

Wn,q(x)(i, j) ≡ (x ⊕q jq)i . (32)

Theorem 3.1. [7]. A q-analogue of [15, p.53 (1)]. If n ≥ 3, the q-Pascal matrix Pn,q(x) can be factorized by the
summation matrices and by the q-unit matrices as

Pn,q(x) =
3∏
k=n

(
In,k,q(x)Gn,k(x)

)
Gn,2,q * (x), (33)

where the product is taken in decreasing order of k.

Theorem 3.2. [7]. A q-analogue of [15, p. 54]. The inverse of the q-Pascal matrix is given by

Pn,q(x)−1 = Fn,2,q * (x)
n∏
k=3

(Fn,k(x)En,k,q(x)). (34)

4 The q-Lie group of q-Appell polynomial matrices
We �rst repeat and extend some de�nitions from [9].

De�nition 12. A q-Lie group (Gn,q,·,·q , Ig) ⊇ Eq(gq), is a possibly in�nite set of matrices ∈ GLq(n,R), and a
manifold, with two multiplications: ·, the usual matrix multiplication, and the twisted ·q, which is de�ned
separately. Each q-Lie group has a unit, denoted by Ig, which is the same for both multiplications. Each ele-
ment Φ ∈ Gn,q has an inverse Φ−1 with the property Φ ·q Φ−1 = Ig.

De�nition 13. If (G1, ·1, ·1:q) and (G2, ·2, ·2:q) are two q-Lie groups, then (G1×G2, ·, ·q) is a q-Lie group called
the product q-Lie group. This has group operations de�ned by

(g11, g21) · (g12, g22) = (g11 ·1 g12, g21 ·2 g22), (35)

and
(g11, g21) ·q (g12, g22) = (g11 ·1:q g12, g21 ·2:q g22). (36)

De�nition 14. If (Gn,q , ·, ·q) is a q-Lie group and Hn,q is a nonempty subset of Gn,q, then (Hn,q , ·, ·q) is called
a q-Lie subgroup of (Gn,q , ·, ·q) if
1.

Φ · Ψ ∈ Hn,q and Φ ·q Ψ ∈ Hn,q for all Φ, Ψ ∈ Hn,q . (37)

2.
Φ−1 ∈ Hn,q for all Φ ∈ Hn,q . (38)

3. Hn,q is a submanifold of Gn,q.

De�nition 15. An invertible mapping f : (Gn,q , ·1, ·1:q) → (Hn,q , ·2, ·2:q) is called a q-Lie group morphism
between (Gn,q , ·1, ·1:q) and (Hn,q , ·2, ·2:q) if

f (ϕ ·1 ψ) = f (ϕ) ·2 f (ψ), and f (ϕ ·1:q ψ) = f (ϕ) ·2:q f (ψ). (39)

It is obvious that (Z, +) is a q-Lie group with only one operation. We will use this fact in formula (61).
Themost general form of polynomial in this article is the q-Appell polynomial, whichwewill now de�ne.
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De�nition 16. LetAq denote the set of real sequences {uν,q}∞ν=0 such that

∞∑
ν=0
|uν,q|

rν
{ν}q!

< ∞, (40)

for some q-dependent convergence radius r = r(q) > 0, where 0 < q < 1.

De�nition 17. Assume that h(t, q), h(t, q)−1 ∈ R[[t]]. For fn(t, q) = h(t, q)n, letΦν,q ∈ Aq and letΦ(n)
ν,q denote

the multiplicative q–Appell number of degree ν and order n given by the generating function

fn(t, q) =
∞∑
ν=0

tν
{ν}q!

Φ(n)
ν,q , Φ0,q = 1, n ∈ Z. (41)

De�nition 18. For every formal power series fn(t, q) given by (41), the multiplicative q–Appell polynomials
or Φq polynomials of degree ν and order n have the following generating function:

fn(t, q)Eq(xt) =
∞∑
ν=0

tν
{ν}q!

Φ(n)
ν,q(x), n ∈ Z. (42)

Theorem 4.1. In the following formula we assume that M and K are the x-order and y-order, respectively.

Φ(M+K)
ν,q (x ⊕q y) =

ν∑
k=0

(
ν
k

)
q

Φ(M)
k,q (x)Φ

(K)
ν−k,q(y). (43)

Proof. This is proved in the same way as in [4, 4.242, p. 136].

The following vector forms for q-Appell polynomials and numbers will be used in formulas (80), (81), (101)
and (102).

De�nition 19.
ϕn,q(x) ≡ (Φ0,q(x),Φ1,q(x), . . . ,Φn−1,q(x))T , (44)

ϕn,q ≡ ϕn,q(0). (45)

De�nition 20. De�ne the q-Appell polynomial matrix by

Φn,q(x)(i, j) ≡
(
i
j

)
q

Φi−j,q(x), 0 ≤ i, j ≤ n − 1. (46)

De�nition 21. Themultiplicative q-Appell polynomial matrices (Mx,q)with elementsΦ(M)
n,q (x) of orderM ∈ Z

are de�ned by

Φ(M)
n,q (x)(i, j) ≡

(
i
j

)
q

Φ(M)
i−j,q(x), 0 ≤ i, j ≤ n − 1. (47)

De�nition 22. The multiplicative q-Appell number matrices or the q-transfer matrices (Mq) with elements
Φ(M)
n,q of order M ∈ Z are de�ned by

Φ(M)
n,q (i, j) ≡ Φ

(M)
n,q (0)(i, j), 0 ≤ i, j ≤ n − 1. (48)

Theorem 4.2. A q-analogue of [2, (3.9), p. 432]

Φ(M)
n,q (x) = Φ

(M)
n,q ξn(x), where (49)
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ξn(x) ≡ (1, x, x2, . . . , xn−1)T . (50)

We de�ne a generalization of formulas (82) and (103).

De�nition 23. The shifted q-Appell polynomial matrix Φ̃n,q(x) is de�ned by

Φ̃n,q(x)(i, j) ≡ Φi,q(x ⊕q jq), 0 ≤ i, j ≤ n − 1. (51)

Corollary 4.3. A generalization of [10]. The shifted q-Appell polynomial matrix can be written as the product
of the q-Appell number matrix and the q-Cauchy matrix.

Φ̃n,q(x) = Φn,qWn,q(x). (52)

Proof. We show that the matrix indices are equal.

i∑
k=0

(
i
k

)
q

Φi−k,q(x ⊕q jq)
k = Φi,q(x ⊕q jq). (53)

We remark that a special case of this equation can be found in [16, p. 1631].
In [7] we proved the formula

Pn,q(s ⊕q t) = Pn,q(s)Pn,q(t), s, t ∈ R. (54)

This can be generalized to

Theorem 4.4. We assume that M and K are the x-order and y-order, respectively. The formula (43) can be
rewritten in the following matrix form, where · on the RHS denotes matrix multiplication.

Φ(M+K)
n,q (x ⊕q y) = Φ

(M)
n,q (x) · Φ

(K)
n,q(y). (55)

For the following proof, compare with [16, p. 1624].

Proof. We compute the (i, j)matrix element of the matrix multiplication on the RHS.

i∑
k=j

(
i
k

)
q

Φ(M)
i−k,q(x)

(
k
j

)
q

Φ(K)
k−j,q(y) =

(
i
j

)
q

i∑
k=j

(
i − j
k − j

)
q

Φ(M)
i−k,q(x)Φ

(K)
k−j,q(y)

=
(
i
j

)
q

i−j∑
k=0

(
i − j
k

)
q

Φ(M)
i−j−k,q(x)Φ

(K)
k,q(y) =

(
i
j

)
q

Φ(M+K)
i−j,q (x ⊕q y) = LHS.

(56)

By formula (47), theΦ(M)
n,q (x)arematriceswithmatrix elements q-Appell polynomialsmultipliedby q-binomial

coe�cients, and we arrive at the next crucial de�nition.

De�nition 24. We de�ne the second matrix multiplication ·q by

Φ(M)
n,q (x) ·q Φ

(K)
n,q(y) ≡ Φ

(M+K)
n,q (x �q y). (57)

Theorem 4.5. The set (Mx,q , ·, ·q , In) is a q-Lie group with multiplications given by (55) and (57), and inverse
Φ(−M)
n,q (−x). The unit element is the unit matrix In.
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Proof. The setMx,q is closed under the two operations by (55) and (57). By (57) we have

Φ(M)
n,q (x) ·q Φ

(−M)
n,q (−x) = Φ(0)

n,q(θ) = In , (58)

which shows the existence of an inverse element and a unit.
The associative law reads:(

Φ(M)
n,q (x) · Φ

(K)
n,q(y)

)
·q Φ

(J)
n,q(z) = Φ

(M)
n,q (x) ·

(
Φ(K)
n,q(y) ·q Φ

(J)
n,q(z)

)
, (59)

which is equivalent to
Φ(M+K+J)
n,q ((x ⊕q y)�q z) = Φ

(M+K+J)
n,q (x ⊕q (y �q z)). (60)

However, formula (60) follows from the associativity of the two q-additions.

De�nition 25. In the de�nition of product q-Lie group, put

(Rq , ·, ·q) ≡ (Rq ,⊕q ,�q) × (Z, +). (61)

It is clear that formulas (55) and (57) de�nes a q-Lie group morphism from Rq toMx,q.
Let (

Φ(M)
n,q (x)

)k
≡ Φ(M)

n,q (x) · Φ
(M)
n,q (x) · · · · · Φ

(M)
n,q (x), (62)

where the right hand side denotes the product of k equal matrices Φ(M)
n,q (x).

In [7] we proved the formula
Pkn,q = Pn,q(kq). (63)

This can be generalized to (
Φ(M)
n,q (x)

)k
= Φ(kM)

n,q (kqx). (64)

Furthermore, the formulas in [16, p. 1624] can be generalized to the special cases(
Φ(M)
n,q
)k

= Φ(kM)
n,q ,

(
Φ(1)
n,q
)k

= Φ(k)
n,q . (65)

4.1 Two factorizations

We show that our q-Appell polynomials allow simple extensions to factorizations by Fibonacci number ma-
trices. The �rst Fibonacci numbers Fk have the following values:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0 1 1 2 3 5 8

De�nition 26. [12] We use the following notation for the matrix form of the Fibonacci numbers: Fn(i, j) ≡
Fi−j.

It follows that [12, p. 205]

F−1n (i, i) ≡ 1, i = 0, . . . , n − 1, F−1n (i + 1, i) ≡ −1 i = 0, . . . , n − 2,
F−1n (i + 2, i) ≡ −1 i = 0, . . . , n − 3, F−1n (i, j) = 0 otherwise.

(66)

De�nition 27. The matrixMn,q(x) has matrix elements

mi,j =
(
i
j

)
q

Φi−j,q(x) −
(
i − 1
j

)
q

Φi−j−1,q(x) −
(
i − 2
j

)
q

Φi−j−2,q(x). (67)

Brought to you by | Uppsala University Library
Authenticated

Download Date | 7/24/18 11:58 AM



On the q-Lie group of q-Appell matrices | 101

For the following formula, compare with [16, p. 1627], where the corresponding formula for the Bernoulli
matrix was given. Note that we do not need the order of the polynomials.

Theorem 4.6. The q-Appell polynomial matrix can be factorized as

Φn,q(x) = FnMn,q(x). (68)

Proof. It would su�ce to prove that
F−1n Φn,q(x) = Mn,q(x). (69)

The matrix index of the left hand side is given by

F−1n Φn,q(x)(i, j) =
n−1∑
k=0

F−1n (i, k)
(
k
j

)
q

Φk−j,q(x)

=
(
i
j

)
q

Φi−j,q(x) −
(
i − 1
j

)
q

Φi−j−1,q(x) −
(
i − 2
j

)
q

Φi−j−2,q(x) = RHS.

(70)

We shall now prove a similar formula.

De�nition 28. The matrix Rn,q(x) has matrix elements

ri,j =
(
i
j

)
q

Φi−j,q(x) −
(

i
j + 1

)
q

Φi−j−1,q(x) −
(

i
j + 2

)
q

Φi−j−2,q(x). (71)

For the following formula, compare with [17, p. 2372], where the corresponding formula for Pascal matrices
was given.

Theorem 4.7. The q-Appell polynomial matrix can be factorized as

Φn,q(x) = Rn,q(x)Fn . (72)

Proof. It su�ces to prove that
Φn,q(x)F−1n = Rn,q(x). (73)

The matrix index of the left hand side is given by

Φn,q(x)F−1n (i, j) =
n−1∑
k=0

(
i
k

)
q

Φi−k,q(x)F−1n (k, j)

=
(
i
j

)
q

Φi−j,q(x) −
(

i
j + 1

)
q

Φi−j−1,q(x) −
(

i
j + 2

)
q

Φi−j−2,q(x) = RHS.

(74)

4.2 q-Bernoulli and q-Euler polynomials

We will also consider the special cases q-Bernoulli and q-Euler polynomials.

De�nition 29. There are two types of q-Bernoulli polynomials, called BNWA,ν,q(x), NWA q-Bernoulli polyno-
mials, and BJHC,ν,q(x), JHC q-Bernoulli polynomials. They are de�ned by the two generating functions

t
(Eq(t) − 1)

Eq(xt) =
∞∑
ν=0

tνBNWA,ν,q(x)
{ν}q!

, |t| < 2π. (75)
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and
t

(E 1
q
(t) − 1)Eq(xt) =

∞∑
ν=0

tνBJHC,ν,q(x)
{ν}q!

, |t| < 2π. (76)

De�nition 30. The Ward q-Bernoulli numbers are given by

BNWA,n,q ≡ BNWA,n,q(0). (77)

The Jackson q-Bernoulli numbers are given by

BJHC,n,q ≡ BJHC,n,q(0). (78)

The following table lists some of the �rst Ward q-Bernoulli numbers.

n = 0 n = 1 n = 2 n = 3
1 −(1 + q)−1 q2({3}q!)−1 (1 − q)q3({2}q)−1({4}q)−1

n = 4
q4(1 − q2 − 2q3 − q4 + q6)({2}2q{3}q{5}q)−1

To save space, we will use the following abbreviation in equations (80) - (84), (87), (88), (91), (95), (97), (98),
(101)-(105), (108)-(109), (112)-(114).

NWA = NWA ∨ JHC. (79)

We will use the following vector forms for the q-Bernoulli polynomials corresponding to q-analogues of [1, p.
239].

bNWA,n,q(x) ≡ (BNWA,0,q(x), BNWA,1,q(x), . . . , BNWA,n−1,q(x))
T . (80)

The corresponding vector forms for numbers are

bNWA,n,q ≡ (BNWA,0,q , BNWA,1,q , . . . , BNWA,n−1,q)
T . (81)

Let us introduce the NWA and JHC shifted q-Bernoulli matrices.

De�nition 31.
BNWA,n,q(x) ≡ (bNWA,q(x) E(⊕q)bNWA,q(x) · · · E(⊕q)n−1qbNWA,q(x)), (82)

where E(⊕q)n−1q (xn) ≡ (x ⊕q n − 1q)n.

We will need two similar matrices based on the BNWA and BJHC polynomials and numbers.

De�nition 32. Two q-analogues of [3, p. 193]. The NWA and JHC q-Bernoulli polynomial matrices are de�ned
by

BNWA,n,q(x)(i, j) ≡
(
i
j

)
q

BNWA,i−j,q(x), 0 ≤ i, j ≤ n − 1. (83)

De�nition 33. The NWA and JHC q-Bernoulli number matrices are de�ned by

BNWA,n,q(i, j) ≡
(
i
j

)
q

BNWA,i−j,q , 0 ≤ i, j ≤ n − 1. (84)

Brought to you by | Uppsala University Library
Authenticated

Download Date | 7/24/18 11:58 AM



On the q-Lie group of q-Appell matrices | 103

De�nition 34. The matrixDNWA,n,q has matrix elements

dNWA,i,j ≡


1

{i−j+1}q

(i
j
)
q
if i ≥ j,

0 otherwise.
(85)

De�nition 35. The matrixDJHC,n,q has matrix elements

dJHC,i,j ≡

 q(i−j+12 )
{i−j+1}q

(i
j
)
q
if i ≥ j,

0 otherwise.
(86)

Theorem 4.8. The inverses of the q-Bernoulli number matrices are given by(
BNWA,n,q

)−1 = DNWA,n,q . (87)

This implies that
B−kNWA,n,q = Dk

NWA,n,q . (88)

The following proof is very similar to [16, p. 1624].

Proof. For the NWA case, take away the factor q(
k+1
2 ) and corresponding q-powers in the following equations.

We show that BJHC,n,qDJHC,n,q is equal to the unit matrix. We know that

n∑
k=0

q(
k+1
2 )

{k + 1}q

(
n
k

)
q

BJHC,n−k,q = δn,0. (89)

Then we have

i∑
k=j

q(
k+1−j
2 )

{k + 1 − j}q

(
i
k

)
q

BJHC,i−k,q

(
k
j

)
q

=
(
i
j

)
q

i∑
k=j

q(
k+1−j
2 )

{k + 1 − j}q

(
i − j
k − j

)
q

BJHC,i−k,q

=
(
i
j

)
q

i−j∑
k=0

q(
k+1
2 )

{k + 1}q

(
i − j
k

)
q

BJHC,i−j−k,q
by(89)=

(
i
j

)
q

δi−j,0.

(90)

In [10] we considered the following q-analogues of [16, p. 1625]

BNWA,n,q(x ⊕q y) = Pn,q(x)BNWA,n,q(y). (91)

These can be generalized to

Theorem 4.9.
Φn,q(x ⊕q y) = Pn,q(x)Φn,q(y). (92)

In particular,
Φn,q(x) = Pn,q(x)Φn,q . (93)

For the following proof one should compare with [16, p. 1625].
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Proof.

i∑
k=j

(
i
k

)
q

xi−k
(
k
j

)
q

Φk−j,q(y) =
(
i
j

)
q

i∑
k=j

(
i − j
k − j

)
q

xi−kΦk−j,q(y)

=
(
i
j

)
q

i−j∑
k=0

(
i − j
k

)
q

xi−j−k(x)Φk,q(y) =
(
i
j

)
q

Φi−j,q(x ⊕q y) = LHS.

(94)

Theorem 4.10. Two q-analogues of [16, p. 1626] The inverses of the q-Bernoulli polynomial matrices are given
by (

BNWA,n,q(x)
)−1 = (BNWA,n,q

)−1 Pn,q(x)−1 = DNWA,n,qPn,q(x)−1. (95)

When the order is increased, for y = 0 in (55), we multiply the q-transfer matrix by Φ(M)
n,q (x). When the order

is constant, in (93), we multiply the q-transfer matrix by the q-Pascal matrix.
We can now �nd a factorization of the q-Appell polynomial matrix and its inverse.

Theorem 4.11. A q-analogue and generalization of [16, p. 1626].

Φn,q(x) =
3∏
k=n

(
In,k,q(x)Gn,k(x)

)
Gn,2,q * (x)Φn,q , (96)

where the product is taken in decreasing order of k.
A factorization of the two q-Bernoulli matrices.

(
BNWA,n,q(x)

)−1 = DNWA,n,qFn,2,q * (x)
n∏
k=3

(Fn,k(x)En,k,q(x)). (97)

Proof. Use formulas (33), (34) and (93).

We now return to the q-Lie groups. We �nd that

Theorem 4.12. The functions of q-Bernoulli polynomial matrices
(BNWA,q , ·, ·q , In) and (BJHC,q , ·, ·q , In) with elements

BNWA,n,q(x) (98)

are q-Lie subgroups ofMx,q.

Proof. The sets B are closed under the two operations by (55) and (57). The existence of inverses follows as
forMx,q.

De�nition 36. There are two types of q-Euler polynomials, called FNWA,ν,q(x), NWA q-Euler polynomials,
and FJHC,ν,q(x), JHC q-Euler polynomials. They are de�ned by the following two generating functions:

2Eq(xt)
Eq(t) + 1

=
∞∑
ν=0

tν
{ν}q!

FNWA,ν,q(x), |t| < π, (99)

and
2Eq(xt)
E 1
q
(t) + 1 =

∞∑
ν=0

tν
{ν}q!

FJHC,ν,q(x), |t| < π. (100)
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De�nition 37. We will use the following vector forms for these polynomials.

fNWA,n,q(x) ≡ (FNWA,0,q(x), FNWA,1,q(x), . . . , FNWA,n−1,q(x))
T . (101)

The corresponding q-Euler number vectors are

fNWA,n,q ≡ (FNWA,0,q , FNWA,1,q , . . . , FNWA,n−1,q)
T . (102)

Let us introduce the two shifted q-Euler matrices.

De�nition 38.
FNWA,n,q(x) ≡ (fNWA,q(x) E(⊕q)fNWA,q(x) · · · E(⊕q)n−1q fNWA,q(x)). (103)

We will need two similar matrices, based on the FNWA polynomials.

De�nition 39. The two q-Euler polynomial matrices are de�ned by

FNWA,n,q(x)(i, j) ≡
(
i
j

)
q

fNWA,i−j,q(x). (104)

De�nition 40. The NWA and JHC q-Euler matrices are de�ned by

FNWA,n,q(i, j) ≡
(
i
j

)
q

FNWA,i−j,q , 0 ≤ i, j ≤ n − 1. (105)

De�nition 41. The matrix CNWA,n,q has matrix elements

cNWA,i,j ≡


1
2
[
1 + δi−j,0

] (i
j
)
q
if i ≥ j,

0 otherwise.
(106)

De�nition 42. The matrix CJHC,n,q has matrix elements

cJHC,i,j ≡


1
2

[
q(

i−j
2 ) + δi−j,0

] (i
j
)
q
if i ≥ j,

0 otherwise.
(107)

Theorem 4.13. The inverses of the q-Euler number matrices are given by(
FNWA,n,q

)−1 = CNWA,n,q . (108)

This implies that
F−kNWA,n,q = CkNWA,n,q . (109)

Proof. For the NWA case, replace the factor q(
k
2) by 1. We show that FJHC,n,qCJHC,n,q is equal to the unit matrix.

We know that
n∑
k=0

q(
k
2)
(
n
k

)
q

FJHC,n−k,q + FJHC,n,q = 2δn,0. (110)
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Introduce a function G(k). Then we have

i∑
k=j

(
i
k

)
q

FJHC,i−k,qG(k − j)
(
k
j

)
q

=
(
i
j

)
q

i∑
k=j

(
i − j
k − j

)
q

FJHC,i−k,qG(k − j)

=
(
i
j

)
q

i−j∑
k=0

(
i − j
k

)
q

FJHC,i−j−k,qG(k)
by(110)=

(
i
j

)
q

δi−j,0.

(111)

It is now obvious that G(k) = 1
2

[
q(

k
2) + δk,0

]
solves this equation for JHC and similar for NWA.

Theorem 4.14. Compare with [16, p. 1626] The inverses of the q-Euler polynomial matrices are given by(
FNWA,n,q(x)

)−1 = (FNWA,n,q
)−1 Pn,q(x)−1 = CNWA,n,qPn,q(x)−1. (112)

Theorem 4.15. A factorization of the two q-Euler matrices.

(
FNWA,n,q(x)

)−1 = CNWA,n,qFn,2,q * (x)
n∏
k=3

(Fn,k(x)En,k,q(x)). (113)

We now return to the q-Lie groups.

Theorem 4.16. The sets of q-Euler polynomial matrices (FNWA,q , ·, ·q , In) and (FJHC,q , ·, ·q , In) with elements

FNWA,n,q(x) (114)

are q-Lie subgroups ofMx,q.

5 A related ring of matrices
We �rst recall the commutative ring of q–Appell polynomials.

De�nition 43. [11] We denote the set of all q–Appell polynomials (in the variable x) byAx;q.
Let Φn,q(x) and Ψn,q(x) be two elements inAx;q. Then the operations

⊕
and

⊙
are de�ned as follows:

(Φq(x)
⊕

Ψq(x))n ≡ (Φq(x) + Ψq(x))n , (115)

(Φq(x)
⊙

Ψq(x))n ≡ (Φq(x)⊕q Ψq(x))n =
n∑
k=0

(
n
k

)
q

Φn−k,q(x)Ψk,q(x). (116)

We keep the usual priority between
⊕

and
⊙

.

Theorem 5.1. [8], [11] (Ax;q ,
⊕

,
⊙

) is a commutative ring.

In the following, for clarity, we sometimes write f (t) for f (t, q).

De�nition 44. Let f (t) ∈ R[[x]]. The q-deformed Leibniz functional matrix is given by

(Ln,q)[f (t, q)](i, j) ≡


Di−jq,t f (t,q)
{i−j}q ! if i ≥ j;

0, otherwise
i, j = 0, 1, 2 . . . , n − 1. (117)
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Let the operator ϵ : R[[x]]→ R[[x]] be de�ned by

ϵf (x) ≡ f (qx). (118)

We infer that by the q-Leibniz formula [5]

(Ln,q)[f (t, q)g(t, q)] = (Ln,q)[f (t, q)] ·ϵ (Ln,q)[g(t, q)], (119)

where in the matrix multiplication for every term which includes Dkq f , we operate with ϵk on g. We denote
this by ·ϵ. This operator can also be iterated, compare with [5].

For the following considerations, compare with [6], [13, p. 232] and [14, p. 67].

De�nition 45. Assume that f (t) ∈ R[[x]]. The i, j entries of the generalized q-Pascal functional matrix
PFn,q[f (t, q)] of size n × n are

Pn,q[f (t, q)](i, j) ≡


(i
j
)
q
Di−jq,t f (t, q) if i ≥ j;

0, otherwise
i, j = 0, 1, 2 . . . , n − 1. (120)

The function f (t) is called invertible if f (0) ≠ 0.

Example 1. When f (t) ≡ Eq(at) we have

Pn,q[f (t, q)] ≡ Pn,q[Eq(at)] = Pn,q(a). (121)

Theorem 5.2. [6] Formulas for the generalized q-Pascal functional matrix.

Pn,q[f (t) + g(t)] = Pn,q[f (t)] + Pn,q[g(t)],
Pn,q[f (t)] ·ϵ Pn,q[g(t)] = Pn,q[f (t)g(t)].

(122)

De�nition 46. [6] Assume that f (t) is invertible. If the inverse (f (t)−1)(k) exists for k < n, we can de�ne the
q-inverse of the generalized q-Pascal functional matrix as[

Pn,q[f (t, q)]
]−1 ≡ Pn,q[f (t, q)]−1]. (123)

Inspired by this, we make the following de�nition:

De�nition 47. The operations
⊕

and
⊙

are de�ned as follows:

Pn,q[f (t)]
⊕

Pn,q[g(t)] ≡ Pn,q[f (t) + g(t)]. (124)

Pn,q[f (t)]
⊙

Pn,q[g(t)] ≡ Pn,q[f (t)] ·ϵ Pn,q[g(t)] = Pn,q[f (t)g(t)]. (125)

We keep the usual priority between
⊕

and
⊙

.
The generalized q-Pascal polynomial functional matrix (PF, f (t),

⊕
,
⊙

,On , In) is the set of all Pn,q[f ]
with the operations

⊕
and

⊙
and units On and In.

Theorem 5.3. Assume that On is the unit for
⊕

, and that In is the unit for
⊙

. The generalized q-Pascal poly-
nomial functional matrix

(PF, f (t),
⊕

,
⊙

,On , In) (126)

is a commutative ring.
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Proof. We presume that Pn,q[f ],Pn,q[g] and Pn,q[h] are three elements in PF corresponding to f (t), g(t) and
h(t) respectively.

We �rst show that
⊕

is well-de�ned. Assume that f (t) + g(t) = ̸ 0. Then

Pn,q[f (t)]
⊕

Pn,q[g(t)] ∈ PF, (127)

The associative law for
⊕

reads:

Pn,q[f (t)]
⊕(

Pn,q[g(t)]
⊕

Pn,q[h(t)]
)

=
(
Pn,q[f (t)]

⊕
Pn,q[g(t)]

)⊕
Pn,q[h(t)])).

(128)

This follows from the associativity of +.
The commutative law for

⊕
reads:

Pn,q[f (t)]
⊕

Pn,q[g(t)] = Pn,q[g(t)]
⊕

Pn,q[f (t)]. (129)

This follows from the commutativity of +. The identity element with respect to
⊕

is the zero matrix On. We
have

Pn,q[f (t)]
⊕

On = Pn,q[f (t)]. (130)

There exists −Pn,q[f (t)] such that
Pn,q[f (t)]

⊕
−Pn,q[f (t)] = On . (131)

This follows from the corresponding property of real numbers.
Then we show that

⊙
is well-de�ned.

Assume that f (t)g(t) ≠ 0. Then we have

Pn,q[f (t)]
⊙

Pn,q[g(t)] by(125) ∈ PF. (132)

The associative law for
⊙

reads:

Pn,q[f (t)]
⊙(

Pn,q[g(t)]
⊙

Pn,q[h(t)]
)

=
(
Pn,q[f (t)]

⊙
Pn,q[g(t)]

)⊙
Pn,q[h(t)])).

(133)

This follows from the associativity of the multiplication ·.
The commutative law for

⊙
reads:

Pn,q[f (t)]
⊙

Pn,q[g(t)] = Pn,q[g(t)]
⊙

Pn,q[f (t)]. (134)

This follows from the commutativity of the multiplication ·.
The identity element with respect to

⊙
is the identity matrix In. We have

Pn,q[f (t)]
⊙

In = Pn,q[f (t)]. (135)

The distributive law reads:

Pn,q[f (t)]
⊙(

Pn,q[g(t)]
⊕

Pn,q[h(t)]
)

= Pn,q[f (t)(g(t) + h(t))] = Pn,q[f (t)g(t) + f (t)h(t)]

=
(
Pn,q[f (t)]

⊙
Pn,q[g(t)]

)⊕(
Pn,q[f (t)]

⊙
Pn,q[h(t)]

)
.

(136)

This follows from the distributive law of real numbers.
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6 Conclusion
We have united and q-deformed formulas from papers by Arponen, Aceto et al., Yang et al. and Zhang et al.
to give a �rst synthesis of q-Appell polynomial matrices, which were previously only known in special cases.
Some of the formulas for q-Pascal matrices and their factorizations are generalized as well as formulas for q-
Bernoulli and q-Eulermatrices.Wehavegiven the�rst concrete examples of q-Lie subgroups, andconstructed
a similar ring of matrices with many pleasant properties.

Acknowledgement: I thank Karl-Heinz Fieseler for his kind assistance.
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