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x

f ¹xº

Figure 4.6: Five samples of the GP from Figure 4.5 (with a Matérn ν = 3/2 covariance function).
Note, in particular, that the samples are more wiggly than the mean function: a reminder that the
blue shades do not contain all information, but is only the marginal distribution for each x (cf.
Figure 4.1 and 4.2).

4.6 Gaussian-process state-space models

A combination of the state-space model and the GP is the relatively recent GP state-
space model,

p(xt+1 | xt ) = N (xt+1; f (xt ),Q) , f ∼ GP (
µf ( · ),κf ( · , · )

)
, (4.12a)

p(yt | xt ) = N (yt ;д(xt ),R) , д ∼ GP (
µд( · ),κд( · , · )

)
. (4.12b)

The somewhat cumbersome notation should simply be read as ‘xt+1 equals a GP of xt
plus Gaussian noise’, and similar for yt . The promising feature of the model is that
it combines the nonparametric �exibility of a GP with the dynamical nature of the
state-space model, allowing for complex and highly nonlinear dynamical phenomena
to be described. Currently the best overview of the GP state-space model is probably
found in the thesis by Frigola-Alcade (2015).

Due to the somewhat entangled use of the GP in (4.12a), where the output of the GP,
xt+1, is the input at the next time step, the inference problem becomes relatively hard.
Frigola, Lindsten, et al. (2013) proposed a conceptually interesting but computationally
brutal solution, and the subsequent Frigola, Y. Chen, et al. (2014) and Paper I (and in
particular, its predecessor Svensson, Solin, et al. 2016) present further developments in
di�erent directions; For a numerical example which took Frigola, Lindsten, et al. (2013)
about 10 hours of compuational time, Svensson, Solin, et al. 2016 and Paper Frigola,
Y. Chen, et al. (2014) only requires a few minutes.
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4.7 Summary of the chapter

This chapter has introduced the GP as a generalization of the multivariate Gaussian
distribution. A crucial aspect is that some important expressions are available in
closed form, such as (4.10). The use of the GP in machine learning is as a model for
(nonlinear) functions f , of which we only have observed the values in a few points (cf.
Figure 4.5). It can also be combined with the state-space model into the GP state-space
model (4.12).
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5
Monte Carlo methods
for machine learning

“Expose yourself to as much
randomness as possible.”
Ben Casnocha

Monte Carlo methods are a class of numerical methods named after the casino in
the capital of Monaco (Figure 5.1). They originated in physics research with dis-

putable purposes during the �rst half of the 20th century. An accessible introduction
from that era, still well worth reading, is ‘The Monte Carlo method’ by Metropolis
and Ulam (1949). Today, Monte Carlo methods are established tools within many
di�erent scienti�c �elds, in particular in machine learning and some related areas.

Monte Carlo methods are useful when the mathematical computations are not
analytically tractable, meaning, e.g., that an integral lacks a closed-form solution.
There are also other alternatives, such as the variational approach (see Blei et al.
2016 for an overview). The idea in the variational approach is to impose additional
assumptions until the modi�ed problem becomes tractable. This thesis, however,
focus on the Monte Carlo approach.

We give in this chapter an overview and introduction to sequential Monte Carlo
(SMC) and Markov chain Monte Carlo (MCMC) in general, as well as their application
for learning in state-space models.

5.1 The Monte Carlo idea

Consider a probability density π ( · ) over the space of a parameter θ , that is de�ned
in such a way that the analysis of interest (e.g., computing the variance of θ ) is not
analytically tractable. The Monte Carlo idea is to approximately represent π by
random samples (an empirical measure). Those random samples should be generated
such that their properties resemble the properties of the distribution π . The samples
are nothing but numerical values stored in a computer, and it is (hopefully) easier to
analyze those samples than analyzing π directly.
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Figure 5.1: Casino de Monte-Carlo in Monaco. A place of gambling and broken dreams, and
moreover the source of the name ‘Monte Carlo method’. Photo: Andreas Svensson.

Formally, we introduce the notation of N weighted1 samples {θ (i),w (i)}Ni=1. This
collection of weighted samples is a Monte Carlo (or particle) approximation of the
density π if it holds that the empirical measure is ‘close’ to π , by which we mean

1∑N
j=1 w (j )

N∑
i=1

w (i)IA (θi ) ≈
∫
A
π (θ )dθ (5.1)

for every measurable set A, with equality almost surely in the limit as N →∞. This
is illustrated in Figure 5.2. If it is possible to draw samples from π directly, one may
simply draw N such samples and set all weights to 1. If samples cannot be drawn
from π directly, there are alternatives, of which we will review some.

For some methods, (5.1) does not only hold in the limit as N →∞, but also when
taking the expectation over di�erent realization of the Monte Carlo method itself as

E

[
1∑N

j=1 w (j )
∑N

i=1w
(i)IA (θi )

]
=

∫
A π (θ )dθ for a �xed N . That is a stronger property,

which holds for, e.g., rejection sampling but not p(xt |y1:t ,ϑ ) in a particle �lter.

1Note that we use non-normalized weights throughout this chapter.

θ

π (θ )

random samples θ (i) (with area ∝ w(i))
θ

Figure 5.2: The Monte Carlo idea: A probability density π (θ ) at the top, and weighted random
samples of that distribution below (the area of each sample is proportional to its weight). Each color
is a choice ofA in (5.1), so we expect each colored area in the upper part of the �gure (i.e.,

∫
A π (θ )dθ )

to be roughly proportional to the area of its corresponding samples (i.e.,
∑N
i=1w

(i)IA (θi )).
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5.2. The bootstrap particle filter

Algorithm 1: Bootstrap particle �lter
Input: State space model f ( · | · ), д( · | · ), p(x0), and data y1:T .
Output: Weighted samples {x (i)t ,w (i)t }Nxi=1 from p(xt |y1:t ,ϑ ) for t = 1, . . . ,T .

1 Draw x (i)0 ∼ p(x0) and set w (i)0 = 1
2 for t = 1 to T do
3 Draw a(i)t with P

(
a(i)t = j

)
∝ w (j)t−1 resampling, {xa

(i )
t

t−1 , 1} ≈ p(xt−1 | y1:t−1, ϑ )

4 Draw x (i)t from f (xt |xa
(i )
t

t−1) propagation, {x (i )t , 1} ≈ p(xt | y1:t−1, ϑ )
5 Set w (i)t = д(yt |x (i)t ) weighting, {x (i )t , w (i )t } ≈ p(xt | y1:t , ϑ )
6 end

All statements with (i) are for i = 1, . . . , Nx . The notation ≈ means that the weighted samples on
the left hand side are approximately (in the meaning of (5.1)) the density on the right hand side.

5.2 The bootstrap particle filter

As a popular example of a non-trivial Monte Carlo algorithm, we start by introducing
the particle �lter. The origin of the particle �lter is to be found in Gordon et al. (1993)
and Stewart and McCarty (1992). It is a Monte Carlo implementation of the Bayesian
�ltering recursion (3.6) solving the state inference problem, i.e., computing the �ltering
distributions p(x1 |y1,ϑ ), . . . ,p(xT |y1:T ,ϑ ) (cf. the generic π in the previous section)
in the state-space model, when the model parameters ϑ are known. An animated
beginner’s introduction to the particle �lter is found in Svensson (2013), and there is
a myriad of written introductions, e.g, Arulampalam et al. (2002), Gustafsson et al.
(2002), Haykin and Freitas (2004), and Särkkä (2013). A good overview (but perhaps
not a �rst introduction) is provided by Doucet and Johansen (2011).

The key idea of the particle �lter is to propagate a set of Nx weighted particles
{x (i)t ,w (i)t }Nxi=1 (samples of the state) along the time dimension t , by propagating them
from time t − 1 to the next time step t by drawing samples from f ( · | x (i)t−1) (3.2a), and
adapt them to the measurements according to д(yt | x (i)t ) (3.2b). An important step in
the implementation is also the resampling step, where (loosely speaking) particles
with small weights are discarded and particles with large weights are duplicated. This
is summarized in Algorithm 1, the so-called bootstrap particle �lter.2

5.2.1 Resampling

The resampling step ensures that computational resources are spent in the most
interesting parts of the state-space, and that a situation where all but one particle
eventually have zero weights is avoided. This can be seen as deciding a genealogy of
the particles, i.e., how many descendants a certain particle will have, and which of

2The connection between Algorithm 1 and the straps aimed for helping when putting on a pair of
leather boots may seem rather weak. The history involves the saying ‘pull oneself up by one’s bootstraps’
(often, but probably falsely, attributed to the �ctional character Baron Munchausen by Raspe 1786), which is
the background for the naming of the statistical idea ‘bootstrap’ (Efron 1979), which has a close connection
to the resampling.
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the particle branches that will become extinct. (The genealogy analogue can be par-
ticularly helpful when considering the inference problem of the entire sequence x1:T ;
clearly, xt is correlated with xt−1). To obtain a consistent algorithm, the resampling
scheme has to be constructed such that

E
[
# of descendants to x (i)t−1

]
=

Nx∑
j=1
P

(
a(j)t = i

)
∝ w (i)t−1. (5.2)

There are alternatives when it comes to designing a resampling algorithm that ful-
�lls (5.2), see, e.g., Douc and Cappé (2005) and Murray, Lee, et al. (2015) for overviews.
It is also possible to design resampling schemes where the duplicated particles are not
assigned unit weights (as implicitly done in Algorithm 1) see, Paige et al. (2014) for an
example. This is also the underlying key observation for the novel method proposed
in Paper VI.

In all non-trivial cases the resampling step is a stochastic procedure, which unfor-
tunately also adds to the variance of the �nal estimates obtained from the particle
�lter. It is therefore common to perform the resampling only when needed, which
is usually determined by monitoring the so-called e�ective sample size (ESS, Kong
et al. 1994)

(∑Nx
i=1(w (i)/

∑Nx
j=1w

(j))2
)−1

, taking values between 1 and Nx , and perform
resampling only when the ESS falls below a certain threshold, e.g, Nx/2. If an adaptive
resampling scheme is used, a slight modi�cation of the weight update in Algorithm 1
is needed.

5.2.2 Positive and unbiased estimates of p(y1:T | ϑ )
The particle �lter was �rst used as a tool for solving the �ltering problem in nonlinear
state-space models, but it can also be used to estimate the likelihood p(y1:T | ϑ ) (3.7).
The estimate is created from the weights w (i)t in Algorithm 1 as

p̂Nx (y1:T | ϑ ) =
T∏
t=1

(
1
Nx

Nx∑
i=1

w (i)t

)
, (5.3)

where we emphasize in the notation that it is a Monte Carlo-based estimate based on
Nx particles. It can be shown (see, e.g., Appendix A) that (5.3) is an unbiased estimate
of the likelihood, i.e.,

E
[
p̂Nx (y1:T | ϑ )

]
= p(y1:T | ϑ ), (5.4)

This claim is not asymptotic in Nx , but holds for any �nite number Nx ≥ 1 of particles.
The expectation in (5.4) is over realizations of Algorithm 1 itself, i.e., the randomness
involved in the propagation and resampling step. It further holds (as can be seen by
inspection of (5.3)) that p̂(y1:T | ϑ ) ≥ 0. This can, as we will see, be used in algorithms
for learning the model parameters ϑ . We will also mention a few more theoretical
properties about Algorithm 1 later in Section 5.4.4.
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Algorithm 2: Markov chain Monte Carlo sampler
Input: A transition kernel K with stationary distribution π .
Output: Unweighted samples {θ (k)}Kk=0 from (in the limit K →∞) π .

1 Draw θ (0) arbitrarily
2 for k = 1 to K do
3 Draw θ (k ) from K (

θ | θ (k−1))
4 end

5.3 The Markov chain Monte Carlo sampler

Let us now leave the particle �lter and the state-space model aside, and return to the
general problem we formulated in Section 5.1. That is, we are interested in drawing
conclusions about some analytically intractable distribution π (θ ), typically a posterior
p(θ |y). If we can not draw samples from π directly, but instead evaluate π point
wise (i.e., query the value of π (θ ) for any θ , at least up to proportionality), we can
use the Markov chain Monte Carlo (MCMC) methodology to generate samples from
π . The MCMC sampler is an algorithm that stochastically explores the θ -space, and
thereby de�nes a stochastic process (a Markov chain) in that space. We denote the
realization of the stochastic process, i.e., the outcome of one run of the algorithm,
as {θ (0),θ (1), . . . ,θ (K )}. An MCMC sampler is designed such that {θ (0),θ (1), . . . ,θ (K )}
becomes an (unweighted) particle approximation of π in the limit3 as K →∞.

We brie�y review the essential ideas of how to construct an MCMC sampler.
A more complete treatment of the topic is found in, e.g., Tierney (1994), Andrieu,
Freitas, et al. (2003), Robert and Casella (2004, Chapter 6) and Liang et al. (2010).
The key ingredient in an MCMC algorithm is a transition kernel K ( · | · ) with a
certain stationary distribution. A transition kernel is any function K ( · | · ) (where
both arguments live in θ -space) such that K ( · | θ ′) is a probability density for every
θ ′. A stationary distribution π of K is such that K ( · | π ) = π ( · ), where we use the
shorthand notation K ( · | π ) ,

∫
K ( · | θ ′)π (θ ′)dθ ′. If K ful�lls certain technical

conditions, it can be applied in Algorithm 2 to produce samples from π in the limit
as K → ∞. The conditions are essentially that K should not admit periodic cycles
and that for any θ and θ ′, there should exist an n such that Kn (θ | θ ′) > 0 (where Kn

denotes an n-fold iterative application of K),
The transition kernel K in MCMC is often de�ned by an algorithm itself, rather

than a closed form expression. Many di�erent methods for designing MCMC kernels
exist, such as slice sampling (Neal 2003), Hamiltonian Monte Carlo (Duane et al. 1987;
Neal 2011), the bouncy particle sampler (Bouchard-Côté et al. 2017; Peters and With
2012), etc. We will now introduce the perhaps two most basic and standard algorithms
for designing K , Metropolis-Hastings and Gibbs sampling.

3The asymptotic behavior as K → ∞ is (if the sampler ful�lls certain conditions) independent of
the initialization θ (0), but in practice a so-called burn-in period of some length Kb typically has to be
considered, and the corresponding �rst Kb samples are discarded. For the performance in practice, it can
be crucial to consider and analyze this transient behavior of the MCMC sampler. We will, however, not
re�ect any more on this, but refer to, e.g., Chapter 12 of Robert and Casella (2004).

43



Chapter 5. Monte Carlo methods for machine learning

Algorithm 3: Metropolis-Hastings transition kernel K
Input: θ (k−1)

Output: θ (k )
1 Draw θ ′ from q(θ | θ (k−1)) A candidate for θ (k )

2 Compute α = min
(

γ (θ ′)
γ (θ (k−1))

q(θ (k−1) | θ ′)
q(θ ′ | θ (k−1))

)
The acceptance probability

3 Set θ (k ) =
{
θ ′ with probability α
θ (k−1) with probability 1 − α Decide if candidate is accepted or not

Algorithm 4: Gibbs transition kernel K
Input: θ (k−1)

Output: θ (k )

1 Draw θ (k)1 from p(θ1 | θ (k−1)
2 )

2 Draw θ (k)2 from p(θ2 | θ (k )1 )

5.3.1 The Metropolis-Hastings kernel

The Metropolis-Hastings algorithm (named4 after Nicholas Metropolis, Rosenbluth,
et al. 1953 and Wilfred K. Hastings 1970) is a popular plug-in kernel, only requiring
that π can be evaluated point wise up to proportionality as π (θ ) = γ (θ )/Z . A proposal
density q( · | θ (k−1)) is also needed, from which samples of θ can be drawn, and is
either symmetric (q(θ | θ ′) = q(θ ′ | θ )) or can be evaluated point wise. The Metropolis-
Hastings algorithm is outlined by Algorithm 3. The idea is to sample a candidate
θ ′ from the proposal, and always (with an adjustment to account for bias caused
by the proposal) accept the candidate as θ (k ) if π (θ ′) ≥ π (θ (k−1)). However, also if
π (θ ′) < π (θ (k−1)), the candidate may be accepted with a certain acceptance probability,
designed in a way to create the correct stationary distribution. If the support of the
proposal q( · | θ (k−1)) covers the support of π , it can be proved (e.g., Robert and Casella
2004, Theorem 7.2) that π is the stationary distribution of Algorithm 3, and it can be
used in the MCMC sampler (Algorithm 2) to generate samples from π .

5.3.2 The Gibbs kernel

The Metropolis-Hastings algorithm has an element of rejection sampling, e�ectively a
trial and error approach where a large fraction of the computational resources may be
spent on computing γ (θ ′) for proposals that are never accepted. The Gibbs algorithm
(named after Josiah Willard Gibbs, coined by S. Geman and D. Geman 1984) is an
alternative kernel that does not su�er from this drawback, but produces samples that
are always accepted (but may on the other hand su�er from a high autocorrelation).
The Gibbs kernel requires that θ can be partitioned as θ = {θ1,θ2, . . . ,θM } (preferably
with low cross-dependence between the partitions) so that it is possible to draw
samples from p(θm | θ \ θm) = π (θ )∫

π (θ )dθm for every partitionm. Then, this sampling is

4It should, however, be remembered that the original article has 5 authors, and Metropolis happened to
be the �rst one in the alphabetical ordering.

44



5.4. The Seqential Monte Carlo sampler

iterated over allm, as summarized by Algorithm 4 for the case M = 2. The analysis
for the Gibbs sampler is, however, rather intricate (see, e.g., Robert and Casella 2004,
Chapter 9 and 10 and references therein), but the resulting Markov chain can under
certain conditions be proven to ful�ll the necessary conditions for producing samples
of π when used in the MCMC sampler (Algorithm 2) as K →∞.

It is also possible to construct combinations of the Metropolis-Hastings and Gibbs
algorithm (Liang et al. 2010, Section 3.4; Müller 1991 and Robert and Casella 2004,
Section 10.3), although care must be taken in order not to change the stationary
distribution (Dyk and Jiao 2014).

5.3.3 Convergence

The convergence of Algorithm 2 in the asymptotic case K →∞ follows, under some
additional assumptions on K , a central limit theorem. For a measurable test function
h(θ ), the di�erence between the true (and after-sought) expectation E [h(θ )] and the
sample-based estimate of it hK ({θ (k )}Kk=1) = 1

K
∑K

k=1 h(θ (k )) is

√
K

(
hK ({θ (k )}Kk=1) − E [h(θ )]

)
d→ N (

0,σ 2
MCMC(h,π )

)
(5.5)

where σ 2
MCMC(h) is a bounded function of h and π (Tierney 1994, Theorem 4 and 5;

Robert and Casella 2004, Theorem 6.65 and 6.67).

5.4 The Sequential Monte Carlo sampler

As discussed in Section 3.4.1, the state inference in a state-space model is a particular
learning problem. Similarly, the particle �lter can be seen as a particular instance of
the more general sequential Monte Carlo (SMC) method. SMC can also be formulated
for other types of models, such as graphical models (Naesseth, Lindsten, and Schön
2014).

The most generic formulation of SMC can be found in the Feynman-Kac formalism
(Del Moral 2004; Del Moral and Doucet 2014). Yet another instance of SMC is the SMC
sampler (Del Moral, Doucet, and Jasra 2006), here presented as Algorithm 5. The SMC
sampler is formulated for the same problem as the MCMC sampler, namely to sample
from a static density π which only can be evaluated point wise up to proportionality.

The particle �lter targets the �ltering distributions (3.6) sequentially5. For the
SMC sampler, only a static distribution π is typically of user interest, but a sequence
of probability distributions {π0,π1, . . . ,πP } is introduced as an intermediate tool, and
the particles are then propagated along this sequence. It is assumed that all πp can be
evaluated up to proportionality, i.e., πp (θ ) = γp (θ )/Zp , where γp (θ ) can be computed
for any θ .

5Hence the name sequential Monte Carlo.
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Algorithm 5: Sequential Monte Carlo sampler
Input: Sequence of densities {π0,π1, . . . ,πP } on the form πp (θ ) = γp (θ )/Zp ,

with γp (θ ) possible to evaluate point wise.
Output: Weighted samples {θ (i)p ,w (i)p }Nθi=1 from πp (θ ), for each p = 0, . . . , P .

1 Draw θ (i)0 ∼ γ0(θ0) and set w (i)0 = 1
2 for p = 1 to P do

3 Draw a(i)p with P
(
a(i)p = j

)
∝ w (j)p−1 resampling, {θa

(i )
p

p−1 , 1} ≈ πp−1

4 Draw θ (i)p from Kp (θp | θa
(i )
p

p−1) propagation, {θ (i )p , 1} ≈ Kp ( · | πp−1)

5 Set w (i)p =Wp (θ (i)p ,θ
a(i )p
p−1) weighting, {θ (i )p , w (i )p } ≈ πp

6 end
All statements with (i) are for i = 1, . . . , Nθ , and Kp can be taken as Algorithm 3.

5.4.1 Connection to particle filters

We can retrieve the bootstrap particle �lter (Algorithm 1) from the SMC sampler
(Algorithm 5) by letting θ = x , P = T , πp (θp ) = p(xt |y1:t ), Wp (θp ,θp−1) = д(yt | xt )
and Kp (θp ,θp−1) = f (xt | xt−1). More advanced versions of the particle �lter are
also possible to formulate, where f (xt | xt−1) is replaced by a more general proposal
density, and the weighting is adjusted accordingly (see, e.g., Doucet and Johansen
2011 for an overview). The aim of such a construction is typically to decrease the
variance of the particle weights and the �nal estimates.

5.4.2 Constructing a sequence {πp}Pp=0

The particle �lter sequentially targets the densities p(xt |y1:t ,ϑ ). The SMC sampler,
on the other hand, targets a static density π . Therefore, we have to construct an
arti�cial sequence of distributions {πp }Pp=0 (with π0 easy to sample from and πP = π )
along which the particles can be propagated. Preferably, the distance between any
consecutive πp−1 and πp should be ‘small’ in order to guide the particles well towards
πP = π . This idea resembles simulated annealing (also introduced by Metropolis,
Rosenbluth, et al. 1953) and continuation methods (Richter and DeCarlo 1983).

If π (θ ) is a posterior, i.e., ∝ p(θ )p(y | θ ), one option is to construct {πp }Pp=0 as the
likelihood-tempered sequence

πp ∝ p(θ )p(y | θ )p/P . (5.6)

Another alternative is the data-tempered sequence

πp ∝ p(θ |yB0:p ), (5.7)

where {Bp }Pp=0 is a sequence with batches of the data y, such that B0 is empty and
B0:P contains all data y. A third option is proposed in Paper V.
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5.4.3 Propagating the particles

For the SMC sampler, there is no underlying state-space model as for the particle
�lter that can be used to propagate or weight the particles. Therefore,Wp and Kp has
to be chosen by the user. Di�erent alternatives are possible (Del Moral, Doucet, and
Jasra 2006, Section 3.3), but one choice is

Kp ( · | · )Metropolis-Hastings kernel with stationary distribution πp−1, (5.8a)

Wp (θp ,θp−1) =
πp (θp−1)
πp−1(θp−1) , (5.8b)

which can be shown to yield a consistent algorithm. The SMC sampler with the
choices (5.6-5.8) is a rather general scheme, which can be applied to a broad range of
problems. One example is found in Paper VII and another in Del Moral, Doucet, and
Jasra (2012a). We will later also review how it can be applied to the parameters ϑ in
the state-space model, resulting in the SMC2 algorithm (Chopin, Jacob, et al. 2013).

5.4.4 Convergence

We have already discussed an important property of the particle �lter (Algorithm 1),
namely that p̂Nx (y1:T | ϑ ) is unbiased for any �nite Nx ≥ 1. In a similar manner, it is
possible to construct an unbiased estimator also for the normalizing constants Zp in
the SMC sampler. Results concerning the long-term stability of SMC, and in particular
particle �lters, also exist (Douc, Moulines, et al. 2014; Whiteley 2013).

Akin to the MCMC case, results are available also for the asymptotic case Nθ →∞.
As for MCMC (Section 5.4.4), we can for every measurable test function h(θ ) establish
(under some technical assumptions) the central limit theorem for Algorithm 5

√
Nθ

(
hNθ ({θ (i)p ,w (i)p }Nθi=1) − E [h(θ )]

)
d→ N (

0,σ 2
SMC(h,π )

)
, (5.9)

when Nθ →∞, where σ 2
SMC(h) is a bounded function of h and π (Del Moral, Doucet,

and Jasra 2006, Proposition 2). This result is applicable to any SMC algorithm (Chopin
2004; Del Moral 2004), and in particular also for the particle �lter in Algorithm 1. The
case when resampling is performed only adaptively (as discussed in Section 5.2.1; also
applicable to Algorithm 5) is more intricate to analyze, but similar results have been
presented by Del Moral, Doucet, and Jasra (2012b).

To summarize, the bottom line is that the SMC sampler has a central limit theorem
on the same form as MCMC.
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π (θ )

θ

π (θ )

θ

π (θ )

θ
· · ·

k = 1 k = 2 k = K
∑

π (θ )

θ

(a) The MCMC idea: propagate a single sample (red dot) through the landscape of π , such that its
random trace (summarized in the rightmost plot) eventually becomes samples of the distribution
of interest π . That is, the chain has to ‘visit’ areas where π is large more often than areas where π
is small. It will most likely have visited every mode of π as K →∞ , but not necessarily within a
reasonable �nite time (i.e., before the user’s computational budget is consumed).

π0(θ )

θ

π1(θ )

θ

πP (θ ) , π (θ )

θ
· · ·

p = 1 p = 2 p = P

(b) The SMC idea: propagate a set of Nx (Nx = 6 in this illustration) particles (samples, red
dots) through a sequence of P distributions π0, . . . πP , to eventually end up with samples from the
distribution of interest π ( · ) , πP ( · ). By making a ‘smooth’ transition from the easy-to-sample
distribution π0 to the distribution of interest π the hope is that the samples represent π more
e�ciently than in the MCMC setting (by exploring di�erent modes in parallel, etc.).

Figure 5.3: The key concept of the MCMC (a) and SMC samplers (b). The idea of MCMC is to
make a (more or less informed) stochastic walk with a single particle in θ -space such that the walk
will be proportional to the density π . The SMC idea is to propagate a whole bunch of particles
through an evolving landscape (cf. how the particle �lter solves the state inference problem), which
after a pre-de�ned number of iterations P ends up in π .

5.5 Markov Chain or Sequential Monte Carlo?

MCMC has been around since the 1950’s, whereas SMC is younger than the author
of this thesis6. With that perspective, it is perhaps not surprising that the MCMC
sampler can essentially be seen as the special case of the SMC sampler with πp = π
and Nθ = 1. For this reason, we may also expect (as con�rmed by Svensson and Schön
2016 for a particular case) that the SMC sampler requires more user e�ort, in terms of
implementation time. It is also worth highlighting that the number of iterations K
in the MCMC sampler (Algorithm 2) does not have to be speci�ed beforehand, but
the algorithm can be run until the computational budget is consumed, a so-called
anytime algorithm. For the SMC sampler (Algorithm 5), both Nθ and P have to be
speci�ed before beforehand, and is thereby not an anytime algorithm.

The di�erent underlying ideas on how the samples are drawn are illustrated in
Figure 5.3. Any attempt to claim superiority of one approach in general is probably
fruitless. However, a rudimentary knowledge about both alternatives can probably
help in making wise choices: the historical timeline might have given MCMC an
advantage.

6Who would like to claim that he is rather young.
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5.6 Monte Carlo for state-space model parameters ϑ

The particle �lter (Section 5.2) with its various extensions and generalizations provides
an often unbeaten Monte Carlo solution for inferring the states xt in the state-space
model (3.2). (MCMC may, however, be bene�cial for some particular problem settings,
such as the case in Svensson, Schön, et al. 2015.) For the problem of �nding model
parameters ϑ , on the other hand, the particle �lter cannot provide a solution on its
own7. However, the particle �lter can be a very useful building block of an MCMC or
SMC sampler to construct well-performing and theoretically consistent algorithms
for inferring the posterior p(ϑ |y1:T ), as well as the maximum likelihood estimate ϑ̂ .

5.6.1 MCMC for nonlinear state-space models: PMCMC

For inferring ϑ in linear state-space models (3.3), MCMC can be used essentially
out of the box. The use of a Metropolis-Hastings sampler is shown in Ninness and
Henriksen (2010) (although formulated for transfer functions; a state-space model
formulation is found in Schön, Lindsten, et al. 2015, Example 4), and the Gibbs sampler
in Wills et al. 2012. In both cases the Kalman �lter (and some extensions of it)
provides the required expressions for p(ϑ |y1:T ) (for the Metropolis-Hastings solution)
and p(x1:T | ϑ ,y1:T ) (for the Gibbs solution). In the Gibbs solution we also need an
expression for p(ϑ | x1:T ,y1:T ), which is (if the conjugate prior is used) provided by
the matrix normal inverse Wishart distribution (Appendix B).

The two cases in the previous paragraph are special cases in that the required ex-
pressions are available analytically. For the general nonlinear state-space model (3.2),
neither the likelihood p(y1:T | ϑ ) nor the conditional distribution p(x1:T | ϑ ,y1:T ) are
available in closed form, nor can they be computed exactly. It turns out that the
particle �lter provides a good approach for approximating these distributions, in the
combined particle-�lter-within-MCMC framework8, PMCMC (Andrieu, Doucet, et al.
2010).

Pseudo-marginal Metropolis-Hastings

What happens to the Metropolis-Hastings sampler (Algorithm 3) if π (θ ) cannot be
evaluated exactly, but only stochastically estimated π̂ (θ )? A naïve approach would
perhaps be to pretend that π̂ (θ ) is exact (i.e., contains no stochastic element) and
apply Algorithm 3. (Another attempt could be to average over a few realizations of
π̂ (θ ) for every θ , and use that average when computing the acceptance probability
α .) It turns out (Andrieu and Roberts 2009), somewhat surprisingly, that if π̂ (θ ) is
positive and unbiased, i.e., E [π̂ (θ )] = π (θ ) and π̂ (θ ) > 0, using π̂ (θ ) as if it were exact
(the approach suggested above) creates a consistent algorithm, in the sense that the
stationary distribution of Algorithm 3 remains unchanged!

7If the unknown parameters have a low dimensionality, they can possibly be considered as part of the
state xt (and modeled to be slowly time-varying), and the problem is thereby transferred to a vanilla state
inference setting. This solution highlights the (mild) arbitrariness of splitting unknown parameters θ in
the state-space model into model parameters ϑ and states xt .

8The original meaning of PMCMC is simply ‘particle Markov chain Monte Carlo’, but ‘particle-�lter-
within-MCMC’ is a more explanatory interpretation.
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This quite remarkable fact can be proven by handling the randomness of π̂ (θ )
explicitly by introducing another random variable v , and considering π̂ (θ ) to be
deterministic when conditioned on v . Then, it is possible to show that the Metropolis-
Hastings sampler targets an extended distribution p(θ ,v), and that π (θ ) can be ob-
tained by integrating v out. Thus the name of the approach, pseudo-marginal.

Particle marginal Metropolis-Hastings

Following the pseudo-marginal Metropolis-Hastings approach with π̂ (θ ) ∝
p̂Nx (y1:T | ϑ )p(ϑ ) from (5.3), the particle marginal Metropolis-Hastings approach
is obtained (Andrieu, Doucet, et al. 2010, Section 2.4.2). Although not a�ecting
the asymptotical properties, the choice of the number of particles Nx ≥ 1 and the
proposal density q( · | · ) are crucial for its practical performance. Some discussion
on how to choose Nx can be found in Andrieu, Doucet, et al. (2010), and some
design methods for q can be found in Dahlin, Lindsten, et al. (2015). Two beginner’s
introduction to particle Metropolis-Hastings are provided by Dahlin and Schön (2016)
and Schön, Svensson, et al. (2018).

Particle Gibbs

It is also possible to construct a Gibbs sampler, Algorithm 4, for state-space model
parameters ϑ . Such a construction is possible by taking θ in Algorithm 4 as {x1:T ,ϑ },
i.e., iteratively sample x (k )1:T conditional on the model parameters ϑ (k−1), and the model
parameters ϑ (k) conditional on the state x (k )1:T . Thus, we need to draw samples from
p(x1:T | ϑ (k )) as well as p(ϑ | x (k)1:T ).

For certain state-space model structures (e.g., the linear model in Wills et al. 2012,
the models in Section 7 in Lindsten, Jordan, et al. 2014 and the model in Paper I),
p(ϑ | x (k )1:T ) is available in closed form and possible to sample from. If that is not the
case, other sampling strategies can be used, see, e.g., Example 8 of Schön, Lindsten,
et al. (2015).

To sample approximately from p(x1:T | ϑ (k )), a particle �lter can be used: the
approximation is due to the �nite number of particlesNx in the particle �lter. However,
with a slightly more involved Gibbs sampling scheme it is possible to draw MCMC
samples of x1:T with a kernel (constructed using the so-called conditional particle �lter)
with exactly p(x1:T | ϑ (k )) as its stationary distribution. A particularly well-performing
conditional particle �lter construction has proven to be the one introduced by Lindsten,
Jordan, et al. (2014), the conditional particle �lter with ancestor sampling. We will not
detail this construction any further here, but we refer to Andrieu, Doucet, et al. (2010)
and Lindsten, Jordan, et al. (2014) for all technical details on this so-called particle
Gibbs construction.

5.6.2 Particle Gibbs for maximum likelihood estimation

If the maximum likelihood estimate ϑ̂ (rather than the posterior p(ϑ |y1:T )) is of in-
terest, Lindsten (2013) and Paper III presents a combination of particle Gibbs and a
stochastic approximation (Robbins and Monro 1951) version of the expectation maxi-
mization (EM) algorithm (Dempster et al. 1977). The construction makes use of particle
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Gibbs only for the state inference problem, and uses the stochastic approximation EM
framework (Delyon et al. 1999; Kuhn and Lavielle 2004) for the maximum likelihood
estimation of ϑ . The use of EM for maximum likelihood estimation of ϑ in nonlinear
state-space models has been around since at least Ghahramani and Roweis (1998), and
the combination of SMC and EM for this purpose has been proposed by Cappé et al.
(2005), Olsson et al. (2008), and Schön, Wills, et al. (2011). The combination of particle
Gibbs and stochastic approximation EM, as proposed by Lindsten (2013), improves
the convergence properties and reduces the computational load compared to previous
algorithms. A more detailed introduction is given in Paper III, and Papers I and IV
both use the method for two particular model structures.

5.6.3 SMC for state-space model parameters: SMC2

In the same spirit as the MCMC methodology can be used for sampling the posterior
p(ϑ |y1:T ) of the state-space model parameters, so can the SMC sampler. The SMC
sampler can be applied directly to a linear state-space model, akin to the MCMC
sampler case, since p(y1:T | ϑ ) is explicitly available from the Kalman �lter. A natural
way to construct a sequence of densities is the data-tempered alternative P = T ,
π0(ϑ ) = p(ϑ ), π1(ϑ ) = p(ϑ |y1), . . . , πT (ϑ ) = p(ϑ |y1:T ). An alternative construction,
for the special case when the state-space model has very little measurement noise, is
proposed in Paper V. For the general case with a nonlinear state-space model, the
particle �lter is required to approximately evaluate p(y1:t | ϑ ) as p̂Nx (y1:t | ϑ ), yielding
the SMC2 algorithm9 (Chopin, Jacob, et al. 2013; Fulop and Li 2013). For propagating the
particles in step 4 in Algorithm 5, the particle Metropolis-Hastings kernel (Algorithm 3)
can be used. Once again the unbiasedness E

[
p̂Nx (y1:t | ϑ )

]
= p(y1:t | ϑ ) is key to

obtaining a consistent algorithm; the details are found in Section 3.1 in Chopin, Jacob,
et al. (2013).

This somewhat involved construction leaves the user with several design choices,
for instance the trade-o� between the number of particles Nx in the particle �lters
and the number of particles Nϑ at the SMC sampler level. Chopin, Ridgway, et al.
(2015) have suggested how to automatically adapt these numbers.

SMC2 is not to be confused with nested SMC (Naesseth, Lindsten, and Schön 2015),
which is a general framework for using SMC to construct proposal densities within
an SMC algorithm.

5.7 Summary of the chapter

This chapter has introduced some Monte Carlo ideas useful for machine learning,
and we have in particular considered the particle �lter (for state inference in the
state-space model) as well as the MCMC and SMC samplers (for general problems).
We have also introduced the combinations PMCMC and SMC2, both primarily aimed
for learning model parameters ϑ in state-space models.

9The naming should be read as ‘SMC square’, i.e., SMC to the power of two; a particle �lter (an SMC
algorithm) is used within an SMC sampler (another SMC algorithm).
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6
Conclusions and future work

“Wait, what if these quote marks are inside out,
so everything in the rest of the document is the
quotation and this part isn’t? Duuuuude.”
Randall Munroe

This chapter contains some overall conclusions of the research presented in Paper I–
VII. In addition to what is written in each paper, this chapter also has an outlook

into further possible research directions.

6.1 Conclusions

The contributions of this thesis include applications of state-of-the art learning meth-
ods to non-trivial models, new versions of learning methods themselves, as well as a
contribution to model validation methodology. At the heart of all methods lies the use
of Monte Carlo approximations to handle otherwise intractable integrals, and often
the sequential Monte Carlo method in particular. The results are often promising, but
the existence of this thesis suggests that:

• The work is most likely not done yet, but there are probably more problems
where (sequential) Monte Carlo can make a di�erence than the ones included
in this thesis. With increasing access to computational power, together with a
raised interest for the Bayesian approach, there are probably plenty of opportu-
nities.

• Applications and tweaking of Monte Carlo, and sequential Monte Carlo in
particular, is apparently complicated enough to be topic for a doctoral thesis.
There is probably work to be done in packaging and providing sequential Monte
Carlo as an o�-the-shelf method to practitioners not having a PhD degree on
the topic.
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6.2 Future work

As suggested above, sequential Monte Carlo is potentially useful for a wider range
of situations than those where it is used today. Its use is, however, probably limited
by the relative complexity of implementing it. A natural research direction would
therefore be to provide a ‘user interface’ to sequential Monte Carlo, accessible for an
application domain expert not knowledgeable within Monte Carlo methods. Indeed,
such initiatives already exist (I have partly been funded by such a project: ASSEMBLE,
Murray and Schön 2018), but the work is nowhere close to be �nished.

Parts of this thesis are focused around Bayesian learning in somewhat compli-
cated state-space models. However, to the best of my knowledge, little research has
been done on how to interpret and e�ciently transform the posterior p(ϑ |y) into a
‘posterior’ for the dynamical behavior (such as the input-output relationship). Such
results would be of particular interest when the parameters ϑ themselves do not bear
a physical meaning (such as in Paper I).

A common argument for the Bayesian approach is the quanti�cation of the present
uncertainty provided by the posterior distribution. It is, however, important to bear
in mind that the posterior distribution, and thereby also the uncertainty, is conditional
on the choice of model. (This conditioning is not only a formality, but critical for
the results obtained.) This re�ection was part of the inspiration behind Paper II, but
several (fundamental) questions still remain: Are there more aspects of a model that
should (and can) be validated than the one proposed in Paper II? Is it possible to judge
the severity of model misspeci�cations from a posterior distribution? As a tough and
applied question, consider decision making in self-driving cars based on posterior
uncertainties from a ‘Bayesian neural network’ (whatever that would mean): what
aspects of the data/reality have to be present in the model (the neural network), in
order to guarantee that the posterior uncertainty represents something meaningful?
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A
The unbiased estimator p̂Nx(y1:T )

“Policy should always be rooted
in unbiased science.”
Christine Todd Whitman

This chapter contains a proof of the fact that (5.3),

p̂Nx (y1:T | ϑ ) =
T∏
t=1

(
1
Nx

Nx∑
i=1

w (i)t

)
, (A.1)

with w (i)t generated by the bootstrap particle �lter Algorithm 1 in Chapter 5, is an
unbiased estimator of the likelihood p(y1:T | ϑ ) (3.7) of a state-space model with model
parameters ϑ , for any �nite Nx ≥ 1. With unbiasedness, we mean E

[
p̂Nx (y1:T | ϑ )

]
=

p(y1:T | ϑ ), where the expectation is over the randomness in the particle �lter algorithm
itself. This result was �rst presented by Del Moral (2004, Section 7.4.2) and is important
to many parameter learning strategies, such as particle marginal Metropolis-Hastings
(Section 5.6.1) and Paper VI. The proof here follows closely that of Pitt et al. (2012),
which is written for the more general case of the auxiliary particle �lter.

In the following, ϑ will be suppressed in the notation, since all expressions are
conditioned on ϑ . We start by introducing the estimator1

p̂Nx (yt |y1:t−1) = 1
Nx

Nx∑
i=1

w (i)t , (A.2)

which has the natural property that
∏T

t=1 p̂Nx (yt |y1:t−1) = p̂Nx (y1:T ). We also de�ne
p̂Nx (yt−h:t |y1:t−h−1) naturally as

∏t
t ′=t−h p̂Nx (yt ′ |y1:t ′−1) for h ≥ 0.

The structure of the proof is as follows: First, in Lemma 1, it will be proved that

E
[
p̂Nx (yt |y1:t−1) | {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

Nx∑
i=1

w (i)t−1∑Nx
j=1w

(j)
t−1

p(yt | x (i)t−1), (A.3)

1Note the somewhat subtle notation: p denotes probability densities, whereas p̂Nx denotes deterministic
functions (which we distinguish by their di�erent arguments) of quantities stochastically generated by the
particle �lter. The point with the proof is to show that the p̂Nx -function (A.1) is an unbiased estimator of
the corresponding p .
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i.e., p̂Nx (yt |y1:t−1) (the contribution to (A.1) from iteration t of the particle �lter) is
unbiased, if conditioned on a realization of particles from the previous iteration at time
t − 1. Then, in Lemma 2, we prove that it also holds for h ≥ 1 sequential iterations of
the particle �lter, once again conditioned on a realization of particles at time t −h − 1.
Finally, by letting h = T , we conclude in Theorem 1 that if {x (i)0 }Nxi=1 are unbiased
samples from p(x0), then must p̂Nx (y1:T ) (A.1) also be unbiased.
Lemma 1. With the de�nition of p̂Nx (yt |y1:t−1) in (A.2), it holds that

E
[
p̂Nx (yt |y1:t−1) | {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

Nx∑
i=1

w (i)t−1∑Nx
j=1w

(j)
t−1

p(yt | x (i)t−1). (A.4)

Proof.

E
[
w (j)t | {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

= E
[
E

[
w (j)t | a(j)t , {x (i)t−1,w

(i)
t−1}Nxi=1

]
| {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

= Ea(j )t

[
E
x (j )t ∼f (x (j )t | x

a(j )t
t−1 )

[
д(yt | x (j)t ) | a(j)t , {x (i)t−1,w

(i)
t−1}Nxi=1

]
| {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

= Ea(j )t

[
p(yt | xa

(j )
t

t−1) | {x (i)t−1,w
(i)
t−1}Nxi=1

]
=

Nx∑
k=1

p(a(j)t = k | {x (i)t−1,w
(i)
t−1}Nxi=1 )p(yt | x (k )t−1).

(A.5)

Then,

E

[
Nx∑
j=1

w (j)t | {x (i)t−1,w
(i)
t−1}Nxi=1

]
=

Nx∑
j=1
E

[
w (j)t | {x (i)t−1,w

(i)
t−1}Nxi=1

]
=

/
(A.5)

/
=

=

Nx∑
k=1

(
Nx∑
j=1

p(a(j)t = k | {x (i)t−1,w
(i)
t−1}Nxi=1 )

)
p(yt | x (k )t−1) =

=
/

(5.2)
/
= Nx

Nx∑
k=1

w (k )t−1∑Nx
i=1w

(i)
t−1

p(yt | x (k )t−1), (A.6)

and the lemma follows. �

We have now proved that given a realization of weighted particles {x (i)t−1,w
(i)
t−1}Nxi=1

representing p(xt−1 |yt−1), the estimator p̂Nx (yt |y1:t−1) (A.2), i.e., the contribution
to (A.1) from one single iteration of the particle �lter for the following time t , is unbi-
ased. We now present the next lemma, concerning the corresponding unbiasedness
of p̂Nx (yt−h:t |y1:t−h−1).
Lemma 2. With the de�nitions of p̂Nx (yt |y1:t−1) and p̂Nx (yt−h:t |y1:t−h−1) from above,
it holds that

E
[
p̂Nx (yt−h:t |y1:t−h−1) | {x (i)t−h−1,w

(i)
t−h−1}Nxi=1

]
=

Nx∑
k=1

w (k )t−h−1∑Nx
i=1w

(i)
t−h−1

p(yt−h:t | x (k )t−h−1).

(A.7)
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Proof. The proof is by induction. For h = 0, (A.7) is true by Lemma 1. We now assume
that (A.7) holds also for an arbitrary h, and show that it implies that (A.7) also holds
for h + 1. For h + 1, the left hand side of (A.7) is

E
[
p̂Nx (yt−h−1:t |y1:t−h−2) | {x (i)t−h−2,w

(i)
t−h−2}

Nx
i=1

]
=

= E
[
p̂Nx (yt−h:t |y1:t−h−1)p̂Nx (yt−h−1 |y1:t−h−2) | {x (i)t−h−2,w

(i)
t−h−2}

Nx
i=1

]
=

= E
[
E

[
p̂Nx (yt−h:t |y1:t−h−1) | {x (i)t−h−1,w

(i)
t−h−1}

Nx
i=1

]
×

p̂Nx (yt−h−1 |y1:t−h−2) | {x (i)t−h−2,w
(i)
t−h−2}

Nx
i=1

]
=

=
/

Induction assumption and (A.2)
/
=

= E


Nx∑
j=1

w
(j)
t−h−1∑Nx

i=1w
(i)
t−h−1

p(yt−h:t | x (j)t−h−1)
1
Nx

Nx∑
i=1

w
(i)
t−h−1 | {x

(i)
t−h−2,w

(i)
t−h−2}

Nx
i=1


=

= E


Nx∑
j=1

w
(j)
t−h−1p(yt−h:t | x (j)t−h−1)

1
Nx
| {x (i)t−h−2,w

(i)
t−h−2}

Nx
i=1


=

=
/

akin to (A.5) : E
[
w
(j)
t−h−1p(yt−h:t | x (j)t−h−1) | {x

(i)
t−h−2,w

(i)
t−h−2}

Nx
i=1

]
=

=

Nx∑
k=1

p(a(j)t−h−1 = k | {x
(i)
t−h−2,w

(i)
t−h−2}

Nx
i=1 )p(yt−h−1:t | x (k )t−h−2)

/
=

=
1
Nx

Nx∑
k=1

©­«
Nx∑
j=1

p(a(j)t−h−1 = k | {x
(i)
t−h−2,w

(i)
t−h−2}

Nx
i=1 )ª®¬

p(yt−h−1:t | x (k )t−h−2) =

=

Nx∑
k=1

w
(k )
t−1∑Nx

i=1w
(i)
t−1

p(yt−h−1:t | x (k )t−h−2), (A.8)

and the lemma follows. �

We have proved that the result from Lemma 1 also holds for h ≥ 1 iterations of
the particle �lter. From Lemma 2, we now have that (with t = T and h = t − 1)

E
[
p̂Nx (y1:T ) | {x (i)0 ,w

(i)
0 }Nxi=1

]
=

Nx∑
k=1

w
(k)
0∑Nx

i=1w
(i)
0

p(y1:T | x (k )0 ) =
Nx∑
k=1

p(y1:T | x (k )0 )
1
Nx
. (A.9)

If x (k )0 ∼ p(x0), we can conclude that

E

[
1
Nx

Nx∑
k=1

p(y1:T | x (k )0 )
]
=

∫
p(y1:T | x0)p(x0)dx0 = p(y1:T ). (A.10)

We can now formulate the following theorem (where we have re-introduced ϑ to the
notation).
Theorem 1. For the estimator p̂Nx (y1:T | ϑ ), as de�ned by (A.1) and Algorithm 1 in
Chapter 5, it holds that

E
[
p̂Nx (y1:T | ϑ )

]
= p(y1:T | ϑ ), (A.11)

for any �nite Nx ≥ 1.
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B
The matrix normal inverse

Wishart distribution in linear
regression

“The most important questions of life (...) are
indeed for the most part only problems of
probability.”
Pierre-Simon Laplace

This appendix gives an introduction to the matrix normal inverse Wishart distribu-
tion (and its scalar case normal inverse gamma). The normal inverse gamma and some
of its generalizations is often in the literature highlighted as the conjugate prior for a
data likelihood model on the form p(y | µ,σ 2) = N (

y; µ,σ 2) , where both µ and σ 2 are
unknown. In this appendix, we will derive the expressions for the slightly more in-
volved case of a linear regression model, i.e., p(y | a,σ 2) = N (

y;ax ,σ 2) , with x known
and a and σ 2 unknown, and also its multivariable extension. Similar expressions can
also be found in Quintana (1987).

B.1 The matrix normal and inverse Wishart distributions

In this section, we introduce the matrix normal inverse Wishart distribution, by �rst
considering the scalar case, and thereafter its multivariable generalization. Intro-
ductions can also be found in Dawid (1981) and Press (1982). We will assume a basic
familiarity with the Gaussian and the gamma distributions.
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B.1.1 The scalar case: NIG
The Gaussian distribution,

N (
y; µ,σ 2) = 1√

2πσ
exp

(
−(y − µ)

2

2σ 2

)
, (B.1)

is a probability with support on the entire real line, however with a clear preference for
values around its mean µ ± a few standard deviationsσ . Because of these easy-to-grasp
properties, in combination with its frequent appearance as a limiting distribution
(cf. the central limit theorem) and its analytically tractable form, it is ubiquitous in
statistical modeling.

A simple problem is that of inferring θ = µ when we observe data y1:T as
exchangeable observations p(yt | θ ) = N

(
yt ; µ,σ 2) . If we decide to follow the

Bayesian way of reasoning, we formulate a prior p(θ ). A natural choice for the prior
might be p(µ) = N (

µ;m, ς2) , and the posterior then becomes (after some algebra)

p(θ |y1:T ) = N
(
µ;

(
m
ς 2 +

∑
t yt
σ 2

) (
1
ς 2 +

T
σ 2

)−1
,
(

1
ς 2 +

T
σ 2

)−1
)
, i.e., another Gaussian dis-

tribution. Thus, the Gaussian distribution is the conjugate prior for a Gaussian
likelihood model with unknown mean.

The above example is, however, somewhat unrealistic, since the mean is unknown
whereas the variance is assumed to be known! A less arti�cial situation would be
the problem of inferring θ = {µ,σ 2} jointly. However, the Gaussian distribution is
clearly not a good prior for σ 2, since the Gaussian distribution has support on the
entire real line, whereas a negative variance bears no meaning in our model. A way of
constructing a distribution with support only on the positive real line, is Proceedings
of 26th to consider the square of a standard Gaussian random variable z, or more
generally, the sum of ` such squared Gaussian random variables zj ,

q =
∑̀
j=1

z2
j , p(zj ) ∼ N

(
zj ; 0, 1

)
. (B.2)

The density for q can be written as

p(q) = 1

2`/2Γ
(
`
2

) (q)`/2−1 exp
(
−q2

)
, G (q; 1, `) , (B.3)

where we use G to be the notation for the so-called gamma distribution. By its
construction (B.2), we may realize that the mean of G (q; 1, `) is `, and its variance
increases with `. The gamma distribution can be generalized to non-integer ` > 1,
and also a scale parameter λ > 0 can be introduced, as

G (q; λ, `) = λ`/2

2`/2Γ
(
`
2

) (q)`/2−1 exp
(
−qλ2

)
. (B.4)

Now, this distribution could be used as a prior for σ 2. However, to retain conjugacy
properties, we have to work with the inverse of q: if q is gamma distributed, then is
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its inverse σ 2 , 1/q, distributed as

IG (
σ 2; λ, `

)
=

λ`/2

2`/2Γ
(
`
2

) (σ 2)−`/2−1 exp
(
− λ

2σ 2

)
, (B.5)

the so-called inverse gamma (IG) distribution1, with support on (0,∞), mean 2λ
`−1 and

variance increasing with λ and decreasing with `.
The inverse gamma distribution can now be combined with the Gaussian distri-

bution into the normal inverse gamma distribution (NIG) in the following way:

NIG (
µ,σ 2;m,v, λ, `

)
, N (

µ;m,vσ 2) IG (
σ 2; λ, `

) ∝
∝ (σ 2)−`/2−3/2 exp

(
−

1
v (µ −m)2 + λ

2σ 2

)
(B.6)

Note that this is a hierarchical construction on the form p(µ,σ 2) = p(µ | σ 2)p(σ 2),
and not the independent form p(µ,σ 2) = p(µ)p(σ 2). If we again assume the
observations y1:T are exchangeable and observed as p(yt | θ ) = N

(
yt ; µ,σ 2) ,

now with both mean and variance unknown, the posterior becomes p(θ |y) =
NIG

(
µ,σ 2; m/v+

∑
t yt

1/v+T , 1
1/v+T , λ +

∑
ty

2
t +m

2/v − (m/v+
∑

t yt )2
1/v+T , ` +T )

)
. That is, the

posterior is just another normal inverse gamma distribution, which indeed is the
conjugate prior to N (

yt ; µ,σ 2) with unknown mean and variance.

B.1.2 Generalizing to the matrix case:MNIW
The generalization of the univariate Gaussian distribution to the multivariate Gaussian
distribution is well established. The generalization to the matrix case is, however,
perhaps less so. Following Dawid (1981), we introduce the matrix normal (MN )
distribution as follows: If the random k × p matrix Z has independent standard
Gaussian entries, we write p(Z ) =MN (

Z ; 0, Ik , Ip
)
. If, more generally, the rows of Z

are independent, and each column has a multivariate GaussianN (0,V ) distribution (V
isp×p), we writep(Z ) =MN (Z ; 0, Ik ,V ). Similarly, we writep(Z ) =MN (

Z ; 0,U , Ip
)

if each column ofZ is independent, and each row has a multivariate GaussianN (0,U )
distribution (U is k × k).

In the most general form, we may say that if all elements zi, j of the k × p random
matrix Z have a jointly Gaussian distribution, element zi, j has the marginal distri-
bution p(zi, j ) = N

(
zi, j ;mi, j ,ui,i · vj, j

)
, and the covariance between zi, j and zm,T is

cov
[
zi, j , zm,T

]
= ui,m · vj,T , then the distribution of Z is p(Z ) = MN (Z ;M,U ,V ).

We may write its density as

MN (Z ;M,U ,V ) = (2πv)−kp/2 |U |−p/2 |V |−k/2 exp
(− 1

2 tr
((A −M)TU −1(A −M)V −1) ) . (B.7)

1Note that this is not the most common parameterization of the inverse gamma distribution.
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Analogously to the gamma G(1, `) distribution, we can construct the Wishart
distributionW(Ik , `) (named after John Wishart 1928) as follows: Let Z be distributed
as p(Z ) =MN (Z ; 0, Ik , I`). Then ZZT is distributed asW(Ik , `). As in the scalar case,
we can generalize to non-integer `, introduce a scale parameter (in the matrix case, a
k × k symmetric positive de�nite matrix Λ) and consider the inverse (ZZT)−1 (which
exists with probability 1 if ` > k − 1), yielding the inverse Wishart distribution with
density

IW (Σ;Λ, `) = |Λ|`/2

2`/2Γk
(
`
2

) |Σ|− `+k+1
2 exp

(
−1

2 tr
(
ΛΣ−1) ) (B.8)

if Σ is symmetric positive de�nite, and Γk ( · ) is the multivariate gamma function.
IW (Σ;Λ, `) has a mean Λ/(` − k − 1) (for ` > k − 1) and a variance increasing
(element-wise) with Λ and decreasing with ` (e.g., Rosen 1988). The diagonal elements
of Σ are distributed as inverse gamma (e.g., Theorem 5.2.1 in Press 1982).

Following the scalar case, we construct theMNIW distribution as

MNIW (A, Σ;M,V ,Λ, `) ,MN (A;M, Σ,V ) IW (Σ;Λ, `) ∝

∝ |Σ|−(`+p)/2−1 exp
(
−1

2 tr
(
Σ−1

(
(A −M)V −1(A −M)T + Λ

)))
. (B.9)

The special case p = 1, whenMN (M, Σ, 1) = N (M, Σ) is often referred to as the
normal inverse Wishart distribution, the conjugate prior2 for the case when observing
vector-valued data p(yt | θ ) = N (yt ; µ, Σ) (e.g., Gelman et al. 2014, Section 3.6).

2The inverse Wishart is indeed the conjugate prior, but whether it is a sensible choice of prior is subject
to debate, e.g, Alvarez et al. (2014) and Yang and J. O. Berger (1994) and references therein.
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B.2 Scalar linear regression: yt = axt + et

We now consider the problem of scalar linear regression with T exchangeable ob-
servations:, i.e., yt = axt + et , et ∼ N

(
0,σ 2) and xt is known. That is, we have

the model p(y1:T | a,σ 2) = ∏T
t=1N

(
yt ;axt ,σ 2) . We want to infer a ∈ R and σ 2 ∈

R+ with the Bayesian approach, and assume a normal inverse gamma (B.6) prior
NIG (

a,σ 2;m,v, λ, `
)
. This yields the posterior

p(a,σ 2) ∝ NIG (
a,σ 2;m,v, λ, `

) · T∏
t=1
N (

yt ;axt ,σ 2) ∝
∝ (

σ 2)−l/2−3/2−T /2 exp
(
−

1
v (a −m)2 + λ +

∑T
t=1(yt − axt )2

2σ 2

)
=

/
1
v (a−m)2+λ+

∑
t (yt −axt )2 = 1

v (a2−2am+m2)+λ+∑
ty

2
t −2a

∑
tytxt +a

2∑
tx

2
t =

( 1
v +

∑
tx

2
t
) (
a − m/v+

∑
t yt xt

1/v+
∑

t x
2
t

)2
+ λ +

∑
ty

2
t +

m2

v −
(
m/v+

∑
t xtyt

)2∑
t x

2
t+1/v

/

= (σ 2)−(`+T )/2−3/2 exp
©­­­«
−

( 1
v +

∑
t x 2

t

) (
a−m/v+

∑
t yt xt

1/v+
∑

t x2
t

)2

+λ+
∑
t y2

t+
m2
v −
(m/v+∑t xt yt )2∑

t x2
t +1/v

2σ 2

ª®®®¬
∝

∝ /
cf. (B.6)

/ ∝ NIG (
a,σ 2;m,v, λ, `

)
(B.10)

with

m =
m/v +∑

tytxt

1/v +∑
tx

2
t
, (B.11a)

1
v =

1
v +

∑
tx

2
t , (B.11b)

λ = λ +
∑

ty
2
t +

m2

v
− (m/v +

∑
txtyt )2

1/v +∑
tx

2
t
, (B.11c)

` = ` +T . (B.11d)
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B.3 Multivariable linear regression: yt = Axt + et

We now consider the matrix case, where we observe T exchangeable observations


yt

︸︷︷︸
k×1

=


A

︸              ︷︷              ︸
k×p


xt

︸︷︷︸
p×1

+


et

︸︷︷︸
k×1

, et ∼ N (0, Σ) , (B.12)

with known xt . The data likelihood is given by

p(y1:T |A, Σ) =
∏T

t=1N (yt ;Axt , Σ) =
=

∏T
t=1 |Σ|−k/2 exp

(− 1
2 (yt −Axt )TΣ−1(yt −Axt )

)
(B.13)

We want to infer A ∈ Rk×p and the k ×k a covariance matrix Σ, in a Bayesian fashion.
As a prior, we assumeMNIW (A, Σ;M,V ,Λ, `) (B.9). This gives the posterior
p(A, Σ |y1:T ) ∝ MNIW (A, Σ;M,V ,Λ, `) ·∏T

t=1N (yt ;Axt , Σ) ∝
∝ |Σ |−(`+p+kn)/2−1 exp

(
− 1

2 tr
(
Σ−1

(
(A −M )V −1(A −M )T + Λ +∑T

t=1(yt − Axt )(yt − Axt )T
)))
=

=

/
(A −M )V −1(A −M )T + Λ +∑T

t=1(yt − Axt )(yt − Axt )T =

=

[
A-

(
MV −1+

∑
tyt x

T
t

) (
V -1 +

∑
t xt x

T
t

) -1
] (
V -1+

∑
t xt x

T
t

) [
A-

(
MV -1+

∑
tyt x

T
t

) (
V -1+

∑
t xt x

T
t

) -1
]T

︸                                                                                                                                       ︷︷                                                                                                                                       ︸
(?)

+

+ Λ +
∑
tyty

T
t +MV −1MT −

(
MV −1 +

∑
tyt x

T
t

) (
V −1 +

∑
t xt x

T
t

)−1 (
MV −1 +

∑
tyt x

T
t

)T
︸                                                                                                                     ︷︷                                                                                                                     ︸

(??)

/
=

= |Σ|−(`+p+kn)/2−1 exp
(− 1

2 tr ((?) + (??))) ∝ /
cf. (B.9)

/ ∝
∝ NIW

(
a, Σ;M,V ,Λ, `

)
(B.14)

with

M =
(
MV −1 +

∑
tytx

T
t

) (
V −1 +

∑
txtx

T
t

)−1
, (B.15a)

V
−1
= V −1 +

∑
txtx

T
t , (B.15b)

Λ = (??), (B.15c)
` = ` + kT . (B.15d)
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Notation list“We could, of course, use any notation we want.”
Richard Feynman

The notation used in the introductory chapters is summarized below. The notation
used in the papers is introduced separately in each paper.

Symbol Meaning

General

a A scalar or vector
A A matrix or a set

IA (θ ) Indicator function: 1 if θ ∈ A, 0 otherwise
\ Relative complement
R The set of real numbers

‖ · ‖ The Euclidean distance
Γ( · ) Gamma function

Kν ( · ) Modi�ed Bessel function (Rasmussen and Williams 2006, p.
84)

p Probability density or mass
P Probability

E [ · ] The expected value of the argument
N ( · ; µ,σ 2) The density for a univariate Gaussian distribution with

mean µ and variance σ 2.
N ( · ; µ, Σ) The density for a multivariate Gaussian distribution with

mean µ and covariance matrix Σ.
d→ Convergence in distribution

Data, models and learning

y Data
yt The data sample with index t
T The number of data samples

y1:T {yt }Tt=1
ny The dimension of one data sample
θ Parameters in a model
η Hyperparameters in a model

p(θ ) Prior distribution for θ
p(θ |y) Posterior distribution for θ
p(y | θ ) Density for y given θ
L(θ ) Likelihood function for θ (2.2)

θ̂ Point estimate of θ
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Notation list

State-space models

xt The state (at time t ) in a state-space model
nx The dimension of the state in a state-space model
nu The dimension of the input to a state-space model

f ( · | · ) The state transition function in a state-space model
д( · | · ) The observation function in a state-space model

ϑ The parameters in a state-space model
Gaussian processes

x? The points where the value of the Gaussian process is
predicted

xd The points where the Gaussian process has been observed
µ( · ) The mean function

κ( · , · ) The covariance function
ε Observation noise

K??,K?d ,Kd?,Kdd Shorthand notation for κ evaluated in certain points; see
de�nitions on page 30

Monte Carlo

N The number of particles in a general particle approximation
w (i) The weight of particle i in a weighted particle

approximation
Nx The number of particles in the particle �lter, Algorithm 1 in

Chapter 5
K The number of iterations of the MCMC sampler,

Algorithm 2 in Chapter 5
K ( · | · ) The transition kernel in the MCMC sampler, Algorithm 2 in

Chapter 5
Nθ The number of particles in the SMC sampler, Algorithm 5

in Chapter 5
P The number of iterations of the SMC sampler, Algorithm 5

in Chapter 5
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