Observation of $D_s^+ \rightarrow p\bar{n}$ and confirmation of its large branching fraction

(BESIII Collaboration)

1Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2Beihang University, Beijing 100191, People’s Republic of China
3Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4Bochum Ruhr-University, D-44780 Bochum, Germany
5Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6Central China Normal University, Wuhan 430079, People’s Republic of China
7China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
10GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
11Guangxi Normal University, Guillin 541004, People’s Republic of China
12Guangxi University, Nanning 530004, People’s Republic of China
13Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
14Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
15Henan Normal University, Xinxing 453007, People’s Republic of China
16Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
17Huangshan College, Huangshan 245000, People’s Republic of China
18Hunan Normal University, Changsha 410081, People’s Republic of China
19Hunan University, Changsha 410082, People’s Republic of China
20Indian Institute of Technology Madras, Chennai 600036, India
21Indiana University, Bloomington, Indiana 47405, USA
22 INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
23 INFN and University of Perugia, I-06100 Perugia, Italy
24 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
25 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
26Joint Institute for Nuclear Research, Dubna 141980, Moscow region, Russia
27Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
28 KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
29 Lanzhou University, Lanzhou 730000, People’s Republic of China
30 Liaoning University, Shenyang 110036, People’s Republic of China
31 Nanjing Normal University, Nanjing 210023, People’s Republic of China
32 Nanjing University, Nanjing 210093, People’s Republic of China
33 Nankai University, Tianjin 300071, People’s Republic of China
34 Peking University, Beijing 100871, People’s Republic of China
35 Seoul National University, Seoul 151-747, Korea
36 Shandong University, Jinan 250100, People’s Republic of China
37 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
38 Shanxi University, Taiyuan 030006, People’s Republic of China
39 Sichuan University, Chengdu 610064, People’s Republic of China
40 Soochow University, Suzhou 215006, People’s Republic of China
41 Southeast University, Nanjing 211100, People’s Republic of China
42 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
43 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
44 Tsinghua University, Beijing 100084, People’s Republic of China
45 Ankara University, 06100 Tandogan, Ankara, Turkey
46 Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey
47 Uludag University, 16059 Bursa, Turkey
48 Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
49 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
50 University of Hawaii, Honolulu, Hawaii 96822, USA
The baryonic decay $D_s^+ \to p\bar{n}$ is observed, and the corresponding branching fraction is measured to be $(1.21 \pm 0.10 \pm 0.05) \times 10^{-3}$, where the first uncertainty is statistical and second systematic. The data sample used in this analysis was collected with the BESIII detector operating at the BEPCII e^+e^- double-ring collider with a center-of-mass energy of 4.178 GeV and an integrated luminosity of 3.19 fb$^{-1}$. The result confirms the previous measurement by the CLEO Collaboration and is of greatly improved precision. This result will improve our understanding of the dynamical enhancement of the W-annihilation topology in the charmed meson decays.

DOI: 10.1103/PhysRevD.99.031101
BESIII is a general-purpose detector with 93% coverage of the full solid angle. Details of the detector can be found in Ref. [8]. In 2015, BESIII was upgraded by replacing the two end cap time-of-flight (TOF) systems with new detectors that use multi-gap resistive plate chambers (MRPC), which achieve a time resolution of 60 ps [9].

A GEANT4-based [10] Monte Carlo (MC) simulation software package, which includes the description of the BESIII detector geometry and its response, is used to generate MC simulated event samples. The simulation includes the beam energy spread and initial state radiation (ISR) in the e+e− annihilation modeled with the generator ConEx [11]. The final state radiation from charged tracks is incorporated with the PHOTOS package [12]. The generic MC samples, consisting of the production of open charm processes, the ISR return to low-mass charmonium (ψ) states, and continuum processes (quantum electrodynamics processes and continuum production of light quarks q̅q), have a size corresponding to an integrated luminosity 35 times larger than that of the data. The known particle decays are generated using EVTGEN [13] with the BFs taken from the Particle Data Group (PDG) [14], and the remaining unknown decays of low mass ψ states are generated with LUNDCHARM [15].

We also generate a signal MC sample of 4 × 10⁶ events, which is used to obtain the shapes of kinematic variables in signal decays and to estimate systematic uncertainties. In this analysis, the D_s sample is predominantly produced in the reaction e+e− → D_s±D_s± → γDY D_s. For our signal event, the D_s±D_s± pair decays to either D_s(−p̅n)D_s(−γ) (generic) or D_s(−p̅n)D_s(γ) (generic). Throughout the article, charge conjugated modes are implicitly implied, unless otherwise noted.

We fully reconstruct a D_s meson, named “single tag (ST),” in eleven decay modes that correspond to 25% of the total decay width [14]: K±K−, K−K+π−, K±K−π0, K±K−π0, K±K−π0, K±K−π0, K±K−π0, K±K−π0, K±K−π0, K±K−π0. The flight length L is required to have an energy larger than 25 MeV in the barrel region (|cosθ| < 0.8), or 50 MeV in the end cap region (0.86 < |cosθ| < 0.92). To suppress electronic noise and energy deposits unrelated to the events, the shower time in the EMC must be within 700 ns of the event start time [16].

Photons candidates are reconstructed with energy deposits in the electromagnetic calorimeter (EMC) that are not associated with reconstructed charged tracks. The photon is required to have an energy larger than 25 MeV in the barrel region (|cosθ| < 0.8), or 50 MeV in the end cap region (0.86 < |cosθ| < 0.92). To suppress electronic noise and energy deposits unrelated to the events, the shower time in the EMC must be within 700 ns of the event start time [16]. The γ and η candidates are reconstructed from γγ pairs with an invariant mass M_{γγ} within (0.115, 0.150) GeV/c² and (0.50, 0.57) GeV/c², respectively. Candidates with both photons in the end cap regions are rejected due to the bad energy resolution. To improve the momentum resolution, a 1C kinematic fit is performed, constraining M_{γγ} to the nominal γ mass [14] and requiring χ² < 30. The updated momentum of each photon from the kinematic fit is used in the further analysis.

The K_S^0 candidates are reconstructed via the decay K_S^0 → π^+π^- by performing a vertex-constrained fit to all oppositely charged track pairs without PID requirements applied. The charged tracks must be within |cosθ| < 0.93, and have a point of closest approach to the IP within ±20 cm along the beam direction; no requirement is placed on the point of closest approach in the plane perpendicular to the beam. The χ² of the vertex fit must be less than 100. To suppress the combinatorial background, a secondary vertex fit is performed, constraining the direction of the K_S^0 momentum to point back to the IP, and requiring χ² < 20. The flight length L, defined as the distance between the common vertex of the π^+π^- pair and the IP, is obtained in the secondary vertex fit and required to satisfy L > 2σ_L for
accepted K^0_S candidates, where s_L is the uncertainty of L. The four-momenta after the secondary vertex fit are used in the subsequent analysis. The K^0_S candidate is required to have a mass within the range $(0.487, 0.511)$ GeV/c^2, corresponding to 3 standard deviations on the mass distribution.

The η' candidates are reconstructed via the prominent decay modes $\eta' \to \pi^+\pi^-\eta$ and $\eta' \to \gamma\pi^+\pi^-$, requiring the invariant masses of $\pi^+\pi^-\eta$ and $\gamma\pi^+\pi^-$ to be within $(0.945, 0.970)$ and $(0.938, 0.978)$ GeV/c^2, respectively. The $\rho^{\pm(0)}$ candidate is selected by requiring the $\pi^+\pi^{0(\mp)}$ invariant mass within $(0.6, 0.9)$ GeV/c^2.

In the ST mode $D^- \to K^-\pi^+\pi^-$, the $\pi^+\pi^-$ invariant mass is required to be outside the range $(0.480, 0.515)$ GeV/c^2 to avoid double counting with the ST mode $D^- \to K^0_SK^-$. For a given ST mode, the D_s^- candidates are reconstructed by all possible combinations of selected K^{\pm}, π^{\pm}, K_S^0, π^0, η and η' candidates in an event, and are identified with the corresponding invariant mass M_{tag}. To suppress the background from the nonstrangeness excited D^+ decay $D^+ \to \pi D_s$, the $\pi^{\pm(0)}$ candidates from $D_s^-\to K^-\pi^+\pi^-$ decays must have a momentum larger than 100 MeV/c. To further suppress the non-$D_s^-\to K^-\pi^+\pi^-$ backgrounds, a variable that represents the invariant mass of the system recoiling against the selected D_s^- candidate is defined as

$$M_{\text{rec}}^2 = \left(E_{\text{cm}} - \sqrt{p_D^2 + M_D^2} \right)^2 - |\vec{p}_D|^2,$$

where E_{cm} is the center-of-mass energy, \vec{p}_D, is the momentum of the selected D_s^- candidate in the center-of-mass system, and M_D is the nominal D_s^- mass [14]. In the process $e^+e^- \to D_s^+D_s^- \to D_s^+\gamma D_s^-$, the selected D_s^- candidates are produced either directly in the e^+e^- annihilation or from the decay $D_s^- \to \gamma D_s^-$. The corresponding M_{rec} distribution for the former case peaks at the nominal D_s^+ mass $M_{D_s^+}$ [14] smeared by the mass resolution, and that for the latter case has a relatively flat distribution between 2.05 and 2.18 GeV/c^2. The D_s^- candidates are accepted by requiring $2.05 < M_{\text{rec}} < 2.18$ GeV/c^2. The $e^+e^- \to D_s^+D_s^-$ process is highly suppressed by this requirement. For an event with multi-D_s^- candidates for a specific tag mode per charge, only the one with minimum $|M_{\text{rec}} - M_{D_s^+}|$ is kept.

The M_{tag} distributions of the events passing the above selection criteria are shown in Fig. 1 for all ST modes. The ST yields are determined by performing a binned maximum likelihood fit. In the fit, the D_s^- signal is described by the MC-simulated line shape convolved with a Gaussian function representing the resolution difference between data and MC simulation, where the parameters of the Gaussian functions are free parameters the fit. The background is described by Chebychev polynomial functions of the first kind of first or second order. The fit results are superimposed on the data in Fig. 1. For further study, we require that M_{tag} is within 2.5 times the resolution around the D_s^- peak. The requirements on M_{tag}, the ST yields, and the corresponding ST detection efficiencies obtained with

![Graph](image-url)

FIG. 1. Fits to the M_{tag} distributions for various ST modes. The dots with error bars show data, the red solid lines are the overall fit results, and the blue dashed curves are the background.
TABLE I. Requirements on M_{tag}, ST yields, ST and DT detection efficiencies for individual ST modes. The uncertainties are statistical only. The BF s of $\pi^0/\eta \rightarrow \gamma \gamma$, $K^0\rightarrow \pi^+\pi^-$, $\eta' \rightarrow \pi^+\pi^-\pi^0$ and $\eta \rightarrow \gamma \pi^+\pi^-$ are not included in efficiencies.

<table>
<thead>
<tr>
<th>ST mode</th>
<th>M_{tag}(GeV/c2)</th>
<th>N^i_{ST}</th>
<th>ϵ^i_{ST}(%)</th>
<th>ϵ^i_{DT}(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^0\bar{K}^-$</td>
<td>[1.950,1.990]</td>
<td>30364 \pm 231</td>
<td>46.23 \pm 0.04</td>
<td>19.12 \pm 0.95</td>
</tr>
<tr>
<td>$K^+\bar{K}^-\pi^-$</td>
<td>[1.950,1.985]</td>
<td>133666 \pm 544</td>
<td>39.67 \pm 0.02</td>
<td>17.85 \pm 0.40</td>
</tr>
<tr>
<td>$K^0\bar{K}^-\pi^0$</td>
<td>[1.930,1.990]</td>
<td>10425 \pm 316</td>
<td>15.45 \pm 0.03</td>
<td>9.39 \pm 0.81</td>
</tr>
<tr>
<td>$K^0\bar{K}^-\pi^-\pi^0$</td>
<td>[1.930,1.990]</td>
<td>37929 \pm 633</td>
<td>10.46 \pm 0.01</td>
<td>5.52 \pm 0.24</td>
</tr>
<tr>
<td>$\pi^+\pi^-\pi^0$</td>
<td>[1.950,1.985]</td>
<td>13475 \pm 350</td>
<td>18.74 \pm 0.03</td>
<td>10.00 \pm 0.66</td>
</tr>
<tr>
<td>$\pi^-\pi^0\eta$</td>
<td>[1.930,2.000]</td>
<td>16951 \pm 222</td>
<td>42.83 \pm 0.04</td>
<td>23.10 \pm 1.39</td>
</tr>
<tr>
<td>$\pi^-\eta(\pi^+\pi^-\eta)$</td>
<td>[1.940,2.000]</td>
<td>8675 \pm 120</td>
<td>21.51 \pm 0.04</td>
<td>8.98 \pm 0.78</td>
</tr>
<tr>
<td>$\pi^-\eta(\gamma\pi^+\pi^-)$</td>
<td>[1.945,1.980]</td>
<td>22720 \pm 524</td>
<td>27.48 \pm 0.03</td>
<td>13.49 \pm 1.04</td>
</tr>
<tr>
<td>$K^-\pi^+\pi^-$</td>
<td>[1.950,1.985]</td>
<td>15801 \pm 463</td>
<td>44.82 \pm 0.04</td>
<td>23.64 \pm 1.75</td>
</tr>
</tbody>
</table>

the generic MC samples are summarized in Table I for each individual ST mode. The signal $D_s^+ \rightarrow p\bar{n}$ and the isolated photon from the D_s^+ decay are reconstructed from the remaining tracks and photons that are not used in the ST D_s^+ reconstruction. Exactly one remaining charged track with opposite charge to the ST D_s^+ meson and at least one remaining good photon are required. The charged track is identified as a proton by requiring $L(p) \geq L(K)$, $L(p) \geq L(\pi)$ and $L(p) \geq 0.001$. The angle between this isolated photon and the nearest charged track is required to be larger than 10°.

To improve the resolution and the likelihood of associating the correct photon candidate from the D_s^+ decay, we perform a kinematic fit with constraints on the masses of the ST D_s^+, signal D_s^+, intermediate state D_s^{\pm}, and the initial four-momentum. The two hypotheses, i.e., $e^+e^- \rightarrow D_s^+(\gamma+p\bar{n})D_s^-(ST)$ or $e^+e^- \rightarrow D_s^+(p\bar{n})D_s^-(\gamma+ST)$, are tested, and the one with the smaller fit χ^2 is chosen. In the fit, the antineutron is treated as a missing particle with unknown mass, thus there are 7 constraints and 4 unknown parameters. The χ^2 of the kinematic fit is required to be less than 200. This requirement retains most of the signal events, but removes 50% of background. For an event with more than 1 remaining photon, we try all photon candidates in the kinematic fit, and the one with the smallest χ^2 is selected. The updated momenta after the kinematic fit are used in the subsequent analysis. The resulting mass of the missing particle M_{miss}, using all ST modes, is shown in Fig. 2. A prominent antineutron signal is visible.

The potential backgrounds are classified into (a) non-D_s^- background and (b) real-D_s^- background. The background (a) is dominated by continuum processes with proton and antineutron in the final state and can be estimated with the events in the M_{tag} sideband region (3.5–5.0 σ away from the D_s peak). The corresponding M_{miss} distribution of background (a) is shown as the shaded histogram in Fig. 2. No obvious peak is observed in the vicinity of the antineutron signal. Since $D_s^+ \rightarrow p\bar{n}$ is the only baryonic decay mode for the D_s^+ meson, no peaking background is expected for background (b). The properties of the backgrounds are validated by studying the generic MC samples.

The total DT signal yield is determined by performing an unbinned maximum likelihood fit to the M_{miss} distribution in Fig. 2, where the signal is described by an MC-simulated line shape convolved with a Gaussian function representing the resolution difference between data and MC simulation; the background is modeled by an ARGUS function [17]. The fit shown in Fig. 2 returns 193 ± 17 $D_s^+ \rightarrow p\bar{n}$ signal events. The DT efficiencies for the individual ST mode are estimated by performing the same procedure on the generic MC samples, and are

![FIG. 2. Fit to the M_{miss} distribution. The dots with error bars represent data, the (green) shaded histogram shows the events in the M_{tag} sideband region. The (red) solid line is the overall fit, the (violet) dotted line is the signal component, and the (blue) dashed line is the background component from the fit.](image-url)
summarized in Table I. Based on Eq. (3), inserting all the numbers reported above and incorporating the world-average value for $\mathcal{B}(D_s^{+} \rightarrow \gamma D_s^0)$ [14], we obtain $\mathcal{B}(D_s^+ \rightarrow p\bar{n}) = (1.21 \pm 0.10) \times 10^{-3}$, where the uncertainty is statistical only.

With a DT technique, the systematic uncertainties on detecting the ST D_s^- meson largely cancel. For the reconstruction of the isolated photon and the signal $D_s^+ \rightarrow p\bar{n}$, the following sources of systematic uncertainties are studied, resulting in a total systematic uncertainty of 4.4% when the individual contributions are summed in quadrature.

The efficiencies for proton tracking and PID are studied as function of $\cos \theta$ and momentum using the control sample $e^+e^- \rightarrow \pi^+\pi^-p\bar{p}$. The results are then weighted by the $\cos \theta$ and momentum distributions of the proton in the signal MC. The average efficiency difference between data and MC simulation combined for tracking and PID is 3.2%, which is taken as the systematic uncertainty.

We study the uncertainties associated with the photon detection and the kinematic fit simultaneously with a control sample of $D_s^+ \rightarrow K^0_SK^0_L$ decays produced in the process $e^+e^- \rightarrow D_s^{+}\bar{D}_s^-\rightarrow D_s^+\gamma D_s^-$. The resultant difference on the efficiencies between data and MC simulation is 2.4%, which is assigned as the systematic uncertainty from this source.

The proton and antineutron may produce additional showers in the EMC that might then affect the efficiency of detecting $D_s^- \rightarrow p\bar{n}$ decays. To estimate this effect, we examine the detection efficiencies determined with two different signal MC samples that are produced with and without the neutron interaction effect in the EMC, respectively. Conservatively, we assign half of the difference between the two efficiencies, 0.9%, as the uncertainty.

The uncertainty sources associated with the fit to the M_{miss} distribution include the background parameterization and the fit range. The corresponding uncertainties are estimated by performing fits with alternative background shape obtained with the events in the ST M_{tag} sideband region and various fit ranges. The resultant changes on the signal yields are regarded as the corresponding uncertainties. The sum of the three uncertainties above in quadrature is 0.7%, which is taken as the associated systematic uncertainty.

For the ST D_s^- yields, there is a contribution from the process $e^+e^- \rightarrow \gamma_{\text{ISR}} D_s^+\bar{D}_s^-$, which causes a tail falling into the M_{rec} windows. We estimate this background contributes to our ST yields by at most 0.3% based on the MC simulation. We take this upper limit as the systematic uncertainty from this source.

According to Eq. (3), the uncertainty related to the ST efficiency is expected to be canceled. However, due to the different multiplicities, the ST efficiencies estimated with the generic and the signal MC samples are expected to differ slightly. Thus, the uncertainty associated with the ST efficiency is not canceled fully, which results in a so-called “tag bias” uncertainty. We study the tracking/PID efficiencies in different multiplicities, and take the combined differences between data and MC simulation, 0.6%, as the corresponding uncertainty.

The uncertainties associated with the quoted BF of $D_s^+ \rightarrow \gamma D_s^0$ and the limited MC statistics are also considered, which lead to 0.8% and 1.1%, respectively.

In summary, using an e^+e^- collision data sample corresponding to 3.19 fb$^{-1}$ collected at $\sqrt{s} = 4.178$ GeV with the BESIII detector, we report the observation of $D_s^+ \rightarrow p\bar{n}$ and measure the absolute BF to be $(1.21 \pm 0.10 \pm 0.05) \times 10^{-3}$, where the first uncertainty is statistical and second systematic. The decay $D_s^+ \rightarrow p\bar{n}$ is confirmed and the precision of the BF measurement is much better than that of the previous measurement [6]. The large BF for $D_s^+ \rightarrow p\bar{n}$ explicitly shows that the weak annihilation process featured as a short-distance dynamics is not the driving mechanism for this transition, while the hadronization process driven by nonperturbative dynamics determines the underlying physics. The measurement is important since similar annihilation effect is also present in other hadronic decays of charmed mesons. Relating this baryonic decay rate to the leptonic rate should provide important clues on how baryons are produced in hadronic interactions. The improved measurement also sets up the nonperturbative scale, allowing a better understanding of the transition mechanism. This high precision measurement can be taken as evidence for the role played by the hadronization process and is useful for improving existing and developing further models.

ACKNOWLEDGMENTS

The BESIII Collaboration thanks the staff of BEPCII, the IHEP computing center and the supercomputing center of USTC for their strong support. The authors are grateful to Professor Hai-Yang Cheng, Dr. Xian-Wei Kang and Dr. Fu-Sheng Yu for enlightening discussions. This work is supported in part by National Key Basic Research Program of China under Contracts No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts No. 11405046, No. 11605198, No. 11235011, No. 11335008, No. 11425524, No. 11235011, No. 11425523, No. 11635010, No. 11375170, No. 11275189, No. 11475164, No. 11475169, No. 11605196, No. 11705192; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts No. U1332201, No. U1532102, No. U1532257, No. U1532258, No. U1732263, No. U1832103; CAS Key Research Program of Frontier Sciences under Contracts No. QYZDJ-SSW-SLH003 and No. QYZDJ-SSW-SLH040; 100 Talents Program of CAS; National 1000 Talents Program of China; Institute of Nuclear, Particle,
Astronomy and Cosmology (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under Contracts No. Collaborative Research Center CRC 1044, No. FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) under Contract No. 5304CDP03; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Natural Science Foundation of China (NSFC) under Contracts No. 11505034 and No. 11575077; National Science and Technology fund; The Swedish Research Council; U.S. Department of Energy under Contracts No. DE-FG02-05ER41374, No. DE-SC-0010118, No. DE-SC-0010504, No. DE-SC-0012069; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0.