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Abstract
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Peat mosses (Sphagnum) are ecosystem engineers that largely govern carbon sequestration
in northern hemisphere peatlands. I investigated functional traits in Sphagnum species and
addressed the questions: (I) Are growth, photosynthesis and decomposition and the trade-
offs between these traits related to habitat or phylogeny?, (II) Which are the determinants
of decomposition and are there trade-offs between metabolites that affect decomposition?,
(III) How do macro-climate and local environment determine growth in Sphagnum across the
Holarctic?, (IV) How does N, fixation vary among different species and habitats?, (V) How do
species from different microtopographic niches avoid or tolerate desiccation, and are leaf and
structural traits adaptations to growth high above the water table?

Photosynthetic rate and decomposition in laboratory conditions (innate growth and decay
resistance) were related to growth and decomposition in their natural habitats. We found
support for a trade-off between growth and decay resistance, but innate qualities translated
differently to field responses in different species. There were no trade-offs between production
of different decay-affecting metabolites. Their production is phylogenetically controlled, but
their effects on decay are modified by nutrient availability in the habitat. Modelling growth
of two species across the Holarctic realm showed that precipitation, temperature and vascular
plant cover are the best predictors of performance, but responses were stronger for the
wetter growing species. N, fixation rates were positively related to moss decomposability,
field decomposition and tissue phosphorus concentration. Hence, higher decomposition can
lead to more nutrients available to N,-fixing microorganisms, while higher concentrations
of decomposition-hampering metabolites may impede N, fixation. A mesocosm experiment,
testing effects of water level drawdown on water content and chlorophyll fluorescence, showed
that either slow water loss or high maximum water holding capacity can lead to desiccation
avoidance. Furthermore, leaf anatomical traits rather than structural traits affected the water
economy.

This thesis has advanced the emerging field of trait ecology in Sphagnum by comparing
many species and revealing novel mechanisms and an ever more complex picture of Sphagnum
ecology. In addition, the species-specific trait measurements of this work offers opportunities
for improvements of peatland ecosystem models.
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Introduction

In northern peatlands, peat mosses (the bryophyte genus Sphagnum) are
important ecosystem engineers building up thick layers of peat, i.e. poorly
decomposed organic matter. Sphagna are able to do so as they effectively
engineer a wet and acidic environment that inhibits decomposition, and pro-
duce peat that is in itself decay resistant (Rydin and Jeglum 2013). There-
fore, they represent a substantial component of carbon storage and mainte-
nance of carbon sequestration in peatlands. While Sphagnum species are
hugely important to ecosystems and potential climate change feedbacks,
species-specific ecophysiological functional trait data are lacking, and re-
sponses to environmental factors are uncertain.

Production, peat and carbon storage in mires

In non-tropical systems, plant annual carbon (C) uptake varies from 500-700
g m*” yr'in temperate regions, to below 200 g m” yr ' in arctic regions
(Cramer et al. 2001), while carbon uptake in northern peatlands averages 192
gm” yr for bogs and 208 g m > yr ' for poor fens (based on data in Moore
et al. 2002). Despite net primary production (NPP) being relatively low,
peatland ecosystems have remained important carbon sinks throughout the
Holocene as production has exceeded decomposition (Yu 2012). As a result,
northern peatlands store ca. 500 Gt C (Yu et al. 2010; Loisel et al. 2014),
which equals more than 50% of the carbon in the atmosphere today (829 Gt;
IPCC 2013).

Peatlands are long-term carbon sinks, and are predicted to continue to act
as sinks in a warmer climate up to a certain point, when they instead become
sources of carbon (Gallego-Sala et al. 2018). For example, a changing cli-
mate with more frequent droughts and water level drawdowns could promote
vascular plant growth in peatlands due to aerated peat (Rydin and Jeglum
2013). Also nitrogen deposition promotes vascular plants and reduces
Sphagnum growth (Berendse et al. 2001; Limpens et al. 2011), and may
increase the chances of vegetation shifts. Vascular plants in Sphagnum-
dominated peatlands can account for 50% of gross primary productivity of
the ecosystem (Gavazov et al. 2018). However, vascular plant litter decays
faster than Sphagnum litter (Dorrepaal 2005) and can increase soil respira-
tion through priming (Gavazov et al. 2018). A changing climate could thus

9



convert peatlands from sinks to sources of carbon through vegetation shifts.
However, this topic is complex an subject to ongoing debate (Bacon et al.
2017).

As Sphagnum species are the dominant vegetation formers in many
northern peatlands, responses of sphagna to changes in climate and environ-
ment will govern vegetation shifts in peatlands. Globally, NPP is largely
determined by precipitation and water availability, and in northern regions
(above 50°N) temperature and solar radiation become increasingly important
(Schloss et al. 2001; Gallego-Sala et al. 2018). Studies that have tried to
determine which environmental and climatic drivers are the most strongly
linked to variation in Sphagnum NPP have come to different conclusions.
Gunnarsson (2005) found in a meta-study that temperature, precipitation,
altitude and latitude explained 40% of the variation in productivity. Also
Moore (1989) identified annual mean temperature as a key driver of Sphag-
num production, while a meta-analysis by Krebs et al. (2016) found that
growth in Sphagnum papillosum was primarily influenced by precipitation
frequency and the quotient of precipitation:temperature. Others have found
solar radiation to be a major influence on Sphagnum length growth. A meta-
study (Loisel et al. 2012) found that cumulative photosynthetically active
radiation (PAR) for days over 0°C was the most important driver of growth.
This is an indication of PAR conditions over the entire growing season being
influential.

While peatlands seem resistant and resilient to environmental change
(Waddington et al. 2015; Robroek et al. 2017), predictions for future devel-
opment are hampered by the lack of empirical data of large-scale perfor-
mance variation in Sphagnum mosses. And, although the species of Sphag-
num may seem similar at first, they occupy different niches, and will have
species-specific growth responses to climatic and environmental factors,
such as water level changes. These responses will be governed by functional
traits of the mosses.

Functional traits in the genus Sphagnum

The origin of Sphagnum dates back about 200 Myr, but the diversification of
species in boreal ecosystems is as recent as 15 Myr (Shaw et al. 2010). Some
species are notoriously hard to identify, while the genus as a whole is unmis-
takable. Although the species share a lot of characteristics, there are clearly
different strategies within the genus. Species’ niches along environmental
gradients are due to differences in traits and often different trait combina-
tions are linked to different subgenera (Johnson et al. 2015).

Sphagnum species have different niches primarily along two environmen-
tal gradients: a hydrological and an electrochemical (Rydin and Jeglum
2013). The hydrological gradient is a change in microtopography where
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different species grow at different Heights above the Water Table (HWT)
(Fig. 1). Typically, the dry-growing hummock species are from the subgenus
Acutifolia, while the wet-growing hollow species are from the subgenus
Cuspidata. In the subgenus Sphagnum, there is more habitat variation be-
tween and within species. The hummock species require adaptations to avoid
and/or tolerate desiccation, while hollow species need to rely on favourable
weather to avoid drying out (Schipperges and Rydin 1998).

LU

Hummock
Intermediate

Microtopographic Gradient

(HWT). For example, S. cuspidatum grows in hollows, S. magellanicum on the open bog at intermediate water levels, and S.

fuscum typically forms hummocks

F igure 2 Sphagnum epecies have different microtopographical niches, i.e. they grow at different Heights above the Water Table
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The electrochemical gradient depends on inflow of mineral rich water,
which produces a gradient from rich fens with pH 6 or higher to bogs with
pH around 4. In bogs, the peat layer is thick enough that the living vegeta-
tion has no access to ground water and is thereby purely rain-fed. In addition
to being responsible for forming the thick peat layer, Sphagnum mosses help
promote Sphagnum performance by actively acidifying their environment
using cation exchange sites on their cell-walls (Clymo 1963).

Colony structure, shoot morphology and leaf anatomy

The Sphagnum shoots build up colonies with more or less tightly packed
shoots with their tops growing at equal heights, creating a more or less even
surface of photosynthetic tissue. How tightly the shoots are packed affects
the surface roughness of the colony. A smoother surface created by smaller
shoots evaporates less and provides the moss colony with higher water reten-
tion (Elumeeva et al. 2011). Hence, the shoot numerical density is consid-
ered a key functional trait for Sphagnum water balance (Elumeeva et al.
2011; Laing et al. 2014). How tightly shoots are packed affects the extracel-
lular pore spaces, which comprise 90% of the Sphagnum colony’s water
holding capacity (Hayward and Clymo 1982). A larger volume of smaller
spaces, which is a character typical of hummock species, results in stronger
capillary forces, and is reflected in a higher bulk density (BD; weight per
volume). Consequently, BD is a key trait of Sphagnum water economy and
the maintenance of a high water table (Hayward and Clymo 1982; Thomp-
son and Waddington 2008; Waddington et al. 2015).

Growth in a Sphagnum shoot occurs mainly in the capitulum, which is a
collection of tightly packed branches surrounding the apical meristem (Fig.
2). In the event of drought, Sphagnum mosses must keep their capitula moist
enough to photosynthesise and sustain growth. The water content in the ca-
pitulum must stay above 50% of the water content for photosynthesis opti-
mum in order for the moss to maintain photosynthesis and growth (Schip-
perges and Rydin 1998; Rydin 1993). Relative to other bryophytes, sphagna
are desiccation avoiders rather than desiccation tolerant plants (Hajek 2014;
Marschall and Proctor 2004). However, there is evidence of tolerance, and of
that some species can develop tolerance during slow desiccation processes
(Liet al. 1992; Héjek and Vicherovd 2013).

The branches are formed in the capitulum in fascicles which will spread
out along the stem as it elongates. The branches within a fascicle are clearly
differentiated in some species into spreading and pendant branches, where
the pendant branches are thought to “wick™ water from lower down the wa-
ter table (Clymo and Hayward 1982). Along the branches, leaves are spirally
arranged. The leaves of some species, in particular from the subgenus
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Sphagnum, are curved (i.e. convex), which increases water-holding capacity
(Sastad and Flatberg 1993; Malcolm 1996).

The branch leaves are one cell-layer thick and constitute two different
types of cells: hyaline and chlorophyllous cells. Each of the narrow chloro-
phyllous cells borders a hyaline cell, which is a large, and when mature,
dead cell (Clymo and Hayward 1982). These hollow cells have structurally
rigid cell walls and capacity to store water. This is where the last water re-
sources are kept. The hyaline cells are responsible for 10% of the water
holding capacity (Hayward and Clymo 1982).

The hyaline cells have pores that passively allow flow of water in and out
of the cell (Malcolm 1996). Total area of pores affect water economy, as
well as the radius of a single pore. A smaller pore helps the cell hold on to
water (Lewis 1988). On which side of the leaf, ventrally (towards the stem)

b

50 pm

Figure 2. a) A Sphagnum shoot with a capitulum at the top, side view, b) Capitulum
with apical meristem and tightly packed branches, view from above, c) Branch with
overlapping leaves (a—c, S. fallax), d) Leaf, one cell layer thick constituting hyaline
and chlorophyllous cells (S. fuscum, ventral side) and e) Hyaline cell with pores (S.
girgensohnii)

13



or dorsally, the pores are placed changes their level of exposure to the out-
side environment. A similar duality occurs in chlorophyllous cells which in
relation to the surrounding hyaline cells are dorsally or ventrally exposed, or
sometimes even completely enclosed. While the chlorophyllous cells are
better protected against desiccation and solar radiation when exposed on the
ventral side, this also aggravates CO,-diffusion. Wet growing species more
often have their chlorophyllous cells exposed on the dorsal side of the
leaves, while dry growing species more often expose the cells on the ventral
side (Rice and Schuepp 1995).

In addition to shoot morphology and leaf anatomy, colony structure also
affects the water economy, i.e. water holding, water retention, and desicca-
tion avoidance, of Sphagnum.

Sphagnum mosses produce peat

Sphagnum litter, together with other bryophytes, has been estimated to con-
stitute up to 45% of boreal peat (Turetsky 2003) in both Sphagnum and
sedge dominated peatlands. Many Sphagnum species decompose at a rela-
tively slow rate, allowing them to accumulate peat.

Species differ in decay rates, and research show a trade-off between decay
and growth (Turetsky et al. 2008; Laing et al. 2014). Generally, drier grow-
ing — hummock species — degrade at a slower rate, and wetter growing —
hollow species — at a faster rate (Clymo 1965; Johnson and Damman 1991;
Belyea 1996; Limpens and Berendse 2003). Differences are caused both by
intrinsic decay resistance of individual species, and by the environment
which is created by the moss itself and can be seen as a functional trait: a
type of extended phenotype (Dawkins 1982). The height above the water
table (HWT) and biochemical properties affect this. However, which bio-
chemical properties that contribute the most to the litter quality of the
Sphagnum mosses is not clear (e.g. Verhoeven and Liefveld 1997; Freeman
et al. 2001; H4jek et al. 2011).

There are several biochemical compounds that Sphagnum species produce
that putatively improve intrinsic decay resistance. Sphagnan is a cell-wall
polysaccharide that has been found to block nitrogen mineralisation of plant
litters. This carbohydrate appears to actively inhibit microbial decomposers
and is closely tied to the cation exchange capacity (CEC) of the mosses
(Héjek et al. 2011). CEC is therefore used as a proxy of sphagnan, but also
determines acidifying capacity of the species, which increases the competi-
tiveness and may contribute to decay resistance (Clymo 1963).

The soluble phenolics have often been stated to have a role in hampering
decomposition (Verhoeven and Liefveld 1997), while others argue that the
soluble phenolics are present in too low concentrations to affect decay
(Painter 1991; Mellegard et al. 2009). However, the soluble phenolics may
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have an indirect effect on decomposition through impairing activity of phe-
nol oxidase in anoxic peat (Freeman et al. 2001). The more abundant lignin-
like phenolics are thought to contribute to structural integrity of the cell
walls by shielding them (Tsuneda et al. 2001). Overall, these have been the
least studied compounds so far, and results have been varying; while remov-
ing lignin-like polymeric phenolics from litter in vitro did not increase
Sphagnum decomposition (Hdjek et al. 2011), there are reports of effects in
situ (Turetsky et al. 2008; Héjek et al. 2011).

Symbiotic N, fixation

Although NPP in Sphagnum dominated peatlands is low compared to other
ecosystems, it is not as low as one would expect given the extremely nutrient
poor conditions. Sphagnum mosses are homes to diverse microbial commu-
nities, some of which have recently been shown to contribute to the carbon
uptake potential of peatlands (Jassey et al. 2015). Symbiotic N,-fixing mi-
croorganisms (diazotrophs) contribute to the N pools of peatlands; in Sphag-
num peatlands, the contribution of diazotrophic N, fixation is estimated to be
around 35% of the N input (Berg et al. 2013; Larmola et al. 2014). N, fixa-
tion in Sphagnum has been found to explain the discrepancy between the low
N inputs through atmospheric deposition and the N assimilation of Sphag-
num species (Vile et al. 2014). The drivers of the varying rates of N, fixation
are not well known, and this type of data is needed to understand the relative
contribution of N, fixation to the total ecosystem N input (Galloway et al.
2004; Vitousek et al. 2013).

Functional trait studies

Functional trait data are necessary for predictions in environmental research
such as terrestrial ecosystem modeling (Wullschleger et al. 2014) and spe-
cies distribution modeling (Moor et al. 2015). In peatlands, species composi-
tion may change overall growth, decay, and thereby affect carbon sequestra-
tion. Previous studies collecting trait data for Sphagnum have been limited in
scope and investigate 46 species. Studies across wide geographical scales are
also largely missing and mainly constituting meta-studies. Peatland models
have recently incorporated Sphagnum specific growth (Turetsky et al. 2012)
although these functions are still lacking in Earth system models (e.g. OR-
CHIDEE, Qui et al. 2018).
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Aims of the thesis

The overarching aims of this thesis work are to evaluate the importance of
traits driving biomass accumulation and decomposition in Sphagnum, and to
gather trait information for sphagna as a basis for ecological and environ-
mental research.

Specifically, I address the following questions:

16

Are growth, photosynthesis and decomposition and the trade-offs
between these traits related to habitat or phylogeny of Sphagnum?
In Paper I we investigated functional traits related to growth and
decomposition in Sphagnum species, and compared innate growth
and intrinsic decay resistance, with realized growth and decompo-
sition.

Which are the determinants of decomposition and are there trade-
offs between metabolites that affect decomposition? In Paper II
we quantified the biochemical compounds of Sphagnum litter
quality, and analysed which compounds determine intrinsic decay
resistance and whether there are phylogenetic constraints on me-
tabolite production.

How do macro-climate and local environment determine growth
in Sphagnum across the Holarctic realm? In Paper III we investi-
gated which climatic and environmental factors affect Sphagnum
growth on global and local scales in two species with circumpolar
distributions.

How does N, fixation vary among different species and habitats?
In Paper IV we investigated the relationships between symbiotic
N, fixation, and growth and decay in Sphagnum.

How do species from different microtopographic niches avoid or
tolerate desiccation, and are leaf and structural traits adaptations to
growth high above the water table? In Paper V we investigated
species responses to a simulated water table drawdown and identi-
fied different strategies related to water economy in Sphagnum.



Methods

Sampling sites and species

The mire complex Kulflyten (59°54'N, 15°50°E), Véstmanland province, in
central-southern Sweden, was central to this thesis and chosen because of the
access to many Sphagnum species from different HWT niches (Fig. 3). This
mire complex comprises a raised ombrotrophic bog with pools and fen soaks
(areas which are richer in solutes), pine bog areas (the pine clad outer areas
of the bog), and a lagg fen of varying width surrounding the bog. Young
spruce forest surrounds the mire with a bottom layer primarily consisting of
Sphagnum girgensohnii and common feather mosses. In addition, a small
rich fen was included, Glon (60°31°N, 17°55°E), in the province of Uppland,
where the lime-rich moraines make rich fens relatively abundant. The mean
July and December temperatures, respectively, are 16.6°C and -2.6°C at
Kulflyten, and 16.8°C and —1.0°C at Glon. Annual precipitation averages

=

L

Figure 3. Photo from the bog expanse on the mire Kulflyten.
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733 mm at Kulflyten and 649 mm at Glon (1982-2013) (SMHI 2014). Ni-
trogen deposition is about 0.4 g m~> yr' at Glon and 0.6 g m > yr ' at
Kulflyten (Lamarque et al. 2013). These two sites are included in all chap-
ters of this thesis. In Paper III we sampled across the Holarctic region in-
cluding mainly ombrotrophic mires, but also fens in a few cases (Fig. 4).

The Sphagnum species were chosen to represent different habitats along
the bog—fen gradient, the HWT gradient and a canopy openness gradient,
with focus on ecologically important species (Table 1). In general terms, I
refer to higher HWT levels as hummocks and lower levels (lawn, carpet,
pool) as hollows.

In all studies we selected sampling patches to be uniform, species-specific
and to have low vascular plant cover. Overall, we sampled species in their
main habitats to define strategies for different species. However, to widen
the perspective, two species were sampled in different habitats: Sphagnum
fuscum in open bog and rich fen, and S. magellanicum in open bog, pine bog
and spruce forest (Papers I, II, IV, V). Recently, S. magellanicum was split

. S tuscum&
S. magelanicum

Study:
. : 102 sites

Site: ~4 patches
per species

|

Patch: ~3 wire
~ measurements

Figure 4. The sampling design in Paper III included 102 sites distributed across the
Holarctic region. At each site we sampled Sphagnum magellanicum and S. fuscum
at around four patches each, if they were both present at the site, and at each site we
took around three measurements of length increment, and one measurement of bulk
density to calculate NPP.
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into three species (Hassel et al. 2018). Sphagnum magellanicum is only
found in South America, while in the northern hemisphere, S. medium
Limpr. is more common in open bogs, and S. divinum Flatberg & Hassel in
mire margins and poor fens (Hassel et al. 2018). This division was not
known at the time of our sampling and the results therefore refer to S. magel-
lanicum s.1.

Sampling designs

In Paper I, we measured growth, photosynthetic capacity, decomposition in
lab and field, colony structure, and HWT for 15 species (Table 1). We sam-
pled each species with 10 replicates, however with the exception that we
measured CO;-exchange only for half of the samples (2013). Growth was
measured during two vegetation seasons (2012 and 2013).

In Paper II, we measured biochemical composition of litter from the same
species but from half of the patches in Paper 1. This was done to allow us to
relate decay of moss litter from Paper I to litter quality. The moss litter used
to determine litter quality was sampled in October 2013.

In Paper 111, we sampled across the Holarctic at 102 sites with the aim of
covering as wide geographic and climatic gradients as possible (Fig. 4).
Three of the sites were excluded due to inconsistencies in sampling. During
two growing seasons (2013 and 2014), we measured growth, HWT and vas-
cular plant cover for two species at ca. four patches per site. We preferred
sites where the species co-occurred, but also used sites where they did not.

We used climatic data from NASA GESDISC (Global Modeling and As-
similation Office (GMAOQ) 2015) land surface and flux diagnostic products
(M2TINXLND, M2TMNXFLX). We extracted meteorological variables for
the specific measurement periods at each site and year, and calculated the
average temperature (°C), total precipitation (kg m™ yr '), evaporation (kg
m™ yrﬁl) and PAR (PARDF + PARDR, W m™) and the average number of
consecutive days without rain (d). Data on nitrogen deposition were extract-
ed from the model synthesis of Lamarque et al. (2013).

In Paper IV we measured N, fixation in four Sphagnum species and two
feather mosses, each with five replicates in September 2014. The Sphagnum
samples came from the same patches used in Paper I, again to be able to
compare to performance and trait data from Paper I.

Paper V included 13 species with five replicates each. We primarily used
patches from Paper I. To set up a mesocosm experiment, we sampled
Sphagnum cores (21 cm deep, 16 cm diameter) in PVC pipes in August
2015. In the lab, we exposed the cores to water level drawdown, while
measuring capitulum water content and chlorophyll fluorescence (F,/F,).
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Table 1. Study species of the thesis, from which habitats and which sites they were
sampled, and in which papers of the thesis they were included. Nomenclature fol-
lows Flatberg (2013).

Sphagnum species
S. capillifolium

S. fuscum

S. girgensohnii

S. rubellum

S. warnstorfii

S. angustifolium
S. balticum

S. cuspidatum
S. fallax

S. lindbergii

S. majus

S. tenellum

S. magellanicum
s *

S. papillosum

S. contortum

Subgenus
Acutifolia

Acutifolia

Acutifolia

Acutifolia

Acutifolia

Cuspidata
Cuspidata
Cuspidata
Cuspidata
Cuspidata

Cuspidata
Cuspidata

Sphagnum

Sphagnum

Subsecunda

Microto-
pographic
habitat

Hummock

Hummock

Hummock

Hummock—
Intermediate

Hummock—
Intermediate

Hummock
Intermediate

Hollow
Intermediate

Intermediate
Hollow

Intermediate

1) Intermedi-
ate

2&3) Hum-
mock

Intermediate

Intermediate

Vegetation
type

Pine bog

1) Open bog
2) Rich fen

Spruce
forest

Open bog

Rich fen

Mire edge
Open bog
Open bog

Lagg fen

Open bog
Open bog
Open bog

1) Open bog
2) Pine bog
3) Spruce
forest

Open bog

Rich fen

Site

Kulflyten

Kulflyten,
Glon**

Kulflyten

Kulflyten

Glon

Kulflyten
Kulflyten
Kulflyten

Kulflyten

Kulflyten
Kulflyten
Kulflyten

Kulflyten**

Kulflyten
Glon

Paper

LI

LI,
0L, 1V,
%

LILV

LIL
v,V

LILV

LILV
LILV
LILV

LI
v,V

LILV
LILV
LILV
LI,
101, 1V,
%
LILV
LI

* Hassel et al. (2018) split Sphagnum magellanicum into three species, two of which grow in
the northern hemisphere. Papers I1I-V bring this up, while papers -1l were published before

the split.

** In Paper III these species were sampled at 85 (S. fuscum) and 91 (S. magellanicum s.1.)

sites.
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Ecophysiological traits

The traits measured and analysed in each paper can be seen in Table 2.

Colony structure

We measured numerical density (ND) by counting the individual shoots in a
specified area, and bulk density (BD). In Paper V we split the cores from the
mesocosm experiment into three BD sections: BD1 = first 5 cm under the
capitula, BD2 = 5-10 c¢cm under the capitula, and BD3 = the remaining moss
core, 10—max 20 cm under capitula.

Growth and photosynthesis

We measured two aspects of growth, length increment (LI) and biomass
accumulation (NPP). LI was measured using brush wires (Fig. 5). At least
three brushes per patch were inserted into the vegetation. NPP was acquired
from multiplying LI with BD of the section just below the capitulum.
Photosynthetic capacity was defined as the maximum photosynthetic rate
(i.e. at optimum water and light conditions). It was measured in the lab using
an infrared gas analyser in ambient air, following Granath et al. (2009). Ca-

Season start Season end

0 i

ped™ : @l .
e
&
" ‘ﬁll'i‘!, f% ?«ﬂ“ﬂﬁ' capitulum
\Q“gmeﬂ‘ g S { f
e fir ':," Pt W bulk density
1 3 ’; - 3 cm core
\.: ~ ¥
A (
|}
‘;__-.; =

Figure 5. Brush wires were used to measure length increment of Sphagnum mosses.
In the start of the season the brushes were inserted into the Sphagnum carpet by first
pressing the bristles into a narrow tube that was then inserted down between shoots
without disturbing the shoots or peat. When the tube was pulled out and the wire
held in place the bristles spread and attached to the vegetation. The length of the
wire was then measured (season start height), and measured again at the end of the
season (season end height), and the difference between these measurements is the
length increment (LI). In the autumn a moss core was collected to obtain bulk densi-
ty (BD). LI and BD are the two parameters needed to calculate NPP (LI x BD =
NPP).
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pitula were moistened and placed in an airtight chamber in which gas ex-
change was monitored as capitula were drying. The maximum CO, exchange
rate was recorded and the capitulum water content was measured at this
point.

F./F, (Maximum potential quantum yield of photosystem II) is a proxy of
stress on the photosynthetic apparatus. A value below ca. 0.8 indicates a
damaged or down-regulated photosystem II (Murchie and Lawson 2013).
During the water level experiment (described below), after equilibration with
the water level, F,/F,, was assessed with a pulse-modulated fluorometer after
30 minutes of dark acclimatisation.

Decay

The decomposition of the moss litter was measured using litterbags in the
field and in the lab. Moss material was collected in the beginning of summer
2013. The capitula were removed, and the following 3 cm of the shoots were
collected and defined as litter. Roughly 100 mg of dry litter was placed into
nylon mesh bags. One set of bags was placed in the field at the original patch
for each litter, around 5 cm underneath the moss surface, and another set
incubated in the lab with water from the bog. The inoculum was supple-
mented with nutrients to avoid nutrient limitation for the microorganisms.
We assessed field decomposition as mass loss (%) after 14 months in the
field and lab decomposition as mass loss after 7 and 14 months lab incuba-
tion.

Chemical composition and tissue nutrient concentrations

We extracted holocellulose (HC) by bleaching coarsely homogenized litter,
following Ballance et al. (2007), and weighed the dry material. From the
holocellulose, we extracted the cell-wall polysaccharide sphagnan by acid
hydrolysis, and expressed it based on litter mass (mg g'). We determined
cation exchange capacity (CEC) as the amount of exchangeable NH," at pH
7 in homogenized litter saturated with NH,". For extraction of acetone solu-
ble phenolics we followed Bérlocher and Graga (2005), samples were ana-
lysed spectrophotometrically. Lignin-like phenolics were assessed gravimet-
rically from ball-milled litter as sulphuric acid-insoluble residuum (Klason
lignin; KL) using a modified procedure, due to these polymeric phenolics in
Sphagnum being prone to dissolving by acid hydrolysis (Farmer and
Morrison 1964; Strakova et al. 2010). From the first supernatant during this
extraction, we measured dissolved phenolics (soluble KL) spectrophotomet-
rically (Ehrman 1996). We also measured two aspects of chemical stability.
As a proxy of carbohydrate concentration, we measured the absorbance ratio
between 205 nm:280 nm absorbances, in the supernatant after hot-acid di-
gestion (sphagnan extraction).
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Carbon and nitrogen concentrations were analysed in ball-milled litters
with an elemental analyser (Papers I, III, IV). P was analysed as phosphate
using FIA after digestion of milled litter with perchloric acid (Paper I). P and
K were measured using inductively coupled plasma emission spectrometry
(Paper IV).

N, fixation

Subsamples of moss were ’N-enriched during 48 hours incubation. Isotopic
ratios (’N/"*N) and atom percent were determined for ground enriched and
background subsamples using an elemental analyser. The increase in atom
percent in the enriched samples compared to background samples represents
"*N accumulation during the incubation time. The increase was converted to
rate based on moss dry weight and expressed as nmol N, g™ d .

Water economy

We set up a mesocosm experiment in a growth room, where the water table
was gradually lowered from 20 mm under the moss capitula to 50, 100, 150
and finally 200 mm. After each lowering of the water table, the water con-
tent of the mosses was given time to equilibrate with the water level, and we
then measured capitulum water content (g g ') and chlorophyll fluorescence
yield (F\/F,). We extracted the water content at HWT 20 mm (WC,) and
200 mm (WCy) and the slopes of water loss (WCjiope) to use as responses in
models. The water content at the maximum F,/F,, was extracted from fitted
models to be used in analyses.

Leaf traits

The leaf traits were measured in ImageJ from scanning electron microscopy
(SEM) micrographs. The micrographs were acquired from one sample per
species, and in this sample, leaves were picked from one mature branch. The
leaves were mounted on aluminum stubs and imaged in the SEM under
5000V. We quantified eight traits (Table 2) on one leaf of each species
showing the dorsal side and one leaf showing the ventral side.

Statistical analyses

We used standard statistical procedures, such as multiple regressions and
ANOVA, to analyse relationships between traits (Papers I, II, IV), and PCA
to evaluate how traits cluster species according to habitats and phylogeny
(Papers I & II). PC axes were extracted to be used as predictors in models
(Papers II & V). Linear mixed effects models were used to evaluate climatic

23



and environmental variables as predictors of growth (Paper III), and to ana-
lyse structural, morphological and anatomical traits as predictors of water
content responses. Statistical analyses were performed in R (R Core Team
2017).

Table 2. The traits that were measured in each chapter of the thesis and whether
the data was also analysed in another paper, and abbreviations and units for each
trait.

Measured in  Used alsoin ~ Abbreviations

Trait Paper Paper used Units used

Numerical density LI,V ND cm™

Bulk density LI IV, V BD mg cm™, kg m”

Length increment 1, 1T IV (from PI) LI mm

Biomass accumulation I, IIT IV (from PI) G, G,, NPP g g m>

Photosynthetic capa- 1 IV (from PI) NP;, NP, NP, mg h!, mg g’

city h”', mg em”h!

Height above the LI, V HWT mm, cm

water table

Vascular plant cover 1 %

Field decay 1 1L IV %

Lab decay 1 1L IV %

Holocellulose, sphag- 11 v Holocelluose mgg!

nan, soluble = HC, lignin-

phenolics, lignin-like like phen. =

phenolics, total KL KL

CEC 11 peq g’

Soluble KL 1I mg g, % of
total KL

C,N L II0, IV II (from PI) %, mg g’

P 10, 111, IV mg g

K 1L, IV mgg!

N, fixation v nmol g d!

Leaf length and width 'V um

Dorsal and ventral \'% umz, %

pore area

Dorsal and ventral \" um

pore diameter

Dorsal and ventral \" proportion

chlorophyll cell expo-

sure

Water content respon-  V WCy, WCihg0, g g'1

ses WCiiope

Max WC at max \" gg!

Fy/Fi

F,/Fnat HWT 20,50, V
100, 150, 200 mm
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Results and Discussion

Growth and decay traits (I)

Innate qualities, i.e. the traits we measured in lab conditions (photosynthetic
capacity, lab mass loss) showed different patterns than field responses (LI,
NPP, field mass loss). We tested the often stated hypothesis of hummock
species having a higher decay resistance than hollow species. While we
found support for this, and for the trade-off between measures of growth and
decomposition (Turetsky et al. 2008; Laing et al. 2014), these relationships
were not strong (Figs 6, 7). Mass loss in lab as a response of growth was
better explained (including subgenus as a factor in the regression; Rzadj =
0.51) than field mass loss was (R adj = 0.06). Photosynthetic rate as a predic-
tor of lab decay yielded a similar relationship as NPP (R? agj = 0.53).

We happened to measure growth in one wet and one dry year. In the wet
year species from the subgenera Cuspidata and Sphagnum grew the most,
while in the dry year differences among species, sections and habitats
evened out. Reciprocal litter bag experiments have indicated that species is a
more important factor to decomposition than mire-habitat (Turetsky et al.
2008). We found that there is a higher intrinsic resistance to decay in most
Acutifolia species. In contrast there are greater habitat constraints by wetness
in Cuspidata species, as well as in S. rubellum (the wettest-growing Acutifo-
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Figure 6. Relationships between decay rate in the field (Ieft; n = 150) or 1n the lab
(right; n = 148) and the growth in biomass on an area basis G, (total g m > for 2012
and 2013).
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lia species) and S. magellanicum (in its wet bog habitat). We interpreted this
as species from Cuspidata producing overall more easily decomposable lit-
ter, but that their field decay was hampered because of anoxia also at shal-
low peat depths in their wet habitats. In conclusion, fast growing species
could only realise their potential in a wet year and while they also decom-
pose fast in lab, their field decomposition was more retarded than other spe-
cies.

We also tested the importance of environment and phylogeny in driving
functional traits and found that both affected the traits and the trade-offs. In a
PCA analysis we saw that species were not perfectly clustered according to
either vegetation type or phylogeny (Fig. 7). Some species clustered with
others in the same subgenus, whereas others clustered more with others from
similar vegetation types.
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Figure 7. PCA Top left: Trait space showing the factor loadings of the variables:
Shootdens = average shoot density between 2012 and 2013; Bulkdens = average
bulk density between 2012 and 2013; C/N ratio of litter; N = nitrogen content of
litter; LossField = mass loss during 2 seasons (%); LI = pooled length increment in
2012 and 2013 (mm), G, = pooled biomass growth (g m %) 2012 and 2013; LossLab
= mass loss of litter in lab after 14 months (%); NP = photosynthetic capacity (net
rate of CO, fixation under standard conditions) expressed per unit dry mass (NP;;
mg g h™); and per unit area (NP,; mg cm ™ h™"). Top right: shows the species dis-
tribution along the PC axes (mean +SE). Bottom left: species grouped by Sphagnum
subgenus, and bottom right shows species grouped by vegetation type.
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Determinants of decay resistance (II)

We found that the quantity of several metabolites produced by sphagna vary
among species and habitat. ANOVAs (P < 0.0001) showed that the subgene-
ra differed in concentrations of the carbohydrate sphagnan, soluble and lig-
nin-like phenolics, and in CEC. Subgenus Acutifolia had higher concentra-
tions than Cuspidata. A PCA including all the measured metabolites clus-
tered species clearly into their subgenera, indicating a phylogenetic con-
straint on metabolite production (Fig. 8). Using the PC axes 1 and 2 as
predictors of lab mass loss, we only found support for PC1 (R* = 0.56). PC1
was controlled primarily by lignin-like phenolics (total KL), soluble phenol-
ics and sphagnan (also expressed as CEC), supporting the effects of these
compounds in increased intrinsic decay resistance.

We could not detect any trade-offs between compounds affecting litter
decay, but rather we found that “more is more”. We found negative correla-
tions between lab mass loss and sphagnan (r = —0.61) and soluble phenolics
(r=-0.57), similar to previous reports for sphagnan (Painter 1991; Borsheim
et al. 2001; Painter 2003; Hajek et al. 2011) and soluble phenolics (Freeman
et al. 2001; Bragazza et al. 2006). Additionally, we found a negative correla-
tion between lab mass loss and the previously understudied lignin-like phe-
nolics (r =—-0.59). We used the sum of the three main compounds (after cen-
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Figure 8. PCA including only the measured metabolites. Left: The metabolites
include holocellulose, sphagnan, soluble phenolics, total Klason lignin and CEC =
cation exchange capacity. Right: The distribution of the species in the trait space
(with x and y standard error bars), and envelopes around species from the same
section. Sphagnum species codes: AN = S. angustifolium, BA = S. balticum, CA =
S. capillifolium, CO = S. contortum, CU = S. cuspidatum, FA = S. fallax, FU 1= 8S.
Sfuscum (open bog), FU 2 = S. fuscum (rich fen), GI = S. girgensohnii, L1 = S. lind-
bergii, MG_1 = S. magellanicum (open bog), MG 2 = S. magellanicum (pine bog),
MG 3 =S. magellanicum (spruce forest), MJ = S. majus, PA = S. papillosum, RU =
S. rubellum, TE = S. tenellum, WA = S. warnstorfii .
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tering and scaling the concentrations) as a predictor of lab mass loss (Fig. 9)
and found that not only sphagnan and soluble phenolics, but also the lignin-
like compounds are all important determinants of decay resistance.

Adding the tissue nutrients (C, N, P) to the PCA changed the species clus-
tering and the regression, indicating that effects of the metabolites on decay
are modified by nutrient concentrations in the litter, which is under habitat
control.

R?=0.54, p <0.0001
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Figure 9. The lab mass loss (%) as a function of the summed metabolite concentra-

tions of sphagnan, soluble phenolics and lignin-like phenolics (centered and scaled
variables; df = 84).

Determinants of growth (III)

Our coordinated effort of measuring selected species’ growth during the
same vegetation seasons and with the same methods produced a unique
global dataset. We found that variation in Sphagnum growth can be as large
within as between peatlands, which means that both local environmental
variables and global factors can influence growth. Our models with length
increment as growth response had better fit than models with NPP.

In support of meta-studies (Gunnarsson 2005; Moore 1989) we found that
the best climatic predictors of growth were precipitation and temperature
(Table 3). These had stronger positive effects on S. magellanicum than on S.
fuscum. The local factor vascular plant cover had a consistent negative ef-
fect on Sphagnum performance across our models, but no differential effects
on species. In contrast to other studies, our data did not suggest that distance
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to the water table controls Sphagnum growth within a species, or that current
N deposition affected Sphagnum growth. Photosynthetically active radiation
also had little impact when controlled for climatic variables, in contrast to
(Loisel et al. 2012).

The difference in length growth between species was apparent, but
Sphagnum NPP was relatively stable over space, time and species. Sphag-
num fuscum — typical hummock forming species that is smaller, denser, and
drier growing — had weaker responses to climate predictors than the larger,
looser and wetter growing S. magellanicum. The two species represent dif-
ferent strategies within Sphagnum. Consequently, it seems probable that S.
fuscum will retain its function better in a changing climate, while S. magel-
lanicum will increase its competitive ability in a wetter and warmer climate,
but will fail if the warmer climate coincides with lower precipitation.

Table 3. Significant effects (p < 0.1) of the models. In addition to main effects the
models included interactions between species and the other predictors. +/— after
variable name shows directions of main effects. Colors signify: The categorical
factors Year and Species are shown in white boxes when significant. For other pre-
dictors, blue = positive effect, red = negative effect, purple = different responses in
the two species (f, S. fuscum; m, S. magellanicum) and the directions of species
effects are then given. R*-values represent variances explained in the models includ-
ing only main effects.

Species m>f Species m<f
LI NPP Year 2014<2013
(mmyr') precipitation + m(+)>f(+) (g m2yr') ‘precipitation + m(+)>f(+)
temperature + m(+)>f(+) temperature + m(+)>f(+)
Rz= 0.47 evaporation m(+)<f(+) R2= 0.05 evaporation m(=)<f(+)
vascular 5 vascular 5
plant cover plant cover
N tissue +

Variation in N, fixation (IV)

We found appreciable variation in rates of N, fixation, both among species
and among habitats. Habitat was a relatively important factor determining N,
fixation rates in our data, as shown by lower rates of N, fixation in open bog
samples compared to mire margin and spruce forest samples. N, fixation
rates in mires have been found to be higher in wetter areas (Granhall and
Selander 1973; Larmola et al. 2014). In our data, S. fallax growing in the wet
lagg fen had consistently among the highest N, fixation rates. The different
habitats sampled for Sphagnum magellanicum differed in N, fixation rates
between the open bog and the treed habitats. The treed habitats are richer in
P (Aerts et al. 1999), which is reflected in the higher P concentrations in
Sphagnum tissue there (Fig. 10b). Availability of P is limiting to N fixation
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(Vitousek et al. 2013; van den Elzen et al. 2017), consequently, a tree-
covered habitat with higher P input may lead to increased N, fixation rates.

Analysing relationships between Sphagnum traits and N, fixation, we
found that decomposability, i.e. lower intrinsic decay resistance, was posi-
tively related to N, fixation (R* = 0.50; Fig. 10a). We also found positive
relationships with field decomposition (R* = 0.16) and tissue P concentration
(R*=0.19; Fig. 10b). We interpreted these results as an effect of decompos-
ability on N, fixation where higher concentrations of the biochemical com-
pounds that hamper decomposition (Paper II) may also limit diazotrophic
activity. We specifically found a negative relationship between lignin-like
phenolic compounds and N, fixation (R* = 0.21). The realised decomposition
makes nutrients from the Sphagnum tissue available, and thereby increases
the activity of the N-fixers. More nutrients available in the habitat may in-
crease N fixation, while it may also be a result of N, fixation increasing the
nutrient concentration of the Sphagnum tissue, which in turn, promotes de-
composition. To conclude, if a higher input of P to the ecosystem stimulates
N, fixation, long term Sphagnum growth increases through increased N
availability. Higher availability of both N and P may result in increased
turnover rates, resulting in a positive feedback loop.
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Figure 10. N, fixation rate +1 on a logarithmic scale, plotted against a) decomposa-
bility (litter mass loss (%) after 7 months incubation in the lab) and b) P concentra-
tion (mg g ') of Sphagnum dry weight.
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Water economy (V)

Most species that were sampled at high HWT lost water slowly during the
water level drawdown experiment, indicated by shallow slopes of water loss
(WCiiope) (Fig. 11). However, Sphagnum magellanicum that was sampled at
high HWT in the pine bog had a steep slope (more negative WCjope), but this
was accompanied with a high maximum water holding capacity (i.e. high
capitulum water content at the 20 mm water level). Our interpretation is that
a high capitulum water content during drought can be achieved either by
slow water loss or high maximum water holding capacity.

We found that the stress response F,/F,, is linked to water content in a
similar way as photosynthesis, which in Sphagnum is impeded by drought or
in very wet conditions due to lower CO, diffusion. In our models this rela-
tionship was only strong for hollow species, indicating that the drought con-
ditions of the experiment were not severe enough for photosystem II to be
damaged in hummock species. The estimated water content at maximum
F,/F,, for each species and plotted this against the field HWT (Fig. 12). Drier
growing species had in general lower water content at their maximum F,./F,,
but, again, S. magellanicum sampled in the pine bog was aberrant. It grew
among the driest and had a very high WC at maximum F,/F,,.

Growth and decomposition is tied to where along the microtopographical
(HWT) gradient a species grows (Paper I). This in turn is determined by

HWT (mm)
mean+SE
S. fuscum fen 586+37.3
S. magellanicum pine 542+34.6
S. fuscum bog 5144437
S. warnstorfii 492+39.0
S. girgensohnii 364+25.4
S. rubellum 212+60.8
S. angustifolium 212436.0
S. balticum 129+37.8
S. tenellum 126+21.5
S. fallax 112+8.8
S. papillosum 78+11.8
S. magellanicum open 76+5.4
S. majus 52+7.6
S. lindbergii 5145.2
S. cuspidatum 35+13.6
-0.09 -0.06 -0.03 0.00

WCsIope

Figure 11. The slopes of the regression lines between capitulum water content and
water level (WCgpe) in the water level drawdown experiment plotted for each spe-
cies with 95% confidence intervals. The species are ranked according to their mean
HWT.
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structural, morphological and anatomical traits. We found some support of
leaf anatomical traits influencing the water economy. When the water avail-
ability was high (WL 20 mm), larger leaves (PC2) was the most influential
predictor of increasing water content. This may be due to that the leaves in
the species with larger leaves are also more curved, leading to a higher ex-
tracellular water holding capacity (Sastad and Flatberg 1993). At low water
level (WL 200 mm) the capitulum water content was higher in species grow-
ing at a high microtopographic position in the field. In these conditions larg-
er hyaline cell pore sizes, total pore areas, and more exposed chlorophyllous
cells (PC1) were associated with higher water content. Surprisingly, there
was weak support of higher bulk density leading to higher capitulum water
content, and no support of numerical density increasing water content.

351
S. magellanicum pine
.

30 1

S. cuspidatum
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25 o5- magellanicum open

Capitulum WC at max F./Fin (g ")
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S. lindbergii
o e S fusgum bogSA fu.scum fen
S tenellum S warnstorfii
154
S fallax S-girgensohnii
oS- angustifolium
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Sampling HWT (mm)

Figure 12. The water content at the predicted maximum F,/F,, is plotted in relation-
ship to mean sampling height above the water table (HWT) for each species
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Conclusions

Inclusion of a relatively wide range of species and habitats has produced a
more complex picture of the ecology of the genus Sphagnum. We showed
that while the previously described growth-decay trade-off exists, the picture
is more complicated. While species did not align perfectly within subgenus
according to growth and decay traits, they did cluster within subgenera in a
PCA using the metabolites. We concluded that some metabolites are under
phylogenetic control, but that their effects on decay are modified by nutrient
concentrations in the litter, which is under habitat control. Consequently, if a
species has high intrinsic decay resistance, the habitat is of less importance.

The high intrinsic decay resistance of hummock sphagna, which is inter-
locked with their anatomical and morphological stress-avoiding adaptations,
can be seen as a trade-off for fast competitive growth. Higher concentration
of the metabolites that determine litter quality is necessary for success in
drier habitats, while fast growth is facilitated by water availability in wetter
habitats. We saw that the hummock growing S. fuscum engineers a stable
environment with high intrinsic decay resistance allowing it to grow at simi-
lar pace in drier and wetter weather conditions. The wetter growing S. mag-
ellanicum, on the other hand, produced lower amounts of decay resistant
biochemical compounds and was more sensitive to weather conditions. Hol-
low species realize their potential only in a wet year, while growth in a dry
year is hampered for such species, and in line with this, we found that S.
magellanicum responds with more growth in wetter and warmer conditions,
which means its growth would be impeded by a drier climate. This may be
true for other wet growing species as well, but needs empirical evidence.

We found that while our hypothesis about water economy traits being re-
lated to HWT niches was true for most species, there seems to be two differ-
ent strategies for hummock species to maintain moisture during water level
drawdown. Our interpretation was that while most hummock species avoid
desiccation by capillary forces and water retention, S. magellanicum from
the pine bog instead is capable of a large water holding capacity. The water
holding capacity makes this species able to benefit more strongly from rain
events. It seems to be able to do so only in treed habitats, since this is where
it forms hummocks.

As well as being able to form hummocks, Sphagnum magellanicum had
higher N, fixation rates in treed habitats. This suggests that a drier climate
leading to water level drawdowns and thereby promotion of higher tree cov-
er in mires, may result in a competitive advantage for this species. Although
the Holarctic data showed that S. magellanicum had lower growth under low
precipitation, this result was based on including only open mires. The nega-
tive effects of vascular plants on growth in the Holarctic data is most likely
due to the small vascular plants bestowing competition, while trees rather
provide a protective canopy. Better possibility for S. magellanicum to main-
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tain moisture level under a canopy, increased growth with the help of N,-
fixers and higher growth under higher temperatures, may all provide ad-
vantages in a changed climate. These differences aside, S. magellanicum
from treed and open bog habitats were similar in metabolite signals, and the
lower intrinsic decay resistance may lead to degradation of more of its peat
in such aerated conditions.

S. magellanicum in the northern hemisphere is now described as S. medi-
um, mainly growing on open bogs, and S. divinum, with a main distribution
in mire margin habitats. However, after publishing our results a morphologi-
cal assessment indicates that the samples from each habitat, contain both
species (det. Kjell Ivar Flatberg). The genetic differences between the spe-
cies are small, and it is possible that both species are sufficiently plastic to
succeed in either habitat.

In addition to advancing the emerging field of trait ecology in Sphagnum
by comparing many species and revealing novel mechanisms in the ever
more complex picture of Sphagnum ecology, the species-specific trait meas-
urements of this work offers opportunities for improvements of peatland
ecosystem models. The trait data from Paper I & II have already come in use
in modeling relating traits to ecosystem processes through mechanistic
pathways (Mazziotta et al. 2018), and there is a wide international interest in
building a trait data-base for Sphagnum. Functional trait relationships are
necessary for understanding the long-term dynamics of peatland communi-
ties; in a changing world such relationships will have implications for carbon
sequestration and management of carbon stocks.
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Funktionella egenskaper hos vitmossor

Torv och kollagring

Forestill dig tiden da landvéxterna tog sig upp pé land for cirka 500 miljoner
ar sedan. Da var landskapet kargt och alldeles kalt. Vi skulle inte ha kunnat
andas luften for att koldioxidhalten var for hog. Mossor tillhor de forsta org-
anismgrupper som koloniserat land. Landvixterna sidnkte koldioxidhalten i
atmosfaren genom fotosyntes — under vilken véxter tar upp koldioxid och
sldpper ut syre. D& skapades forutséttningar for andra organismers evolution.
Forestéll dig nu landskapet efter en istid. Marken har skrapats bar fran biolo-
giskt material. De forsta kolonisatérerna, de arter som klarar sig, 4r mossor
och lavar. De gor det mojligt for de flesta andra organismer att kolonisera.

Landvaxterna tar upp mycket kol som de lagrar i vdvnaderna, och hér ar
vitmossor (Sphagnum; Figur 2) en av de starkast lysande stjarnorna. De bil-
dar stora myrmarker dir de dominerar vixtligheten och lagrar kol i form av
torv. Torv ar doda véxtdelar som inte brutits ner fullstdndigt. Trots att dessa
marker inte tdcker mer &dn 3 % av landytan dr mer kol bundet i vitmossornas
torv dn i ndgot annat vaxtslakte, dott eller levande. Om vi jamfor den mangd
kol som uppskattas vara bundet i Sphagnum (600Gt) med s& mycket kol som
det finns i atmosfaren (810Gt) kan vi forstd att dessa torvmarkers 6de kan
paverka vart.

Vitmossor ér intressanta eftersom de ar “ekosystemingenjorer”, vilket be-
tyder att de skapar sina egna miljoer. De dr de vanligaste vixterna i sina
habitat, och eftersom de kan halla otroliga méngder vatten ser de till att mar-
ken blir s& pass blot att den blir syrefattig. De producerar ocksé biokemiska
amnen, och skapar en néringsfattig och sur miljo. Detta leder till att de flesta
nedbrytande organismerna inte trivs, och att de flesta kérlvixter inte kan
vixa tillsammans med dem. Som doktorand i viaxtekologi har jag jobbat med
att maita olika egenskaper hos olika arter av vitmossor och hitta skillnader i
ekologin hos olika arter. Jag har studerat de egenskaper som ér till nytta for
vitmossorna, dessa kallas for funktionella egenskaper. Olika arter kommer
att paverkas olika vid ett fordndrat klimat, och den data mitt doktorandpro-
jekt genererat kan anvindas for att i sin tur studera klimateffekter.
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Snabb tillvixt eller Idngsam nedbrytning — olika
strategier

Kapitel I handlar om tillvixt och nedbrytning hos 15 olika vitmossor. Vi
maitte hur mycket de vixte per sdsong i lingd och vikt i filt med hjilp av
sma flaskborstar. Borstarna sattes ned i vegetationen pa varen, vi métte hur
mycket de stack upp, och sedan mitte vi hur mycket som fortfarande stack
upp pa hosten (Figur 5). Skillnaden i méitningarna fran hosten och varen ar
tillvixten i langd. Sedan mitte vi &ven den maximala fotosynteshastigheten i
labb, vilket kan ses som mossans potentiella tillvixt. Nedbrytning maéttes
bade i félt och i labb, genom att packa in mossmaterial i ndtpasar och placera
dem i falt eller labb. Efter en tid méttes hur mycket vikt de forlorat. Labb-
nedbrytningsforsoken skedde under samma forhéllanden for alla arter och
visar arternas inneboende motstdnd mot nedbrytning. Filtstudien visar sna-
rare den faktiska nedbrytningen.

Med denna typ av data kunde vi diskutera de avvégningar, “trade offs”,
som arterna gor for att vara framgéngsrika i olika miljéer. Det har lange fun-
nits en idé om att arter som véxer blotare kan vidxa snabbare, men att de da
producerar mer lattnedbrutet material, och darfor bryts ocksa ner fortare. Vi
kunde visa detta i viss utstrackning, men ocksa papeka undantag eftersom vi
jamforde s méanga arter. Eftersom vi métt bade “inneboende” och “verkliga”
egenskaper, kunde vi dra slutsatsen att de snabbvidxande arterna endast kan
hindra nedbrytning och vixa fort nir forhéllandena dr gynnsamma. De lang-
samvixande arterna skapar mer stabila forhallanden, som gor dem mot-
standskraftiga mot nedbrytning och kan vixa dven nér det ar torrare.

Vitmossornas motstandskraft mot nedbrytning

Kapitel II handlar om vitmossornas biokemi. Vi analyserade samma arter,
frdn samma platser, som i kapitel I och kunde dérfor jamfora biokemiska
amnen direkt med nedbrytningshastighet pa labb. Har var malet att ta reda pa
vilka &mnen som ar viktigast for nedbrytningsresistensen, och hur mycket av
dem det finns i mossorna. Vi kom fram till att de arter som bryts ner lang-
samt, har mer av alla de metaboliter som andra forskare tidigare foreslagit
hindrar nedbrytning. Daremot paverkas nedbrytningen av den miljé mossan
vixer i. De arter som véxer blott bryts ner langsamt si linge deras habitat
haller sig blott, men de har délig motstandskraft mot nedbrytning sa fort det
blir torrt. Arter med hog inneboende motstandskraft bryts ner forhallandevis
langsamt oavsett miljo. Vi kunde ocksé dra slutsatsen att de biokemiska
egenskapernas mangd ar vildigt lika inom olika grupper av vitmossorna. Det
verkar som om vissa grupper kanske inte har mojlighet att utveckla storre
produktion av &mnena.
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Mer regn och virme gynnar vitmossornas tillvaxt

Kapitel III handlar om tillvixt pa en global skala och om vilka omvarlds-
faktorer som péaverkar tillvdxten hos tva vitmossor: rostvitmossa och prakt-
vitmossa. De dr bada vanliga och kan vixa vid relativt olika forhallanden.
De forekommer pa olika sorters myrar, vid varierande vattenstand och ar
viktiga ur ett ekologiskt perspektiv som de frimsta torvbildarna. Har mattes
deras tillvaxt pa cirka 100 myrar kring den nordliga hemisfaren, och sedan
analyserades vilka faktorer som paverkade tillviixten. Okad nederbdrd och
hogre temperatur var de faktorer som mest 6kade tillvixten. Praktvitmossan
— den art som framst véxer i blotare forhallanden — paverkades mest. Detta
skulle kunna betyda att om att ett varmare klimat ocksd ar blotare, skulle
vitmossorna kunna vidxa mer, och kunna lagra mer kol.

Kviavefixerande bakterier kan hjilpa vitmossor att vixa

Kapitel IV handlar om de symbiotiska kvavefixerande mikrober som bor i
vitmossorna. Myrar dr naturligt kvavefattiga, och darfor borde tillsatser av
kvéve vara viktiga hér. Kvavefixering star for cirka 35 % av kvéavetillgangen
i myrar. Vi mitte kvavefixering i fem olika vitmossor och tva vanliga skogs-
levande mossor. Vi upptickte att vitmossor som bryts ner langsamt ocksé
har lagre kvévefixering. Troligen hdmmar de &mnen som goér dem mot-
standskraftiga mot nedbrytning inte bara nedbrytande mikroorganismer, utan
aven kviavefixerarna. Vi upptickte ocksa att praktvitmossan, som vi samlat i
bade Oppna och tradklddda miljder, hade hogre kvavefixeringen i de trad-
kladda habitaten. Praktvitmossan innehdll mer fosfor i de hér habitaten. Vi
tror att mer fosfor i mossorna kan leda till mer tillgénglig naring for kvave-
fixerarna, vilket okar kvévefixeringen. Detta skulle kunna dka mossornas
tillvaxt.

Vattenhushallning: hur vitmossor undviker uttorkning

Kapitel V handlar om hur vitmossor undviker uttorkning genom att halla
mycket vatten bade mellan skott, grenar och blad, och inuti sina celler. Vit-
mossor har ndmligen stora, doda celler som kan fyllas med vatten (Figur 2). I
ett experiment placerade vi mossvegetation i ror och utsatte dem for en
gradvis siankning av vattennivan. Sedan maéttes vatteninnehall i mosskottens
toppar efterhand. Néar vi jimforde hur snabbt de forlorade vatten sag vi att de
flesta arter som kan véxa torrare forlorade vatten langsamt. Det fanns dock
ett undantag: praktvitmossan som vuxit dir det fanns trad vaxte véldigt torrt,
men forlorade dndéa vatten snabbt. Nér vi tittade pa vatteninnehallet vid var
blotaste experimentniva sag vi att praktmossan har formaga att halla mer
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vatten dn andra arter. Darfor kan den forlora mycket vatten, men dnda be-
halla tillrackligt mycket for att klara sig. Den verkar ha en alternativ strategi
for att klara av att védxa torrt, men den kan bara gora det nér det finns trad.

For att ta reda pa vilka egenskaper vitmossor behdver for att kunna halla
vatten métte vi egenskaper som hur tétt vitmosskott vixer och hur mycket de
vager. Vi mitte arternas blad och andra bladegenskaper. Sedan testade vi om
dessa egenskaper paverkar vatteninnehéllet vid olika vattentillgang. Vi kom
fram till att bladegenskaperna var de viktigaste egenskaperna for vattenhus-
hallning jamfort med exempelvis hur téitt de véxer.

Vid varje vattennivd maétte vi dven stressnivan hos mossorna. Detta kan
goras genom att mata klorofyllfluorescensen, som visar om deras fotosyntes-
apparat skadats. Mossornas fotosyntes gér ner nir det dr for torrt, men dven
ndr det ar for blott. D& hindras koldioxid fran att na fram till klorofyllceller-
na. Vi visade att det fungerar s& dven nir det géller klorofyllfluorescensen.
Detta stimde bast for de arter som véxer blott. Experimentets forhéllanden
var nog inte tillrdckligt harda for att de torktaliga vitmossorna som &r anpas-
sade for att vixa hogt over vattennivan, skulle fa férsdmrad klorofyllfluore-
scens pa grund av uttorkning. Vi lyckades helt enkelt inte stressa dem nog.

Myrens mossor 1 ett fordndrat klimat

Eftersom vi inkluderade s& méanga arter blev bilden av vitmossornas ekologi
mer komplicerad dn vad som tidigare antagits. Framforallt kunde vi visa att
for de arter som bryts ner langsamt spelar miljon en stor roll for bade ned-
brytning och tillvdxt. De arter som producerar mindre av de &mnen som star
for motstandskraften mot nedbrytning &r ndmligen mer kénsliga for torka.
Nar vi jamforde tva arters tillvaxt i forhallande till klimat och miljé drog vi
slutsatsen att bada kan védxa mer nir det dr blotare och varmare, men den
blotare vaxande arten, praktvitmossa, gynnas mer. I den studien mitte vi
praktvitmossans tillvixt pa 6ppna myrar. Praktvitmossan visade sig ocksa ha
hogre kvivefixering i skogen, dir den klarar av att vixa torrare. Ett torrare
klimat kommer troligen leda till mer trdd pa myrar. Jag tror att dessa fordelar
for praktvitmossan i tradklddda habitat kan leda till att den kommer att bli
vanligare i framtiden.

Data som beskriver enskilda arters egenskaper och hur arter svarar pa
olika miljofaktorer behovs for att kunna forutspa fordndringar i vegetation,
det vill sdga vilka arter som véxer var. Dessa vegetationsfordndringar kom-
mer att paverka hur vara myrar fortsitter att lagra kol, eller om de istillet
kommer att borja sldppa ut mer kol. Min forhoppning ar att de data mitt av-
handlingsarbete genererat kommer att visa sig mycket anvéndbara for sddana
forutsagelser.
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