
UPTEC X 18033

Examensarbete 30 hp
Januari 2019

Implementation of an automatic
quality control of derived data
files for NONMEM

Eric Sandström

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Master Programme in Molecular Biotechnology
Engineering

Eric Sandström

A pharmacometric analysis must be based on correct data to be valid.
Source clinical data is rarely ready to be modelled as is, but rather
needs to be reprogrammed to fit the format required by the
pharmacometric modelling software. The reprogramming steps include
selecting the subsets of data relevant for modelling, deriving new
information from the source and adjusting units and encoding.
Sometimes, the source data may also be flawed, containing vague
definitions and missing or confusing values. In either setting, the
source data needs to be reprogrammed to remedy this, followed by
extensive quality control to capture any errors or inconsistencies
produced along the way. The quality control is a lengthy task which is
often performed manually, either by the scientists conducting the
pharmacometric study or by independent reviewers. This project
presents an automatic data quality control with the purpose of aiding
the data curation process, as to minimize any potential errors that
would otherwise have to be detected by the manual quality control. The
automatic quality control is implemented as an R-package and is
specifically tailored for the needs of Pharmetheus.

ISSN: 1401-2138, UPTEC X18033
Examinator: Jan Andersson
Ämnesgranskare: Ola Spjuth
Handledare: Kajsa Harling

iii

Sammanfattning

Läkemedelsutveckling är en dyr och långsam process med kostnader på miljardtals dollar

(USD) under utvecklingsperioden som ofta kan ta uppåt 20 år. De flesta läkemedel tar sig inte

heller ut på marknaden, utan de misslyckas med att uppvisa tillräcklig effekt eller har för

många sidoeffekter för att vara värda att utveckla vidare. Kostnaden vid ett misslyckande är

därför extremt hög, då vinsten från ett färdigt läkemedel uteblir, och det blir desto dyrare ju

senare i utvecklingen det visar sig att läkemedlet inte kommer att fungera. Det finns också

etiska aspekter kopplade till de höga kostnaderna, dels kan potentiellt viktiga läkemedel

stoppas i utvecklingsfasen av ekonomiska skäl och dels kunde pengar spenderade på ett till

slut icke-fungerande läkemedel ha använts på något annat. Således är det viktigt inom

läkemedelsbranschen att tidigt fånga de läkemedel som inte kommer fungera, samt att

effektivt kunna påvisa den positiva effekten av de som troligen kommer att fungera.

På senare tid har intresset att använda sig av datormodeller för att påvisa effekten av

läkemedel ökat. Tanken med datormodellerna är att man ska kunna simulera effekten av

läkemedel på vissa patienter, givet att man gjort ett antal kliniska studier på andra patienter

först. Om ett läkemedel exempelvis utvecklats och testats på ett antal personer i samband med

en klinisk studie, kan datormodellen lista ut hur läkemedlet skulle fungera på andra patienter.

På så vis kan man med stor precision förutsäga effekterna av läkemedlet utan att behöva dras

med de enorma logistiska kostnaderna som följer av att behöva utföra fler kliniska studier,

och som i vissa fall skulle leda till att utveckligen av läkemedlet stoppas. Med

datormodellerna kan man även identifiera om vissa läkemedel kan visa sig vara farliga för

vissa patienter, till exempel patienter som har nedsatt njur- eller leverfunktion.

Datormodellerna tillåter en således också att se vilken dosering en patient bör få av ett

läkemedel, baserat på dennes fysiologiska egenskaper (s.k. personlig medicin). I slutändan har

datormodellerna alltså flera positiva effekter; de tillåter en att förutse effekterna av läkemedel

utan att behöva utföra mängder av dyra och krångliga kliniska studier, de tillåter en att

anpassa behandlingar efter individier och de minskar riskerna för patienter eftersom man i

förväg kan förutsäga om läkemedlet kan visa sig vara farligt för somliga.

Forskningsfältet som behandlar matematiska datormodeller av läkemedel byggda på klinisk

data kallas farmakometri och är ett snabbt växande fält inom läkemedelsutveckling.

Skapandet av dessa datormodeller kräver dock klinisk data att utgå ifrån. Det är dessutom

ytterst viktigt att den kliniska datan man baserar sina modeller på är korrekt, om det finns fel

eller tvetydigheter i datan riskerar modellen att ge fel information som kan få allvarliga

konsekvenser. Ett viktigt steg i framtagningen av modellerna är därför att noggrant kurera all

klinisk data först. Arbetet som presenteras i denna rapport är en mjukvara med just den

uppgiften.

iv

Mjukvaran kallas för autoQualityControl (aQC), engelska för automatisk kvalitétskontroll,

och har som mål att granska klinisk data innan den modelleras. Eftersom klinisk data skiljer

sig väldigt mycket från projekt till projekt (vilket läkemedel som studerades, vilka patienter

som var med o.s.v.), är mjukvaran flexibel och det är användaren själv som bestämmer vilka

krav datan måste uppfylla. I princip fungerar alltså mjukvaran på följande vis: användaren

matar in den kliniska datan tillsammans med de definitioner som datan förväntas uppfylla.

Mjukvaran kollar då först att definitionerna är okej, och därefter att den kliniska datan faktiskt

uppfyller definitionerna. Resultatet blir i form av en liten rapport som berättar för användaren

om något verkade vara fel. Tanken med projektet är att komplettera den manuella

kvalitétskontrollen som utförs på datan, med målet att i förväg identifiera så många potentiella

misstag som möjligt, så att kvalitétskontrollsprocessen går så smidigt som möjligt.

v

Table of contents

Abbreviations ... 1

1 Introduction ... 3

1.1 Pharmacometrics ... 3

1.2 NONMEM ... 5

1.3 Data Programming and Quality Control ... 6

1.4 The Pharmetheus way of working ... 6

2 Methods .. 7

2.1 Software details ... 7

2.2 Overview of the project .. 8

2.3 The source data file and the derived data file .. 8

2.4 The data definition table .. 9

2.5 'rock', an in-house software for DDT creation .. 12

3 Results ... 13

3.1 Interpretation of the DDT in R .. 13

3.1.1 Uninterpretable and erroneous input to the DDT ... 16

3.1.2 Interpretation of special cases .. 20

3.2 Evaluation of the derived data file ... 21

3.2.1 Decimals and special conditions .. 22

3.2.2 Physiologically realistic values ... 23

3.3 Test run on moxonidine dataset .. 23

3.3.1 Introducing errors in the moxonidine dataset ... 27

3.4 Runtime of the automatic quality control ... 27

3.5 Validation of the automatic quality control ... 28

4 Discussion ... 29

4.1 Sanity check of the DDT .. 29

4.2 R-code vs Human-readable text as input .. 30

4.3 Physiologically realistic values ... 31

5 Conclusion ... 32

6 Acknowledgement .. 32

References ... 34

Appendix 1 - Regular Expressions .. 36

Appendix 2 - Regular Expressions used for DDT parsing .. 37

Appendix 3 - Ranges for physiological variables .. 38

vi

1

Abbreviations

AMT Dose amount administered

ADaM Analysis Data Model

WT Body Weight

CMT Compartment

CG Cockcroft-Gault formula

COMP compliance

CLCR creatinine clearance

DDT Data definition table

DIG digoxin

DIU diuretics

DV Dependent Variable

DVO Original Dependent Variable

EVID Event Identifer

II Interdose-interval

Moxo Moxonidine

NYHA New York Heart Association

NONMEM Non-linear mixed effect modeling

PK Pharmacokinetics

PK-PD Pharmacokinetics- Pharmacodynamics

PD Pharmacodynamics

Pheno Phenobarbital

QC Quality Control

SCR Serum Creatinine

SS Steady-state

SDTM Study Data Tabulation Model

TAD Time after previous dose

2

3

Introduction

1.1 Pharmacometrics

Paracelsus (1493-1541), credited as the father of toxicology, stated that "All things are poison

and not without poison; only the dose makes a thing not a poison". As so, recognizing that the

dose-concentration-effect relationship is what distinguishes a therapeutically useful agent

from a poison is a fundamental part of clinical pharmacology (Atkinson & Lalonde 2017).

The aforementioned relationship is quantitative and thus in nature mathematical, meaning that

it is possible to mathematically model these relationships (Atkinson & Lalonde 2017).

Pharmacometrics is the branch of science that deals with mathematical models of effects

between drugs and patients, based on clinical data. Mathematical models that describe the

mechanism of drug-receptor interactions, such as molecular mechanics, is not part of

pharmacometrics. Clinical data is data that is obtained from a clinical study, such as

information about the patients in the study (body weights, age, etc.) and information about the

drug (dosings, measured concentrations etc.). Two broad divisions of pharmacometrics is

pharmacokinetic (PK) modelling and pharmacodynamic (PD) modelling. In essence, PK

refers to the drugs journey through the body, such as absorption, distribution, metabolism and

excretion, whereas PD refers to the body’s biological response to the drug. Typically, a

pharmacometric model will encompass the results from pharmacokinetic-pharmacodynamic

(PKPD) modelling to make inferences on optimal dosing for clinical trials or practice

(Standing 2017). That is, by using clinical data, one can find a mathematical model (or several

models) that describes what happens to the drug in the body, what the drug does to the body

and from there decide how to properly administer the drug to patients. In recent times,

pharmacometrics also includes models that take into account other factors, such as disease

progression, study compliance and placebo effects (Atkinson & Lalonde 2017).

PD and PK behaviour is expected to vary between people, based on physiological properties

such as body weight, age, genotype etc. (Mould & Upton 2012, Standing 2017). A simple

example is the effect of alcohol in different individuals, where larger individuals are generally

less affected by the same amount of alcohol as compared to smaller individuals, owing to

their larger body volume resulting in more dilution of the alcohol. However, size is far from

the only factor affecting alcohol tolerance as genetic disposition plays a crucial role as well

(Zakhari 2006). Therefore, a model approach that reflects variations in a population is desired,

which leads us to the term population modelling. A population model will typically consist of

a structural model (algebraic formula or differential equations) to characterize the typical drug

behaviour for the population as a whole. Further, physiological properties (covariates) such as

age and body weight can help partition the population in sub-populations which may explain

some of the variability between subjects. Lastly, all variability cannot usually be explained or

predicted, it is for us random, but the magnitude of the unexplained variability exhibited can

be estimated (Mould & Upton 2012, Standing 2017). Therefore, a population PKPD model

would allow us to identify a model that roughly fits the population, can identify crucial

4

covariates such as age or weight, and give an indication of the impact of random effects. Note

that random effects here refers to variability that cannot be predicted, and might include errors

in the data (which might stem from limited measurement accuracy) but also effects that have

an unknown underlying cause. Knowing the magnitude of variability for these random effects

can be especially important for drugs with a narrow therapeutic window. The therapeutic

window of a drug refers to the concentration range between minimum effective concentration

and minimum toxic concentration, i.e. concentrations below the minimum effective

concentration might have insufficient therapeutic effect whereas concentrations above the

minimum toxic concentration are deemed to have adverse side effects.

Although covariates such as body weight or sex certainly can help with classification of

patients, and thereby help explain observed variability in their PKPD profiles, there are

usually other parameters that might better explain the underlying cause of the variability.

Most drugs are eliminated from the body through either hepatic clearance or renal clearance.

One would expect a patient with impaired function in either of these organs to eliminate a

drug more slowly (Thomas & Thomas 2009), thereby running a risk of higher exposure

compared to a normal patient, given that both patients received the same dose of drug. A

measure of renal function is creatinine clearance (CRCL), which can be either measured

through urine samples or estimated using formulae such as the Cockcroft-Gault (CG) formula

(Thomas & Thomas 2009, Dabla 2010). Therefore, CRCL is often included in PK studies as a

covariate, as it is often time correlated to the elimination rate of a renally excreted drug. Some

care has to be taken if the CRCL was estimated with formulas however, as these are not

necessarily accurate for patients with kidney disease, a common symptom in diabetic patients

(Dabla 2010). Further covariates of potential interest are concomitant medications. Certain

drugs that are metabolised by enzymes in the human body, typically by different members of

the Cytochrome P450 family, can reach higher exposures if concomitantly administered with

CYP inhibitors (Mohammed et al. 2017). Using the same line of thought, if drug elimination

is due to metabolism by some enzyme, the genotype of patients for the culprit enzyme might

be an interesting covariate to include in a study. Nonetheless, more simple covariates such as

age and weight still remain fundamentally important predictors. Renal clearance for instance

is typically proportional to weight, age and sex (Thomas & Thomas 2009). Likewise, if a drug

is metabolised by a certain enzyme in, for instance, the liver, a larger individual with a larger

liver could be expected to metabolise the drug faster, courtesy of having more cells producing

the enzyme (Standing 2017).

A pharmacometric study in a PKPD setting aims to characterize the behaviour of a drug and

its effect on patients. Identification of the typical exposure-response relationships, which

covariates explains the observed variability between patients and which drug doses yields the

best effect remains the end goal of most studies. Submissions to regulatory agencies for drug

approval saw a steady increase in inclusion of pharmacometric analyses over the years 2000-

2008 (Lee et al. 2011). The trend is likely to continue. Pharmacometrics studies are carried

out using specialized software. The first software developed for such purpose, called Non-

5

linear Mixed Effect Modelling and abbreviated NONMEM (Beal et al. 2014), is still widely

used. It is the main analysis software used at Pharmetheus, an Uppsala-based company

offering pharmacometric services supporting drug development of compounds in all phases

and in all therapeutic areas.

1.2 NONMEM

NONMEM solves pharmacometric problems by optimally fitting the parameters of a

mathematical model to observed patient data. In a PK setting, the mathematical model would

be a set of equations the pharmacometrician believed would best describe how the

concentration of a drug changes over time in a patients body. In the simplest case, say for a

renally cleared drug, the parameters for such a model would typically be clearance (amount of

blood cleared over time) and volume of distribution (the volume in which the drug exists, e.g.

blood volume of a patient). NONMEM will then try to find the values for clearance and

volume of distribution which describe the observed patient data, both for the population as a

whole and for the individual patients. Population in this case refers to the typical individual

among the observed ones, i.e. the average person. Estimates for all individuals are thereafter

expressed as deviations from the population estimate where some of the deviation can

hopefully be attributed to physiological attributes such as body weight, age or sex, while the

remaining deviation will be considered ’unexplained’. Note that ’unexplained’ does not

necessarily mean erroneous but rather that the deviation is due to uninvestigated factors, such

as genetic factors or measurement and assay imprecision etc.. The output from a NONMEM

estimation is thus a measurement of how well the mathematical model fits the observed

patient data, optimal parameter estimates for the model and an indication of which covariates

were important.

To make NONMEM actually run, two files are required: the NONMEM data file and the

NONMEM model file (Beal et al. 2014). The NONMEM data file, at Pharmetheus called the

derived data file, contains all patient data that NONMEM should model, in the form of a

single table. The table consists of a set of columns, which represent the variables, and a set of

rows, also called records, which holds all the values. All columns have the same number of

rows and there must be no empty values. In addition, there are certain constraints applied to

the variables, both by NONMEM itself and by Pharmetheus standards. The structure and

contents of the data file will be further elaborated on in the Methods section.

The model file specifies the information required by NONMEM to model what is inside the

data file. For instance, the pharmacometric model, definition of parameters and initial

parameter estimates are all defined in the model file. The model file will also contain a

description of the problem being investigated, the location and file name of the data file, and

numerous other options that can be included (Fisher & Shafer 2007 & Beal et al. 2014).

Although NONMEM is an old software and quite user unfriendly, it is still considered the go-

to software for pharmacometric analysis. This largely owes to historical and practical reasons.

6

Many pharmacometricians are already proficient in NONMEM and know how to navigate

and use the software to its fullest, through years of experience. On top of that, a lot of

software tools, such as Perl-Speaks-NONMEM (PsN) (Lindbom et al. 2004), were developed

entirely to fit analysis by NONMEM.

1.3 Data programming and Quality Control

Data programming is the process of deriving a NONMEM-ready data file based on clinical

source data files and is performed by a data programmer.The data definition table (DDT) is

the specification of how the NONMEM data file shall be derived; it contains a complete list

of variables and their definitions. The purpose of the DDT is twofold, it serves as

programming specifications for the data programmer, and as explanation of the data file

contents for external reviewers. Once a derived data file has been produced, the DDT and the

data file undergo extensive quality control (QC). The QC of the DDT is necessary to ensure

that it is properly defined and readable for all parties that will access it, such as

pharmacometricians, data programmers and regulatory agencies. The NONMEM data file

needs to be rigorously curated as well before it can be modelled by NONMEM. There are

three reasons for this. The first reason is that NONMEM requires the data file to have a

specific format and variables within need to obey certain rules, and clinical source data is

rarely in this format. The second reason is that clinical source data may contain errors, such as

missing entries and uncertain values or definitions. The third reason is that a pharmacometric

analysis must be based on correct data to be valid. Since NONMEM can be user-unfriendly,

with limited graphical representation and sometimes difficult to interpret error messages,

careful design of the model file and curation of the data file is necessary (Fisher & Schafer

2007). The quality control of the derived data file is to a large extent manual, a time-

consuming process reflecting the complexity of the DDT. Typically, multiple cycles of

reviewing and updating are required before the data file can be finalized.

1.4 The Pharmetheus way of working

At Pharmetheus, the process between the start of a project and a finished analysis is an

interplay between different parties. A project starts with an order from a customer who wishes

for a pharmacometric analysis on some data from a clinical study. A modeller at Pharmetheus

will, together with the client, scope the extent of the project and set up the pharmacometric

models to be used. The modeller will also create the first iteration of the DDT and pass it on

to the data programmer. The data programmer will evaluate the DDT, suggest modifications

and this process will be a back-and-forth one between the modeller and the data programmer.

Once the DDT has been agreed upon, typically weeks after the first iteration was created, the

data programmer will write an R-script that will convert the clinical source data provided by

the client into a NONMEM data file. The NONMEM data file, alongside the DDT, are passed

on to external QC-reviewers who in turn will return feedback on both the DDT and the

7

NONMEM data file. In the end, numerous iterations of reviews will have been done before a

finalized DDT and data file have been agreed upon.

2 Methods

The purpose of an automatic quality control (automatic QC) is to replace parts of the manual

QC to achieve an overall speed-up of the process. In this project, two, somewhat separate,

automatic QC processes were developed: a control of the DDT, to ensure that the variables

within are properly defined, and a control of the derived data file, to ensure that the actual

data is coherent with the specifications in the DDT as well as being physiologically realistic.

The automatic QC was developed entirely in R, a programming language for statistical

computing and the programming language primarily used at Pharmetheus. The main reasons

R is the language of choice at Pharmetheus are the following: 1) It handles large data sets

well, 2) It is powerful for visualization of data (through graphs and tables) which is

paramount for reporting the results of pharmacometric analyses. The automatic QC was

validated using the R package testthat (Wickham 2011), which allows for creation of unit

tests. All individual functions in the automatic QC were validated using comprehensive and

structured unit tests.

To be able to realize the R-package constituting the automatic QC, certain functionalities had

to be developed, including a way to receive the information contained in the DDT and create

data structures to hold and operate on this information. Input from the DDT was obtained

from an already existing software used at Pharmetheus for creation of DDT:s, called rock.

The automatic QC module was also integrated in rock towards the end of the project. The

Pharmetheus internal standard for DDT:s is currently being adapted to the clinical research

data standards Study Data Tabulation Model, SDTM, (Clinical Data Interchange Standards

Consortium 2018) and Analysis Data Model, ADaM, (Clinical Data Interchange Standards

Consortium 2018) and thus changed during the course of this project. As a consequence,

certain elements of the automatic QC module were not necessarily adopted in the end product.

Upcoming sections will describe the concept behind the automatic QC, how it was developed

and how it functions.

2.1 Software details

The NONMEM (Beal et al. 2014) version used is 7.3 or higher. The software R (R

Development Core Team 2007) (version 3.2.3 or higher) was used for development of the

automatic QC. R packages testthat (Wickham 2011), stringr (Wickham 2017), dplyr

(Wickham et al. 2017, dplyr), lubridate (Grolemund & Wickham 2011), rlang (Henry &

Wickham 2017) and roxygen2 (Wickham et al. 2017, roxygen2) was also used, although

packages may be added or deprecated in future updates.

8

2.2 Overview of the project

The automatic QC module was developed as an R-package containing the necessary

functionality to perform its task. The input to the automatic QC module is the DDT and the

NONMEM data file which will henceforth be called the derived data file or just data file. In

essence, the automatic QC will evaluate the DDT and then evaluate the contents of the

derived data file using the DDT and summarise its findings in an error report. A schematic

overview of the process can be seen in Figure 1. The derived data file is essentially the data

set that should be modelled by NONMEM, existing in a table like structure where the

columns represent the different variables and the rows (also called records) contain the values

of the variables. The DDT contains the definition of the variables included in the derived data

file, what values they may have and any special conditions applicable. The DDT will be

supplied by the Pharmetheus tool for DDT creation, called ’rock’. rock is a graphical software

tool developed in-house at Pharmetheus for the specific purpose of aiding

pharmacometricians and data programmers to create standardized and well-defined DDT:s.

The first step of the automatic QC module is thus to verify that the DDT supplied by rock

contains no errors. Any errors found will be immediately reported back to rock and the user,

in the form of error messages. The process of creating a DDT is often lengthy and requires

numerous iterations between pharmacometricians, clients, data programmers and the manual

QC. The automatic QC will serve as a means to facilitate this process. After the DDT has

been finalized, the data programmer may begin producing the derived data file from the

source clinical data. Once the derived data file is finished, the data programmer may pass the

derived data file alongside the finalized DDT to the automatic QC module. The output of this

step is an error report, containing information regarding anything that seemed amiss within

the derived data. The verification of the DDT includes converting the information contained

within to a set of R-expressions, which are essentially small pieces of R-code. These R-

expressions will then be evaluated on the derived data resulting in a set of TRUEs and

FALSEs. Any records in the derived data that evaluated to FALSE had values that were not in

accordance with the specifications of the DDT. Upcoming sections will further elaborate on

the different components of this process.

2.3 The source data file and the derived data file

The source data file(s) is the data file containing all clinical data received from a client. The

source data file will typically be a set of files in SDTM (Clinical Data Interchange Standards

Consortium 2018) or ADaM (Clinical Data Interchange Standards Consortium 2018) format

with included information such as: Patient Number, Date and Time, Amount of drug given,

Measured drug concentration, Body Weight, Sex etc. The source data file is rarely in a format

that can readily be modelled by the Pharmetheus modelling software, NONMEM. Instead, the

source data needs to be cleaned up, certain variables might have to be redefined and new

variables might have to be derived from existing ones to fit the format required by

NONMEM. The process of creating the new data file from the source data file is called data

9

programming and is performed by a data programmer. The new data file is called the derived

data file. The rules for what the derived data file should look like is specified in the DDT.

Exactly how the source data should be converted to the derived data is not necessarily

specified in the DDT but instead relies on the know-how of the data programmer. Table 1

shows a simple example of what source data may look like before and after conversion. Note

that the example is purely for illustrative purposes and does not reflect a real dataset. In this

example, each variable in the source data had a direct conversion to the derived data, which

might not always be the case. For instance, the information about which date the study was

performed on was lost in this example. In a real setting, the derived data would likely have

contained an additional column specifying the date.

Figure 1. Schematic overview of the automatic QC process. The left-hand side shows the overall process of DDT

creation, automatic QC and generation of an error report. The DDT will be supplied to the automatic QC module

through the Pharmetheus tool for DDT creation, called rock. Any possible errors within the DDT will be reported

back to rock. Once the DDT is verified, the derived data file should be supplied to the automatic QC as well, where it

will be evaluated and any errors found will be summarised in an error report. The right-hand side schematically

shows the inner workings of the automatic QC module. Given a DDT input from rock, the automatic QC will convert

the DDT to a set of R-expressions which are evaluated to TRUE or FALSE when executed on the derived data. Any

errors will be summarised in an error report.

2.4 The data definition table

The DDT specifies what information the derived data file should contain. This includes

definitions of variables, such as which values they may have, if they need to obey certain

rules or number of significant digits. A simplified example of a DDT is shown in Table 2.

Although this DDT does not exactly match the dataset presented in Table 1, there are a many

similarities, namely the variables ID, TIME, AMT, DV, SEX and WT. Typically, these

10

variables can be derived more or less directly from the source data, although they may require

some processing such as unit conversion. The variable EVID is a NONMEM-specific variable

which is never included in SDTM or ADaM data and must instead be produced. Source data

that stem from a previous pharmacometric study may however already have EVID defined.

EVID, meaning event identifier, is a required variable by NONMEM which tells the software

whether a dosing event is happening (i.e. drug was given to patient at the current time point)

or if an observation event is happening (drug concentration was measured at the current time

Table 1. Fictional example of source data and derived data. From the source data to the derived data, each variable

has had its name and values changed as to fit what was specified in this examples DDT. The new values and names are

more in line with what is required by NONMEM.

Source Data
Patient Number Date and Time Amount of drug Measured drug conc. Weight Sex

P-001 2001-01-01 06:00 100 mg 0 70 kg M

P-001 2001-01-01 08:00 0 9 mg/L 70 kg M

P-001 2001-01-01 12:00 0 6 mg/L 70 kg M

P2 2001-01-02 7 AM 100 mg 0 90 kg M

P2 2001-01-02 9 AM 0 8 mg/L 90 kg M

P2 2001-01-02 1 PM 0 4 mg/L 90 kg M

P03 2001-01-02 07:00 100 mg 0 60 kg F

P03 2001-01-02 09:00 0 13 mg/L 60 kg F

P03 2001-01-02 13:00 0 10 mg/L 60 kg F

Derived Data

ID TIME AMT DV WT SEX

1 0 100 0 70 0

1 120 0 9 70 0

1 240 0 6 70 0

2 0 100 0 90 0

2 120 0 8 90 0

2 240 0 4 90 0

3 0 100 0 60 1

3 120 0 13 60 1

3 240 0 10 60 1

point) and NONMEM will behave accordingly. However, for NONMEM to actually behave

accordingly, certain variables, such as AMT, RATE and DV in this example, must follow

certain rules. As can be seen in Table 2, which values AMT, RATE and DV can have depends

on the current value of EVID. When EVID is 0, AMT and RATE must also be 0 while DV

must be non-zero. If a drug dose was given to a patient (EVID = 1) and a measurement (EVID

= 0) was made simultaneously, this would have to be expressed on two separate records in the

data file, one where EVID is 1 and the other where EVID is 0. Nonetheless, the TIME

variable can still be identical for both records, i.e. NONMEM allows multiple events to

happen simultaneously but they need to be distinguished using EVID on separate records.

As previously mentioned, the variable EVID is unlikely to already be present in clinical

source data meaning that it is the data programmers job to construct the derived data set in a

way that includes EVID in a correct manner. For the simple example shown in Table 1, this

11

would probably mean creating a new column called EVID and set its value to 0 wherever

AMT is 0 and set its value to 1 where AMT is 100. NONMEM requires records to be ordered

ascending by first ID, then TIME and then EVID. This ordering is not specified in the DDT.

If the data is not ordered, NONMEM will crash or give the wrong results. On a final note, the

DDT shown here is grossly simplified, containing only seven variables. DDT:s in real

projects could easily contain 100 variables with far more complex descriptions and

dependencies on other variables. For instance, a single study may contain multiple different

drugs, patient groups, placebo groups and so on.

Table 2. Example DDT for explanatory purposes. Each variable in the DDT is represented by its name, a set of

possible values, and a description of it. Included in the description is the dependencies it may have on other variables.

The example shown here is typical for what a Pharmetheus DDT would look like when presented in a report.

Variable Possible Values Description Unit

ID 1 to number of patients Unique patient identifier N/A

TIME ≥ 0 Time stamp for record. Rounded to 2 decimals. hours

EVID 0, 1 Event identifier.

0 = observation event

1 = dose event

N/A

AMT 0, > 0 Amount of drug given

Records where EVID = 0:

0, No drug dose given during observation events

> 0, For dosing events, dose amount administered at TIME

mg

RATE 0, -2 Rate of infusion

Records where EVID = 0 and AMT = 0:

0, Infusion rate is zero when no dose is given

Records where EVID = 1 and AMT > 0:

-2, The negative value indicates a special case that will be

handled accordingly by NONMEM

N/A

DV 0, > 0 Measured drug concentration (dependent variable)

Records where EVID = 0:

> 0, observed drug concentration at current time point.

Rounded to 2 decimals.

Records where EVID = 1:

0, drug concentration is not measured during dosing events

mg/L

WT ≥ 0, -99 Body weight of patient at baseline. Must be constant

across all records for a patient. -99 = Missing value.

kg

SEX 0, 1, -99 Sex of patient. Must be constant across all records for a

patient. 0 = Male, 1 = Female, -99 = Missing value.

N/A

12

2.5 ‘rock’, an in-house software for DDT creation

At Pharmetheus, the DDT:s are created using a software called ’rock’, which was developed

in-house at Pharmetheus and is managed by the technical solutions team. The input to the

DDT is entered through rock’s graphical interface. Figure 2 shows a part of the rock interface,

namely the part necessary for defining a variable that should be included in the DDT. The

fields enclosed by red rectangles are arguably the most important ones for properly defining a

variable. For instance, the definition of the variable AMT seen in Table 2 is the result of

automatic translation of the input seen in Figure 2. All red-boxed fields in Figure 2 takes free

text as input. However, the input is still expected to follow some rules for most of the fields,

in order to be interpretable by the automatic QC module. For instance, the Dependencies on

other variables (4) field must contain an expression in pure R-code, contain at least one

variable name and not contain certain illegal characters. The Possible Values (5) field is less

strict but will only successfully parse certain input. The Rounding to Decimals (7) field must

be blank or contain an atomic number. The Definition (2) and Description (6) fields are meant

to be read by humans only and the input to those, at least for the purpose of the automatic QC

module, may contain any text. One final detail worth mentioning regards if multiple possible

values (5) should have the same dependencies (4). If so, the dependency should only be

written on the same row as the first possible value, and the dependency field should be left

blank for the other possible values for which the dependency condition applies. For instance,

in the example shown in Figure 2, if ’-99’ was also a possible value with the dependency

’EVID == 0’, the value -99 (typically denotes a missing value) would be entered on the third

row with the dependency field for that row left blank. rock would interpret this as: ’carry

over’ the last explicitly defined dependency and use it for this possible value, i.e. use ’EVID

== 0’ for -99.

Figure 2. Part of the rock interface for creation of variables for the DDT. 1. The variable name. 2. Brief definition of

the variable. 3. Expected unit for the variable. 4. Possible dependencies the variable may have on other variables,

interpreted in this example as: AMT must be greater than zero if EVID is 1 and AMT must be zero when EVID is 0.

5. Possible values the variable may have. 6. Description of the variable for human readers. 7. How many decimals the

values should be rounded to. 8. Option to include -99 to indicate missing values in the data. This is typically applicable

if certain information about a patient is uncertain from the source data. *The figure is not an exact image of the

interface but has been slightly altered for visibility purposes.

13

3 Results

3.1 Interpretation of the DDT in R

To perform automatic QC on the DDT and the derived data, the DDT must somehow be

imported into the automatic QC module and the user input interpreted. In brief, the

interpretation is the process of converting the user input which comes as text (as seen in

Figure 2), into valid R-expressions. As the DDT is created in rock, the input from rock will be

fed into the automatic QC module either directly or after the user takes some specific action,

such as pressing a button. Referencing back to the image of the rock interface, Figure 2, all

fields enclosed by red rectangles are not relevant for the automatic QC module. More

specifically, field 2, ’Definition’, and field 6, ’Description’, should contain human-readable

text meant to be read by humans only (or any sufficiently intelligent being) and are therefore

ignored by the automatic QC module. Remaining fields, for each variable, will be compiled

into a data frame, a built-in table-like data structure in R, and the data frame will in turn be

the actual input to the automatic QC module.

The example DDT in Table 2 would in R look as in Figure 3. Note the absence of any

Definition or Description column. The Variable, Unit, Dependencies, PossibleValues and

Decimals columns in Figure 3 are direct translations of fields 1, 3, 4, 5 and 7 respectively in

Figure 2. The column ValueNotInData tells the automatic QC module whether the possible

value (when combined with its respective dependency) on the same row is expected to be in

the derived data. For instance, for the DDT in Figure 3 and for variable WT, the derived data

must contain at least one patient whose body weight is missing in the source data (indicated

by -99). The column Vartype contains a number which indicates possible special conditions

for the variable such as if the value must be constant for a patient (e.g. SEX) or non-

decreasing for a patient (e.g. TIME). Currently, the number 7 denotes that a value must be

constant within a patient, the number 8 that the value must be non-decreasing and the number

9 that there is no special condition. The columns ValueNotInData and Vartype are also

specified in rock although this is not shown in Figure 2.

14

Figure 3. Representation of the DDT in Table 2 when imported into R. The columns Variable, Unit, Dependencies,

PossibleValues and Decimals are direct translations of the fields 1, 3, 4, 5 and 7 shown in Figure 2. The

ValueNotInData column specifies whether that specific possible value should be present in the derived data or not.

The Vartype column contains a number which specifies if there are any special conditions for the variable in the

derived data. 9 means no special condition, 8 means that the value must be non-decreasing for a patient (typical for

variables TIME and AGE), and 7 means that the value must be constant within a patient (typical for variable SEX or

baseline covariates).

The DDT in Figure 3 has merely been imported by the automatic QC but no actual

interpretation of it has been made. In essence, the interpretation step will try and interpret

each row of the input DDT. If successful, a new DDT will be generated, with additional

columns containing interpreted input. Any fields that cannot be interpreted will generate an

error message. Most columns in the input DDT will not be interpreted, but rather, their

content will be copied directly to the new DDT. The columns for which interpretation actually

happens are the Dependencies and PossibleValues columns. The basic procedure for

interpreting the DDT in pseudo-code looks as in Algorithm 1. The result is essentially a copy

of the old DDT with two new columns added, one containing the interpreted dependencies

and one containing the interpreted possible values. Some alterations may be made to the

Dependencies column based on the ’carry over’ principle of dependencies discussed in

Section 2.5. Note that the contents in the Dependencies and PossibleValues column are

considered as text strings and interpretation of these are made using concepts of string pattern

searching using regular expressions (R Development Core Team 2007, Grolemund &

Wickham 2017) , see Appendix 1 for more information.

15

Algorithm 1. Procedure for interpreting a DDT. The interpretation is only performed for two columns in the input

DDT, namely the Dependency and PossibleValues column. The other columns are kept as-is in the new DDT.

1. Receive input DDT from rock.

2. Copy original DDT and use as template for new DDT

3. Iterate over all rows in the DDT, grouped by variables in the Variable

column

 3.1 Run a pre-check of Dependencies column for current variable.

 The pre-check will return only warnings if it finds any issues.

 Also carries-over dependencies to rows below when applicable

3.2 Run interpretation of Dependencies column for current

variable. The result is a new, interpreted Dependency column

with values as follows:

 - If the input is blank, return TRUE

 - If the input is uninterpretable or erroneous, return FALSE

 - If none of the above, return a copy of the input

3.3 Run interpretation of PossibleValues column for current

variable. The result is a new, interpreted PossibleValues column

with values as follows:

 - Check if input is in a pre-defined expression library:

 - if no, return FALSE

 - if yes, return TRUE

 3.4 Append results from 3.2 and 3.3 as new columns in the DDT.

4. Return the new, interpreted, DDT

The algorithm presented in Algorithm 1 treats the interpretation of the Dependencies column

and PossibleValues column differently. The reasons for this is because the automatic QC

expects the input in the Dependencies column to already be R-expressions, whereas it does

not expect the input in the PossibleValues column to be. Thus, the interpretation for the

Dependencies column is a check that the inputs are correct R-expressions, with some

additional rules. The input in the PossibleValues column, on the other hand, is not expected to

be proper R-expressions. Instead, the automatic QC will make a look-up in a pre-defined list

of recognised expressions and if the input in the PossibleValues exists in the list, the

automatic QC will convert it to an R-expression. Note that whenever interpretation fails, the

resulting R-expression will be a logical FALSE. Figure 4 shows the interpreted version of the

DDT from Figure 3. Two new columns have appeared, namely the ’dep’ and the ’posValue’

columns which contain the interpreted dependencies and possible values respectively. Here,

the interpretation was successful throughout as can be seen by the absence of any FALSEs in

either column. Note that the TRUEs in the ’dep’ column are due to the blank fields in the

original Dependencies column. All fields in the ’dep’ and ’posValue’ column contains R-

expressions that can be executed. All columns other than the ’dep’ and ’posValue’ column are

identical to those in Figure 3.

16

The most important part of the interpretation process is that the results are R-expressions

which can be readily evaluated. In fact, for control of the derived data, the automatic QC will

execute these R-expressions, which in turn will be evaluated to either TRUE or FALSE

depending on the actual values of the variables in the derived data file. In principle, the

content of the ’dep’ column and the ’posValue’ column will be joined together to form the

full expression that should be evaluated on the dataset. This concept is further elaborated on

in Section 3.2. There are some types of inputs to the PossibleValues column that cannot be

directly converted to R-expressions. How these types of inputs are handled is discussed in

Section 3.1.2.

Figure 4. Interpreted version of the DDT in Table 2. The DDT is very similar to that in Figure 3. The difference is the

addition of two columns, dep and posValue, which contains the interpreted input of the columns Dependencies and

PossibleValues respectively. All entries in the dep and posValue columns are R-expressions that can be executed.

3.1.1 Uninterpretable and erroneous input to the DDT

Certain input to the automatic QC will not be interpretable and the automatic QC will respond

with error messages. What is considered uninterpretable or erroneous input to the automatic

QC is stipulated in Algorithm 2. The first condition in Algorithm 2 does not have any direct

input on the interpretation of the DDT but will return warnings to the user. Input that fulfil

conditions listed in 2 and 3, will however cause the automatic QC to convert the input to

logical FALSEs, as well as returning error messages. The reason that input fulfilling

conditions listed in 2 and 3 converts the input to logical FALSEs is to prevent runtime errors

from happening further downstream in the execution. That is, input that gets converted to

logical FALSEs is input that may otherwise cause the automatic QC to crash or yield

unexpected results. Also, the conversion to logical FALSEs (recall that a logical FALSE is a

perfectly viable R-expression that can be executed), ensures that the automatic QC will still

run, although it will always evaluate to FALSE, and thus signal to the user that the automatic

QC was still performed but there were errors in the input. Input fulfilling conditions 2.1 and

2.2 in Algorithm 2 have to be converted to logical FALSEs as these would otherwise

guarantee the code to crash later on. Condition 2.1 essentially says that the input was not an

17

R-expression at all, which then can not be executed and condition 2.2 says that the input was

an expression that contained no or an unknown variable, which essentially translates to an

expression being evaluated on non-existing variables. If an input dependency fulfils condition

2.3, it will not necessarily cause any crashes but the expression would be nonsensical. The

characters ’=’ and ’<-’ both denote assignment in the R-language so an expression:

> EVID = 0 or

> EVID <- 0

would mean ’assign the value 0 to the variable EVID’. The purpose of the automatic QC is to

execute R-expressions that evaluates to either TRUE or FALSE. Thus, assignment operations

are forbidden. The character sequences ’&&’ and ’||’ are forbidden as they have a special

meaning in the R-language. In many programming languages, these character sequences

denotes the logical AND operator and logical OR operator respectively. This is true for the R-

language as well, but use of double ampersand or vertical slash in R means that the expression

is no longer an vector operation. Rather, for vector operations, a single ampersand or

vertical slash should be used. The importance of vector operations will be discussed in

Section 3.2.

Regarding the input in the PossibleValues column, input that fulfils condition 3.1 will be

converted to a logical FALSE. Interpretable input to the automatic QC for the PossibleValues

column are defined by a set of pre-defined string pattern matching expressions. If the input

matched a pre-defined expression, it will be converted to a working R-expression, based on

the recognised input. If not, it will be converted to a logical FALSE. See Appendix 2 for the

pre-defined expressions.

Finally, the conditions 1.1-1.3 in Listing 2 operates only on the Dependencies column but will

not do any interpretation or conversion of the input. Rather, input that fulfils these conditions

will generate only warnings to the user. The reason why these checks exist is twofold. The

first reason is to catch potential mistakes that would occur otherwise and the second is to

adhere to standards implemented in rock, the tool for DDT creation at Pharmetheus.

Condition 1.1 is enforced as it prevents certain nonsensical input from occurring. 1.2 is

enforced as it both prevents certain nonsensical input from occurring, but is also necessary for

standards in rock. 1.3 is enforced exclusively to adhere to rock standards. The standard in

question relates to how dependencies are expected to be ’carried over’ in the rock graphical

interface, as explained in 2.5.

18

Algorithm 2. The Automatic QC will consider the input in the DDT erroneous if it fulfils any of the conditions

presented here. Conditions listed in 1. Pre-check of dependencies warnings, are merely warnings and will not have a

direct impact on the interpretation. Input fulfilling conditions listed in 2 and 3 will cause the interpreted result to be a

logical FALSE.

1. Pre-check of dependencies warnings:

1.1 If a variable has only one explicit dependency. An explicit

dependency is anything that is not a blank field.

1.2 If the first dependency for a variable is a blank field, but

is followed by an explicit dependency.

1.3 If a variable have duplicated dependencies, apart from blank

fields.

2. Interpretation of the dependencies:

 2.1 If the dependency is not a valid R-expression.

2.2 If the dependency contains no variable name or an

unrecognised variable name.

2.3 If the dependency contains illegal character sequences which

are the following:

 &&, ||, =, <-

3. Interpretation of the possible values:

3.1 If the possible value was NOT in the pre-defined glossary

list of viable inputs.

Figure 5 showcases a few examples of uninterpretable input. The fields enclosed by red boxes

highlights which rows would return errors or warnings in the interpretation step. Figure 5a

and Figure 5b shows the same DDT with Figure 5a showing the dependency errors and Figure

5b the possible values errors. In Figure 5a, the first error, for variable AMT, appears because

it violated condition 1.1 in Algorithm 2. The dependency reads EVID == 1 and is the only

dependency for variable AMT. This means that the variable would be undefined for any value

of EVID other than 1. The variable EVID in NONMEM datasets will always take on more

values than the value 1, typically 0 and 1 are used. Note that the ’dep’ column for this row

does not read FALSE however. This is because the automatic QC will still allow this type of

input to pass, albeit with a strong warning. The second error, for variable RATE, appears

because the dependencies violates conditions 2.3 in Algorithm 2. For the keen eye, one might

believe that the dependencies for variable DV violates condition 1.3, as dependencies

EVID == 0 and EVID == 1 are duplicated. However, in this example, the duplicates are a

result of the ’carry over’ principle that happens in step 3.1 in Algorithm 1. Thus, the user

input did not contain duplicated dependencies but they were rather produced by the automatic

QC.

In Figure 5b, only one red box is present, namely for the variable EVID. Here the possible

values read ’obs. event’ and ’dose event’. By Pharmetheus and NONMEM standards, the

variable EVID should typically take on the values 0 or 1 (although 2, 3 and 4) are sometimes

used too). Recall that EVID is the variable used for event identification, where EVID = 0

actually indicates an observation event (e.g. drug level was measured in a patient) and EVID

19

= 1 indicates a dosing event (e.g. a certain dose of drug was administered to a patient).

Nonetheless, the automatic QC will not accept input that reads ’obs. event’ or ’dose event’

and instead raise an error. As described in Algorithm 1, whenever an interpretation of a field

in the PossibleValues column fail, the corresponding field in the posValue column will

become a logical FALSE.

(a). Errors or warnings appeared for three rows during

interpretation of the dependencies. Row 5, for the

variable AMT, raised a warning because only a single

dependency, ’EVID == 1’, was present for this variable.

Effectively, this would mean that AMT is undefined for

any value of EVID that is not 1. The automatic QC does

not explicitly forbid this however but it does return a

warning. Rows 6 and 7 had interpretation errors for the

variable RATE. The errors rose because of the double

ampersand (&&) in the dependencies expressions. In R,

and especially for the automatic QC module, single

ampersand should be used. Because of this, the dep

column for these rows reads FALSE.

(b). Errors appeared for rows 3 and 4 for the variable

EVID. The automatic QC module can not interpret the

text ’obs. event’ and ’dose event’. Therefore, the

posValue column reads FALSE for these rows. Proper

input in this particular case would have been 0 and 1

respectively, as these are the values that EVID should

typically have by Pharmetheus and NONMEM

standards. Any interpretation error in the

PossibleValues column will always result in the

corresponding row in the posValue column to become

FALSE.

Figure 5. DDT with errors or warnings that appeared during the interpretation step. Rows for which errors or

warnings appeared are enclosed by red boxes. For (a), only the Variable, Dependencies and dep columns are shown.

For (b), only the Variable, PossibleValues and posValue columns are shown.

20

3.1.2 Interpretation of special cases

Certain variables will have acceptable inputs to the PossibleValues column that cannot be

easily converted to R-expressions. If such an input is encountered, the automatic QC will

insert a key word in the posValue column instead of producing an R-expression. The key

word in turn, will signal to the automatic QC that it needs to treat these variables in a special

manner. There are three inputs that triggers this special case handling, listed below:

 The input is interpreted as a date or a clock time. The input has a format similar to

YYYY-MM-DD or HH:MM:SS. The key word ’QCDATE’ will be appended to the

input as a suffix, e.g. ’YY-MM-DD_QCDATE’.

 The input reads ’character’ (not case sensitive). The key word ’QC_CHAR’ will be

inserted into the posValue column.

 The input reads ’numerical’, ’numeric’ or ’number’ (not case sensitive). The key word

’QC_NUMBER’ will be inserted into the posValue column.

Exemplified in R, this process would produce a DDT as seen in Figure 6. Rows 2 and 3 are by

the automatic QC considered to be dates or clock times and therefore have the suffix

’_QCDATE’ appended. The prefixes, HH:MM and YYYY-MM-DD, are kept to tell the

automatic QC what format is expected, i.e. in this example, the variable DATE would

consider 2018-01-01 an acceptable value but not 18-01-01. Row 8 had ’numerical’ as input

which was interpreted as ’QC_NUMBER’. ’QC_NUMBER’ is a vague definition that accepts

anything that is an actual number. Therefore, using numerical, number or similar as input is

accepted but not recommended. Row 10 had ’character’ which translates to ’QC_CHAR’.

’QC_CHAR’ is extremely vague as nearly everything can be interpreted as a character.

Historically at Pharmetheus, the input ’character’ has been used as possible value for

variables denoting dates. Therefore, if a variable whose possible value was interpreted as

’QC_CHAR’ also has a name resembling a date (such as DATE or DATETIME), the

automatic QC will attempt to evaluate the variable as a date.

Figure 6. DDT with input that requires special attention, namely for rows 2, 3, 8 and 10. For rows 2 and 3, the

automatic QC module has interpreted the input as being dates (clock times qualifies as dates) and therefore appended

’_QCDATE’ to the posValue column. Row 8 has been interpreted as a number, any number, and is therefore flagged

as a ’QC_NUMBER’. Row 10 has been interpreted as a ’character’ and is therefore flagged as a ’QC_CHAR’.

21

3.2 Evaluation of the derived data file

The main task of the automatic QC module is to evaluate whether the derived data file fulfils

the requirements specified in the DDT. To do so, the automatic QC needs an interpreted DDT

for which the process of creation has been described in previous sections. The derived data

file is supplied by the user and evaluated without any modifications done to it. Recall that the

interpreted DDT contains a set of R-expressions to be evaluated on the derived data. The R-

expressions to be evaluated are essentially the dependencies combined with the possible

values. Consider the dep and posValue columns in Figure 4 for variables AMT and EVID.

The variable AMT has one possible value that is ’AMT == 0’ and a corresponding

dependency that reads ’EVID == 0’ (row 5). The full R-expression for AMT here would be:

> (EVID == 0 & AMT == 0)

This expression would evaluate to TRUE when both EVID and AMT in the data are 0 and to

FALSE for all other cases. The second dependency and possible value combination for AMT,

from row 6 in Figure 4, would be:

> (EVID == 1 & AMT > 0)

Thus, AMT is defined by two R-expressions. The R-expressions for EVID would look as

follows:

> (TRUE & EVID == 0)

> (TRUE & EVID == 1)

The ’TRUE’ component of the expressions above will always evaluate to TRUE, meaning

that the expressions effectively only checks whether EVID is 0 or 1. Recall that the TRUE

component of the expressions stem from the Dependencies column being blank. Figure 7

contains two tables, with the left table holding 12 values for EVID and AMT respectively.

The table to the right contains the aforementioned R-expressions and the result of evaluating

these R-expressions on the values for EVID and AMT. For each row and for each variable,

one would expect that at least one (preferably no more than one) of the fields reads TRUE.

For a variable, if all fields for a row reads FALSE, this means that the corresponding row in

the data contained a value that did not fulfil the DDT specifications. Such is the case for AMT

on row 12 in Figure 7, which owes to EVID being 0 and AMT 100 for that row in the derived

data table. If the automatic QC module evaluates the derived data file, and finds a row for

which all fields for a certain variable were FALSE, the erroneous row will be added to the

error report.

The automatic QC takes advantage of R’s built-in vectorised functionality. Most functions in

R are vectorised, meaning that the functions can operate on whole vectors at once, in contrast

to having to loop through the vector and running the function on each element individually.

This offers a huge runtime speed-up in R, where looping structures are generally slow

whereas vector operations are heavily optimized. The leftmost table in Figure 7 can be

considered to be composed of two vectors, namely EVID and AMT. The R-expressions

presented in the rightmost table are executed as vectorised functions, thus, the results seen on

rows 1-12 are the product of evaluating each expression once. As datasets grow larger, and

22

NONMEM data sets can easily contain hundreds of thousands of records, utilizing the

vectorised approach is crucial to achieve manageable runtimes.

Figure 7. Example of a derived data set (left table) and illustrated output of the automatic QC module (right table).

The second row of the right table contains the R-expressions used to evaluate the derived data. For each row and for

each variable, at least one field must read TRUE. If all fields read FALSE, it indicates that the corresponding row in

the data contained a value that was not defined in the DDT. In this example, row 12 for AMT contained only FALSEs

indicating that the derived data was erroneous for that row.

3.2.1 Decimals and special conditions

The evaluation performed in the previous section checks if the variables in the data fulfils the

possible values and dependencies defined for them in the DDT. It does not however check if

the number of decimals are correct (if applicable) or if any so-called special conditions are

met. For clarification regarding the decimals, consider the variable DV in Figure 4. DV has

one possible value definition that reads DV > 0. The value 100 qualifies for this definition,

and would pass the control in the previous section, but since the DDT also specifies that DV

should be rounded to two decimals, DV = 100 would not pass the decimal check. Instead,

for it to pass the decimal check, the value needs to be DV = 100.00

Regarding the special conditions, there currently exist two. These are identified by the

number in the Vartype column as seen in Figure 4. 7 means ’constant within subject/patient’,

8 means ’non-decreasing within subject/patient’ and 9 means no special condition. A subject

or patient is defined by the ID variable that must be present in every dataset (spare possibly if

the study was conducted on only one patient). ID is supposed to be ordered increasingly,

starting at 1 and ending at the number of patients involved in the study. The derived data set

should also be ordered by ID such that all records for patient number 1 are grouped together,

followed by the records for patient 2 etc. Typically, variables such as WT (body weight at

23

baseline) and SEX will have the requirement to be constant for a patient. Variables such as

AGE and TIME will typically have the requirement to be non-decreasing for a patient.

3.2.2 Physiologically realistic values

Certain variables are commonly reoccurring in different studies. These are typically

covariates such as body weight, age, height, serum creatinine and creatinine clearance. If

present, the automatic QC module will attempt to evaluate whether these variables have

physiologically realistic values, after having evaluated the data file using the DDT. What

defines a physiologically realistic value depends on the variable investigated, what unit it is

measured in and also the study setting. Here, study setting might refer to what organism the

study was conducted in, whether the patients in the study had certain conditions heavily

altering their values and so on. The study setting is unfortunately not passed to the automatic

QC. Therefore, the automatic QC will assume that the study was conducted in human adults.

If a common physiological variable is present in the dataset, the automatic QC will see if it

can understand the unit the variable is expressed in. If so, the automatic QC will use a

predetermined range and evaluate if the values of the variable is within this range. For the

used pre-determined ranges, see Appendix 3. The ranges used are based on feedback by QC

reviewers, which in turn are based on data from CDC (2016). In addition, the ranges used are

also based on what has been observed from datasets.

The need of a control like this depends on how the DDT is defined. For instance, the variable

AGE (age of patients) might in the DDT be defined as a range from the youngest patient to

the oldest patient. In this case, the regular evaluation of the data file using the DDT would

detect if any patient was not inside that range. However, more commonly, the variable AGE

would be defined simply as ’larger than zero’, which would unfortunately lead to

unrealistically old ages passing, should such values have slipped into the data. Therefore, the

control of physiologically realistic values serves as a backup, to catch any rogue values,

should the definition in the DDT be somewhat lax.

3.3 Test run on moxonidine dataset

The automatic QC module was tested on a simulated dataset from a pharmacometric study on

moxonidine (Karlsson et al. 1998). The dataset itself was acquired from the Perl-speaks-

NONMEM (PsN) (Lindbom et al. 2004) repository (Nordgren & Freiberga, 2018) whereas

information about the dataset was drawn from the publication (Karlsson et al. 1998). In brief,

the study was a Phase II dose-finding study of oral moxonidine tablets against placebo in

people with congestive heart failure. Patients were placed in one of four groups: the placebo

group or one of three moxonidine dose groups. Active treatment started at 0.1 mg twice daily

and was then changed to a predefined dose of 0.1, 0.2 or 0.3 mg twice daily. Sampling of

patient drug concentration was performed at two occasions, after the first dose and after 12

weeks of therapy. 7 measurements were conducted at each occasion, targeted between 0.5 and

8 hours after the morning dose. Covariates considered during the study were: age, weight,

New York Heart Association classification (NYHA), creatinine clearance (CLCR), serum

24

creatinine (SCR), dose group, actual dose, occasion, gender, study compliance, and

concomitant medication. To the best of my knowledge, the dataset used here only contained

data from non-placebo patients, totalling 74 patients and 1166 records. Certain variables that

existed in the dataset, but was not mentioned in the article, where omitted. These variables

were possibly created by the authors for testing purposes and might not have relevance for the

final study described in (Karlsson et al. 1998). As no proper DDT was available for the

dataset, one was created based on the information available in the article and the dataset

(Table 3). Unsurprisingly, the automatic QC module reported back some errors after

evaluating the dataset using the DDT in Table 3. After all, constructing a DDT based solely

on the article and a glimpse of the dataset, without being part of the study, is not obvious.

Therefore, no deeper analysis of the errors found was made. Rather, this example showcases

what the automatic QC module can be expected to detect when applied to a real dataset.

Remember, however, that for a real projected conducted at Pharmetheus, the users of the

automatic QC module will be those working with the DDT and dataset, thus analysis of any

errors found will be possible. With this in mind, one assumption will be made regarding the

errors found by the automatic QC in the moxonidine example. The assumption is that the

errors reported can have one of two explanations: 1) Erroneous assumptions about the

definitions of variables when creating the DDT were made or 2) There were actual errors in

the data. The errors found were the following:

Variable DVO: record 503 did not match any Possible Value plus Dependency

condition

Variable SCR: records 735-743, 752-760 and 829-836 did not match any

PossibleValue

Variable DIG: was not constant for patient with ID = 324

Variable DIU: was not constant for patient with ID = 224

Starting with variables DIG and DIU, these (together with variable ACE) indicate

concomitant medication with digoxin, diuretics and ACE inhibitors respectively. Considering

that each patient in the study received moxonidine treatment at two different occasions, it is

fully possible that they either began or stopped concomitant medication in between the

moxonidine treatment occasions. Upon closer inspection of the dataset, this appeared to be the

case as the variables DIG, DIU and ACE were all constant for a patient on each visit. Thus,

the errors detected for DIG and DIU were likely due to erroneous assumptions made by me

upon creation of the DDT. Noteworthy however is that all patients except for patients 224 and

324 had constant concomitant medication over the entire course of the moxonidine study.

Regarding the variable SCR, which denotes serum creatinine levels, the information was

directly drawn from (Karlsson et al. 1998). That is, the Possible values definition in Table 3,

60 to 170 umol/L is based on the minimum and maximum values as reported in Table 1 in

(Karlsson et al. 1998). Interestingly, the records 735-743, 752-760 and 829-836 reported back

by the automatic QC all had SCR values higher than the reported maximum, i.e. 170 umol/L.

Namely, these records had the following values: 190, 180 and 180 respectively, for patients

with IDs: 801, 802 and 901 respectively. The reason for these values surpassing the maximum

25

described in the article is unknown to me although it is possible that these records where

omitted from the final model but left in the dataset which I had access too.

Finally, regarding the variable DVO, the value for DVO on record 503 was 0.0322 ng/mL.

Since the variable EVID was 1 for this record, the automatic QC expected a value > 100

ng/mL as seen in Table 3. All other records for which EVID was 1, DVO had values ranging

from 110 to 1120 ng/mL (mean 416 ng/mL). Therefore, the value of DVO for record 503 is

certainly an outlier although it is not certain that it is an error. Interestingly, the value of DVO

for record 504 is also 0.0322 ng/mL indicating the possibility that the value on record 504

was used for record 503, perhaps due to the original value on record 503 missing.

On a final note, the variable ID should typically for a Pharmetheus project be numbered

consecutively from 1 to the number of patients involved in the study. In the moxonidine

dataset, the first ID was 110 and increased all the way to 1407 with different incremental

steps, as there were only 74 different patients involved in the study. Currently, the automatic

QC does not enforce consecutive numbering starting from 1, but it does however raise an

error if an ID shows up twice if not in direct succession. Since no error was raised for the

variable ID in this dataset, the condition was met, although this numbering would probably

not have been acceptable in a Pharmetheus project.

Table 3. DDT for the moxonidine dataset. Definitions for the variables are derived from available information in the

study article as well as from shallow analysis of the dataset.

Variable Possible values Description Unit

ID 110 to number of

patients

Unique patient identifier N/A

VISI 1, 2 Session for patient N/A

DGRP 7, 8, 9 Which dosing group a patient belongs to. Must be constant for

a patient.

N/A

DOSE 200, 400, 600 Total daily dose amount ug

FLAG 0, 1 Help identifier for EVID. FLAG = 0 is a dose or reset-dose

event. FLAG = 1 is an observation event.

N/A

DVO > 0, > 100 Original dependent variable (i.e. measured drug concentration).

Rounded to 4 decimals.

Records where EVID = 1:

> 100, expecting a higher drug concentration directly after dose

Records where EVID = 0 or 4:

> 0, expecting a lower drug concentration after some time

ng/mL

SCR 60 to 170 Serum creatinine level micromol/L

AGE 43 to 78 Age of patient. Must be non-decreasing for a patient. Years

26

SEX 1, 2 Sex of patient. Must be constant for a patient. 1 = male, 2 =

female

N/A

NYHA 1 to 4 New York Heart Association classification. Higher value

means more heart complications.

N/A

WT 41 to 125 Body weight for patient kg

COMP 0, 1 Compliance to study regime. 0 = Not compliant, 1 = Compliant N/A

ACE 0, 1 Concomitant medication with ACE inhibitors. Must be constant

for a patient. 0 = No, 1 = Yes

N/A

DIG 0, 1 Concomitant medication with digoxin. Must be constant for a

patient. 0 = No, 1 = Yes

N/A

DIU 0, 1 Concomitant medication with diuretics. Must be constant for a

patient. 0 = No, 1 = Yes

N/A

TAD 0 to 10 Time after previous dose hours

TIME ≥ 0 Time stamp for record. Should be non-decreasing for a patient.

Rounded to 2 decimals

hours

CLCR 30 to 142 Creatinine clearance. Calculated with Cockroach-Gauss

formula.

mL/min

AMT 100, 200, 300 Actual dose administered.

Records where EVID = 0: 0, no drug dose given during

observation events.

Records where EVID = 1: 100, for regular dosing events.

Records where EVID = 4: 100, 200 or 300, for reset-dose

events.

ug

SS 0, 1 If the dosing is a steady-state dose.

Records where EVID = 4:

1, the dose is a steady-state dose.

Records where EVID = 0 or 1:

0, the dose is not a steady-state dose.

N/A

II 0, 12 Inter-dose interval, gives the time between implied doses.

Records where EVID = 4:

12, interval dosing.

Records where EVID = 0 or 1:

0, no interval dosing.

hours

CMT 1, 2 Which compartment is being used.

Records where EVID = 0: 2, the observation

compartment.

Records where EVID = 1, 4: 1, the dosing compartment.

N/A

EVID 0, 1, 4 Event identifier.

Records where FLAG = 1: 0, observation event

Records where FLAG = 0: 1, dose event. 4, reset-dose event.

N/A

27

3.3.1 Introducing errors in the moxonidine dataset

For further testing of the automatic QC, a script was made to insert new values on random

variables in the moxonidine dataset on random records. These new values could possibly lead

to errors in the data. Before the script was run, the errors detected in the original data,

described in the previous section, were removed as to not cause confusion with this test. The

alterations made and their predicted effects are listed in Table 4. Here, all predicted errors

were discovered by the automatic QC module. The script was run an additional 100 times,

and in all cases, the automatic QC module discovered any errors produced.

Table 4. Changes made to the dataset and which records these changes were made on. Included are the predicted

errors of these changes which the automatic QC should pick up on.

Variable & record Description Predicted error

FLAG, 1151 Changed value from 1 to 0 No error

EVID, 743 Changed value from 0 to 4 EVID error on record 743

EVID error on record 1151 (due to FLAG change)

DVO, 322 Appended three zeros to decimals DVO decimal error on record 322

TIME, 781 Changed value from 2.50 to 0 TIME decimal error on record 781

TIME will no longer be non-decreasing for

corresponding patient (ID = 805)

NYHA, 691 Changed value from 3 to 0 NYHA error on record 691

SEX, 137 Changed value from 1 to 2 SEX will no longer be constant for patient on

corresponding record (ID = 128)

DOSE, 820 Changed value from 200 to 1000 DOSE error on record 820

AGE, 98 Changed value from 73 to 78 AGE will no longer be non-decreasing for patient

on corresponding record (ID = 126), assuming the

change was not made on the last record of patient.

SS, 826 Changed value from 0 to 1 SS error on record 826

SS error on record 743 (due to EVID change)

II, - No change II error on record 743 (due to EVID change)

AMT, - No change AMT error on record 743 (due to EVID change)

CMT, - No change CMT error on record 743 (due to EVID change)

3.4 Runtime of the automatic Quality Control

The runtime for parsing the DDT is near instantaneous and is likely not going to be an issue

for reasonably sized DDT:s. The runtime for evaluating the data file is expected to scale

roughly linearly with the size of both the DDT and the data file. What constitutes the size of

28

the DDT is not only the number of variables included but also the number of definitions for

each variable, as interpreted by the automatic QC. For instance, in Figure 6, the variables

EVID, AMT and WT all have two definitions each, thus totalling 10 variable definitions for 7

different variables. Figure 8 shows a graph of runtimes for three different datasets, namely

Phenobarbital, Moxonidine and Gamma. Moxonidine is the same dataset that was discussed

earlier in the result section. Phenobarbital is a dataset that was acquired from the PsN

repository (Nordgren & Freiberga 2018) and is based on a study conducted in 1985 by

Grasela and Donn. Gamma is a dataset that was generated for testing purposes. Although it is

composed of real-like definitions of variables, it is not related to any published study. The

sizes of the DDT:s for the datasets were as follows, Phenobarbital; 8 variables with 12

definitions, Moxonidine; 32 variables with 52 definitions, Gamma; 40 variables with 91

definitions. The original sizes for the data files of each data sets were as follows,

Phenobarbital; 744 records, Moxonidine; 1166 records, Gamma; 100 records. The contents of

the data files were then duplicated numerous times for the purpose of generating large

datasets for runtime evaluation. As can be seen in Figure 8, datasets with below 100 000

records should typically run in less than 10 seconds, albeit depending on the users machine.

As the number of records grow above 200 000 records, the number of definitions in the DDT

start to have an impact as well. Data sets containing up to a million records are rare at

Pharmetheus, thus, runtimes for the automatic QC should seldom exceed two minutes.

The underlying complexity of the variable definitions have an impact on runtime as well.

Recall that variable definitions are evaluated as R-expressions by the automatic QC. Thus, if

the R-expression is complex, which could be due to multiple dependencies on other variables,

the evaluation will be slower than that for a simple R-expression. Two R-expressions are

presented below, where the first one is expected to run slower than the second one:
[1] EVID == 0 & (TYPE == 1 | TYPE == 2) & BLQ == 0 & DV > 0

[2] TRUE & EVID == 0

The meaning of the variables included in the expressions is not important here, but the point

is rather that the first expression will run slower than the second one as it has to evaluate four

variables whereas the second expression only has to evaluate one. Thus, the total runtime of

the automatic QC will be dependent on the complexity of the variable definitions as well.

Finally, the runtime will depend on the users machine. For this evaluation, a machine with the

following processor was used: Intel Core i7-5600, 2.6 GHz.

3.5 Validation of the automatic quality control

Validation of the automatic QC was done using the R-package testthat (Wickham 2011).

Testthat was used to create unit tests, which in turn were organized in testing suites. The

purpose of the unit tests is to ensure that each individual function in the automatic QC returns

exactly what it is supposed to. If the code of a function would later change, the unit tests

allows the developer to verify that the function still does what it should, and serves as

additional documentation for new developers joining the project. Organizing the unit tests in

29

testing suites further allows users and developers to easily execute all tests at once, to get an

comprehensive overview of anything that might be amiss with the code, or verify that it still

functions as expected.

Figure 8. Runtime for evaluations of data files plotted against the number of records in the data files. The original

data files did not have the indicated number of records but were rather duplicated numerous times. The legend

reflects datasets containing DDT:s of different sizes, with Phenobarbital having 12 variable definitions, Moxonidine

having 52 variable definitions and Gamma having 91 variable definitions. The processor of the computer used was the

following: Intel Core i7-5600, 2.6 GHz.

4 Discussion

Over the course of this project, an automatic QC was developed aimed at controlling that the

DDT and the derived data file for NONMEM fulfilled necessary specifications. While the

project came to an end, there are certain functionalities and features (or lack thereof) that

deserves further discussion. This section will discuss the reasoning behind the implementation

of certain features and which improvements could be made for future updates.

4.1 Sanity check of the DDT

The current implementation of the automatic QC module does some interpretation of the DDT

as has been described in Section 2. The automatic QC module checks that it can understand

30

the input and work with it but it does not check whether the logic is actually sound. Logic in

this case refers to the dependencies a variable might have on other variables. Consider the

quite simple DDT shown in Figure 9, where the Dependencies and PossibleValues column

contain perfectly acceptable input to the automatic QC module. Here, no errors or warnings

would be raised. However, if one considers the dependencies and possible values for the

variables AMT and RATE, on rows 3 to 6, one realises that the logic is broken. The

dependency for RATE on row 6 requires EVID to be 0 and AMT to be greater than 0.

However, the dependency on row 3 tells us that AMT must be 0 when EVID is also 0.

Therefore, the dependency for AMT on row 3 and the dependency for RATE on row 6 cannot

both be true. Depending on how the actual data looks, the automatic QC module would likely

detect this error when evaluating the derived data but a possible improvement for future

versions of the automatic QC would be to implement some sort of logic check that can

prevent these types of mistakes. For the record, the dependency on row 3 is correct while the

record on row 6 should be EVID == 1 & AMT > 0.

To further speculate on this topic, the current dependency definitions for RATE are

redundant. Technically, logically equivalent dependencies could be achieved using only one

of the variables EVID or AMT. That is also a possible further improvement for the automatic

QC, to warn the user if redundant information is given. On the other hand, for human readers,

logically redundant information is sometimes desirable as it may improve readability.

Figure 9. Example of a DDT that would be accepted by the automatic QC module without warnings or errors.

However, rows 3 and 6 have contradictory logic in the Dependencies column as row 3 says that AMT must be zero

when EVID is 0, while row 6 wants EVID to be 0 and AMT greater than 0.

4.2 R-code vs Human-readable text as input

The current implementation of the automatic QC module forces the input to the

’Dependencies on other variables’ field in rock (see Figure 2) to be proper R-code. The main

benefit of using R-code as input is that it is logically unambiguous, given that it is typed out

correctly. For instance, an R-expression such as EVID == 0 & TYPE == 0 would, when

evaluated by R, always yield the expected result. In addition, it relieves the automatic QC of

the responsibility of interpreting any input as it instead expects the user to be responsible for

1) entering a syntactically correct R expression and 2) entering the R expression that was

actually intended. For someone who is very comfortable with R, or with programming in

general, this may be a fine approach, as it is supposedly robust and unambiguous, even when

31

read by a human. On the other hand, for users who generally do not work a lot with R, this

type of approach may rather seem complicated and unintuitive. The R-expression above,

EVID == 0 & TYPE == 0, could also, in a typical DDT setting, be interpreted as "an

observation record (EVID == 0) of some drug A (TYPE == 0)", after decoding the variables

EVID and TYPE. Recall that EVID means event identifier in NONMEM. That sentence is

fully readable for humans, and would probably still be even if the phrasing was different, or if

a typo was made. Unfortunately, for a computer, it can be near-impossible to interpret such a

sentence unambiguously, especially if it can be phrased in different ways. In short, humans

are capable of processing the meaning of texts in a way that is very difficult to implement

programmatically. Since correct R-code is unambiguous it should be possible to convert it to

human-readable text. The aforementioned sentence EVID == 0 & TYPE == 0 could quite

easily be converted to something along the lines of "observation record and drug A", which is

certainly human-readable, but perhaps not a proper sentence. Also, if more complex

expressions or combinations of different expressions are involved, simply converting the

expressions to words might not qualify as making it human-readable any more.

A possible third approach would be to have the input as a hybrid between R-code and human-

readable text. In essence, this would mean that the input is worded as English text but forced

to have a certain structure such that it can be interpreted by an algorithm unambiguously. Less

strict enforcement of the text structure requires the interpretation algorithm to be more

complex and robust, lest you open up for ambiguity. At a certain point however, if the text

structure is allowed to be too loose, unambiguous parsing is likely impossible to guarantee.

4.3 Physiologically realistic values

The automatic QC module will, apart from verifying that the data file fulfils DDT

specifications, also try to evaluate whether the data is physiologically realistic. This process

requires however that the automatic QC can interpret the name of the variable being

investigated, interpret the unit which the variable is expressed in and also know what values

are physiologically realistic for that variable. Although certain variable names are commonly

reused, such as WT indicating body weight and the unit commonly being in kilograms, there

is no absolute standard for this and users may freely name their variables and express them in

any unit. Further, what is a physiologically realistic value may depend entirely on the setting

in which the study was performed. For instance, physiologically realistic body weights are

probably entirely different in a paediatric study as compared to a study conducted in adults.

Likewise, if a study was conducted on mice, rather than on humans, what constitutes realistic

values are also entirely different. Currently, information regarding the study setting is not

passed to the automatic QC and therefore, the automatic QC will assume all studies are

carried out in human adults. With feedback from independent QC reviewers, future versions

of the automatic QC will however attempt to take into consideration the age of patients when

inferring whether values are physiologically realistic.

32

Another possible improvement would be to try and infer which species the study was

conducted on depending on the variables present in the dataset. For instance, the variable

SMOK, indicating whether the patient is a smoker or not, is likely not used in studies

conducted in non-humans. Likewise, a variable ETHN (ethnicity) is sometimes included in

datasets for broad classification of patient groups and is also only applicable for humans.

5 Conclusion

This project implemented an automatic QC of DDT:s and data files. The purpose was to

facilitate the process of producing data files ready to be pharmacometrically modelled by the

software NONMEM, the main analysis software used at Pharmetheus. The process of

deriving a NONMEM-ready data file is lengthy, starting with the modellers defining the

scope of the project based on a clients request, followed by a data programmer deriving the

data file based on a set of source clinical data files. Once the data programmer has finished

his/hers task, the derived data file must be scrutinized by a QC team, lest the pharmacometric

model risk being inaccurate or even unobtainable owing to potential errors or inconsistencies

in the data file. The automatic QC developed will aid the data programmer in discovering

certain errors that may be present in the data file as well as helping define a rigorous DDT,

and is implemented in Pharmetheus existing graphical user interface for DDT creation. The

features of the automatic QC have been described in this paper, how it is supposed to work

and what can be expected of it. Further, the current limitations and possible improvements for

the future have also been discussed. The definitions for what a pharmacometric data set at

Pharmetheus, and the accompanying DDT, should look like is under constant evolution due to

feedback from relevant stakeholders. Therefore, the purpose and functionality of the

automatic QC is also expected to change over time.

6 Acknowledgement

I would like to thank Kajsa Harling, my supervisor, for her guidance, support and feedback

during all stages of this project. I would also like to thank Ola Spjuth, my subject reader, and

Anna Odelgard, my opponent, for feedback on the project and report. Special thanks to

Rikard Nordgren and Joakim Nyberg, who were not directly involved in this project but

nonetheless provided great feedback on the report and helped with acquiring data. In addition,

I would like to thank Monique Wouters, for valuable feedback on what could be improved

and included in my project.

I would like to thank Jan Andersson and Lena Henriksson for their support and management

throughout this project.

33

Finally, I would like to thank the entirety of Pharmetheus for providing a great and friendly

working environment.

34

References

Atkinson A, Lalonde R. 2017. Introduction of quantitative methods in pharmacology and

clinical pharmacology: a histroical overview. Clinical Pharmacology and Therapeutics 82: 3-

6.

Beal SL, Sheiner LB, Boeckmann AJ, Bauer RJ. 2014. NONMEM User’s Guides. (1989-

2014) Icon Development Solutions, Ellicot City, MD, USA.

CDC (Centers for Disease Control and Prevention). 2016. Anthropometric Reference Data for

Children and Adults: United States, 2011-2014. US Department of Health and Human

Services, Hyattsville, Maryland.

Clinical Data Interchange Standards Consortium. 2018. Study Data Tabulation Model. URL:

https://www.cdisc.org/standards/foundational/sdtm. Accessed 2018-12-17.

Clinical Data Interchange Standards Consortium. 2018. Analysis Data Model. URL:

https://www.cdisc.org/standards/foundational/adam. Accessed 2018-12-17.

Dabla P. 2010. Renal function in diabetic nephropathy. World Journal of Diabetes 1:48-56.

Fisher D, Shafer S. 2007. Pharmacokinetic and Pharmacodynamic Analysis with NONMEM.

NONMEM Workshop, Het Pand, Ghent, Belgium.

Grasela TH, Donn SM. 1985. Neonatal population pharmacokinetics of phenobarbital derived

from routine clinical data. Developmental Pharmacology and Therapeutics 8: 374-383.

Grolemund G, Wickham H. 2011. Dates and times made easy with lubridate. Journal of

Statistical Software 40: 1-25.

Grolemund G, Wickham H. 2017. R for data science: Strings. WWW-dokument 2017:

https://r4ds.had.co.nz/strings.html. Accessed 2018-12-17.

Henry L, Wickham H. 2017. rlang: Functions for Base Types and Core R and ’Tidyverse’

Features. R package version 0.1.2. URL: https://CRAN.R-project.org/package=rlang.

Karlsson M, Jonsson E, Wiltse C, Wade J. 1998. Assumption testing in population

pharmacokinetic models: Illustrated with an analysis of moxonidine data from congestive

heart failure patients. Journal of Pharmacokinetics and Biopharmaceutics 26: 207-246.

Lee JY, Garnett CE, Gobburu JV, Bhattaram VA, Brar S, Earp JC. 2011. Impact of

pharmacometric analyses on new drug approval and labelling decisions. Clinical

Pharmacokinetics 50: 627-635.

https://www.cdisc.org/standards/foundational/sdtm
https://www.cdisc.org/standards/foundational/adam
https://r4ds.had.co.nz/strings.html
https://cran.r-project.org/package=rlang

35

Lindom L, Ribbing J, Jonsson EN. 2004. Perl-speaks-NONMEM (PsN)—a Perl module for

NONMEM related programming. Computer Methods and Programs in Biomedicine 75: 85-

94.

Mohammed M, Jungerwirth S, Asatryan A, Jiang P, Othman A. 2017. Assessment of effect of

CYP3A inhibition, CYP induction, OATP1B inhibition, and high-fat meal on

pharmacokinetics of the JAK1-inhibitor upadacitinib. British Journal of Clinical

Pharmacology 83: 2242-2248.

Mould D, Upton R. 2012. Basic Concepts in population modeling, simulation, and model-

based drug development. CPT: Pharmacometrics and System Pharmacology 1: 1-14.

Nordgren R, Freiberga S. 2018. Perl-speaks-NONMEM. URL:

https://uupharmacometrics.github.io/PsN/.

R Development Core Team. 2007. R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org.

Standing J. 2017. Understanding and applying pharmacometric modelling and simulation in

clinical practice and research. British Journal of Clinical Pharmacology 83: 247-254.

Thomas C, Thomas L. 2009. Renal failure – measuring the glomerular filtration rate.

Deutsches Ärtzeblatt 106: 849-854.

Wickham H. 2011. testthat: Get started with testing. The R journal 3: 5-10.

Wickham H, Francois R, Henry L, Müller K. 2017. dplyr: A Grammar of Data Manipulation.

R package version 0.7.2. URL: https://CRAN.R-project.org/package=dplyr.

Wickham H, Danenberg P, Eugster M. 2017. roxygen2: In-Line Documentation for R. R

package version 6.0.1. URL: https://CRAN.R-project.org/package=roxygen2.

Wickham H. 2017. stringr: Simple, Consistent Wrappers for Common String Operations. R

package version 1.2.0. URL: https://CRAN.R-project.org/package=stringr.

Zakhari S. 2006. Overview: How is alcohol metabolized by the body. Alcohol Research and

Health 29: 245-254.

https://uupharmacometrics.github.io/PsN/
http://www.r-project.org/
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=roxygen2
https://cran.r-project.org/package=stringr

36

Appendix 1 Regular Expressions

Regular expressions are string matching techniques that are usually included in most

programming languages or environments that allow string matching. Regular expressions can

be considered a language for describing patterns in strings. The automatic QC relied heavily

on the use of string matching, and therefore regular expressions, to perform interpretation of

the DDT. Documentation for regular expressions as used in R can be found in (R

Development Core Team 2007). The functions used for string matching are from the R-

package stringr (Wickham 2017) and base R (R Development Core Team 2007). Example of

how regular expressions are used together with the stringr package:

Pattern that matches any amount of blank –spaces , followed by a ">"

character, followed by any amount of blank spaces followed by any integer

preceded by an optional minus sign.

pattern = "^\\ s ∗ >\\ s ∗–∗[0–9]+$"

the following function detects if the f i r s t argument is recognized by

the pattern

stringr : : str_detect ("> 0" , pattern)

> TRUE

stringr : : str_detect ("> –5" , pattern)

> TRUE

stringr : : str_detect ("< 10" , pattern)

> FALSE

37

Appendix 2 Regular expressions used for DDT parsing

The regular expression used for parsing of the DDT are the following:

pattern = ^\\s∗[a–zA–Z]∗\\s∗(>=|>|<=|<)\\s∗(–∗)([0 –9]+\\.?[0–9]∗|,

variableName,)\\b.∗$

matches = >,>=,<,<= followed by any number or known variable name

pattern = ^\\s∗([a–zA–z]∗)?\\s∗(–∗[0–9]+\\.?[0–9]∗)\\s∗(to|TO|To|–)\\s∗(–∗[0–

9]+\\.?[0–9]∗)\\b\\s∗$

matches = expression of form : from {any number} to {any number}

pattern = ^.∗between\\s∗(–∗[0–9]+\\.?[0–9]∗)\\s∗and\\s∗(–∗[0–9]+\\.?[0–9]∗)\\

b.∗$

matches = expression of form : between {any number} and {any number}

pattern = ^\\s∗={0,2}(–∗)([0–9]+\\.?[0–9]∗|,variableName,)\\s∗$

matches = any number or known variable name

pattern = ^\\ s∗(\\w+|\\w+[–_]\\w+|\\w+[–_]\\w+[–_]\\w+|\\w+[–_]\\w+[–_]\

\w+[–_]\\w+)\\s∗$

matches = character patterns composed normal letters or numbers separated

by dashes or underscores

pattern = ^\\s∗((C|c)haracter)\\s∗.∗$

matches = the literal string ’character’

pattern = ^\\s∗(((N|n)umeric)|((N|n)umerical)|((N| n)umber))\\s∗$

matches = the literal strings ’numeric’, ’numerical’ or ’number’

pattern = &|=|<–|\\|

matches = the characters &, =, <– and | to prevent these from existing in

formulas, should a formula exist in the DDT.

patterns = ([yY]{4}(–)?[mM]{2}(–)?[dD]{2})

([yY]{2}(–)?[mM]{2}(–)?[dD]{2})

([12][0–9]{3}(–)[0][1–9](–)[0123][0–9])

([012789][0–9](–)[0][1–9](–)[123][0–9])

([12][0–9]{3}(–)[1][012](–)[0123][0–9])

([012789][0–9](–)[1][012](–)[123][0–9])

([hH]{2}(:)?[mM]{2}(:)?([sS]{2})?)

([012][0–9](:)[0–5][0–9](:)[0–5][0–9])

([012][0–9](:)[0–5][0–9])

matches = different types of entries to be interpreted as dates or clock

times

38

Appendix 3 Ranges for physiological variables

These are the ranges used for the physiological variables and the recognized variable names at

the time of writing the report, which assumes a human adult. Both the names and values are

easily configurable.

 Body weight, recognized by variables WGT, WT, BLWT. Accepted range in

kilograms: 20-180

 Age, recognized by variables AGE, BLAGE. Accepted range in years: 0-120

 Creatinine clearance, recognized by variable CRCL. Accepted range in ml/min: 15-

190

 Serum creatinine, recognized by variable SCR. Accepted range in micromol/l: 45-200

 Height, recognized by variables HT, HGT, BLHT, BLHGT. Accepted range in

centimeters: 60-210

