Coleman–Weinberg Potential

Kristina Levina

supervised by
Assoc. Prof. Rikard Enberg

Five-credit Project in Physics
March 8, 2018
Task

retype the project plan

Problem (a)

Assume that $m^2 = -\mu^2 < 0$, so that the symmetry $\phi(x) \rightarrow e^{-i\alpha}\phi(x)$ is spontaneously broken. Write out the expression for \mathcal{L}, expanded around the broken-symmetry state by introducing

$$\phi(x) = \phi_0 + \frac{1}{\sqrt{2}}(\sigma(x) + i\pi(x)),$$ \hfill (1)

where ϕ_0, $\sigma(x)$, and $\pi(x)$ are real-valued. Show that the A_μ field acquires a mass. This mechanism of mass generation for vector fields is called the Higgs mechanism.

The Lagrangian density \mathcal{L} is as given ([1], p. 469):

$$\mathcal{L} = -\frac{1}{4}(F_{\mu\nu})^2 + (D_\mu\phi)^\dagger D^\mu\phi - m^2\phi^\dagger\phi - \frac{\lambda}{6}(\phi^\dagger\phi)^2,$$ \hfill (2)

where $\phi(x)$ is a complex-valued scalar field and $D_\mu = (\partial_\mu + ieA_\mu)$.

Instead of m^2, we write $-\mu^2$. Let us define the potential:

$$V(\phi,\phi^\dagger) = -\mu^2\phi^\dagger\phi + \frac{\lambda}{3}(\phi^\dagger\phi)^2.$$

Let us find ϕ_0 – the vacuum expectation value, which is non-zero is symmetry is broken. For this, we should find minima of the potential $V(\phi,\phi^\dagger)$:

$$\frac{\partial V}{\partial \phi}(\phi_0) = 0,$$

$$\frac{\partial V}{\partial \phi^\dagger}(\phi_0) = -\mu^2\phi + \frac{\lambda}{3}\phi^\dagger\phi = \frac{3\mu^2}{\lambda}.$$ \hfill (3)

To expand the Lagrangian density around the broken symmetry state, we insert

$$\phi(x) = \phi_0 + \frac{1}{\sqrt{2}}(\sigma(x) + i\pi(x))$$

into the Lagrangian density. $\phi = \phi_0 + \frac{1}{\sqrt{2}}(\sigma + i\pi)$ and $\phi^\dagger = \phi_0 + \frac{1}{\sqrt{2}}(\sigma - i\pi)$.

1) $(D_\mu\phi)^\dagger D^\mu\phi \rightarrow ((\partial_\mu + ieA_\mu)(\phi_0 + \frac{1}{\sqrt{2}}(\sigma + i\pi)))^\dagger(\partial^\mu + ieA^\mu)(\phi_0 + \frac{1}{\sqrt{2}}(\sigma + i\pi)) = (\frac{1}{\sqrt{2}}(\partial_\mu\sigma - i\partial_\mu\pi) - ieA_\mu\phi_0 + \frac{1}{\sqrt{2}}eA_\mu(-i\sigma - \pi))(\frac{1}{\sqrt{2}}(\partial^\mu\sigma + i\partial^\mu\pi) + \frac{1}{\sqrt{2}}(\partial^\mu\pi - i\partial^\mu\sigma))$.
The one-loop correction comes from a constant field that can be chosen real by proper Weyl transformation. The following expressions can be used to simplify the Lagrangian density:

\[L = \frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{1}{2} (\partial_{\mu} \pi)^2 + e^2 A_{\mu} A^\mu \phi_0^2 + \frac{1}{2} e^2 A_{\mu} A^\mu \pi^2 \]

\[+ \frac{1}{2} e^2 A_{\mu} A^\mu \sigma^2 + \frac{2}{\sqrt{2}} e A_{\mu} \phi_0 \partial_{\mu} \pi + \frac{2}{\sqrt{2}} e A_{\mu} A_{0} \phi_0 \sigma + e A_{\mu} \sigma \partial_{\mu} \pi - e A_{\mu} \pi \partial_{\mu} \sigma \]

2) \[\mu^2 \phi^4 \phi \rightarrow \mu^2 (\phi_0 + \frac{1}{\sqrt{2}} (\sigma + i\pi)) (\phi_0 + \frac{1}{\sqrt{2}} (\sigma - i\pi)) = \mu^2 (\sigma^2 + \frac{\pi^2}{2} + \frac{2}{\sqrt{2}} \phi_0 \sigma) \]

3) \[\frac{\lambda}{6} (\phi^\dagger \phi)^2 \rightarrow -\frac{\lambda}{6} (\phi_0^2 + \frac{\sigma^2}{2} + \frac{\pi^2}{2} + \frac{2}{\sqrt{2}} \phi_0 \sigma)^2 = -\frac{\lambda}{6} (2 \phi_0^2 \sigma^2 + \frac{\sigma^4}{4} + \frac{\pi^4}{4} + \frac{\pi^2}{2} + \frac{4\phi_0^2 \sigma^2}{\sqrt{2}} + \phi_0^2 \sigma^2 + \phi_0^2 \pi^2 + \frac{2}{\sqrt{2}} \phi_0 \sigma^3 + \frac{2}{\sqrt{2}} \phi_0 \sigma \pi^2) \]

All constants were omitted because the energy level can always be shifted. The following expressions can be used to simplify the Lagrangian density:

\[\mu^2 \frac{\pi^2}{2} - \frac{\lambda}{6} \frac{3 \phi^2}{\lambda} \pi^2 = 0 \text{ and } \mu^2 \frac{2}{\sqrt{2}} \phi_0 \sigma - \frac{\lambda}{6} \frac{4 \phi^2}{\sqrt{2}} \phi_0 \sigma = 0. \]

Thus, the Lagrangian density is as follows:

\[\mathcal{L}(\sigma, \pi, A_{\mu}) = -\frac{1}{4} (F_{\mu\nu})^2 + \frac{1}{2} (\partial_{\mu} \sigma)^2 + \frac{1}{2} (\partial_{\mu} \pi)^2 - \mu^2 \sigma^2 + e^2 \phi_0^2 A_{\mu} A^\mu + \frac{1}{2} e^2 A_{\mu} A^\mu (\sigma^2 + \frac{\pi^2}{2} \phi_0 \sigma) + \frac{2}{\sqrt{2}} e A_{\mu} \phi_0 \partial_{\mu} \pi + e A_{\mu} (\sigma \partial_{\mu} \pi - \pi \partial_{\mu} \sigma) - \frac{\lambda}{6} (\frac{\sigma^4}{4} + \frac{\pi^4}{4} + \frac{\pi^2 \sigma^2}{2} + \frac{2}{\sqrt{2}} \phi_0 \sigma^3 + \frac{2}{\sqrt{2}} \phi_0 \sigma \pi^2). \]

We can see that \(A_{\mu} \) acquired the mass \(m_{A_{\mu}} = 2 e^2 \phi_0^2 \) from the term \(e^2 \phi_0^2 A_{\mu} A^\mu \).

Problem (b)

Working in Landau gauge \((\partial_{\mu} A_{\mu} = 0) \), compute the one-loop correction to the effective potential \(V(\phi_{cl}) \). Show that it is renormalized by counterterms for \(m^2 \) and \(\lambda \). Renormalize by minimal subtraction, introducing a renormalization scale \(M \).

From Eq. 11.63 [1], the one-loop correction is \(\frac{1}{2} \text{logdet}(-\frac{\partial^2 \mathcal{L}}{\partial \phi_{cl} \partial \phi_{cl}}) \), where \(\mathcal{L}_1 \) is the term depending only on the renormalized parameters, namely \(\phi = \phi_{cl} + \eta_1 + i\eta_2, \eta_1 \) and \(\eta_2 \) are real-valued. Here, \(\phi_i = \eta_1, \eta_2, A_{\mu} \). \(\phi_{cl} \) is a constant field that can be chosen real by proper Weyl transformation. The one-loop correction comes from \(\frac{1}{2} \int d^4 x d^4 y t_1(x) \frac{\partial^2 \mathcal{L}_1}{\partial \eta_1(x) \partial \eta_2(y)} t_2(y) \); thus, we can consider only terms of the Lagrangian density that depend on the second-order fluctuating fields \(\eta_1, \eta_2, A_{\mu} \).

\[\mathcal{L} = -\frac{1}{4} (F_{\mu\nu})^2 + (D_{\mu} \phi)^\dagger D^\mu \phi - m^2 \phi^\dagger \phi - \frac{\lambda}{6} (\phi^\dagger \phi)^2, F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \text{ and } D_{\mu} = \partial_{\mu} + ie A_{\mu}. \]
Let us compute \mathcal{L}_1.
1) $-\frac{1}{2}(F_{\mu\nu})^2 = \frac{1}{2}((\partial_{\mu}A_{\nu})^2 - \partial_{\mu}A_{\nu}\partial^{\nu}A^{\mu})$
2) $(\partial_{\mu} - ieA_{\mu}(\phi_{cd} + \eta_1 - i\eta_2)(\partial^{\mu} + ieA^{\mu})(\phi_{cd} + \eta_1 + i\eta_2) = (\partial_{\mu}\eta_1 - i\partial_{\mu}\eta_2 - ieA_{\mu}\phi_{cd} - ieA_{\mu}\eta_1 - eA_{\mu}\eta_2)(\partial^{\mu}\eta_1 + i\partial^{\mu}\eta_2 + ieA^{\mu}\phi_{cd} + ieA^{\mu}\eta_1 - eA^{\mu}\eta_2)
\rightarrow (\partial_{\mu}\eta_1)^2 + (\partial_{\mu}\eta_2)^2 + e^2\phi_{cd}^2A_{\mu}A^{\mu} + 2e\phi_{cd}\partial_{\mu}\eta_2A^{\mu}$
3) $-m^2(\phi_{cd} + \eta_1 - i\eta_2)(\phi_{cd} + \eta_1 + i\eta_2) \rightarrow -m^2(\eta_1^2 + \eta_2^2)$
4) $-\frac{1}{6}(\phi_{cd}^2 + \phi_{cl}^2\eta_1 + \eta_2^2) \rightarrow \frac{1}{6}(4\phi_{cl}^2\eta_1 + 2\phi_{cd}^2\eta_2^2 - \frac{1}{3}(3\phi_{cd}^2\eta_1 + \phi_{cd}^2\eta_2^2)$
Thus,

$$\mathcal{L}_1 = -\frac{1}{2}((\partial_{\mu}A_{\nu})^2 - \partial_{\mu}A_{\nu}\partial^{\nu}A^{\mu}) + e^2\phi_{cl}^2A_{\mu}A^{\mu} + 2e\phi_{cd}\partial_{\mu}\eta_2A^{\mu} + \eta_1(\partial^2 - m^2 - \lambda\phi_{cd}^2)\eta_1 + \eta_2(\partial^2 - m^2 - \frac{\lambda}{3}\phi_{cd}^2)\eta_2$$ (5)

The next step is to compute the second variational derivative.
1) $\frac{\delta^2S}{\delta\eta_1\delta\eta_2} = \frac{\delta^2S}{\delta\eta_1}\int d^4x\eta_1(x)(\partial_\mu - 2 - m^2 - \lambda\phi_{cd}^2)\eta_1(x) = 2(-\partial^2 - m^2 - \lambda\phi_{cd}^2)$
The minus sign before the partial derivative squared comes from integrating by parts and omitting the surface integral because fields are zero at infinity.
2) $\frac{\delta^2S}{\delta\eta_1\delta\eta_2} = 0 = \frac{\delta^2S}{\delta\eta_1\delta\eta_2}$
3) $\frac{\delta^2S}{\delta\mu\delta\eta_2} = 2(-\partial^2 - m^2 - \frac{\lambda}{3}\phi_{cd}^2)$
4) $\frac{\delta^2S}{\delta\mu\delta\eta_2} = 2e\phi_{cd}\delta\mu\partial_{\mu}A^{\mu} = 0$ because of the Landau gauge.
5) $\frac{\delta^2S}{\delta\mu\delta\eta_2} = 2e^2\phi_{cd}^2g^{\mu\nu}g^{\nu\xi} - \frac{1}{2}\delta\mu\delta\eta_2 A^{\mu} A^{\xi} A^{\nu} = 2e^2\phi_{cd}^2g^{\mu\nu} - \frac{1}{2}\delta\mu\delta\eta_2 A^{\mu} A^{\xi} A^{\nu} = 2e^2\phi_{cd}^2g^{\mu\nu} - \partial_\mu g^{\mu\nu}$

Thus, we get

$$\frac{i}{2}\log\det[-\frac{\delta^2S}{\delta\phi_i\delta\phi_j}] = \frac{i}{2}\log[\det(\partial^2 + m^2 + \lambda\phi_{cd}^2)\det(\partial^2 + m^2 + \frac{\lambda}{3}\phi_{cd}^2)].$$

$$\det(\partial^2 g^{\mu\nu} - 2e^2\phi_{cd}^2 g^{\mu\nu} - \partial_\mu g^{\mu\nu})$$ (6)

The fields η_1 and η_2 were rescaled using a Weyl transformation, so factors of 2 were omitted in the first two determinants.

How to deal with second-order tensors? This part of the integral comes from the photon propagator. Let us omit small parameters, and we get: $P^{\mu\nu} = g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^2}$. When we compute the one-loop correction, the following integral appears: $\int [dA]e^{-\frac{1}{2}\int d^4x \eta_i \partial_\mu A_{i\mu}(x)(2e^2\phi_{cd}^2 g^{\mu\nu} + k^2 P^{\mu\nu})A_{i\nu}(y)}$. What is $P^{\mu\nu}$?
\[P^{\mu\nu}(k) P_{\nu}^{\rho}(k) = g^{\mu\rho} + g^{\mu\nu} \frac{k_{\rho}}{k^2} - \frac{k^{\nu} k^{\rho}}{k^2} g_{\nu}^{\rho} - \frac{k^{\mu} k_{\rho}}{k^2} = P^{\mu\rho}(k). \] Thus, \(P^{\mu\nu} \) is a projection operator, whose eigenvalues can be 0 or 1. Thus, while calculating the volume integral, we will get a constant or the ordinary contribution that includes the mass \(2e^2 \phi_{cl}^2 \).

Using Eqs. (11.71) and (17.73) [1], the one-loop correction is as follows:

\[
\frac{i}{2} \log \det \left[\frac{\delta^2 S_1}{\delta \phi_i \delta \phi_j} \right] = \frac{\Gamma(-d/2)}{2(4\pi)^{d/2}} \left((2e^2 \phi_{cl}^2)^{d/2} + (m^2 + \lambda \phi_{cl}^2)^{d/2} + (m^2 + \frac{\lambda}{3} \phi_{cl}^2)^{d/2} \right) \tag{7}
\]

It is easy to prove that it is renormalized by counter-terms for \(m^2 \) and \(\lambda \):

\[- \delta m \phi_{cl}^2 \text{ and } - \delta \lambda \phi_{cl}^4 \text{ (corrections to bare } m^2 \text{ and } \lambda). \]

In the one-loop correction, we have \(m^2, e^2, \) and \(\lambda \). However, \(e \) is related only to terms with fluctuating fields \(A_{\mu} \) not related to \(\phi \). The term with \(\partial_{\mu} \eta \partial A_{\mu} \) gives no contribution; thus, only the counter-terms for \(m^2 \) and \(\lambda \) contribute.

Using Eq. (11.78) [1], we obtain

\[
\frac{i}{2} \log \det \left[\frac{\delta^2 S_1}{\delta \phi_i \delta \phi_j} \right] \to \frac{1}{4(4\pi)^2} \left((m^2 + \lambda \phi_{cl}^2)^2 \left(\log \frac{m^2 + \lambda \phi_{cl}^2}{M^2} - 3/2 \right) +\right.
\]
\[+ \left. (m^2 + \frac{\lambda}{3} \phi_{cl}^2)^2 \left(\log \frac{m^2 + \frac{\lambda}{3} \phi_{cl}^2}{M^2} - 3/2 \right) + 3(2e^2 \phi_{cl}^2)^2 \left(\log \frac{2e^2 \phi_{cl}^2}{M^2} - 3/2 \right) \right) \tag{8}
\]

where \(M \) is the normalization scale.

Problem (c)

In the result of part (b), take the limit \(\mu \to 0 \). The result should be an effective potential that is scale-invariant up to logarithms containing \(M \). Analyze this expression for \(\lambda \) very small, of order of \(e^4 \). Show that with this choice of coupling constants, \(V(\phi_{cl}) \) has a symmetry-breaking minimum at a value of \(\phi_{cl} \) for which no logarithm is large, so that a straightforward perturbation theory analysis should be valid. Thus, the \(\mu^2 = 0 \) theory, for this choice of coupling constants, still has spontaneously broken symmetry, due to the influence of quantum corrections.
According to part (b), the effective potential is as follows:

\[V_{\text{eff}} = -\mu^2 \phi_{\text{cl}}^2 + \frac{\lambda}{6} \phi_{\text{cl}}^4 + \frac{1}{4(4\pi)^2}((-\mu^2 + \lambda \phi_{\text{cl}}^2)^2(\log\frac{-\mu^2 + \lambda \phi_{\text{cl}}^2}{M^2} - 3/2) + \\
(-\mu^2 + \frac{\lambda}{3} \phi_{\text{cl}}^2)(\log\frac{-\mu^2 + \frac{\lambda}{3} \phi_{\text{cl}}^2}{M^2} - 3/2) + 12e^4 \phi_{\text{cl}}^4(\log\frac{2e^2 \phi_{\text{cl}}^2}{M^2} - 3/2)) \quad (9) \]

up to the one-loop correction.

Now, let us take the limit \(\mu^2 \to 0 \)

\[V_{\text{eff}} \to \frac{\lambda}{6} \phi_{\text{cl}}^4 + \frac{3e^4 \phi_{\text{cl}}^4}{16\pi^2} (\log\frac{2e^2 \phi_{\text{cl}}^2}{M^2} - 3/2). \]

Let us find the potential minimum.

\[\frac{\partial V_{\text{eff}}}{\partial \phi_{\text{cl}}} = \phi_{\text{cl}}^3 (\frac{2\lambda}{3} + \frac{3e^4}{4\pi^2} (\log\frac{2e^2 \phi_{\text{cl}}^2}{M^2} - 3/2) + \frac{e^4}{4\pi^2}) \]

In addition to en extremum at \(\phi_{\text{cl}} = 0 \), we get the following equation:

\[\frac{2\lambda}{3} + \frac{3e^4}{4\pi^2} (\log\frac{2e^2 \phi_{\text{cl}}^2}{M^2} - 3/2) + \frac{e^4}{4\pi^2} = 0 \]

\[\frac{2\lambda}{3} + \frac{e^4}{4\pi^2} (3\log\frac{2e^2 \phi_{\text{cl}}^2}{M^2} - 3.5) = 0 \]

\[\log\frac{2e^2 \phi_{\text{cl}}^2}{M^2} = -\frac{8\pi^2}{9e^4} + \frac{7}{6} \Rightarrow \phi_{\text{cl}}^2 = \frac{M^2}{2e^2} e^{-\frac{8\pi^2}{9e^4}} - \frac{7}{6} \] other extrema. As \(\Phi_{\text{cl}} \) has the exponential dependence, no logarithm of it will be large. Thus, straightforward perturbation analysis would be valid. Additionally, as \(\Phi_{\text{cl}} \neq 0 \), symmetry is broken at \(\mu^2 = 0 \).

Problem (d)

Sketch the behaviour of \(V_{\text{eff}} \) as a function of \(m^2 \), on both sides of \(m^2 = 0 \), for the choice of coupling constants made in part (c).

Let us divide Eq.(9) by \(M^4 \). Also, we will omit terms proportional to \(\lambda^2 \).

We get:

\[\frac{V_{\text{eff}}}{M^4} = -\frac{\mu^2}{M^2} \phi_{\text{cl}}^2 + \frac{\phi_{\text{cl}}^4}{6M^2} + \frac{1}{4(4\pi)^2}(\lambda(-\frac{\mu^2}{M^2} + \frac{\phi_{\text{cl}}^2}{M^2})^2(\log\frac{-\mu^2 + \lambda \phi_{\text{cl}}^2}{M^2} - 3/2) + \\
\lambda(-\frac{\mu^2}{M^2} + \frac{\phi_{\text{cl}}^2}{3M^2})^2(\log\frac{-\mu^2 + \frac{\lambda}{3} \phi_{\text{cl}}^2}{M^2} - 3/2) + 4\phi_{\text{cl}}^4(\log\frac{2e^2 \phi_{\text{cl}}^2}{M^2} - 3/2)) \]
We will consider the parameter \(\frac{\mu^2}{\lambda M^2} \equiv \mathcal{M}^2 \). Also, \(\frac{\phi^2}{M^2} \equiv \Phi_{cl}^2 \). Thus, we get the following expression:

\[
\frac{V_{eff}}{\lambda M^4} \rightarrow -\mathcal{M}^2 \Phi_{cl}^2 + \frac{\Phi_{cl}^4}{6} + \frac{\Phi_{cl}^4}{16\pi^2} (\log 2 e^2 \Phi_{cl}^2 - 3/2).
\] (10)

To get the right balance between the quadratic and quartic parabolas, we fixed \(e^2 = \frac{10^{-6}}{2} \). Sketching Eq. (10) using the program SciDAVis, we get Figs. 1(a) and 1(b).

![Figure 1: Effective potential for different mass parameters](image)

We see that the symmetry is broken until \(\mathcal{M}^2 = 0 \). When \(\mathcal{M}^2 > 0 \), we get symmetry breaking like from \(\phi^4 \) theory. When \(\mathcal{M}^2 < 0 \), we get 2 local extrema above \(\Phi_{cl} = 0 \), which prevent symmetry breaking; then the quadratic parabola dominates and we get only one local minimum at a zero field.

Problem (e)

The Callan-Symanzik \(\beta \) functions are \(\beta_e = \frac{e^3}{48\pi^2} \) and \(\beta_\lambda = \frac{1}{24\pi^2} (5\lambda^2 - 18e^2\lambda + 54e^4) \). Sketch the renormalization group flows in the \((\lambda, e^2) \) plane. Show that every renormalization group (RG) trajectory passes through the region of the coupling constants considered in part (c).
\[\beta_e = \frac{de}{dT} \text{ and } \beta_\lambda = \frac{d\lambda}{dT}, \text{ where } T - \text{ is a slowly changing parameter. Thus,} \]
\[d\lambda = 2de(5\lambda^2 - 18e^2\lambda + 54e^4)/e^3. \]

As \(\lambda \sim e^4 \), we can consider the main contribution: \(\lambda \approx 54e^2 + C \), where \(C \) is constant. We see that the flow of the coupling constant \(\lambda \) approaches the critical point. Thus, we have the following RG flow:

![Figure 2: RG flow in the plane \((e^2, \lambda)\)](image)

As can be seen in Fig. 2, every RG trajectory passes through the region \(\lambda \sim e^4 \).

Problem (f)

Construct the RG-improved effective potential at \(\mu^2 = 0 \) by applying the results of part (e) to the calculation of part (c). Compute \(\langle \phi \rangle \).

From (c), \(V_{\text{eff}} \rightarrow \frac{\lambda_{\phi^4}}{6} \phi_{cl} + \frac{3e^4\phi_{cl}^4}{16\pi^2} (\log \frac{2e^2\phi_{cl}^2}{M^2} - 3/2). \) To get the RG-improved potential, we should solve the Callan-Symanzik equation: \((M \frac{\partial}{\partial M} + \beta_\lambda \frac{\partial}{\partial e} + \gamma_{\phi\phi} \frac{\partial}{\partial \phi_{cl}})V_{\text{eff}}(\phi_{cl}, e, \lambda, M) = 0 \) (Eq. (13.24) [1]). However, in our case, we can construct the RG-improved effective potential without solving it. We know that the result should be independent on the scale parameter \(M \). In addition, the coupling constants should be running. It is very easy to construct such a potential, as the term \(\lambda \phi_{cl}^4/6 \) should be the same. We remember that \(\lambda \sim e^4 \), and it is obvious that the term \(\lambda \phi_{cl}^4 \) should be the
same. Thus, only the term $log(\frac{2e^{2}\phi_{cl}^{2}}{m^{2}})$ should be revised. The equation for ϕ_{cl} is as follows: $M\frac{\partial \phi'_{cl}}{\partial M} = -\gamma_{\phi} \phi'_{cl}$, where γ_{ϕ} counts the number of powers of ϕ_{cl} in each term of the Taylor expansion and ϕ'_{cl} is the running parameter. Thus, M is linear in ϕ_{cl}. By omitting irrelevant constants, we get

$$V_{eff} \to \frac{\lambda'}{6} \phi'_{cl}^{4} + \frac{3e'_{4}\phi'_{cl}^{4}}{16\pi^{2}}(log2e'^{2} - 3/2), \quad (11)$$

where e', ϕ'_{cl}, and λ' are the running parameters.

From here, we redefine $e' = e$, $\lambda' = \lambda$, and $\phi'_{cl} = \phi_{cl}$.

Let us calculate $\langle \phi \rangle$. The procedure is the same as in (c): Let us find the potential minimum: $\frac{\partial V_{eff}}{\partial \phi_{cl}} = \frac{2\lambda^{3}}{3} + \frac{3e_{4}^{4}}{4\pi^{2}}(log2e'^{2} - 3/2) \phi_{cl}^{3} = 0 \Rightarrow \langle \phi_{cl} \rangle = 0$.

However, the full derivative of the effective potential with respect to the field ϕ_{cl} includes the partial derivates over λ and e because the coupling constants are running now and depend on the chosen normalization scale, which is chosen to be linear with the field. Thus, symmetry breaking still occurs.
Bibliography
