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Angioedema is an adverse drug reaction of drugs commonly used for 
treatment of hypertension and heart failure. It involves a sudden 
swelling in the head and neck region and can be potentially life-
threatening if affecting the upper airways. In this project, a genome-
wide association study was done of ACEi- and ARB-induced angioedema, 
aiming to identify possible genetic risk factors predisposing patients 
to this rare but very critical adverse drug reaction.
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Populärvetenskaplig sammanfattning 

Högt blodtryck och hjärtsvikt är vanliga åkommor som allt fler behandlas för. Möjligheterna 

till behandling har klart förbättrats, men en del patienter reagerar negativt på de läkemedel 

som ges. För ett fåtal läkemedel finns genetiska markörer som kan förutsäga risk för 

biverkningar, men för de flesta är detta ett outforskat område. Forskningsstudien 

SWEDEGENE samlar in kliniska uppgifter och DNA från drabbade patienter och undersöker 

om genetiska skillnader kan förklara varför vissa drabbas av allvarliga biverkningar. I denna 

studie har angioödem relaterat till ACE-hämmare och angiotensin II-receptorblockerare 

studerats. Angioödem innebär en svullnad i hud och slemhinnor, ofta i ansikte och hals, och 

reaktionen kan vara direkt livshotande om den drabbar de övre luftvägarna. Syftet med 

studien var att öka kunskaperna om angioödem utlöst av dessa läkemedel och målet var att 

hitta genetiska riskfaktorer som i framtiden skulle kunna användas för att utveckla kliniska 

test för att individualisera val av läkemedel. 

En så kallad helgenomanalys (eng. genome-wide association study, GWAS) gjordes, vilket 

innebär en kartläggning av variationer i arvsmassan hos drabbade patienter och friska 

kontroller där man försöker hitta genetiska skillnader som kan förklara varför vissa drabbas. I 

studien kunde flera signifikanta varianter, så kallade SNPs (”snippar”) i KCNMA1-genen 

identifieras som var associerade med angioödem relaterat till dessa blodtrycksmediciner. 
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1 Introduction 

Our population is getting older and older and more people need treatment for common 

medical conditions such as high blood pressure (hypertension) and heart failure. The 

possibilities of treatment have clearly improved, but some patients react adversely to the 

medicines given.  For a few drugs, there are genetic markers that can predict the risk of 

adverse drug reactions (ADRs), but for most, the current knowledge of possible genetic 

causes of these reactions are inadequate (Daly 2013).  

Angiotensin converting enzyme inhibitors (ACEi) and Angiotensin II type blockers (ARBs) 

are agents commonly used for treating hypertension and heart failure. In 2014, 7% of the 

Swedish population was treated with an ACE inhibitor and 6% was treated with an ARB (The 

National Board of Health and Welfare 2013). For most of these patients, these drugs are safe 

and effective, but some patients experience adverse drug reactions. A rare, but very critical 

ADR is angioedema which is a sudden swelling in the head and neck region that can be 

potentially life-threatening if affecting the upper airways. Angioedema occurs in 0.1-0.7% of 

patients treated with an ACEi and more rarely, 0.1%, in patients treated with ARB (Wadelius 

et al. 2014). This thesis aims to identify possible genetic risk factors predisposing patients to 

angioedema induced by these drugs. 

1.1 Adverse drug reactions 

Adverse drug reactions are an important clinical issue and a major health care problem and 

economic burden. ADRs are a common reason for hospitalisation and one of the leading 

cause of death in hospitalised patients in the US (Lazarou 1998). The World Health 

Organization’s (WHO) definition of an adverse drug reaction is:  

“A response to a drug which is noxious and unintended and which occurs at doses normally used in man for 

prophylaxis, diagnosis, or therapy of disease or for modification of physiologic function”. (Edwards & Aronson 

2000) 

This definition has been in use since 1972 and is commonly used. However, more exhaustive 

definitions of ADRs have been proposed, for instance by Uppsala Monitoring Centre (UMC), 

a WHO collaborating centre for international drug monitoring, which suggest the following 

definition of an ADR: 

“An appreciably harmful or unpleasant reaction, resulting from an intervention related to the use of a medicinal 

product, which predicts hazard from future administration and warrants prevention or specific treatment, or 

alteration of the dosage regimen, or withdrawal of the product.”(Edwards & Aronson 2000) 

So called Type A (augmented) reactions are common and constitute around 80% of all ADRs 

(Ritter et al. 2008). They are related to dose and the pharmacological action of the drug which 

make these types of reactions predictable. Bleeding from using the anticoagulant warfarin is 

an example of a type A reaction. Type B (bizarre) reactions on the other hand are uncommon, 
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non-dose related and not related to the pharmacological action, making them very 

unpredictable. Type B reactions can be immunological reactions like penicillin 

hypersensitivity or idiosyncratic reactions. Angioedema related to ACE inhibitors and ARBs 

is classified as a type B reaction. Sweden has a system for reporting adverse drug reactions, 

established in 1965, where reports are sent to the Swedish Medical Products Agency (MPA). 

According to Swedish law, (LVFS 2012:14, 19§), it is mandatory for health care professionals 

as physicians, dentists and nurses to report all suspected ADRs.  

1.2 Angioedema 

Angioedema (angio relating to blood vessels and edema to swelling) is a sudden swelling in 

the deep reticular dermis, subcutaneous or submucosal tissues (i.e. the deep and middle layers 

of the skin and the connective tissue supporting the mucosa) (Wadelius et al. 2014). It is 

caused by vasodilation i.e. widening of blood vessels and increased secretion of fluid into the 

interstitial compartment, i.e. the space surrounding tissue cells. The swelling can be 

potentially life-threatening if affecting the upper airways (Wadelius et al. 2014). Angioedema 

is an adverse drug reaction of ACEi and ARB, drugs commonly used for treatment of 

hypertension and heart. It is classed as a type B (bizarre) reaction since it is very 

unpredictable and not related to dose or the pharmacological action of the drugs. Other causes 

of angioedema include hereditary or acquired mediated by bradykinin or vasoactive 

molecules, where the hereditary angioedema is caused by mutations in the SERPING1 or 

F12 gene (Wadelius et al. 2014). Other types are allergic or pseudoallergic angioedema 

dependent on mast cell degranulation, which usually can be treated with antihistamines and 

epinephrine (adrenaline), and idiopathic angioedema which has no known pathophysiology 

(Wadelius et al. 2014). The phenotype of drug-induced angioedema has been standardized for 

enabling global multicentre investigations of the underlying factors predisposing patients to 

this. The phenotype definition of angioedema induced by ACEi or ARB includes a swelling in 

the head and neck region that is first occurring during treatment of these drugs (Wadelius et 

al. 2014). It should not be mixed up with urticaria (hives) which is remarkably similar but 

affect more superficial layers of the skin.  

Both Angiotensin converting enzyme inhibitors (ACEi) and Angiotensin II type blockers 

(ARBs) act on the angiotensin system which regulates blood pressure and fluid balance 

(homeostasis). ACEi and ARB cause vasodilation, a widening of blood vessels induced by a 

relaxation of smooth muscle cells in the cell walls, which lowers the blood pressure. The 

theoretical effect of these drugs and how they act on the angiotensin system and the 

angiotensin-bradykinin pathways, can be seen in Figure 1.  

Blood pressure is naturally increased indirectly by the angiotensin-converting enzyme (ACE) 

which causes blood vessels to constrict by generating angiotensin II from angiotensin I. ACE 

also degrades the vasodilator bradykinin to inactive metabolites, see Figure 1a. ACE 

inhibitors work by inhibiting the enzyme ACE which results in a decrease of the formation of 
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angiotensin II. This in turn results in decreased degradation of bradykinin, leading to 

increased vasodilation and decreased blood pressure, see Figure 1b (Wadelius et al. 2014). 

Angioedema induced by ACEi can theoretically be caused by an accumulation of bradykinin 

that otherwise would have been degraded by ACE. There are alternative pathways, 

Aminopeptidase P (APP) and Membrane metallo-endopeptidase (MME), which can inactivate 

bradykinin (Wadelius et al. 2014). These usually step in, but if they are deficient, bradykinin 

could accumulate and genetic variants in these pathways could therefore explain why some 

patients develop angioedema (Mahmoudpour et al. 2013). The theoretical effect of ARBs is 

less clear and even though ARBs have no direct effect on ACE and the degradation of 

bradykinin, ARB seem to contribute to increased levels of bradykinin (Wadelius et al. 2014). 

By blocking the type 1 receptor for angiotensin II, more angiotensin II binds to the type 2 

receptor instead, see Figure 1c. This in turn seem to inhibit ACE and MME causing increased 

bradykinin levels and vasodilation. So even though bradykinin is one of the therapeutic 

actions, accumulation of bradykinin may contribute to the development of angioedema. 

 

 

 

 

 

 

 

 

 

 

 

Examples of prescribed ACE inhibitors are enalapril, perindopril, captopril, lisinopril, 

and ramipril. Persistent dry cough is the most common ADR and occurs in about 9% of 

patients treated with an ACEi (Powers et al. 2012). Patients who experience this cough are 

often switched to the more expensive angiotensin II type blocker, which has less frequency of 

this ADR. Angioedema occurs in 0.1-0.7 % of patients treated with an ACEi (Wadelius et al. 

2014). Prescribed ARBs include candesartan, irbesartan, valsartan, fimasartan and losartan. 

Angioedema is a much rarer ADR for ARB and occurs in about 0.1% of the patients 

(Wadelius et al. 2014). 

Figure 1. Theoretical effect of agents 

acting on the angiotensin system. 

Figure reprinted with permission 

from M. Wadelius. 

 
a) Angiotensin-bradykinin pathways 

 

b) Theoretical effect of Angiotensin 

converting enzyme inhibitors (ACEi)  

 

c) Theoretical effect of Angiotensin II 

type blockers (ARBs) 
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https://en.wikipedia.org/wiki/Angiotensin_II_receptor_antagonist
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1.3 Swedegene  

SWEDEGENE is a project aiming to identify clinical and genetic risk factors predisposing 

patients to adverse drug reactions. It is a collaborative project between Uppsala University 

(Department of Clinical Pharmacology), the Swedish Medical Products Agency and 

Karolinska Institute (Department of Clinical Pharmacology) and aims to increase knowledge 

of adverse drug reactions. SWEDEGENE aims to establish a database of clinical data and a 

biobank of DNA from patients who have experienced ADRs to enable studies of both genetic 

and acquired risk factors.  

Reported cases of ADRs are stored by the Swedish Medical Products Agency (MPA). Clinical 

data from cases in the SWEDEGENE project is obtained from medical records as well as 

from a standardised subject questionnaire which is sent to participating patients. A blood 

sample is then taken at a health-care facility and posted for storage at Uppsala University 

before DNA is extracted. Patients who have experienced ADRs are recruited to the project 

predominantly through MPA, but also through collaboration with health-care facilities and 

hospitals. Patients can also contact SWEDEGENE if they have experienced an ADR and want 

to participate in the study.  

SWEDEGENE started as a part of the EUDRAGENE project, a European research project 

which focused on investigating genetic determinants of seven serious type B ADRs, for 

instance myopathy caused by statins or fibrates and agranulocytosis. The project started in 2005 

and has since 2010 continued under the name SWEDEGENE in Sweden. SWEDEGENE is 

also a partner in the ongoing project PREDICTION-ADR (Personalisation of tREatment In 

Cardiovascular disease through next generation sequencing in Adverse Drug Reactions), 

funded by the European Union’s 7th Framework program for Research and Technological 

Development (FP7) in 2013. It aims to find genetic factors that can explain ADRs from 

cardiovascular disease drugs, focusing on ACE-inhibitor induced angioedema and statin-

induced myopathy. The SWEDEGENE project has ethics approval from the Uppsala 

Regional Ethical Review Board (EPN Uppsala Dnr 2008/213 and Dnr 2010/231).  

1.4 Aim 

In this thesis I aim to investigate possible genetic factors predisposing patients to angioedema 

triggered by treatment with drugs acting on the angiotensin system.  A genome-wide 

association study (GWAS) is done based on data from the SWEDEGENE project and about 

5000 population controls from the Swedish Twin Registry. Identification of possible risk 

factors could lead to an increase in the understanding of the pathogenesis behind angioedema, 

knowledge that consequently could be used to identify patients with increased risk of 

experiencing an ADR. The goal is to find genetic markers that can be used to develop clinical 

tests which in the future could be used to individualize the choice of drug, i.e. personalised 

medicine.  
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2 Background 

The human genome consists of three billion base pairs distributed in 23 chromosome pairs, 

where one set is from the mother and the other from the father.  Chromosomes are the packed 

and organised structure of DNA (deoxyribonucleic acid) which is made of nucleotides with 

four type of bases - adenine (A), thymine (T), cytosine (C) and guanine (G). The bases are 

distributed in two chains, where “A” only pairs with “T” and “C” only pairs with “G”, which 

is a key factor of DNA replication. Even though the nucleotides always are in fixed pairs the 

pairs can come in any order. This way, DNA can be likened to a recipe with chemical 

information where all instruction needed for making all the proteins and components a cell 

will ever need are encoded in the order of the bases. A single set of these instructions is called 

a gene. A gene is a functional region of DNA and includes sequences that regulate gene 

activity. Genes code for functional RNA (ribonucleic acid) or for proteins. The coding regions 

of a gene is called exons and the non-coding parts introns. The Human Genome Project first 

published the complete sequence of the human genome in 2001 and estimated that it consists 

of 20 000 to 25 000 protein coding genes, which is about 1-2 % of the human genome.  The 

rest is so-called noncoding DNA even though it still can have biochemical activity and 

include functional and regulatory elements (The ENCODE Project Consortium 2012).  

The genome contains the hereditary information encoded in the DNA and except for 

monozygotic twins, the genome for every individual human is unique. Even though two 

genomes are roughly 99.9% identical, genetic heritability among individuals are caused by the 

small fraction that differs. This variation can explain susceptibility to disease and why some 

people experience adverse drug reactions. 

2.1 Genetic association studies  

The principle of association studies in genetics is to link a phenotype, e.g. a disease or an 

adverse drug effect, to genetic variation. There is an association if the genetic variant is found 

more often than expected by chance in a person having the phenotype/trait of interest. A 

person who carries one or two copies of a high-risk variant could then be at increased risk of 

developing or having the associated trait, for instance increased risk of experiencing an 

adverse drug reaction of a certain drug. Most commonly used genetic variants in association 

studies are so called single nucleotide polymorphisms (SNPs; pronounced "snips"), which 

capture most of the common genetic variability (Eriksson 2012). 

2.1.1 Single nucleotide polymorphism (SNP) 

A SNP is a single base substitution that occurs commonly within a population, i.e. in 1 % of 

the population (Campbell & Reece 2008). For example, an “A” in the first chromosome can 

have been changed to a “G” in the second chromosome resulting in two different variants.  

The most common variant is called the major allele and the least common is the minor allele. 

Minor allele frequency (MAF) is a measurement of the frequency of a SNP (Eriksson 2012).  
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If “A” is the major allele and “G” the minor allele, a person carrying these alleles would be 

heterozygous G/A (minor/major allele). SNPs can be located anywhere in the genome but 

occur more frequently in non-coding regions than in coding regions. A SNP in a coding 

region of a gene that affects the amino acid sequence of protein is called non-synonymous and 

SNPs that do not change the protein are called synonymous. However, both synonymous 

SNPs and SNPs in non-coding regions can still be functional SNPs and affect the expression 

of a protein (Gibson & Muse 2009). Genetic variation between individuals can explain 

differences in susceptibility to disease or why some patients experience adverse drug 

reactions.  

As of 21 June 2015, about 150 million SNPs were registered for the human genome in the 

National Centre for Biotechnology Information (NCBI) SNP database (dbSNP build 144). 

This database contains very rare SNPs as well, so called single nucleotide variants (SNVs) 

since they have no requirement or assumption about minimum allele frequency. Around 

10 million SNPs are considered common in the human genome (i.e. present in at least one 

percent of the general population) and occur once every 100 to 300 bases (Campbell & Reece 

2008).  

2.1.2 Linkage disequilibrium 

SNPs located in the same chromosomal region are often to, some degree, correlated and 

alleles can be inherited together in haplotype blocks. This is called linkage disequilibrium 

(LD) (Gibson & Muse 2009). The dependency is usually measured by D, D’ or r2, used for 

different purposes where r2 is useful in association analyses. r2 is the squared correlation 

between SNPs and a value of 1 means that two SNPs are in total LD and thereby always 

inherited together. A value of 0 mean that the SNPs are completely independent. Since not all 

SNPs can be genotyped in a GWAS, LD is very helpful for enabling indirect association 

testing and find a functional SNP even though it has not been genotyped (Gibson & Muse 

2009). 

2.1.3 Haplotypes 

Chromosomes occurs in pairs with one chromosome inherited from each ancestor. However, 

before they are passed on they undergo a process called recombination which slightly changes 

the copies (Campbell & Reece 2008). In this process two chromosomes in a pair exchange 

information (pieces of DNA) with each other resulting in a new chromosome pair containing 

pieces from both. A haplotype block is a region in which the frequency of recombination 

historically has been low and is therefore a region of high LD (Gibson & Muse 2009). The 

haplotype blocks are separated by regions where there has been recombination, called 

recombination hot-spots. The variation in a haplotype block can often be characterised by one 

SNP – a tag SNP or haplotype tagging SNP (Gibson & Muse 2009).   

2.1.4 The Hardy-Weinberg equilibrium  

The Hardy-Weinberg equilibrium (HWE) is a principle that states the association between 

allele frequencies and genotypes in a population (Campbell & Reece 2008). When a SNP is in 
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Hardy-Weinberg equilibrium the genotype frequencies in a population will remain constant in 

successive generations, if random mating is assumed (Eriksson 2012). The expected genotype 

frequencies for SNPs in the Hardy-Weinberg equilibrium are calculated using the minor allele 

frequency. A SNP can be out of HWE for various reasons, for example a SNP could be 

selected for or against and genetic drift could change the allele frequency. The cause could 

also be genotyping errors and therefore, checking SNPs for HWE is a common quality control 

procedure in GWAS (Eriksson 2012). 

2.2 Genome-wide association studies (GWAS) 

Since 2007, a genome-wide approach where millions of SNPs are studied simultaneously has 

increasingly been applied to association studies. Genome-wide association studies have 

moved the focus from candidate gene studies, which are based on a priori knowledge of a 

gene’s functional impact on the trait, to instead study the entire genome and detect common 

genetic variation in an unbiased way (Gibson & Muse 2009). 

Factors enabling these studies include the availability of SNP databases and the expanding 

knowledge of haploblock structures and common patterns of variation generated by the 

International HapMap Project. The 1000 Genomes Project and other resources to identify 

SNPs as well as technical advances in SNPs genotyping arrays have enhanced the 

development even further and has been important prerequisites (Figure 2). Faster computers 

to carry out the millions of statistical tests and better ways to store the huge amount of data 

have made the analyses more amenable. Today’s chips can genotype millions of SNPs which 

capture most of the common genetic variation.  

 

Figure 2. Timeline showing important events enabling genome-wide association studies. 

A typical GWA study has distinct parts including selection of a large number of patients with 

the trait of interest and a suitable comparison group followed by DNA isolation and 

genotyping (Gibson & Muse 2009). The obtained data is reviewed to ensure good quality 

before the statistical tests for association is done. Principal component analysis is used to 

correct for population stratification and other cofounders and imputation can be done to 

include SNPs that have not been genotyped (Price et al. 2006). The last parts include 

replication of identified associations in independent samples to confirm the result and 

functional annotation of found top SNPs (Pare 2010).  
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2.2.1 Study design 

The most frequently used study design in GWA studies is the case-control design, in which 

allele frequencies in patients who have experienced the trait in question, for instance an ADR, 

are compared to an unaffected control group (Pearson & Manolio 2008). It is important that 

cases are truly affected and therefore it is necessary to establish a strict criteria for the 

phenotype so that clinicians can judge the patients relevance for the study. Misclassification 

of patients is a problem and can markedly reduce power and also bias the results towards no 

association (Pearson & Manolio 2008). The control participants should be from the same 

population as the cases and should be at risk of developing the same disease or ADR (Pearson 

& Manolio 2008). Sample size is an important factor in the study design since a GWAS 

considers an enormous number of variables and enough individuals are needed to provide 

enough power to detect variants with a low or modest effect. The power needs to be adequate 

to compensate for the multiple testing that is carried out in an association study (Barrett et al. 

2014). A big sample size is therefore usually needed but large effect phenotypes, often shown 

by pharmacogenomics traits, allow powerful studies to be carried out on smaller sample sizes 

(Daly 2010). 

2.2.2 Genotyping  

The genetic material collected from the study participants is genotyped using genotyping 

platforms such as Illumina or Affymetrix.  Each DNA sample is run on a SNP array to 

genotype up to several millions of SNPs in a single assay. A SNP array is an array containing 

immobilised ASO (allele-specific oligonucleotide) probes that target a specific locus in the 

genome. Each probe will bind to a complementary sequence in the sample DNA and stop one 

base before the locus of interest. By extending with one single base that incorporates one of 

four differently colour-labelled nucleotides (A, T, C or G), the allele specificity can be 

confirmed by genotype calling.  The nucleotide label can emit a signal that can be detected, 

and the allelic ratio of a given locus can be determined by a genotype calling software based 

on the intensity values for each colour. For instance if the colour representing “A” is 

approximately as intense as the colour representing “G”, the genotype of that SNP is A/G, i.e. 

heterozygote (Barrett et al. 2014). High intensity for only one colour indicates a homozygote 

for that allele. The arrays usually have a set of both common and rare variants and the SNPs 

typically have a MAF>2.5% to tag the most common haplotypes. Rarer SNPs with a 

MAF<1% are too difficult to measure reliably which can result in an underpowered GWAS. 

2.2.3 Analysis for association 

The basic principle of genome-wide association studies is to use statistical methods to test for 

association, i.e. to examine if there is a difference in genotype distribution between cases and 

controls. A common method used in the first genome-wide association studies was to count 

alleles, and Figure 3 shows the methodology for how the calculations could be done in a case-

control study. A SNP where one allele is significantly more common in cases than in controls 

is associated with the trait in question. A statistical test is used to evaluate the allele count of 

each measured variant, usually a chi-squared test. The example in Figure 3, shows an 
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overrepresentation of individuals with the G-allele of SNP1 among patients, 52.6% compared 

to 44.6 % among controls and a p-value of 5.0 x 10-15. The G-allele of that SNP is thereby 

thought to be associated with the trait in question. Today, a more flexible analysis is usually 

performed where a logistic regression model is fitted to the data (Gibson & Muse 2009). An 

additive model where each copy of the allele associated with ADR is assumed to increase the 

risk of ADR by the same amount, is the most common model (Pearson & Manolio 2008). 

 

Figure 3. Example of a calculation showing the principle of association analysis in a case-control study. Individuals 

with the G-allele of SNP1 are overrepresented, and its p-value reach the genome-wide significance level. The G-allele 

of that SNP is thereby associated with the trait in question. 
 

Attribution: "Method example for GWA study designs" by Lasse Folkersen (Own work) [Licenced under CC BY 3.0 
(http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons - 

https://commons.wikimedia.org/wiki/File:Method_example_for_GWA_study_designs.png#/media/File:Method_example_for_GWA_study_de

signs.png 

 

In a case-control study, the strength of an association is measured by the odds ratio (OR). The 

odds ratio is a ratio of two odds; odds of angioedema for individuals having a specific allele 

and the odds of angioedema for individuals who do not have that same allele. When the allele 

frequency in the case group is much higher than in the control group, the odds ratio will be 

higher than 1, and vice versa for the lower allele frequency. Finding ORs that are significantly 

different from 1 is therefore the objective of a GWAS since that would indicate that a SNP is 

associated with the ADR in question. 

2.2.4 Principal component analysis 

The data can be adjusted for variables that potentially could confound the results, such as sex 

and age. Population stratification, i.e. differences in allele frequencies among populations of 

different ancestry, can also be corrected for since it can confound the association between the 

https://commons.wikimedia.org/wiki/File:Method_example_for_GWA_study_designs.png#/media/File:Method_example_for_GWA_study_designs.png
https://commons.wikimedia.org/wiki/File:Method_example_for_GWA_study_designs.png#/media/File:Method_example_for_GWA_study_designs.png
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trait in question and the SNP and thereby bias the observed association (Clarke et al. 2011). 

Principal component analysis (PCA) is a commonly used method for detecting and adjusting 

for population stratification. The basic principle is that people who are geographically close to 

each other are more likely to be closely related, i.e. be more correlated in terms of genotypes, 

than people living far apart. This correlation can be used to distinguish between 

subpopulations by clustering them, and thereby remove outliers. Applying PCA to the data 

will produce principal components, where the first gives the linear combination of genotypes 

that best explain the variation in the data. The second is the orthogonal combination that best 

captures the remaining variation and the third is the orthogonal to the second and so forth 

(Barrett et al. 2014).  

Before doing PCA the data can be pruned to get a lower chance of regions with high LD 

having impact on the principal components. The principal components from PCA can be 

included as covariates in the logistic regression model when testing for association to adjust 

for population stratification (Clarke et al. 2011). Principal components are powerful for 

adjusting not only for population stratification but also for other confounders, such as whether 

all cases and controls were genotyped in the same genotype platform or with the same type of 

chip or if the DNA was collected by the same method (Clarke et al. 2011). If cases and 

controls are taken from the same population, population stratification is usually not really a 

problem, but there might still be some remaining differences between cases and controls that 

can be adjusted for. In this project, both cases and controls were taken from a Swedish 

population, and the data should form a distinct cluster when the first principal components 

from the PCA are plotted and compared with other populations. 

2.2.5 Imputation 

Genotyping arrays today include a huge number of SNPs, but these are still a subset of all 

known genetic variation. It is not feasible to sequence all participants in GWAS or even 

sequence a small region. An alternative strategy is therefore to impute the genotypes at those 

SNPs not on the genotype array to get a more exhaustive coverage. This might be interesting 

for various reasons, for instance if there is a region associated with the phenotype of interest 

where only ungenotyped SNPs have a strong enough signal to reach significance, the 

association might be missed using data from the array only. A whole-genome imputation 

approach is then of interest for increasing the number of SNPs to test for association and 

increase the power of the study. It might also be interesting to fine-map a region associated 

with the trait to better understand the source of the association and to find functional variants 

(Barrett et al. 2014). Imputation is based on statistical methods where genotypes from the 

GWAS data are phased into haplotypes and matched to reference panels of haplotypes 

generated from HapMap or the 1000 Genomes Project (Howie et al. 2009).  

2.2.6 Functional annotation 

Typical GWAS hits are SNPs in linkage disequilibrium (LD) distributed within intronic or 

intergenic regions where most variants are unknown, including the actual functional causal 

variant/variants of the ADR (Mortlock & Pregizer 2012). A huge challenge in GWAS is 
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therefore to go from a set of associated SNPs and prioritize the different genetic variants for 

further study to identify the causal SNP/SNPs. The function of noncoding genomic regions 

spanning associated variants can be characterized bioinformatically using public available 

data sets from different genome projects. Comparative genomics and biochemical data sets 

from the ENCODE (The ENCODE Project Consortium 2012) and Roadmap projects (Ward 

& Kellis 2012) are great bioinformatics resources for obtaining functional information, either 

experimentally verified or computationally predicted. 

Even though most SNPs are found in non-coding regions of the genome, some can still alter 

cellular responses and increase susceptibility to disease or ADRs. SNPs can be regulatory 

when affecting none-coding regions such as enhancers, silencers and promoters, thereby 

modifying transcription factor binding sites or generating new binding sites which in turn can 

affect gene expression (Mortlock & Pregizer 2012). Coding SNPs alter amino acid sequences 

and can thereby directly modify structural and biological properties of the encoded proteins. 

The impact of non-coding regulatory SNPs on transcription factor binding and gene 

expression has been relatively unexplored, but bioinformatic analyses of data from different 

genome projects can be used for studying gene expression and give an indication of the 

regulatory potential of the identified SNPs (Mortlock & Pregizer 2012). Below are some 

bioinformatic resources that can be used for obtaining functional information about 

noncoding genomic regions. 

Histone modifications  

Gene expression is influenced by how accessible the chromatin is to transcription. Chromatin 

accessibility can be changed by chemical modifications, e.g. methylation, to the histone 

proteins in the chromatin. A modification of a specific histone protein is called a histone mark 

and patterns of modification are highly variable across different cell types (The ENCODE 

Project Consortium 2012). Histone modifications are associated with regulator binding, 

transcriptional initiation and elongation, enhancer activity and repression (Ernst et al. 2011).  

Examples of histone marks are H3K4Me1 (histone H3 monomethylated at lysine 4) and 

H3K27ac (histone H3 acetylated at lysine 27) which are associated with enhancers and 

H3K4Me3 (histone H3 trimethylated at lysine 4) and H3K9ac (histone H3 acetylated at lysine 

9) associated with promoters (The ENCODE Project Consortium 2012). Mapping of 

chromatin marks in multiple cells types (i.e. chromatin profiling) is a powerful tool for the 

detection of regulatory activity in the genome (Ernst et al. 2011). The levels of enrichment of 

histone marks across the genome are determined by ChIP-seq assay (chromatin 

immunoprecipitation followed by high-throughput sequencing) (The ENCODE Project 

Consortium 2012).  

DNAse hypersensitivity 

Chromatin accessibility can also be characterized by DNase I hypersensitivity, since 

regulatory regions in general and promoters in particular tend to be DNase sensitive (The 

ENCODE Project Consortium 2012). DNase-seq is used to define sites hypersensitive to 

DNase I which corresponds to open chromatin, by sequencing the cut points by the DNase 
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enzyme with high-throughput techniques in different cell types (The ENCODE Project 

Consortium 2012).   

Transcription factor binding 

Transcription factors (TFs) also regulate gene expression by binding to the DNA and 

interacting with RNA polymerase. As for chromatin marks, TF binding can be assayed 

experimentally using ChIP-seq. Alternatively, comparisons of multiple genomes (comparative 

genomics) can identify putative transcription factor binding sites as short stretches of 

conserved consensus binding sequences.  

Conservation 

Comparative genomics in general is a useful tool for identifying functional non-coding DNA 

variants. Sequence conservation in multiple distantly related species generally indicates 

purging of deleterious mutations from a functional DNA element.  

The different features and signatures are useful for identifying regulatory elements but cannot 

work as proof of function on their own. For example, a regulatory element may not have a 

strong DNase hypersensitive site or histone marks in any of the cell types for which there is 

available data, but may be highly conserved, which indicates a regulatory potential. Some 

elements can be non-conserved but still be regulatory by being modified epigenetically. 

However, some features seem to be more reliable than other, for instance the above described 

histone modifications. Transcription factor occupancy is also useful indicators of regulatory 

potential and is more specific than histone modifications. The presence of a transcription 

factor in combination with histone modifications are often a good indication of regulatory 

function in that region (Mortlock & Pregizer 2012). Different data sets can therefore 

complement each other and together shed light on variants with regulatory potential (The 

ENCODE Project Consortium 2012).  

2.3 GWAS in pharmacogenomics 

Genome-wide association studies on adverse drug reactions and drug responses have been 

done frequently in pharmacogenomics last years, with varying degrees of success (Daly 2010, 

Daly 2013, Motsinger-Reif et al. 2013). The term pharmacogenomics is a result of merging 

pharmacology (the study of drug handling and action) and genomics (the study of genes and 

their function). Pharmacogenomics is the study of how genetics affect a patient’s response to 

drugs by using a genome-wide association approach including genomics and epigenetics. The 

term is used interchangeable with pharmacogenetics, which is a candidate-gene approach 

focusing more on single drug-gene interactions. Today, a trial and error strategy is commonly 

used for finding the most effective treatment therapy for their patient. With knowledge of how 

genetic variation influences drug response, pharmacogenetic testing and personalised 

medicine could drastically improve treatment by giving the patient the best suited drug and 

dose (Mancinelli et al. 2000). An example of an earlier GWAS is SEARCH which studied 
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statin-induced myopathy (a muscular disease induced by cholesterol lowering drugs) and 

found GWAS variants in the SLCO1B1 gene (Motsinger-Reif et al. 2013).  

 

2.3.1 GWAS of drugs acting on the angiotensin system 

There have been previous studies, mostly candidate gene studies, of angioedema induced by 

drugs acting on the angiotensin system (ACEi and ARB) but the results have been 

inconsistent. The GWAS performed so far has not resulted in any genome-wide significant 

associations with SNPs (Pare et al. 2013). A study called ONTARGET identified 16 SNPs in 

African Americans and 41 SNPs in European Americans that were moderately associated 

with angioedema (p-values between 10-4 and 10-6). A major limit in this previous GWAS is 

the small sample size, which made it hard to achieve genome-wide significance. Also, the size 

of the replication cohort was very small (Pare et al. 2013).  In candidate gene studies, 

rs989892 in MME (the gene encoding membrane metallo-endopeptidase that degrades 

bradykinin) has been significantly associated with angioedema (Pare et al. 2013). Another 

candidate gene study identified the gene region XPNPEP2 to be associated with ACEi-

induced angioedema (Mahmoudpour et al. 2013).  

  

3 Methods 
An overview of the GWAS process used in this pharmacogenomic study can be seen in 

Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Overview of the GWAS process. 
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3.1 Selection of study participants 

The GWAS was based on a case-control design with 173 patients (cases) from the 

SWEDEGENE project and genome-wide data from 4891 unrelated population controls from 

the Swedish Twin Registry. The cases had experienced drug-induced angioedema from either 

an ACEi or an ARB between 1999 and 2014. The patients had been recruited predominantly 

through cases reported to the Swedish Medical Products Agency. Patients were interviewed 

and, if necessary, their medical records were obtained. Three tubes of blood were drawn for 

each patient and stored at -70°C until analysis. All cases had been reviewed and adjudicated 

by a clinical expert (allergist) to exclude patients whose angioedema was thought of not being 

drug-induced, for instance angioedema associated with urticaria. For demographic data and 

clinical characteristics of the cases, see Table 1. Since we had access to the controls’ medical 

records with drug prescriptions and diagnoses, we could select controls that had been treated 

with the same drugs as the cases but not experienced drug-induced angioedema. The 

association analysis was done with all controls as well as with just treated controls. 

 

Table 1. Demographic data and clinical characteristics of the cases. 
 

 

 

 

 

 

3.2 Genotyping  

SWEDEGENE patients were genotyped with the Illumina HumanOmni2.5 BeadChip which 

has 2,338,671 variants from the 1000 Genomes Project with a MAF>2.5%. The controls had 

been genotyped with the Illumina HumanOmniExpress BeadChip 700K which has >713,014 

variants. The genotyping was performed in different batches at the SNP&SEQ Technology 

Platform of Science for Life Laboratory (SciLifeLab) in Uppsala. SNP calling was performed 

by the same platform.  

3.3 Quality control   

To exclude false-positive signals of association resulting from unchecked systematic errors, 

the genotypic data obtained was cleaned using a quality control procedure which was 

performed using the software PLINK. 

 Cases (173) 

Age 65.6  [31, 91] 

Sex 

Female 

Male 

 

72  

101  

 

41.6 % 

58.4 % 

Drug 

ACEi 

ARB 

 

144  

31  

 

83.2 % 

17.9 % 
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3.3.1 Minor allele frequency 

SNPs with low MAF, <1%, were removed since too rare SNPs are difficult to measure 

reliably (Pearson & Manolio 2008). 

3.3.2 Missing rate per SNP  

Individual SNPs were checked for missing genotypes. Only SNPs with a 98% genotyping rate 

or higher were included, i.e. SNPs with missing rate over 2 % were removed, which is a 

commonly used threshold (Pare 2010). 

3.3.3 Missing rate per person 

Individual samples were examined for completeness of genotyping. This was done by 

calculating the fraction of SNPs for which no allele could be called for each sample.  

Individuals with too much missing genotype data, over 2% missing genotypes, were 

excluded, since missing genotypes can reflect poor DNA quality due to, for instance, 

contamination (Pare 2010). 

3.3.4 Hardy-Weinberg Equilibrium 

Individual SNPs that deviated from the Hardy-Weinberg equilibrium (p-value cut-off at 10-6) 

were excluded. SNPs that fail the Hardy-Weinberg test are excluded since a deviation could 

reflect selection, cryptic relatedness, a mixture of heterogeneous populations or genotyping 

errors. An exact test was performed on the controls only. 

3.3.5 Summary of quality control steps performed 

SWEDEGENE cases 

• SNPs with a minor allele frequency (MAF) < 1% were removed 

• SNPs with a missing rate > 2% were removed 

• Individuals with a missing rate > 2% of markers were removed 

Twingene controls  

• SNPs with a minor allele frequency (MAF) < 1% were removed 

• SNPs with a missing rate > 2% were removed 

• Individuals with a missing rate > 2% of markers were removed 

• SNPs with Hardy-Weinberg p < 10-6 were removed 

Merged data (cases+controls) 

• SNPs with a missing rate > 2% were removed  

Imputed data 

• SNPs with a minor allele frequency (MAF) < 1% were removed 

• SNPs with a missing rate > 2% were removed 

• Individuals with a missing rate > 2% of markers were removed 



18 

3.4 Principal component analysis 

The genotype data was pruned based on pairwise LD using a simple pairwise threshold. The 

window size was set to 100 SNPs, step to 5 and the r2 threshold (pairwise SNP-SNP metric) to 

0.2. Since LD is calculated between each pair of SNPs in the window, one of a pair of SNPs 

was therefore removed if the LD was greater than 0.2. The window was shifted 5 SNPs 

forward before the procedure was repeated. Principal components were calculated on the 

pruned data and later included as covariates in the logistic regression analysis. The pruning 

and principal component analysis were performed using the software PLINK.  

The first two principal components were plotted to view the homogeneity of the samples and 

the SWEDEGENE data was compared with following populations from HapMap (The 

International HapMap 3 Consortium 2010): 

• Yoruba in Ibadan, Nigeria (YRI) 

• Japanese in Tokyo, Japan (JPT) 

• Han Chinese in Beijing, China (CHB) 

• CEPH, Utah residents with ancestry from northern and western Europe (CEU) 

3.5 Imputation 

Imputation had been performed previously using the software Impute2.  

3.6 Analysis for association 

Analysis for association was done with logistic regression aiming to identify SNPs where one 

allele was significantly more common in cases than in controls and might be associated with 

drug-induced angioedema.  

3.6.1 Logistic regression  

Logistic regression was used for performing the analysis for association and was implemented 

using the software package PLINK. Logistic regression is a flexible analysis for GWAS that 

is used for binary outcomes, such as angioedema (case) or no angioedema (control) in this 

study. The logistic regression was performed with a dependent variable of case-control status 

(1=case, 0=control) and a SNP genotype as an independent variable (measured as the number 

of copies of the minor allele, taking the value 0 for the common homozygote, 1 for the 

heterozygote and 2 for the rare homozygote) (Barrett et al. 2014). Multiple covariates, such as 

gender and the first principal components was also incorporated. For each SNP, the output 

from the logistic regression included odds ratio for the minor allele and the corresponding 

confidence interval as well as the p-value for association.  

Studying 10 million SNPs requires that 10 million statistical tests are performed. The 

probability that some of the SNPs would reach the standard significance level of 0.05 by 
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chance could not be neglected. Therefore, this extreme number of statistical tests must be 

corrected for. In this study, Bonferroni correction, a simplified Šidák correction, was used to 

correct for multiple testing and reduce the false-positive rate. It is the conventional p-value 

(0.05) divided by the number of tests performed and was 8.7x10-8 for the genotyped data and 

6.6x10-9 for the imputed data. 5x10-8, which correspond to a correction for 1 million tests is 

usually considered a threshold for genome-wide significance in GWAS. The Bonferroni 

correction is very conservative, since it uses the actual number of SNPs that has been tested 

for and thereby assumes that each SNP is independently associated with the trait even though 

it is known that SNPs are correlated to some degree by linkage disequilibrium.   

3.6.2 Sub Analysis 

A sub analysis of the top association was performed with logistic regression using all controls 

as well as using 1106 treated controls, i.e. controls that have been treated with the same drugs 

as the cases but have not experienced drug-induced angioedema. The treated controls had 

been treated with 1 or more ACEi. In the sub analysis no model assumption was done, in 

contrast to the GWAS where the data was fitted to an additive model where each copy of the 

allele associated with ADR is assumed to increase the risk of ADR by the same amount. The 

results of an additive were also included in the sub analysis for comparison. The strength of 

an association was measured by the odds ratio (OR). 

3.6.3 Visualisation 

Results were presented with Q-Q plots and Manhattan plots generated with R, tables of top 

associations, region association plots generated from LocusZoom and LD-plots generated 

from HaploView. 

A quantile-quantile plot (Q-Q plot) was used for assessing the inflation in low P-values from 

the statistical test.  It was used to compare observed association test statistics with their 

expected values under the null hypothesis of no association. Most of the SNPs should follow 

the null distribution, which indicates that no population structure, or any other factors that 

dramatically influences the statistical test exists in the analysis. A deviation from the null 

distribution in the upper tails, on the other hand, would correspond to SNPs with strong 

association to the trait. 

The result from the association study were visualised in so called Manhattan plots where P-

values for all studied SNPs are plotted on a log scale against chromosomal position. The 

height corresponds to the strength of association to the trait in question and the peaks enable 

initial identification of significant regions. The Bonferroni correction was illustrated as a line 

in the Manhattan plots. A region association plot was used to view a smaller region of the 

genome and highlight the statistical strength of an associated SNP. Association results for 

surrounding SNPs as well as gene annotations, recombination rates that reflected the LD 

structure around the associated variant and pairwise correlations between the associated SNP 

and the nearby variants were visualised. A LD-plot was used for showing LD patterns, 
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chromosomal location and haplotype blocks of top SNPs, where the LD between SNPs was 

measured as r2 (Clarke et al. 2011). 

3.7 Functional annotation 

Assessment of the biological impact of the top genetic variants associated with angioedema 

was done using public available bioinformatics resources described below.  

3.7.1 ENCODE 

Most biochemical functions of the genome are determined by the ENCODE-project (The 

Encyclopedia of DNA Elements) (The ENCODE Project Consortium 2012), which 

systematically maps regions of transcription, transcription factor occupancy, chromatin 

accessibility and histone modification (The ENCODE Project Consortium 2012). The 

different assays used in the ENCODE project (ChIP-seq, DNase-seq, RNA-seq, CAGE, 

assays of methylation etc.) complement each other and can together shed light on regions with 

regulatory potential. DNAse hypersensitivity sites were studied using DNaseI 

Hypersensitivity Clusters in 125 cell types dataset with data from the University of 

Washington and Duke ENCODE groups. Levels of enrichment of histone marks were studied 

with data from the Bernstein Lab at the Broad Institute. Tracks showing peaks of TF binding, 

where 161 transcription factors had been assayed by ChIP-seq in different cell lines and with 

specific transcription-factor targeting antibodies, were used. The dataset was generated by 

five ENCODE TFBS ChIP-seq production groups (Broad, Stanford/Yale/UC-Davis/Harvard, 

HudsonAlpha Institute, University of Texas-Austin, University of Washington and University 

of Chicago). 

3.7.2 Roadmap 

Regulatory chromatin states from DNAse and histone ChIP-Seq from the 2015 Roadmap 

Epigenomics Consortium, present in Haploreg version 4 (Update 2015.09.15) were used.  

3.7.3 USCS browser 

Almost all the public bioinformatics resources used in this project could be visualised in the 

UCSC Browser. It contains reference sequences and working draft assemblies for genomes 

and is integrated with a large set of aligned annotations (Mortlock & Pregizer 2012). The 

human genome assembly GRCh37/hg19 (Feb. 2009) and GRCh38/hg38 (Mar. 2013) were 

used. 

3.7.4 HaploReg 

HaploReg was also used in this project, which is a tool for annotation of non-coding variants. 

HaploReg uses information of linkage disequilibrium from the 1000 Genomes Project to view 

linked SNPs (Ward & Kellis 2012). Predicted chromatin state from the Roadmap 

Epigenomics project and the ENCODE project can be visualized as well as sequence 

conservation across mammals and the SNPs’ effect on regulatory motifs (Ward & Kellis 

2012, Kheradpour & Kellis 2014). Proteins bound in ChIP-Seq experiments from the 
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ENCODE Project Consortium (2012) can also be visualized as well as the effect of SNPs on 

expression from eQTL studies (Ward & Kellis 2012). Two versions of HaploReg were used: 

Version 3 (Update 2014.02.14) and version 4 (Update 2015.09.15). 

 

4 Results 

The results are divided into four parts, where the first part contains the results of the 

association analysis for genotyped data and part II the same analyses but for imputed data. A 

sub analysis of the top SNP is done in part III and finally a functional annotation of the top 

genotyped and imputed SNPs is done in part IV.  

4.1 Part I: Genotyped data 

4.1.1 Original genotyped data  

The number of variants per chromosome that was genotyped for cases is visualised in Figure 

5.  

 
Figure 5. Number of variants for cases (Swedegene patients) per chromosome, in total 1,859,099 variants in 173 

people. 

4.1.2 Post-QC results  

Cases 
1,859,099 variants in 173 people before QC. 

1,387,738 variants in 173 people passed filters and QC. 

Controls 
622,992 variants in 4891 people before QC.  

620,252 variants in 4890 people passed filters and QC.  
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Merged data (cases+controls) 
1,434,086 variants in 5063 people before QC (of these, 573,904 variants were present in both 

cases and controls). 

573,904 variants in 5063 people passed filters and QC. 

4.1.3 Population stratification 

The SWEDEGENE cases and controls formed a distinct cluster (red) when compared with 

populations from the HapMap project (Figure 6). No obvious population stratification seemed 

to be present in the SWEDEGENE data set. However, there was one extreme outlier, close to 

the CHB and JPT clusters, but this single individual did probably not affect the results of the 

association study. SWEDEGENE cases and controls can be seen separately in Figure 7. 

 

Figure 6. Plot of the first two 

genetic principal components 

for SWEDEGENE and 

HapMap data. Each circle 

corresponds to a single 

individual. The cases and 

controls from the 

SWEDEGENE data form a 

distinct cluster, except one 

outlier, and no obvious 

population stratification 

seem to be present in the 

data set.  

CEU=Utah residents with 

ancestry from northern and 

western Europe, CHB=Han 

Chinese in Beijing, 

JPT=Japanese in Beijing and 

YRI=Yoruba in Ibadan, 

Nigeria.  

  
Figure 7.  Plot of the first two 

genetic principal components for 

the SWEDEGENE data. Each 

circle correspond to a single 

individual. Pink=cases, 

blue=controls. 
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4.1.4 Analysis of genotyped data  

The analysis of the genotyped data was first done by adjusting for gender and principal 

components 1-4. A second analysis was then performed where the data was adjusted also for 

the top hit from the first analysis.  

4.1.4.1 Adjusted by gender and principal components. 

The test statistics for most of the SNPs followed the null distribution and the lambda values 

were close to 1, which indicated that most of the population stratification was adjusted for in 

the analysis (Figure 8).  On the other hand, a deviation from the null distribution could be 

seen in the upper tail, likely to correspond to SNPs with strong association to drug-induced 

angioedema (Figure 8). The result from the association analysis can be visualised in Figure 9, 

where P-values for all studied SNPs were plotted on a log scale against chromosomal position 

in a so-called Manhattan plot. A clear peak at chromosome 10 could be seen and three SNPs 

met the genome-wide significance threshold of 8.7x10-8 (Table 2) and were thus likely to be 

associated with drug-induced angioedema. All top SNPs on chromosome 10 were intronic 

variants in the KCNMA1 gene (Potassium Large Conductance Calcium-Activated Channel, 

Subfamily M, Alpha Member 1) and they were in high LD, see Figure 10 and 11. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Q-Q plot, adjusted by gender and genetic principal components 1-4. The majority of the SNPs follow the 

null distribution and the lambda values are close to 1, which indicates that no population stratification is unadjusted 

for in the analysis. A deviation from the null distribution can be seen in the upper tail, likely to be SNPs with strong 

association to drug-induced angioedema. 
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Figure 9. Manhattan plot adjusted by gender and principal components 1-4. The red line corresponds to the genome-

wide significance threshold 8.7x10-8 (Bonferroni correction). A clear peak at chromosome 10 can be seen, with three 

SNPs above the red line. 

 

Table 2. Table of genotyped top SNPs. Three SNPs meet the genome-wide significance threshold with a p-value below  

8.7x10-8. All top SNPs on chromosome 10 have a low MAF (minor allele frequency) and also a clear difference in MAF 

between cases and controls.  

Abbreviations: CHR= chromosome, BP=base pair (chromosome position), N=number of study participants, OR= odds ratio, L95 and U95 = lower and 

upper confidence interval, P= p-value, MAF= Minor allele frequency, GTPS=minor/major alleles. 

 

 

 

 

 

 

 

Chromosome 

CHR SNP BP N OR L95 U95 P MAF GTPS 
MAF 

case 

MAF 

control 

10 rs2253201 79356397 5062 2.474 1.79 3.419 4.174e-08 0.063 G/A 0.136 0.06 

10 rs1949352 79249522 5062 2.399 1.744 3.299 7.372e-08 0.068 C/T 0.142 0.065 

10 rs2253202 79356393 5061 2.433 1.756 3.37 9.077e-08 0.063 G/A 0.134 0.06 

6 rs6913724 27254843 5062 1.804 1.446 2.252 1.788e-07 0.432 A/T 0.572 0.428 

10 rs2255649 79343812 5063 2.387 1.721 3.312 1.865e-07 0.064 C/T 0.133 0.061 

10 rs1464111 79342926 5063 2.332 1.678 3.243 4.732e-07 0.063 T/C 0.13 0.061 

10 rs2670164 79327231 5057 2.342 1.679 3.266 5.392e-07 0.063 A/G 0.129 0.06 
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Figure 10. Region plot of top associations generated from LocusZoom with rs2253201, shown in purple, as reference. 

All top SNPs on chromosome 10 are intronic variants in the KCNMA1 gene.  
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Figure 11. LD heat map showing LD patterns among the top SNPs on chromosome 10. The pairwise LD is measured as r2 

and is shown at the intersection of the diagonals from each SNP. r2 = 0 is shown in blue, 0< r2 <1 in orange and r2 = 1 is 

shown in red. 

r2 Color Key 



26 

4.1.4.2 Adjusted by top association 

When the top hit rs2253201 was adjusted for in the logistic regression, no deviation from the 

null distribution could be seen in the upper tail in the Q-Q plot (Figure 12) and no residual 

SNPs were associated with drug-induced angioedema (Figure 13). This indicated that all the 

top SNPs were in high linkage disequilibrium. 

  

  

  

 

 

 

 

 

 

 

 

  

Figure 12. Q-Q plot, adjusted by gender, genetic principal components 1-4 and top SNP rs2253201. 
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Figure 13. Manhattan plot, adjusted by gender, principal components 1-4 and top SNP rs2253201. 
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4.2 Part II: Imputed data 

4.2.1 Original imputed data  

The number of variants per chromosome after imputation for the merged data (cases and 

controls) can be visualised in Figure 14. 

 

Figure 14. Number of variants per chromosome for imputed data, in total 9,380,034 variants in 5064 people. 

4.2.2 Post-QC results  

Imputed data 
9,380,034 variants in 5064 people before QC. 

7,585,599 variants in 5064 people passed filters and QC. 

4.2.3 Analysis of imputed data 

The same analyses made for the genotyped data was performed for the imputed data with a 

first analysis where data was adjusted by gender and principal components 1-4, and a second 

analysis where the data was adjusted for the top hit. 

4.2.3.1 Adjusted by gender and principal components. 

Most of the SNPs followed the null distribution and the lambda values are close to 1, which 

indicated that no population stratification was unadjusted for in the analysis (Figure 15). On 

the other hand, a deviation from the null distribution could be seen in the upper tail, likely to 

correspond to SNPs with strong association to drug-induced angioedema (Figure 15). The 

result from the association analysis can be visualised in Figure 16. A clear peak at 

chromosome 10 could still be seen, indicating that there was an association to drug-induced 

angioedema. However, no SNP met the genome-wide significance threshold of 6.6x10-9 

(Bonferroni correction), which was much lower than for genotyped data because of the increased 
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number of statistical tests performed for the imputed data. Still many SNPs had very low p-

values (Table 3). All top SNPs were intronic variants in the KCNMA1 gene. 

 

 

 

 

 

 

 

 

 

 

Figure 15. Q-Q plot adjusted by sex and genetic principal components 1-4. Most of the SNPs follow the null 

distribution and the lambda values are close to 1, which indicates that no population stratification is unadjusted for in 

the analysis. A deviation from the null distribution can be seen in the upper tail, likely to be SNPs with strong 

association to drug-induced angioedema. 
 

 

Figure 16. Manhattan plot adjusted by gender and principal components 1-4. The red line corresponds to the genome-

wide significance threshold 6.6x10-9 (Bonferroni correction). A clear peak at chromosome 10 can be seen, but no SNP 

is above the red line. 
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Table 3. Table of top SNPs after imputation. No SNP meet the genome-wide significance threshold (p-value below 

6.6x10-9), even though all top SNPs have a very low p-value. All top SNPs are on chromosome 10, have a low MAF 

(minor allele frequency) and also a clear difference in MAF between cases and controls.  

 

Abbreviations: CHR= chromosome, BP=base pair (chromosome position), N=number of study participants, OR= odds ratio, L95 and U95 = lower and 

upper confidence interval, P= p-value, MAF= Minor allele frequency, GTPS=minor/major alleles. 

 

4.2.3.2 Adjusted by top association 

When the top hit rs2253201 was adjusted for in the logistic regression, no deviation from the 

null distribution could be seen in the upper tail in the Q-Q plot (Figure 17), and no residual 

SNPs were associated with drug-induced angioedema (Figure 18). This indicated that all the 

top SNPs after imputation were in high linkage disequilibrium. 

 

  

 
  

   

CHR SNP BP N OR L95 U95 P MAF GTPS 
MAF 

case 
MAF 
control 

10 rs2253201 79356397 5063 2.471 1.788 3.416 4.314E-08 0.063 G/A 0.136 0.06 

10 rs2253202 79356393 5063 2.471 1.788 3.416 4.314E-08 0.063 G/A 0.136 0.06 

10 rs2673471 79357323 5062 2.471 1.787 3.415 4.35E-08 0.063 A/G 0.136 0.06 

10 rs2619635 79358602 5063 2.467 1.785 3.41 4.592E-08 0.063 G/A 0.136 0.06 

10 rs2670121 79358889 5063 2.467 1.785 3.41 4.592E-08 0.063 A/G 0.136 0.06 

10 rs2673455 79359111 5063 2.467 1.785 3.41 4.592E-08 0.063 C/G 0.136 0.06 

10 rs865293 79258692 5062 2.402 1.747 3.304 6.979E-08 0.068 G/A 0.142 0.065 

10 rs1949352 79249522 5063 2.399 1.744 3.299 7.331E-08 0.068 C/T 0.142 0.065 

10 rs816847 79250577 5063 2.399 1.744 3.299 7.331E-08 0.068 G/C 0.142 0.065 

10 rs866539 79249804 5063 2.399 1.744 3.299 7.331E-08 0.068 C/T 0.142 0.065 

Figure 17. Q-Q plot adjusted by sex and genetic principal components 1-4 and top hit rs2253201. 

 

 

 

 
 

25 
 

20 
 

15 
 

10 
 

5 
 

0 

   0               5             10            15             20            25            30 

                   Expected 2 



30 

 

 

4.3 Part III: Analysis of top SNP  

The analysis of the top association rs2253201 revealed an association between homozygous 

G/G carriers of SNP rs2253201 and drug-induced angioedema, with an odds ratio (OR) of 

16.2, when using all controls, and 12.7 when only treated controls were included (Figure 19). 

No model assumption was done for these. An additive model (as used in the GWAS) was also 

included resulting in an OR of 2.45 for one copy of the G-allele for all controls and 2.20 when 

using treated controls. No model assumption and the additive model resulted in similar 

results. Since all top SNPs were in high LD, only one SNP (rs2253201) was studied further 

with treated controls.  

The distribution of SNP rs2253201 genotype, seen in Table 4 and 5, revealed a clear 

difference in minor allele frequency (i.e. frequency of allele G) between cases and controls. 

23.1 % of the cases carried one or two copies of the G allele whereas 11.8 % of the controls 

and 12.6 % of treated controls carried the G allele.  

 

 

Chromosome 

Figure 18. Manhattan plot adjusted by sex and genetic principal components 1-4 and top hit rs2253201. 
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Figure 19. Forest plot. There is an association between homozygous G/G carriers of SNP rs2253201 and drug-induced 

angioedema, with an odds ratio (OR) of 16.2, when using all controls, and 12.7 when only treated controls were 

included. No model assumption was made for these analyses. The additive model revealed an association with an odds 

ratio of 2.45 for each copy of the G-allele for all controls and 2.20 for treated controls. 

 

Table 4. Distribution of SNP rs2253201 genotype among cases and 4889 controls.       

 

 

 

 

 

 

 

 

Table 5. Distribution of SNP rs2253201 genotype among cases and 1105 treated controls. 

 

  

 

 A/A G/A G/G MAF 

Controls 

(4889) 
4314 
(88.2%) 

561 
(11.5%) 

14 
(0.3%) 

0.060 

Cases 

(173) 
133 
(76.9%) 

33 
(19.1%) 

7 
(4.0%) 

0.136 

 A/A G/A G/G MAF 

Treated controls 

(1105) 
966 
(87.4%) 

135 
(12.2%) 

4  
(0.4%) 

0.065 

Cases 

(173) 
133 
(76.9%) 

33 
(19.1%) 

7  
(4.0%) 

0.136 
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4.4 Part IV: Regulatory potential of top SNPs 

This part contains an assessment of the biological impact of the top genetic variants 

associated with angioedema. All the identified top SNPs were intronic and located in the 

beginning of the KCNMA1 gene (Potassium Large Conductance Calcium-Activated Channel, 

Subfamily M, Alpha Member 1), see Figure 10.  

The functional annotation was based on data from the ENCODE and Roadmap projects 

available in the UCSC and Haploreg browsers and included chromatin states from DNAse 

and histone ChIP-Seq, transcription factors bound in ChiP-seq experiments and conservation 

for all top SNPs.  Table 6 contains the genotyped top SNPs while Table 7 contains top SNPs 

after imputation. SNPs already described in Table 6 were excluded in Table 7. The tables only 

include data for cell lines thought to be relevant for drug-induced angioedema. These cell 

lines included immunological and blood cell lines, smooth muscle cell lines, heart and 

digestive cell lines. No data for endothelial cell lines (large-vessel or microvascular), which 

would have been relevant, was available. The tables only show chromatin states in groups of 

cell lines. For specific cell lines, see Appendices.  

4.4.1 Chromatin state 

All top SNPs lied within promoter and enhancer histone mark sites in relevant cell lines. Four 

SNPs (rs1949352, rs2670164, rs2670121 and rs816847) were located in DNase 

hypersensitive sites in either blood or digestive cell lines.  

4.4.2 Transcription factors 

Regulatory motifs altered could be found for almost all SNPs. For SNP rs1464111 six 

transcription factors (POLR2A, GATA2, TEAD4, MAZ, RCOR1 and TAL1) bound in ChIP-

seq experiments in the K562 and NB4 cell lines, and for SNP rs865293, GR bound in the 

A549 cell line. Worth mentioning is that GR was found also for SNP rs1464111 and 

rs2673471. GR is a glucocorticoid receptor that binds cortisol and other glucocorticoids and 

controls immune responses. 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Cortisol
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Table 6. Functional annotation for genotyped top SNPs. Chromatin states comes from Roadmap unless otherwise 

stated. 
 

Abbreviations: POLR2A=DNA-directed RNA polymerase II subunit RPB1, GATA2=GATA binding protein 2, TEAD4=Transcriptional enhancer factor TEF-3, 

MAZ=Myc-associated zinc finger protein, RCOR1=REST corepressor 1, TAL1= T-cell acute lymphocytic leukemia protein 1, HP1-site-factor=Heterochromatin 

Protein 1, Pax=Paired box, Ets=E-twenty six, GR=Glucocorticoid receptor, Myf=Myogenic factor, Myb=Myb proto-oncogene protein.  
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Table 7. Functional annotation for top SNPs after imputation. Top SNPs already presented in Table 8 are excluded in  

this table. Chromatin states comes from Roadmap unless otherwise stated. 

Abbreviations: GR= Glucocorticoid receptor, Pax=Paired box, PREB-1=Prolactin regulatory element binding protein 1, p300=E1A binding protein p300, Dbx= 

Developing brain homeobox protein 1, Hox=Homeobox protein, Ncx=neural crest homeobox, Pou1f1=POU domain class 1 transcription factor 1, Pou6f1=POU 

domain class 6 transcription factor 1, Zfp187=zinc finger protein 187, Sin3Ak=SIN3 homolog A (k-20), Spdef= SAM pointed domain containing ETS 

transcription factor, STAT=Signal Transducer and Activator of Transcription, TFIIA=Transcription factor TFIIA. 
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5 Discussion  

In contrast to the previous GWAS of angioedema induced by ACE inhibitors (Pare et al. 

2013), several associations of genome-wide significance were found in this study. Three of 

the genotyped SNPs, all located in the KCNMA1 gene, met the genome-wide threshold with a 

p-value below 8.7x10-8. KCNMA1 encodes BK (Big Potassium) channels also called Maxi-K 

channels which have large conductance for potassium (K+) ions through cell membranes. 

These channels are fundamental for regulation of various key physiological processes 

including contraction of smooth muscle and neuronal excitability (National Center for 

Biotechnology Information 2010). As known previously, the vasodilation caused by ACEi 

and ARB, is induced by relaxation of smooth muscle cells in the cell walls which widens 

blood vessels and decreases blood pressure. Consequently, there might be a connection 

between the associated gene and the therapeutic effect of the drugs regarding smooth muscle 

control. In the functional annotation, data in smooth muscle cell lines was therefore of interest 

along with immunological, blood and digestive cell lines. The result of the functional 

annotation, summarised in Table 6 and 7, revealed that all top SNPs lie within promoter and 

enhancer histone mark sites in relevant cell lines. Four SNPs are also located in DNase 

hypersensitive sites. Almost all alter regulatory motifs and for two SNPs, rs1464111 and 

rs865293, transcriptions factors were found to bind in ChIP-seq experiments. From this 

functional information of the SNPs it is hard to draw conclusions of the regulatory potential 

and identify the causal variant or variants of the ADR. The different features and biochemical 

signatures are very useful for identifying regulatory elements but cannot work as proof of 

function on their own. Therefore, additional experimental assays are needed as a complement 

for studying the function of the associated variants. This could include experimental studies in 

additional cell lines like endothelial cell lines and more extensive analyses of the transcription 

factors. 

A limitation of this study is the small sample size, which is not unusual for these types of 

pharmacogenomic studies of rare ADRs. Nevertheless, the number of study participants in 

this study is comparatively large and genome-wide significance was achieved. All 173 cases 

were also from the same population and genotyped at the same platform, providing good 

quality of data which strengthens the study. The reports of adverse drug reactions from MPA 

as well as the many controls from the Swedish twin registry were important resources for this 

study and enabled a satisfying study design. The strict criteria for the phenotype, which made 

it possible to judge the relevance of the angioedema cases for the study and just include truly 

affected patients in the study, was also an important factor which probably enhanced the 

power of the study.  

The distribution of the top SNP rs2253201 genotype revealed a clear difference in minor 

allele frequency between cases and controls, where 23.1 % of the cases carried one or two 

copies of the G allele whereas only 11.8 % of the controls and 12.6 % of treated controls 

carried the same allele. This means 23% of the cases could be identified by genotyping this 
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SNP. But what would the clinical utility of genetic testing be? The Number Needed to 

Genotype (NNG), which is based on the Number Needed to Treat (NNT), could be used to 

evaluate this. It is the average number of patients who need to be genotyped to prevent one 

additional ADR (de Graaff et al. 2013). If we assume that 0.7% is affected (i.e. 1 of 142 

patients is affected) and that the sensitivity of genotyping of the top SNP allele is 23% it 

would mean that the number needed to genotype is 617 people (142/0.23 =617), to prevent 

one case of angioedema (assuming avoidance of the causing drug). Since healthy controls also 

were carriers of the G-allele, we have to assume that some unnecessarily will avoid the 

causing drug. Worth discussing is the costs of genotyping around 600 patients to be able to 

prevent one patient from getting the ADR in contrast to the costs for treating a patient with 

drug-induced angioedema. Rough assumption of the costs of genotyping one patient is around 

500 SEK, resulting in a total cost of around 300 000 SEK (617 x 500 SEK) for genotyping. 

The exact costs of treatment of angioedema patients is not known and depends on the severity 

of the ADR and if the patient need intensive care medicine or not. The assumption that an 

angioedema patient would need three days of intensive care medicine would result in a cost of 

around 150 000 SEK. The genotyping costs, in this example, would therefore be higher than 

the costs of treatment. What is not measurable but worth mentioning is the 

harm and suffering of patients and their families that could be prevented by individualising 

medicine. Also, 73 people (617x0.118) would unnecessarily change drug, since 12.6 % of the 

treated controls carried one or two copies of the G-allele in the top SNP without having the 

ADR. Worth discussing is also that it is not known whether the controls carrying the risk 

alleles might get the ADR in the future. 

An essential part of a GWAS is to replicate the results in independent samples to confirm 

positive association signals and exclude possible false-positive results to provide more 

definitive conclusions of associated SNPs. It was, however, beyond the scope of this thesis. A 

replication could be done in additional patients collected by SWEDEGENE as well as in 

patients from collaborating groups, to get a larger cohort. Also, an additional analysis could 

be done with separated GWAS of ACEi and ARB and see if the association signal changes.  

6 Conclusion and outlook 

In conclusion, several SNPs in the KCNMA1 gene were associated with angioedema induced 

by ACE inhibitors and ARB. However, a replication of the results is needed to confirm these 

positive association signals before definitive conclusions of the impact of these SNPs can be 

drawn. Additional analyses of the associated SNPs are also needed to improve the functional 

annotation and identify the causal SNP. A pathway-based analysis could also be used to go 

from a set of associated SNPs to a causal biological process.   

By identifying possible triggers, this project, along with other pharmacogenomics studies, 

have the potential of increasing the understanding of adverse drug reactions. Identified genetic 
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risk markers could be used to develop clinical tests, which in the future could be used to 

individualise the choice of drug and dose for each patient, i.e. personalised medicine. With 

these clinical tests, a physician would be able to determine a patient’s SNP profile, compare it 

with known data, and predict how the patient will respond to a drug and then decide which 

drug to give accordingly. This strategy would improve the treatment for the patients and 

replace the trial-and-error method of drugs used today. By studying the genetic basis of ADRs 

associated with certain drugs it might also be possible to identify new molecular targets for 

treatment of the syndrome itself, when not drug-induced. For instance, by studying cough 

associated with ACEi-inhibitors it is possible to find new therapeutic targets for treatment of 

cough. Increasing knowledge of genetic causes of ADRs makes it easier to in an early stage of 

a drug development processes screen for molecules likely to cause these reactions and thereby 

design safer drugs. 
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Appendix A 

Table 8. Cell lines. 

SNP H3K4me3 H3K9ac H3K4me1 H3K27ac 

 

rs2253201 

 

 Smooth muscle: Colon 

smooth muscle 

Heart: Aorta 

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

Heart: Aorta 

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

 

rs1949352 

 

 Blood 

Monocytes-CD14+ 

RO01746 Primary Cells 

(ENCODE) 

 

Smooth muscle: 

Stomach smooth muscle 

 

Digestive: Fetal 

intestine small & large, 

gastric 

Smooth muscle: 

Stomach smooth muscle 

 

Digestive: Fetal 

intestine small & large, 

gastric 

 

rsS225320

2 

 

 Smooth muscle: Colon 

Smooth Muscle 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

rsS225564

9 

 Blood: Primary 

mononuclear cells 

from peripheral 

blood 

 
Smooth muscle: 

Stomach smooth muscle 

Blood: Primary 

monocytes, B-cells and 

NK cells 

from peripheral  

blood, primary 

hematopoietic stem cells 

 

Smooth muscle: 

Duodenum, colon, rectal 

and stomach smooth 

muscle 

 

Digestive:  Fetal 

intestine small & large, 

stomach & duodenum 

mucosa, esophagus 

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

Digestive: Esophagus, 

gastric 

 

rs1464111      

 Blood: 

Primary mononuclear 

cells from peripheral 

blood, monocytes-

CD14+ RO01746 

primary cells 

(ENCODE) 

 

Blood: Primary 

monocytes and NK cells 

from peripheral  

blood, primary 

hematopoietic stem cells 

 

Heart: Aorta 

 

Smooth muscle: 

Duodenum, colon, rectal 

and stomach smooth 

muscle 

 

Digestive: Fetal 

intestine small & large, 

stomach & duodenum 

mucosa, esophagus, 

gastric 

Heart: Aorta 

 

Smooth muscle: Colon, 

and stomach smooth 

muscle 

 

Digestive: Fetal 

stomach, intestine large, 

esophagus, gastric 
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SNP H3K4me3 H3K9ac H3K4me1 H3K27ac 

rs2670164 

Smooth muscle: 

Colon smooth 

muscle 

 

Digestive:  Stomach 

mucosa 

Smooth muscle: Colon 

and rectal smooth 

muscle 

 

Blood: 

Monocytes-CD14+ 

RO01746 primary cells 

(ENCODE) 

 

Blood: Primary 

monocytes 

from peripheral  

blood,  primary 

hematopoietic stem 

cells, primary NK cells 

from peripheral  

blood 

 

Heart: Aorta 

 

Smooth muscle: 

Duodenum, colon, rectal 

and stomach smooth 

muscle 

 

Digestive:  Fetal 

stomach, colonic & 

rectal mucosa 

 

Heart: Aorta 

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

Digestive:  Fetal 

stomach 

 

rs2673471 

 Smooth muscle: Colon 

smooth muscle 

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

rs2619635 

 Smooth muscle: Colon 

and stomach smooth 

muscle 

 

Blood: 

Monocytes-CD14+ 

RO01746 primary cells 

(ENCODE) 

 

Heart: Aorta 

 

Smooth muscle: 

Duodenum, colon, rectal 

and stomach smooth 

muscle 

 

Digestive:  Stomach 

mucosa 

 

Heart: Aorta 

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

Digestive: Rectal 

mucosa 

 

rs2670121 

 Smooth muscle: Colon 

and stomach smooth 

muscle 

 

Blood: 

Monocytes-CD14+ 

RO01746 primary cells 

(ENCODE) 

 

Heart: Aorta 

 

Smooth muscle: 

Duodenum, colon, rectal 

and stomach smooth 

muscle 

 

Digestive:  Stomach 

mucosa 

 

Heart: Aorta 

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

Digestive: Rectal 

mucosa 

 

rs2673455 

 Smooth muscle: 

Stomach smooth muscle 

 

Blood: 

Monocytes-CD14+ 

RO01746 primary cells 

(ENCODE) 

 

Heart: Aorta 

 

Smooth muscle: 

Duodenum, colon, rectal 

and stomach smooth 

muscle 

 

Digestive:  Stomach 

mucosa 

 

 

 

 

Heart: Aorta 

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

Digestive: Rectal 

mucosa 
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SNP H3K4me3 H3K9ac H3K4me1 H3K27ac 

rs865293 

Digestive: Gastric 

 

 Heart: Aorta 

 

Smooth muscle: 

Duodenum, colon, rectal 

and stomach smooth 

muscle 

 

Digestive:  Stomach, 

duodenum mucosa, 

esophagus, gastric  

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

Digestive: Esophagus, 

gastric 

 

rs816847 

Heart: Fetal heart 

 

Blood 

Monocytes-CD14+ 

RO01746 Primary Cells 

(ENCODE) 

 

Heart: Aorta, fetal 

heart, left and right 

ventricle 

 

Smooth muscle: Colon, 

rectal and stomach 

smooth muscle 

 

Digestive:  Fetal 

intestine small & large, 

esophagus, gastric 

 

Smooth muscle: Colon, 

and stomach smooth 

muscle 

 

Digestive:  Stomach, 

gastric  

 

rs866539 

 Blood 

Monocytes-CD14+ 

RO01746 Primary Cells 

(ENCODE) 

 

Smooth muscle: 

Stomach smooth muscle 

 

Digestive:  Gastric  

 

 

Smooth muscle: Colon 

and stomach smooth 

muscle 

 

Digestive:  Gastric  

 


