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This thesis provides an analysis of the evolution of discrete traits and their effect on the
birth and survival of species using the theory of supercritical, continuous time Markov
branching processes. We present a branching modeling framework that incorporates multi-
trait diversification processes associated with the emergence of new species, death of existing
species, and transition of species carrying one type of a trait to another. The trait-dependent
speciation, extinction, and transition help in interpreting the relationships between traits on one
hand, and linking together the diversification process with molecular evolution on the other.
Various multitype species branching models are applied in order to examine the evolutionary
patterns in known data sets, such as the impact of outcrossing and selfing mating systems on
the diversification rates of species, and the analysis of virulent behavior of pathogenic bacterial
strains in different environments. Stochastic equations and limit theorems for branching
processes help scrutinize the long time asymptotics of the models under an asymmetry in change
of types, and under various schemes of rescaling. In addition, we explore diversity-dependent
processes in which, instead of allowing supercritical growth of population sizes, the increase in
species numbers is regulated by modifying the species branching rates. The use of probabilistic
methods in a setting of population genetics leads to an analogy between biallelic frequency
models and binary trait species tree models. To obtain an approximation for a Markov branching
process of species evolution over a long geological time scale, we methodically utilize the theory
of diffusion processes. Overall, our results show that branching models can be effectively used
to seek to comprehend the diversification patterns in species during the process of evolution.
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Introduction

Stochastic models based on naturally occurring random phenomena, such as
molecular evolution and the growth of families of species, can be used to
analyze the variability that characterizes such processes. This work utilizes
various stochastic models, in particular, continuous time Markov branching
models, to describe the evolution of discrete traits on species trees. The first
part of the thesis not only provides a brief introduction to the mathematical
theory behind some basic stochastic processes along with applications to bi-
ological models, it also serves as background reading for the forthcoming re-
search work presented in the second part of the thesis, which consists of four
appended articles.

In Part I of this thesis, we review basic nucleotide substitution models as
well as fundamental models in the field of population genetics, such as the
acclaimed Wright-Fisher model and the Wright-Fisher diffusion, and empha-
size their relevance as Markov and diffusion models. Moreover, we outline
the general theory of discrete time, continuous time, and continuous state
Markov branching processes and discuss their applications to various popula-
tion models. Specifically, we utilize the mathematical framework of continu-
ous time branching processes to explore multitype trait-dependent and density-
dependent models based on the differences in diversification rates during the
evolution of species. Brief summaries of our research results are also provided
in Part I.

In Part II of the thesis, we present our findings in the form of four appended
papers. In Paper I, we model the impact of traits on species diversification
rates and on molecular evolution. For this purpose, we first develop a prob-
abilistic model for a random binary trait species tree, in which the number
of species are represented by a two-type, continuous time Markov branching
process. Then, we describe a trait-dependent substitution process which runs
as a Poisson process along the branches of the species tree. From the analysis,
we conclude that trait-dependent diversification processes can have a strong
affect on molecular evolutionary rates. In Paper II, we extend the two-type
model studied earlier, to four-type branching models in order to investigate
pathogenic characteristics in E.coli bacteria. We survey existing fundamental
theorems regarding the behavior of branching processes in the long time limit
and apply our findings to a clinical data set of virulent and nonvirulent bacte-
rial strains. We show that estimates of various parameter values of multitype
branching models can be effectively used to provide information on the limits
of the proportions of bacterial strains in different states of the models.
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In the remaining papers, we examine continuous time branching models
that incorporate population size dependence. In such models, species are not
allowed to grow in size without a bound, instead their numbers are regulated
by the population size itself. In Paper III, we analyze stochastic equations
and limit results for both the basic branching process and its population size
dependent version. We also explore scaled branching models and describe the
fluctuations around the limit of these processes using the central limit theorem.
In Paper IV, we again study a binary trait species branching process, this time
using a population genetics setting. For this purpose, we construct a species
modeling framework on an evolutionary time scale, and obtain a diffusion
approximation of the process in order to provide an analogy with the Wright-
Fisher diffusion model. The analytical structure developed is finally applied
on models which integrate different forms of diversity-dependence.
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Part I:
Background and summary

1. Stochastic processes with applications in
evolutionary biology

A stochastic (or random) process is a mechanism by which one can assess the
relationship between sequences of random events. It is defined as a family of
random variables {Xt : t ∈ T}, where t is a parameter running over a suitable
index set T . The state space S of a stochastic process gives the range of all
possible values for the random variables. The index set T is usually taken as
a set of times, and the parameter t may represent discrete units of time with
T = {0,1,2, . . .}, or continuous time in which T = [0,∞). Depending on the
nature of the time parameter, Xt is either a discrete time or a continuous time
stochastic process, whereas depending on the state space, Xt is either a discrete
state or a continuous state stochastic process.

1.1 Markov models
Markov processes: A Markov process is a random process which satisfies the
Markov property; given its current state, the probability of any future behavior
of the process is independent of knowledge concerning its past behavior [46].
Discrete time Markov chain: A stochastic process {Xn : n = 0,1,2, . . .} is a
discrete time Markov chain if

P(Xn+1 = j|X0 = i0, X1 = i1, . . . ,Xn−1 = in−1, Xn = i) = P(Xn+1 = j|Xn = i),

for all time points n and all states i0, i1, . . . , in−1, i, j in the state space S. The
homogeneous state transition probability for Xn is given by pi j = P(Xn+1 =
j|Xn = i), where 0 ≤ pi j ≤ 1 and ∑ j pi j = 1, i = 1, . . . ,n. The transition
probabilities can be displayed as entries of the transition probability matrix,
P = {pi j : i, j = 1, . . . ,n}, such that the rows of the matrix sum up to 1. Fur-
thermore, pi j(n) = ∑k pik(m)pk j(n−m), for all 0 < m < n, i.e., for a process
currently in state i, the probability that it will be in state j after n transitions
is equal to the product of the probability that it starts in state i and reaches an
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intermediate state k after m transitions, and the probability that it goes from
state k to state j after n−m transitions [18].

Continuous time Markov chain: A stochastic process {Xt : t ≥ 0} is a contin-
uous time Markov chain if, given the value of Xs, the values of Xu, u ≤ s, do
not influence the value of Xt+s, or

P(Xt+s = j|Xs = i, Xu = k) = P(Xt+s = j|Xs = i),

for all s, t, u ≥ 0 and i, j, k ∈ {1,2, . . .}. The homogeneous transition proba-
bility function for Xt is given as pi j(t) = P(Xt = j|X0 = i), i.e., the probability
that the Markov chain currently in state i will be in state j after an additional
time t > 0, with 0 ≤ pi j(t) ≤ 1 and ∑ j pi j(t) = 1, for i = 1,2, . . .. Moreover,
pi j(t1 + t2) = ∑k pik(t1)pk j(t2) [18].

Whenever a continuous time Markov chain enters a state i, it spends there
a certain amount of holding time, which is exponentially distributed with rate,
say, ai. After the holding time has elapsed, the process exits state i with rate
ai and transitions to another state j with probability pi j. The rate at which
the transition occurs from state i to j is given by qi j = ai pi j. The transition
rates qi j are represented by the entries of the transition rate matrix Q = {qi j},
each row of which should sum up to zero, hence the diagonal entries of Q are
qii =−∑i6= j qi j, with−qii being the rate at which the Markov chain leaves state
i. The matrix Q determines the transition probability matrix P(t) = {pi j(t)},
t > 0, which is given by the solution P(t) = eQt of the ODE

dP(t)
dt

= P(t)Q, P(0) = I,

where I is the identity matrix [49].

Population genetics
A number of biological processes comprise of units that reproduce, for in-
stance, individuals in demographic models and genes in population genetics
models. Population genetics is the study of genetic variation within popula-
tions. It predicts the changes in the frequencies of alleles in populations over
time and under various conditions. Biological applications of discrete and
continuous time Markov chains can be found in the field of population ge-
netics, by way of the classical Wright-Fisher and Moran models, respectively,
which we will now elaborate in detail. Contrary to other models presented in
later sections, the total size is assumed fixed in the Wright-Fisher and Moran
models. Moreover, we observe that different forms of a gene (alleles) in a
population genetics framework can be considered analogous to different traits
in species branching processes. We implement this concept in Paper IV to an-
alyze various properties of a branching model of binary trait species evolution
under a geological time scale.
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(i) The Wright-Fisher model
The Wright-Fisher (WF) model, introduced by S. Wright and R. A. Fisher in
the early 20th century, is a model that describes genetic drift, a phenomenon
defined as the random fluctuations in a finite populations’ allele frequencies
that occur during the transfer of alleles from one generation to the next. Math-
ematically, the WF model provides a simple application of the discrete time
Markov chain. Consider a population with a constant size N and discrete
generations, i.e., in each generation, the whole population reproduces simulta-
neously and is replaced by its offspring. To achieve genetic drift in the model,
it is assumed that in each generation, alleles are randomly sampled with re-
placement (independently and with equal probability) and then transmitted to
the next generation. The population consists of individuals carrying alleles
of two types, say, type 0 and type 1. Let {Xn : n = 0,1,2, . . .} be the num-
ber of type 0 alleles in the nth generation and let fn = Xn/N be the type 0
allele frequency. Then, Xn is a discrete time Markov chain with state space
S = {0,1, . . . ,N} and transition probability

pi j = P(Xn+1 = j|Xn = i) =
(

N
j

)(
i
N

) j(
1− i

N

)N− j

,

which is a binomial distribution with parameters N and i/N. It follows that
E(Xn+1|Xn = i) = i, and therefore, E( fn+1| fn) = fn, i.e., the frequency of type
0 (and hence type 1) alleles is expected to remain the same from one generation
to the next. Moreover, the states 0 and N are absorbing states of the Markov
chain, thus, eventually when Xn = 0 (or N), Xn+k = 0 (or N) for all k ≥ 0. In
this case, the allele is said to be lost ( fn = 0) or fixed ( fn = 1) in the population
[32, 33]. Figure 1.1 gives a diagrammatic representation of the WF model.

The WF model can be extended to incorporate the effect of mutations on
allele frequencies [32]. Assume that a type 0 allele mutates to a type 1 allele
with mutation rate δ01, and type 1 to type 0 mutation occurs with rate δ10. Then
the expected allele frequency of type 0, given that type 0 allele frequency in
generation n is fn, is

E( fn+1) = (1−δ01) fn +δ10(1− fn).

In this case, the transition probabilities for Xt are given by

pi j =

(
N
j

)(
i
N

(
1−δ01

)
+
(
1− i

N

)
δ10

) j( i
N

δ01 +
(
1− i

N

)(
1−δ10

))N− j

,

for i, j = 0,1, . . . ,N. If δ10δ01 > 0, allele fixation does not occur in any state,
instead, an equilibrium value is eventually reached as n→ ∞. At the equilib-
rium, there is no change in the allele frequencies, thus E( fn+1) = fn = f (say).
This gives (1−δ01)f+δ10(1− f) = f and rearranging,

f=
δ10

δ10 +δ01
.
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X5 = 4

X4 = 4

X3 = 5

X2 = 4type 0

type 1

X1 = 5

X0 = 6

Figure 1.1. The Wright-Fisher model.

To investigate the fluctuations in the WF allele frequencies under the influence
of selection, assume that type 0 alleles have a selective advantage over type 1
alleles, so that the relative fitness of type 0 and type 1 alleles is 1+ s and
1, respectively, where s > 0 is the selection coefficient. In other words, all
individuals with type 0 alleles and 1/(1+ s) individuals with type 1 alleles
survive. The Markov chain Xn has transition probabilities

pi j =

(
N
j

)(
(1+ s)i
N + si

) j( N− i
N + si

)N− j

,

for i, j = 0,1, . . . ,N. The expected allele frequency of type 0 is given as

E( fn+1) =
(1+ s) fn

1+ s fn
,

where fn is the frequency of type 0 allele in generation n [20].

(ii) The Moran model
The Moran model, presented by P. Moran in 1958, is a continuous time ana-
logue of the WF model. Mathematically, the Moran model is a birth and death
process; a continuous time Markov chain {Xt : t ≥ 0} for which pi j = 0 when-
ever j 6= i+1 or j 6= i−1, for i, j = 1,2, . . ., i.e., only those transitions (from a
state i) can occur which either cause an increase in state by one (i+1), known
as a birth, or a decrease in state by one (i− 1), known as death. Transition
rates qi j for birth and death from state i are given by qi(i+1) = ai pi(i+1) and
qi(i−1) = ai pi(i−1), respectively, where qi(i+1)+qi(i−1) = ai is the rate at which
the process transitions out of state i [18].

Biologically, there are two essential differences between the WF and Moran
models. Firstly, unlike the WF model which evolves in discrete generations,
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type 0

type 1
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×

Xt

Figure 1.2. Diagrammatic representation of the Moran model. Here, the population is
tracked at only those points in time where a birth-death event occurs.

the Moran model assumes overlapping generations. Secondly, while in the
WF model, individuals are allowed to have any number of offspring from 0 to
N, in the Moran model, genetic drift is caused by a sampling process which
involves randomly choosing an individual to reproduce, immediately followed
by the death of another randomly chosen individual, so that the population
size remains constant at N. As before, let the population consist of individuals
carrying two types of alleles, 0 and 1, and let {Xt : t ≥ 0} denote the number of
type 0 alleles at time t. Then, Xt is a birth and death process with state space
S = {0,1, . . . ,N}, and transition rates given by

λi =
i
N

(
1− i

N

)
, µi =

(
1− i

N

) i
N
, i ∈ {0,1, . . . ,N}.

The above relations are motivated as follows: if the number of type 0 alleles
is i, then to go from i to i+1 in one birth-death event, the individual randomly
selected to reproduce (after an exponential holding time with rate one) should
carry a type 0 allele with probability i/N, and the individual randomly selected
to die should carry a type 1 allele with probability 1− i/N, hence the birth rate
λi. Similarly, the number of type 0 alleles decrease from i to i−1 with death
rate µi [33]. This process is represented in Figure 1.2.

Molecular evolution
Over the past few decades, there has been a massive increase in the availability
of genetic sequence data which has led to a breakthrough in comprehending
the mechanisms of molecular evolutionary processes. In this section, we study
the changes that occur in gene sequences over time by surveying some ba-
sic models of molecular evolution, such as nucleotide and codon substitution
models, which exploit the theory of Markov processes.
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(i) Nucleotide substitution models
The hereditary material of living organisms (DNA) is composed of molecules
known as nucleotides, which consist of a sugar and phosphate molecule, along
with one of the four nitrogen bases, adenine (A), thymine (T), guanine (G)
and cytosine (C). Continuous time Markov chains can be used to model the
changes that occur randomly in the order of these bases, or the nucleotide
sequence. Furthermore, the distance between a pair of nucleotide sequences,
measured in terms of the average number of substitutions per site, forms the
basis for phylogenetic tree reconstruction.

JC69 model: Consider a continuous time Markov chain {Xt : t ≥ 0}, where
Xt denotes the state of the chain at time t, which could be A, T, G, or C. Let
the substitution rate from a nucleotide i to a nucleotide j be qi j, i, j ∈ S =
{A, T, G, C}. If qi j has the same value, say α , for all i 6= j, then the resulting
model is known as the JC69 (Jukes and Cantor 1969) model, and the rate
matrix Q is given by

Q =


−qA qAT qAG qAC

qTA −qT qTG qTC

qGA qGT −qG qGC

qCA qCT qCG −qC

=


−3α α α α

α −3α α α

α α −3α α

α α α −3α

 .

The transition probabilities pi j(t) that a nucleotide i will be a different nu-
cleotide j after a time t, are given by the transition probability matrix as

P(t) = {pi j(t)}= eQt =
∞

∑
k=0

Qktk

k!
=


p1(t) p2(t) p2(t) p2(t)
p2(t) p1(t) p2(t) p2(t)
p2(t) p2(t) p1(t) p2(t)
p2(t) p2(t) p2(t) p1(t)

 ,

where p1(t) = (1+3e−4αt)/4 and p2(t) = (1− e−4αt)/4. As t→ ∞, pi j(t) =
1/4 for all i, j. Thus, the stationary distribution, i.e., the probability that
the chain is in a state k, k ∈ S, as t → ∞, is given by π = (πA,πT,πG,πC) =
(1/4,1/4,1/4,1/4), where πP(t) = π and πQ = 0 [49].

Consider two sequences that are separated by a time t. Then, the distance
between them under the JC69 model is d = 3αt, which is the expected number
of substitutions per site for each nucleotide. The probability that a site is
occupied by a nucleotide, different from the ancestral sequence, is given by
p= 3p2(t) = 3(1−e−4d/3)/4 [49]. Letting p̂ be the proportion of sites that are
different between the two sequences and equating p with p̂, gives an estimate
d̂ of the distance between two sequences as

d̂ =−3
4

ln(1− 4
3

p̂).

K80 model: Substitutions between two pyrimidines (T and C) or two purines
(A and G), known as transitions, are known to occur at different rates than
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transversions, substitutions between a pyrimidine and a purine. To account
for this, a model known as the K80 model was proposed by Kimura in 1980.
Letting the substitution rates be µ for transitions and ν for transversions, the
rate matrix Q becomes

Q =


−(2ν +µ) ν µ ν

ν −(2ν +µ) ν µ

µ ν −(2ν +µ) ν

ν µ ν −(2ν +µ)

 ,

while the transition probability matrix P(t) is

P(t) =


p1(t) p3(t) p2(t) p3(t)
p3(t) p1(t) p3(t) p2(t)
p2(t) p3(t) p1(t) p3(t)
p3(t) p2(t) p3(t) p1(t)

 ,

where p1(t) =
(
1+e−4d/(κ+2)+2e−2d(κ+1)/(κ+2)

)
/4, p2(t) =

(
1+e−4d/(κ+2)

− 2e−2d(κ+1)/(κ+2)
)
/4, and p3(t) =

(
1− e−4d/(κ+2)

)
/4, with d = (2ν + µ)t

and κ = µ/ν . As before, the stationary distribution is given by π = (1/4,1/4,
1/4,1/4) [49].

The value d = (2ν +µ)t gives the distance between two sequences that are
separated by a time t, where the expected number of transitions and transver-
sions per site are µt and 2νt, respectively. The probability that a site has nu-
cleotides with transitional difference is given as A = p2(t), and the probability
that a site has nucleotides with transversional difference is B = 2p3(t). More-
over, let Â and B̂ be the proportion of sites that are different between the two
sequences due to transitions and transversions, respectively. Equating A with
Â and B with B̂ gives an estimate of the transition distance µ̂t and transversion
distance 2̂νt as

µ̂t =−1
2

ln(1−2Â− B̂)+
1
4

ln(1−2B̂), 2̂νt =−1
2

ln(1−2B̂).

Depending on the rates of nucleotide substitutions, various models with more
realistic assumptions have also been studied, in which qi j 6= q ji for all i, j, and
the stationary distribution π = (πA,πT,πG,πC) has unequal proportions of the
four nucleotide bases, e.g., TN93 (Tamura and Nei 1993), HYK84 (Hasegawa
et al. 1985), F84 (Felsenstein 1984), etc. [49].

(ii) Codon substitution models
The genetic code is a sequence of nucleotides that determines the formation of
amino acids, the building blocks of proteins. The genetic code consists of 64
possible combinations of three adjacent nucleotides, which form a unit known
as the codon. 61 out of 64 codons, called sense codons, correspond to one
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of the 20 amino acids during protein synthesis, while the remaining are stop
signals.

Just like nucleotide substitution models discussed above, Markov chains
can be used to describe the substitutions that occur in codons which constitute
protein-coding genes. Two types of substitutions may occur: a nucleotide
substitution in a codon which does not change the amino acid being coded
for, is called a synonymous substitution, while a substitution which causes a
change in the encoded amino acid is a nonsynonymous substitution. The state
space S of the continuous time Markov chain consists of the 61 sense codons.
The entries qi j of the rate matrix Q give the rate of change of codons from i to
j, i, j ∈ S, i 6= j, as

qi j =



0, if i and j differ at two or more codon positions,
π j, if i and j differ by a synonymous transversion,
ωπ j, if i and j differ by a nonsynonymous transversion,
κπ j, if i and j differ by a synonymous transition,
κωπ j, if i and j differ by a nonsynonymous transition,

where π j is the equilibrium proportion of j, κ is the ratio of transitions to
transversions, and ω is the ratio of nonsynonymous to synonymous substi-
tutions [49]. Further, it is assumed that mutations occur independently and
simultaneous changes at more than one positions do not occur. Different as-
sumptions can be made about π j, e.g., each codon could have the same fre-
quency, 1/61, or they could be estimated from the three sets of nucleotide
frequencies for the three codon positions (F3 × 4 model), etc. The transition
probability matrix P(t) can be calculated using numerical methods [49].

Distances between protein-coding sequences are calculated separately for
synonymous and nonsynonymous substitutions. One way to do this is by
counting methods which are similar to distance calculation in nucleotide sub-
stitution models given above, in which synonymous and nonsynonymous sites
as well as synonymous and nonsynonymous differences are first counted, and
the proportions of differences is then calculated [49].

1.2 Diffusion models
So far, we have considered jump processes with constant sample paths, in
which the given system enters a discrete state and after spending a certain
amount of holding time in that state, it transitions to another state, and so on.
We now explore diffusion processes — continuous state Markov processes for
which the sample paths are continuous functions of time.

Stochastic differential equations (or SDEs) provide a representation of the
dynamic behavior of continuous stochastic processes. An SDE for the process
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{Xt : t ≥ 0} is given by

dXt = a(Xt , t)dt +b(Xt , t)dBt , t ≥ 0, X0 = x0,

where Bt is the standard Brownian motion, and the functions a(Xt , t) and
b(Xt , t) describe short-term growth and short-term variability, respectively.
The solution of the SDE is obtained using the integral equation

Xt = X0 +
∫ t

0
a(Xu,u)du+

∫ t

0
b(Xu,u)dBu.

Xt is said to be a strong solution of the SDE if both integrals in the above
stochastic equation exist for all t > 0 [18].

Diffusion processes: A diffusion process {Xt : t ≥ 0}, whose state space S
is an interval I over the real line, has continuous sample paths, and the mean
and variance of the infinitesimal displacements in the process are given by the
limits

µ(x, t) = lim
∆t→0

1
∆t

E(Xt+∆t −Xt | Xt = x) ,

and
σ

2(x, t) = lim
∆t→0

1
∆t

E
(
{Xt+∆t −Xt}2 ∣∣ Xt = x

)
,

respectively, for all x ∈ I. The functions µ(x, t) and σ2(x, t) are known as the
infinitesimal mean or drift parameter and the infinitesimal variance or diffusion
parameter of Xt , respectively. To visualize the diffusion process, consider a
physical system with state Xt , t ≥ 0, in which is introduced a random input
Bt , the standard Brownian motion. Then, a small increment, dXt , in Xt over a
small time interval (t, t +dt) can be expressed in terms of an SDE as

dXt = µ(x, t)dt +σ(x, t)dBt ,

where dBt is an increment in Bt over the time interval (t, t +dt) [21].
An example of a diffusion process over the interval (−∞,+∞) is the Brow-

nian motion, for which the drift parameter is 0 and the diffusion parameter
is a positive constant σ2. Another example is the Brownian motion with
drift, in which both drift and diffusion parameters are constant functions, i.e.,
µ(x, t) = µ and σ2(x, t) = σ2. The mean reverting Ornstein-Uhlenbeck pro-
cess Xt is another diffusion process, which is the solution of the SDE

dXt = β (µ−Xt)dt +σ dBt ,

where β is the rate of mean reversion and µ is the constant long term mean.
Furthermore, discrete state stochastic processes can also be approximated us-
ing continuous state diffusion models, a classical example of which is the
Wright-Fisher diffusion model as described below.
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Wright-Fisher diffusion model
Due to the incorporation of complex and more realistic biological features,
such as mutation and selection, exact calculations of probabilistic functions
under the discrete state WF model often become impossible. One solution is
to approximate the model using a diffusion process, by which various complex
properties of the WF model can be characterized by only two quantities: the
mean change in the process and the variation around the mean value.

Consider a finite population of size N, with individuals carrying two types
of alleles, type 0 and type 1. As before, assume that mutations between the two
types occur with rates δ01 and δ10, and the relative fitnesses of the two types
are 1+ s : 1. Recall that under the effect of mutation, the expected proportion
of offspring carrying type 0 alleles, given that there are i type 0 alleles in the
parent generation, is

pmut
i =

i
N
(1−δ01)+

(
1− i

N

)
δ10.

Also, recall that due to selection, given i type 0 alleles in the parent generation,
the expected fraction of offspring with type 0 alleles is

psel
i =

(1+ s)i
N + si

.

For the construction of the WF diffusion process, the mutation rates and se-
lection coefficient are scaled with N as

δ01 =
ρ01

N
, δ10 =

ρ10

N
, s =

γ

N
, ρ01, ρ10, γ > 0.

Let Xn be the number of type 0 alleles in the nth generation, and let X[Nt] be
the scaled version of the process at generation time [Nt]. Thus, the time is
scaled in such a way, that in one unit t = 1 of the process X[Nt], N generations
have lapsed in the original process Xn. Moreover, let ξ N

t = N−1X[Nt] be the
fraction of type 0 alleles in [Nt] generations. In the limit N→ ∞, the process
ξ N

t converges to the WF diffusion process ξt [21].
Letting ξ N

t+∆t − ξ N
t be the change in the proportion of type 0 alleles over a

time interval of length ∆t = 1/N, the infinitesimal mean and variance functions
for the WF diffusion under mutation are obtained as

µ(ξ , t) = lim
N→∞

N
(

pmut
i − i

N

)
= lim

N→∞

(
−ρ01

i
N
+ρ10

(
1− i

N

))
=−ρ01ξ +ρ10(1−ξ ),

and

σ
2(ξ , t) = lim

N→∞
N
( 1

N
pmut

i (1− pmut
i )
)
= lim

N→∞

( i
N

(
1− i

N

)
+O

( i
N

))
= ξ (1−ξ ),
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respectively. Similarly, the drift and diffusion parameters for the WF diffusion
process under the effect of selection are obtained as

µ(ξ , t) = lim
N→∞

N
(

psel
i −

i
N

)
= lim

N→∞

(
γ

i
N

(
1− i

N

)
+O

( i
N

))
= γξ (1−ξ ),

and

σ
2(ξ , t) = lim

N→∞
N
( 1

N
psel

i (1− psel
i )
)
= lim

N→∞

( i
N

(
1− i

N

)
+O

( i
N

))
= ξ (1−ξ ),

respectively. Combining the above functions, the WF diffusion ξt is thus a
solution of the SDE

dξt =−ρ01ξt dt +ρ10(1−ξt)dt + γξt(1−ξt)dt +
√

ξt(1−ξt)dBt ,

where B is a Brownian motion [21].
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2. Branching processes with applications to
species diversification

In this section, we outline general properties of discrete time, continuous time,
and continuous state Markov branching processes. We also provide appli-
cations of branching processes in the form of various species diversification
models and density-dependent population growth models.

2.1 Discrete time branching processes
Consider the evolution of a population that starts with X0 number of particles at
time 0. After one unit of time, each particle independently produces a random
number ξ of offspring according to the probability distribution

P(ξ = k) = pk, k = 0,1,2, . . . , pk ≥ 0,
∞

∑
0

pk = 1.

Hence, in the first generation, the total number X1 of particles is the sum of
independent observations of ξ . Similarly, a second generation of X2 particles
is produced, independently of each other and independent of particles already
existing, and so on. Let Xn denote the total number of particles in the nth
generation, and note that if Xn = 0, then Xn+m = 0 for all m≥ 0. The process
{Xn : n = 0,1,2, . . .} is called a discrete time Markov branching process or the
Galton-Watson process [2, 20], with transition probabilities

pi j = P(Xn+1 = j|Xn = i) =


P(ξ1 + . . .+ξi = j) if i≥ 1, j ≥ 0,

0 if i = 0, j > 0,
1 if i = 0, j = 0,

where {ξk}i
k=1 are the numbers of particles produced independently by the i

individuals in generation n. A key feature of this process is the additive prop-
erty; a branching process with j initial particles, j ≥ 1, is equal to summing
up j independent branching processes for which X0 = 1 [2]. Figure 2.1 is a
diagram representing a discrete time Markov branching process.

Generating function: Let

f (s) =
∞

∑
j=0

p js j, |s| ≤ 1,
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X 0
=

1

X 1
=

3

X 2
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4

X 3
=

6

X 4
=

8

X 5
=

11

X n
Figure 2.1. Pictorial representation of the Galton-Watson process.

be the generating function associated with ξ , and observe that ∑
∞
j=0 p1 j s j =

∑
∞
j=0 p j s j = f (s). Since ξk, k = 1, . . . , i, are independent and identically

distributed random variables with a common probability generating function
f (s), then using the property that the generating function of a sum of indepen-
dent integer valued random variables is equal to the product of their generating
functions, [ f (s)]i is the generating function corresponding to ξ1+ . . .+ξi, that
is,

∞

∑
j=0

pi js j = [ f (s)]i, i≥ 1, |s| ≤ 1.

Hence, pi j is the coefficient of s j in the power series expansion of [ f (s)]i [20].

Mean values and extinction probability: The expected value of the branching
process {Xn : n = 0,1,2, . . .} is given by the derivative of f (s) at s = 1, i.e.,

E(Xn) = [ f ′(1)]n = mn,

where m = f ′(1) = ∑
∞
j=0 p1 j j = E(X1) [2].

The extinction probability of {Xn} is the probability that the population
will eventually go extinct (P{Xn = 0} for some n), and is given by the smallest
nonnegative root, q, of the equation

f (s) = s.
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q is 1 if m≤ 1 and less than 1 if m > 1. Hence, the population definitely dies
out if the mean number of offspring produced per individual does not exceed
1. Moreover, P{Xn = k}= 0 as n→ ∞ for k ≥ 1, which implies that Xn

a.s.−→ 0
or Xn

a.s.−→∞. The branching process Xn is called supercritical if m > 1, critical
if m = 1, and subcritical if m < 1 [2].

Multitype branching process: We can extend the above discrete time Markov
branching process from one dimension to r dimensions as follows. Let Er be
the r dimensional Euclidean space and let

Z+
r = {(x1, . . . ,xr) : xi ∈ Z, xi ≥ 0, i = 1, . . . ,r},

i.e., the set of all points in Er with nonnegative integer coordinates. Also, let
Cr = {(x1, . . . ,xr) : 0≤ xi ≤ 1, i = 1, . . . ,r}. The probability of production of
particles in an r-type process is given by

pj =
(

p(1)j , . . . , p(r)j

)
, j ∈ Z+

r , ∑
j

p(i)j = 1, ∀ i = 1, . . . ,r.

Here, each p(i)j = p(i)j1,..., jr
gives the probability of a type i particle creating j1

type 1 offspring, j2 type 2 offspring, . . . , jr type r offspring. The associated
generating function is given as

f(s) =
(

f (1)(s), . . . , f (r)(s)
)
= ∑

j∈Z+
r

pjs
j , s= (s1, . . . ,sr) ∈ Cr,

where each

f (i)(s) = ∑
j1,..., jr≥0

p(i)j1,..., jr
s j1

1 · . . . · s
jr
r , i = 1, . . . ,r,

determines the distribution of the number of various types of offspring pro-
duced by a type i particle [2].

Now, let Xn =
(
X (1)

n , . . . ,X (r)
n
)

be a Markov chain on Z+
r , where each X (i)

n ,
i = 1, . . . ,r, denotes the number of type i particles in the nth generation. Then,
{Xn : n = 0,1,2, . . .} is a multitype (r-type), discrete time Markov branching
process, or the multitype Galton-Watson process, with transition probabilities
given by

pij = P(Xn+1 = j|Xn = i), i,j ∈ Z+
r .

In terms of generating functions, pij is the coefficient of sj in [f(s)]i [2].
Figure 2.2 provides a diagram of a two-type, discrete time Markov branching
process. We will discuss further properties of the multidimensional Markov
branching processes for the continuous time case in the coming section.
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Figure 2.2. Pictorial representation of a two-type Galton-Watson process.

2.2 Continuous time branching processes
Consider a stochastic process {Xt : t ≥ 0} where Xt denotes the number of
particles at time t. Let the life times of each particle be independent of one
another and exponentially distributed random variables. Then Xt is said to be
a one dimensional, continuous time Markov branching process [2] if
a) Xt is a continuous time Markov chain on the set of nonnegative integers.
b) The transition probabilities pi j(t) satisfy the property

∞

∑
j=0

pi j(t)s j =
[ ∞

∑
j=0

p1 j(t)s j
]i
, i≥ 0, |s| ≤ 1.

Without going into the properties of the above branching process, we skip
directly to its generalization to r dimensions. A stochastic process Xt =(
X1(t), . . . ,Xr(t)

)
, where each Xi(t), i = 1, . . . ,r, represents the number of type

i particles at time t, t ≥ 0, is a multitype, continuous time Markov branching
process if
a) Xt is a continuous time Markov chain on Z+

r , and
b) the transition probabilities pij(t) satisfy

∑
j∈Z+

r

pij(t)sj =
r

∏
k=1

[
∑

j∈Z+
r

pekj(t)s
j
]ik

,
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where i = (i1, . . . , ir) ∈ Z+
r , s = (s1, . . . ,sr) ∈ Cr, and ek = (0, . . . ,0,1,0,

. . . ,0) with 1 being the kth component [2].

Generating function: We first define an infinitesimal parameter a as

a= (a1, . . . ,ar), ai ≥ 0, i = 1, . . . ,r,

where ai represents the exponentially distributed life length of type i. Each
type i produces offspring of r types according to a distribution given by coor-
dinates of the vector

pj =
(

p(1)j , . . . , p(r)j

)
, ∑

j∈Z+
r

p(i)j = 1, i = 1, . . . ,r,

where p(i)j gives the probability of a type i particle creating j1 type 1 offspring,
j2 type 2 offspring, and so on. All particles produce independently of each
other and of past events. Similar to the discrete time multitype branching
process, the generating function is given as

f(s) =
(

f (1)(s), . . . , f (r)(s)
)
, s ∈ Cr,

where f (i)(s) = ∑j p(i)j sj , i = 1, . . . ,r, determines the distribution of the num-
ber of offspring of various types to be produced by a type i particle. Further,
the infinitesimal generating function u(s) is given by

u(s) =
(
u(1)(s), . . . ,u(r)(s)

)
, s= (s1, . . . ,sr) ∈ Cr,

with u(i)(s) = ai
(

f (i)(s)− si
)
, i = 1, . . . ,r [2].

Expected values: The mean matrix of the branching process is given as M(t) =
{mi j(t) : i, j = 1, . . . ,r}, where

mi j(t) = E[X j(t)|Xi(t) = 1]< ∞.

There exists a matrix A = {ai j : i, j = 1, . . . ,r}, which we call the mean off-
spring matrix, such that

ai j = ai

(
∂ f (i)(s)

∂ s j

∣∣∣
s=(1,...,1)

−δi j

)
, δi j =

{
1 if i = j
0 otherwise,

and

M(t) = eAt =
∞

∑
q=0

Aqtq

q!
.

The process Xt is said to be positively regular if for some t0 (0 < t0 < ∞),
mi j(t0)> 0 ∀ i, j. Then, a positive and simple eigenvalue ρ(t0) of M(t0) exists,
whose magnitude is larger than all the other eigenvalues. The eigenvalues of
M(t) have the form eλit , where λi, i= 1, . . . ,r, are eigenvalues of A and classify
the branching process as
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
supercritical if λ1 > 1,
critical if λ1 = 1,
subcritical if λ1 < 1,

with λ1 being the largest eigenvalue of A [2].

Extinction probability: The extinction probability is given by q = (q(1), . . . ,
q(r)), where each q(i) is the minimal solution of the equation

f(s) = s or u(s) = 0= (0, . . . ,0).

As in the discrete case, the branching process Xt→∞ or Xt→ 0, with proba-
bility 1, as t→∞ [2]. Contrary to the predicted extinction behavior of branch-
ing processes, in reality it is often seen that finite biological populations tend
to reach a state of balance over long periods of time. In Papers III and IV,
we show that such populations can be modeled by using branching processes
which have been modified to include population size dependence.

2.3 Continuous state branching processes
In the previous sections, we described discrete time as well as continuous
time branching processes, whose state space was always the discrete set of
nonnegative integers. Here, we focus on stochastic branching processes with
continuous state space, i.e., the whole nonnegative part of the Euclidean space.

Let (E,E) be a measurable space, i.e., E is a set and E is a σ -algebra on E.
The function Ps,t(x,A), A ∈ E, x ∈ E, 0 ≤ s < t < ∞, is called a Markov tran-
sition function on (E,E) if for a fixed s, t and x, A 7→ Ps,t(x,A) is a probability
measure on (E,E), for a fixed A, s and t, x 7→ Ps,t(x,A) is E-measurable, and
for 0≤ s < u < t, Ps,t(x,A) =

∫
E Ps,u(x,dy)Pu,t(y,A) [8].

Definition 2.3.1. Let (E,B) be a measurable space, where E = [0,∞) and
B is the Borel σ -algebra on E. A continuous branching function is a family
{Pt(x,B)} of functions, with B∈B, x∈ E, t ≥ 0, which satisfies the following
conditions.
a) It is a Markov transition function on the Borel sets of [0,∞), such that

Pt
(
x, [0,∞)

)
= 1.

b) There exist some t > 0 and x > 0 such that Pt(x,{0}) < 1, i.e., the trivial
case that the process starting at some x instantly dies, is ruled out.

c) The Markov transition function satisfies the following property: for any
x,y≥ 0 and t ≥ 0,

Pt(x+ y,B) =
∫

Pt(x,B−u)Pt(y,du)

for each B ∈B. Hence, starting the process at x+ y is the same as the sum
of two independent processes starting at x and at y [2, 24].
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A continuous state branching process {Xt : t ≥ 0} is a Markov process on
[0,∞) with transition probabilities given by a continuous branching function.

�

Some classes of continuous state branching processes can be constructed
as limits of sequences of discrete time Markov branching processes as fol-
lows. Let {Xn : n = 0,1,2, . . .} be a discrete time Markov branching process
and consider a sequence XN

n , N = 1,2, . . . , of such processes, with XN
0 = N,

and offspring distribution given by P(ξN = k) = pN
k , k = 0,1,2, . . .. Let the

generating function fN(s) of XN
n depend upon N in such a way, so that

E(XN
1 ) = f ′N(1) = 1+

αN

N
, Var(XN

1 ) = βN ,

where αN→ α ∈R and βN→ β > 0 as N→∞. Next, consider the continuous
time process XN

[Nt] scaled over Nt generations and let

Y N
t =

1
N

XN
[Nt], 0≤ t < ∞.

As N→ ∞, Y N
t converges to the continuous state branching process Yt , which

is the solution of the SDE

dYt = αYt dt +
√

βYt dBt , t ≥ 0,

where Bt is a Brownian motion. While the original discrete process Xn gave
the number of individuals in each generation, we can intuitively think of the
continuous limit Yt representing a process in which infinitely many births and
deaths occur constantly [34]. The above SDE, representing the continuous
approximation of the discrete Galton-Watson branching process, is known as
the Feller diffusion equation [15]. These types of equations are discussed
further in Paper IV.

2.4 Trait-dependent models
Discrete traits, such as selfing and outcrossing mating systems in flowering
plants, and continuous traits, such as body size in mammals, have been sug-
gested to affect the rates of diversification — the difference between birth and
death rates — in species [12]. On the other hand, phylogenetic trees contain
patterns of diversification and can help understand the changes in speciation
and extinction rates, as well as the rates of transition between character states
of a species. In recent years, a number of continuous time branching models
have been developed that use information from phylogenetic trees and maxi-
mum likelihood analysis to study the effect of traits on species diversification.
In this section, we review some of these models, such as the BiSSE [29],
MuSSE [11], and ClaSSE [16] models, which in short we will call the SE
— speciation and extinction — models. The SE models provide a parame-
ter estimation method to test for correlations between phenotypic traits and
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diversification rates in lineages and to determine if rates of character change
in species depend on the character state or not. In contrast to earlier studies
where the shape of a phylogenetic tree was considered fixed and characters
were assumed to evolve independently along branches of the fixed tree, the SE
models can simultaneously predict a phylogeny and the evolution of character
states which differ in speciation and extinction rates [27].

(i) Binary state speciation and extinction model
A two-type Markov branching model, named the ‘binary state speciation and
extinction’ (BiSSE) model, was proposed by Maddison et al. [29] to simulta-
neously study character change between binary characters, 0 and 1, and assess
their impact on diversification rates. This model examines the effect of two
characters on birth and death rates, while at the same time, it accounts for pos-
sible transitions between the two states. The model has six parameters: λ0, λ1
are the birth rates and µ0, µ1 are the death rates for type 0 and type 1 species,
respectively, while q01 and q10 represent the rates of character change from
type 0 to type 1 and vice versa, respectively. If we let Kt to be the number of
type 0 species and Lt the number of type 1 species at t ≥ 0, the BiSSE model is
in fact a two-type, continuous time Markov branching process with branching
rates

(k, `) 7→



(k+1, `) λ0k
(k−1, `) µ0k
(k, `+1) λ1`
(k, `−1) µ1`

(k−1, `+1) q01k
(k+1, `−1) q10`.

A diagrammatic representation of the BiSSE model is given in Figure 2.3.

0 1
q01

q10

λ0
0

0

λ1
1

1

µ0 µ1

Figure 2.3. The BiSSE model.

For the parameter estimation analysis in the BiSSE model, it is assumed in
[29] that a phylogenetic tree with known branch lengths and character states
of all extant species is provided. A likelihood analysis is then carried out, i.e.,
given the model with six parameters, the probability D that a lineage would
evolve into a tree, which is identical to the observed tree, is calculated. In order
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∆
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(iii)
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∆
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Figure 2.4. Events that can happen along a branch in the BiSSE model, with state 0
at time t +∆t: (i) no event takes place, (ii) character change occurs, (iii) extinction of
the right lineage (or the left one) occurs, denoted by E. Here, R represents the root of
the tree and N denotes the node from which the observed clade originates.

to achieve this, the probability of an event — such as state change, speciation,
extinction — that may have happened in a small time interval, (t, t +∆t), is
computed. A diagrammatic representation of all possible events is shown in
Figure 2.4. The calculations move backward in time, that is, from the tips
towards the root of the tree. The probabilities are obtained along the branches,
at the nodes, and at the root of the tree, and then added up. Letting ∆t → 0, a
system of ODEs is formulated that can be solved numerically, and parameter
estimates, which maximize the likelihood, are obtained. In practice, the BiSSE
model can be employed using the function ‘make.bisse()’ in the diversitree
package [13] of R [38].

The BiSSE model has been used extensively in recent years to analyze the
process of diversification in various biological scenarios. For example, the au-
thors of [23] used the BiSSE framework to study diversification of bellflowers
in the mountains of South America and showed that species occurring at high
elevations had higher speciation rates as compared to species at low elevation.
This model was also employed in [37] to study the diversification patterns of
the Nymphalidae butterfly family feeding on the Solanaceae plant family, and
in [40], to show that speciation rates of the Caribbean lizard of genus Anolis
have declined independently on various islands of the West Indies. The BiSSE
model is utilized in Paper I of this thesis to obtain diversification rates for a
collection of selfing and outcrossing plant species in the Geraniaceae family,
and to illustrate the effect of diversification process on the estimates of molec-
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Figure 2.5. The MuSSE model with 4 states.

ular evolutionary rates. Apart from making inferences from phylogenetic data,
we also study general mathematical properties of binary branching and asym-
metric transition models in Paper I, that have not been explored earlier.

(ii) Multistate speciation and extinction model
The multistate speciation and extinction (MuSSE) model was introduced by
FitzJohn [11] as an extension of the BiSSE branching model to discrete traits
with multiple character states. Figure 2.5 shows a diagrammatic representa-
tion of a MuSSE model with four states, in which λi are the speciation rates
and µi are the extinction rates of type i individuals, i = 1 . . .4, while qi j are
the rates of character change from type i to type j, i, j = 1 . . .4. The parameter
estimates of this model are obtained in the same way as in the BiSSE model,
and it can be accessed through the diversitree package [13] of R using the func-
tion ‘make.musse()’. The MuSSE model has also been used considerably to
test the impact of multiple traits on diversification rates. For instance, it was
used to study the correlation between dioecious and monoecious species of
conifers in [25], to disprove the hypothesis that evolution of a high number of
vertebrae in reptiles allows for greater diversification regarding taxonomy and
body shape in [7], and in [47], a 4-type MuSSE model was used to study pat-
terns of diversification in speciation rates of Exocelina beetles in four different
regions of the world. In Paper II of this thesis, various versions of a MuSSE
model with 4 states and 10 parameters were employed to examine pathogenic
behavior in a clinical data set [4] of E.coli bacterial strains.
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Figure 2.6. Pictorial representation of anagenetic and cladogenetic character change
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Figure 2.7. The ClaSSE model.

(iii) Cladogenetic state speciation and extinction model
The cladogenetic state speciation and extinction, or ClaSSE, model was intro-
duced by Goldberg and Igic [16] as a modified version of the BiSSE model
with different modes of character change. While the authors of the BiSSE
model considered transitions between the two types to be anagenetic, that is,
character change in a phylogenetic tree (from type 0 to type 1 and vice versa)
occurs instantaneously along a branch, the ClaSSE model takes into account
cladogenetic transitions as well — when a type 0 or type 1 species is replaced
by a combination of both types, 0 and 1, as illustrated in Figure 2.6. The
ClaSSE model is basically a two-type, continuous time Markov branching
process with branching rates depicted in Figure 2.7, in which λ000 and λ111
are the speciation rates of the two types, µ0 and µ1 are the corresponding ex-
tinction rates, q01 and q10 are the rates of anagenetic state change, and λ010
and λ101 are the rates of cladogenetic state change. Similar to previous SE
models, the ClaSSE model can be accessed through the package diversitree
in R [38], using the functions ‘make.classe()’ and ‘find.mle()’. This model
has been widely used in recent research, see for example [3, 22, 44]. Paper I
of this thesis utilizes the ClaSSE model to analyze diversification patterns in
outcrossing and selfing plant species.
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(iv) Limitations of the SE models
Apart from the models described above, many more derivatives of the BiSSE
model have been developed, such as the GeoSSE model [17] for estimating
region-dependent diversification rates associated with geographic character
states, and the QuaSSE model [12] to accommodate character evolution for
continuous traits, among others. Numerous studies have been conducted on
the application of the SE models to various data sets in order to study the
effects of traits on species diversification. However, doubts have been raised
regarding the accuracy of the SE methods, and much research has been carried
out to explore the statistical power of these parameter estimation methods, es-
pecially the original BiSSE model [26]. Some studies show that the power of
BiSSE analysis is affected by low sample size and a high tip ratio bias (when
one character state is more frequent among the tips of the phylogeny), thus, to
get unbiased results, trees should be of reasonably large size and the number
of tips should be more than 300 [9]. Other studies predict that the power of
BiSSE and related models does not depend on the sample size, instead it is
the assumption of the root state of the tree that effects the final results [14]. It
is shown that decreasing the number of parameters in the analyses and letting
parameters equal to one another, increases the power of estimation. In fact,
the author of the MuSSE model and the diversitree package of R warns about
the power of estimating transition rates in the MuSSE model: ‘With more than
9 states, qi j can be ambiguous’ [13].

Depending on the shape of the phylogenetic tree, the SE models may falsely
predict a neutral trait having an effect on the dynamics of diversification [42,
43]. It is also possible that only one clade has a high diversification rate associ-
ated with the trait under consideration, but the diversification is so strong, that
it is enough to return high rates for the whole tree [5]. To prevent false pos-
itives and to account for any underlying unmeasured factors that could have
an effect on diversification, the hidden state speciation and extinction (HiSSE)
model was formulated [5]. This model assumes that related to each observed
state, there is a hidden trait in the model, which is assigned an unknown state
in all the tips of the tree. In this way, any effects on diversification could be
attributed to the hidden trait and would divert focus from the neutral trait [42].

Another issue with the SE models is that of pseudoreplication, i.e., to in-
fer major results when in reality only few evolutionary changes have occurred
in a character involving the trait under consideration [28, 43]. A solution is
to perform pairwise comparisons; selecting many pairs of species and then
checking if the difference in one character consistently predicts a difference
in a second character [28]. A model named as ‘fast, intuitive state-dependent
speciation extinction’ (FiSSE) [41] was introduced recently, to provide a sta-
tistical test to analyze binary trait-dependent diversification rates in phyloge-
nies. FiSSE does not require the use of parameters or an underlying model
for species diversification, instead, it provides estimates of the so called quasi-
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parameters (which can be related to speciation rates in the previous SE mod-
els) that provide distributions for branch lengths associated with each charac-
ter state. Power of the estimated quasi-parameters is judged by comparing the
observed values to the values obtained from a simulated null distribution [41].

The limitations of the SE models listed above are mainly statistical in na-
ture and related to problem of inference. There is however a limitation of
the models themselves; the species are allowed to grow supercritically, with-
out any bound on their total sizes. To overcome this issue, we now describe
diversity-dependent processes, in which population numbers increase only up
to a certain limit and eventually reach a stationary state.

2.5 Diversity-dependent models
All over the natural world, there exists a vast variation in the diversity of
species. Species diversification is not an easy concept to study; since specia-
tion and extinction processes occur on the pylogenetic time scale of millions
of years, it is difficult to estimate diversification rates from fossil data [31].
Hence the nature and causes of the increase in species diversity are debated,
and has led to various conflicting view points. According to one belief, vari-
ance in species richness is due to variation in speciation and extinction rates
[39]. Another reason given is that evolution causes new species to occupy
uninhabited niches and adapt in new environments [6]. There exists a hypoth-
esis which proposes that expansionist growth models can effectively describe
the diversification of families of species. On the other hand, it is also widely
believed that there exists the concept of a carrying capacity; species diversity
can increase only up to a point where it can be supported within a given niche
space [6, 30].

In accordance with the latter theory, we discuss here the concept of diversity
dependent diversification that provides a method of modulating a populations’
increasing numbers. It describes the effect of competition on speciation and
extinction rates, which may be thought of as ‘macroevolutionary’ rates over
a long geological timescale [39]. For this type of a model, we are interested
in a situation in which net growth is regulated by the total size of the system.
As an example, we define a supercritical, continuous time Markov branching
model {Kt : t ≥ 0}, where Kt denotes the total number of species at time t,
and K0 = 1. Let λ and µ be the rates of speciation and extinction of species,
respectively, such that the net diversification rate λ − µ > 0. To introduce
diversity-dependence in the model, λ is replaced by λ (1− k/c), under the
condition that (1−k/c) = 0 if k≥ c, where c represents the carrying capacity.
Let k̄ be the equilibrium diversity, that is, the number of species when the birth
rate equals the death rate [39]. Thus, letting λ (1− k/c) = µ , k̄ = c(1−µ/λ )
defines the equilibrium diversity for the model. Figure 2.8 shows the effect of
density dependence on speciation and extinction rates of the species.
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Figure 2.8. Left: plot of λ and µ versus species richness k, for λ = 12, µ = 7.5 and
c = 200, with k̄ being the equilibrium diversity. Right: plot of diversification rates
versus k for λ = 12,20,30 (red lines), µ = 7.5 (blue line), and c = 200, showing that
an increase in λ , increases the rate of approach towards the equilibrium diversity.
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Figure 2.9. A simulation of the branching process Xt with λ0 = 12, λ1 = 8, µ0 = 2.5,
µ1 = 20, δ = 5, and c = 200. The left plot shows a trace of Kt and Lt , while the right
plot gives the corresponding path of Kt and Lt versus time. It can be seen that the
species numbers increase initially, but later reach a ‘quasi stationary’ state.

We now extend the above model to a two-type, continuous time Markov
branching model, Xt = (Kt ,Lt), t ≥ 0, where Kt is number of type 0 species,
Lt is the number of type 1 species at time t, and X0 = (1,0). This is similar
to the model studied in Papers I and III. The speciation rates for type 0 and
type 1 species are λ0 and λ1, while the death rates are µ0 and µ1, respectively.
Moreover, type 0 species are allowed to transition to type 1 species with rate
δ . The net growth rates of type 0 and type 1 species are γ0 = λ0−µ0−δ > 0
and γ1 = λ1−µ1 < γ0, respectively. We again consider a logistic type model in
which density-dependence is assumed only on the speciation parameter of type
0 species, hence λ0 is replaced by λ0(1−k/c), while the remaining parameters
remain unchanged. Figure 2.9 shows a simulation of the branching process for
arbitrary parameter values.
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Figure 2.10. Plots showing solutions (left) and a phase portrait (right) of the ODE
system when λ0 = 12, δ = 5, γ0 = 4.5, and γ1 =−12.

We can obtain a deterministic approximation of the branching process as fol-
lows. Consider the process Xm

t = (Km
t ,Lm

t ), which starts at time t = 0 with m
type 0 species. This is equivalent to summing up m i.i.d copies of the original
model Xt , which starts with one type 0 species. Define Y m

t = (Um
t ,V m

t ), t ≥ 0,
where Um

t = Km
t /m and V m

t = Lm
t /m. As m→∞, Y m

t = (Um
t ,V m

t )
a.s.−→E(Xt) =

(ut ,vt), which is given by the solution of the ODE system

d
dt

(
ut
vt

)
=

(
γ0−λ0ut/c 0

δ γ1

)(
ut
vt

)
, u0 = 1, v0 = 0.

For arbitrary parameter values, solutions of the above system are represented
in Figure 2.10 (left panel). By letting dut/dt = 0 and dvt/dt = 0, the equilib-
rium solutions of the ODE system are obtained as (û, v̂) = (0,0) and (ū, v̄) =
(cγ0/λ0,−cδγ0/γ1λ0), where the latter is a positive equilibrium since γ1 < 0.
The Jacobian matrix J of the system is given as

J =

(
γ0−2λ0ut/c 0

δ γ1

)
.

At the equilibrium (û, v̂), J has eigenvalues γ0 > 0 and γ1 < 0, hence (û, v̂) is
an unstable saddle point, while at (ū, v̄), the matrix J has eigenvalues −γ0 < 0
and γ1 < 0, hence (ū, v̄) is asymptotically stable. A phase diagram showing the
behavior of solutions near the equilibrium points is given in Figure 2.10 (right
panel). Further properties of the model, such as the description of fluctuations
around the scaled deterministic limit, are provided in Paper III. In Paper IV,
we further explore various density dependent models and compare them with
population genetics models of allele frequencies.
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3. Summary of papers

3.1 Paper I
In Paper I, we study trait evolution and trait-dependent diversification in fam-
ilies of species, as explored before in e.g., [16, 29], and we also link together
these processes with trait-dependent molecular evolution. In order to achieve
this, we propose a mathematical model that describes the evolution of binary
traits on a random species tree, which runs from the time of origin, 0, to the
time of observation, t. The two traits, 0 and 1, develop on the tree, with the
emergence of new species, extinction of existing species, and asymmetric tran-
sition of species from type 0 to type 1, according to a supercritical, continuous
time Markov branching process. Simultaneously, depending on their trait, the
species also accumulate mutations over time according to a Poisson process.
In the Paper, we also examine various characteristics of binary-trait species
trees, such as the expected sizes and expected branch lengths of reduced trees
— trees from which extinct lineages have been removed, and thus consist of
only extant species at the time of observation.

The continuous time Markov branching model describing the evolution of
traits is given by Xt = (Kt ,Lt), t ≥ 0, where Kt and Lt represent the number of
type 0 and type 1 species, respectively, at time t and X0 =(1,0). The branching
rates of the asymmetric model are

(k, `) 7→


(k+1, `) λ0k

(k−1, `+1) (1− p)δk
(k−1, `) µ0k
(k, `+1) pδk+λ1`
(k, `−1) µ1`,

where λ0, λ1 are the speciation rates, and µ0, µ1 are the extinction rates of
type 0 and type 1 species, respectively, while pδ and (1− p)δ are the rates
of cladogenetic and anagenetic transition, respectively, from type 0 to type 1
species. Since the model is analyzed under supercritical conditions, we as-
sume γ0 = λ0− (1− p)δ −µ0 > 0, while γ1 = λ1−µ1 < γ0. A simulation of
the two-type branching process Xt , under arbitrary parameter values, is given
in Figure 3.1. A diagrammatic representation of a two-trait reduced species
tree is provided in Figure 3.2 (i). The tree is composed of two parts, as de-
picted in Figure 3.2 (ii); a single reduced type 0 tree, and a type 1 tree which
consists of only disjoint branches. Separate analyses of the reduced type 0 and
type 1 species trees yields the following tree properties.
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Figure 3.1. Simulation of the branching model Xt under supercritical conditions, with
parameter values: λ0 = 9, λ1 = 5, µ0 = 6, µ1 = 10, p = 0.5 and δ = 2. The growth of
type 0 and type 1 species is represented in blue and red colors, respectively.
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Figure 3.2. (i) A two-trait reduced species tree, with type 0 species represented in
blue, and type 1 species in red. (ii) A reduced type 0 species tree on the left, and
disjoint type 1 species clusters on the right.

a) Let At be the total branch length of the reduced type 0 species tree, corre-
sponding to the blue colored tree in Figure 3.2 (ii). The expected value of
At , conditional on nonextinction, is obtained as

E(At |Kt > 0) =
∫ t

0

λ0eγ0t −µ0− (1− p)δ
λ0eγ0(t−s)−µ0− (1− p)δ

ds.

b) Let Bt be the total branch length of the reduced type 1 species tree, corre-
sponding to the red sub-trees in Figure 3.2 (ii). The expected value of Bt ,
conditional on nonextinction, is derived as
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E(Bt |Kt > 0) = δ

∫ t

0

∫ s

0

(
γ1eγ1(t−u)

λ1eγ1(t−s)−µ1

)
×(

λ0eγ0u−µ0− (1− p)δ
γ0

+
λ0(µ0+(1− p)δ )(eγ0u−1)(eγ0(t−u)−1)

γ0(λ0eγ0t −µ0− (1− p)δ )

)
duds.

Molecular evolution is introduced on the species tree by assuming that mu-
tations accumulate through a Poisson process running along all branches of
the tree. We let ω0 and ω1 be the rates of fixation of mutations in type 0 and
type 1 species, respectively, with ω0 ≤ ω1 < 1. Thus, for a species which car-
ries trait 0 (trait 1) over a fixed time duration t, the value of dN/dS — defined
as the normalized ratio of nonsynonymous to synonymous substitutions — is
ω0 (ω1). An estimate of dN/dS over the whole species tree is given by

dN/dS≈ ω0E(At |Kt > 0)+ω1E(Bt |Kt > 0)
E(At |Kt > 0)+E(Bt |Kt > 0)

.

We applied our binary branching and transition model on a real phyloge-
netic tree consisting of plant species from the Geraniaceae family, with two
types of mating systems: outcrossing and selfing. From the analysis, we in-
ferred the following results.
a) The value of dN/dS on the species tree increases initially, and after a suffi-

cient amount of time has passed, reaches a limiting steady state.
b) Using estimates of the total branch length, Ttot, of the the phylogenetic tree,

and T 1
tot = E(Bt |Kt > 0), which can be calculated using estimates of the

model parameters, an estimate for ω1 is derived as

ω1 ≈ ω0 +(dN/dS−ω0)
Ttot

T 1
tot
,

where it is assumed that the estimates of ω0 and dN/dS for the species tree
have been found using existing methods (see e.g., [48]).

c) Trait-dependent diversification processes can have a strong impact on the
estimates of molecular evolutionary rates, such as ω1.

Contribution: I worked on developing the methodology, participated in writ-
ing the paper, performed the analysis of outcrossing/selfing plant species of
the Geraniaceae family, and provided the simulations and illustrations.

3.2 Paper II
The motivation behind Paper II was to explore the possibility of utilizing the
theory of branching processes into analyzing virulence in bacterial strains. For
that purpose, we first reviewed fundamental properties of multitype, continu-
ous time Markov branching processes as well as their behavior in the long time
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limit. Then, we applied multitype branching models to examine pathogenicity
in E. coli strains, and performed an in depth analysis on the limits of propor-
tions of bacteria in different states of the models. The strains used in this study
were isolated from human hosts, and obtained from a previously published [4]
data set of pathogenic and nonpathogenic E.coli bacteria.

In this work, we survey n-type branching processes given by Xt =
(
X1(t),

. . . ,Xn(t)
)
, where each Xi(t), i = 1, . . . ,n, denotes the number of type i par-

ticles at time t, t ≥ 0. The limit theorems reviewed in the article, obtained
from earlier works of Athreya and Ney [2] and Janson [19], describe how Xt
behaves as t → ∞. From the theorems, we infer that the limit behavior of the
process can be completely characterized by the eigenvalues and correspond-
ing eigenvectors of the mean offspring matrix of Xt . For the subsequent ap-
plication to E.coli strains data, we formulate a 4-type branching model, since
the data set we use comprises of bacterial strains divided into 4 categories:
pathogenic and nonpathogenic bacteria in the intestine, and, pathogenic and
nonpathogenic bacteria in the urinary tract. An E.coli bacterial strain is con-
sidered pathogenic only if it carries an agent known as a virulence factor. The
branching rates of the model, Xt =

(
X1(t), . . . ,X4(t)

)
, are given as

(x1,x2,x3,x4) 7→



(x1 +1,x2,x3,x4) λ1x1
(x1,x2 +1,x3,x4) λ2x2
(x1,x2,x3 +1,x4) λ3x3
(x1,x2,x3,x4 +1) λ4x4

(x1−1,x2 +1,x3,x4) q12x1
(x1 +1,x2−1,x3,x4) q21x2
(x1,x2,x3−1,x4 +1) q34x3
(x1,x2,x3 +1,x4−1) q43x4
(x1,x2 +1,x3−1,x4) q32x3
(x1,x2 +1,x3,x4−1) q42x4,

where λi, i = 1, . . . ,4, are the speciation rates of type i strains, qi j, i, j =
1, . . . ,4, are the transition rates from type i to type j, and the initial state X0 is
assumed to be either (0,0,1,0) or (0,0,0,1). A diagrammatic representation
of various parameters used in the model is given in Figure 3.3. We test out
different versions of the model by either utilizing both q32 and q42, or letting
one of them to be equal to zero. This is because E. coli strains are known to
travel from the gastrointestinal tract, their natural habitat, to the bladder and
cause urinary tract infections [45]. To estimate various parameter values of Xt ,
for a total of 9 virulence factors, we make use of the MuSSE model [11] in-
corporated in the package ‘diversitree’ of the software R [38]. We also obtain
limiting values for the proportions of pathogenic and nonpathogenic bacte-
rial strains in different states. From the analysis, we inferred some interesting
results that are listed below.
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Figure 3.3. Diagram showing various states and parameters of the 4-type model. Here,
λi represent the speciation rates of type i strains, qi j represent the rates of transition
from type i to type j, and extinction rates are assumed to be zero.

a) We can successfully use multitype branching processes to answer biological
questions regarding virulent behavior in bacterial strains. For instance, we
deduced that E.coli bacteria lose their pathogenic capability at higher rates
as compared to gaining it, in both urinary and digestive tracts of human
hosts. This confirms the fact that since it is costly to maintain virulence
factors, E.coli do not remain pathogenic unless the conditions are agreeable
for host invasion. We also concluded that virulent E.coli strains speciate at
faster rates as compared to nonvirulent strains, confirming the result that
was previously obtained in [4].

b) The MuSSE model, which incorporates maximum likelihood techniques,
can be used to effectively estimate parameter values in multitype models,
provided that the number of unknown parameters is ‘reasonable’. During
the analysis, we saw that in most of the parameter estimation scenarios,
the models were a better fit to the given data set, if the parameters were
constrained in some manner, for example, when some parameters were set
to be equal to zero or pairs of parameters were set to be equal to one another.

c) The estimated parameter values can be used to provide information on the
almost sure limits of the proportion of bacterial strains in various states.
The probability of maintaining virulence corresponds to the sum of limiting
proportions of bacteria in the two pathogenic states. From the analysis, we
concluded that this probability varied significantly in bacterial strains and
it depended on the virulence factor under consideration.

d) The application of limit theorems can be used to obtain plausible confidence
regions, in the form of confidence ellipsoids, for the long term proportions
of E.coli strains in different states of the models.

Contribution: I wrote the paper and carried out the analysis on E.coli strains
data set.
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3.3 Paper III
In Paper III, we study different forms of a supercritical, binary state, contin-
uous time Markov branching process. These include 1) a classical two-type
branching process with one sided transitions, and 2) a modified version of the
basic model, altered to include the effect of population size dependence. We
review existing functional and central limit theorems regarding the long time
behavior of two-type branching models [2, 19], and also provide new results
concerning the existence and uniqueness of solutions to stochastic equations.
Moreover, as an illustration for the theoretical part of the Paper, we apply our
results to a model of binary branching and one sided transition (similar to the
one discussed in Paper I).

We consider a two-type branching process {Xt : t ≥ 0}, which satisfies a
stochastic equation of the form

Xt = X0 +
∫ t

0
AXs ds+Mt , t ≥ 0, A =

[
γ0 0
δ γ1

]
,

where Xt = (X0
t ,X

1
t )
′, with X0

t and X1
t being the number of type 0 and type 1

units at time t, respectively, X0 = (1,0)′, γ0 > 0 and γ1 < γ0 are the net growth
rates of type 0 and type 1 particles, respectively, δ ≥ 0 is the the average rate
of transition from type 0 to type 1, and (Mt)t≥0 is a martingale term. We also
examine population size dependent versions of the branching process given by

Xt = X0 +
∫ t

0
A(Xs)Xs ds+Mt , t ≥ 0,

in which the entries of A have been replaced with suitable state-dependent
functions. We let Me

z (ds,du) be Poisson random measures on R2
+ with in-

tensity qe
z dsdu, where e ∈ {0,1} denotes the two types, and z = (z0,z1) ∈Ze

are the set of jumps that can occur due to type e branching. Then, the basic
branching process is proved to be a strong solution of the stochastic equation

Xt = X0 +∑
e

∑
z∈Ze

z
∫ t

0

∫ Xe
s−

0
Me

z (ds,du),

while the population size dependent branching process, under additional as-
sumptions, is shown to be a unique strong solution Xt of

Xt = X0 +∑
e

∑
z∈Ze

z
∫ t

0

∫
β e

z (Xs−)

0
Me

z (ds,du), β
e
z (x) = qe

z(x)x
e/qe

z .

Limit results: The eigenvalues γ0 and γ1 of the matrix A, and the left and right
eigenvectors, u and v, corresponding to the largest eigenvalue γ0, characterize
the limit behavior of the basic branching model Xt . The fundamental limit
result for supercritical branching processes is given as

e−γ0tXt
a.s.−→Wv,
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where W is a nonnegative random variable [1]. Additional limit results, ob-
tained from [19] and adapted to our basic branching model, are given below.
a) If γ1 < γ0/2, then as t→ ∞,

e−γ0t/2 (X1
t+x−δX0

t+x/(γ0− γ1)
) d−→W 1/2eγ0x/2U(x),

where U(x) is an Ornstein-Uhlenbeck process and x ∈ R.
b) If γ1 = γ0/2, then as t→ ∞,

t−1/2 e−γ0xt/2 (X1
xt −2δX0

xt/γ0)
d−→W 1/2

σB(x),

where σ2 represents the variance and {B(x),x≥ 0} is a Brownian motion.
c) If γ0/2 < γ1 < γ0, then as t→ ∞,

e−γ1t (X1
t −δX0

t /(γ0− γ1)
) a.s.−→W1,

where W1 is a real-valued random variable.
We also study scaled branching processes and use the central limit theorem
to understand the fluctuations around the limit of such processes. Let (X ( j)

t ),
j ≥ 1, be i.i.d. copies of the branching process with X ( j)

0 = (1,0)′, and let
X̂n

t = n−1
∑

n
j=1 X ( j)

t , with X̂n
0 = (1,0)′. Letting X̂n

0
a.s.→ x0 as n→ ∞, we show

that X̂n
t converges to xt = E(Xt |X0 = x0) = eAtx0, which is a solution of xt =

x0 +
∫ t

0 Axs ds. The fluctuation process given by Y n
t =
√

n(X̂n
t − xt), is proved

to converge to Yt , which is a solution of the SDE

Yt = Y0 +
∫ t

0
AYs ds+∑

e
∑

z∈Ze

z
∫ t

0

√
qe

z xe
s dBz,e

s ,

where {Bz,e
t } is a family of independent standard Brownian motions.

We obtain a similar result for the population size dependent process, using
[10]. Thus, the associated scaled process X̂n

t for this case converges to xt ,
which is a solution of xt = x0 +

∫ t
0 F(xs)ds, where F(x) = A(x)x. Letting

the normalized deviation process V n
t =
√

n(X̂n
t − xt), and assuming that V n

0
converges to a constant v0, we see that V n

t converges to Vt , which solves

Vt = v0 +
∫ t

0
∂F(xs)Vs ds+∑

e
∑

z∈Ze

z
∫ t

0

√
qe

z(xs)xe
s dBz,e

s , t ≥ 0,

where ∂F(x) =

[
∂

∂x0 F0(x) ∂

∂x1 F0(x)
∂

∂x0 F1(x) ∂

∂x1 F1(x)

]
, with F(x) =

(
F0(x),F1(x)

)′.
Contribution: I participated in the writing process of the paper, and con-
tributed towards applying the limit results to a binary branching and transition
model.
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3.4 Paper IV
The motivation behind Paper IV was to extend the diversification model stud-
ied in Paper I, in which species are allowed to grow in size without bound,
to a more realistic model that prevented unlimited increase in the number of
species. For that purpose, we first constructed a framework in an evolution-
ary time scale, which provided a correlation between processes involved in
species diversification models and processes in population genetics models.
Specifically, we analyzed a two-trait species branching model over a scale
of generations, and compared the proportion of species carrying one of the
traits, to allele frequencies in a bi-allelic Wright-Fisher (WF) diffusion pro-
cess. Then, we applied the population genetics approach and the long time
scaling regime to not only discuss different cases of density-dependent pro-
cesses based on various parameter assumptions, but also to compare our work
with similar types of models that have been studied previously, for example,
in [35, 36].

Scaling of parameters in the bi-allelic (0 and 1) WF model is attained in
a manner similar to the one described in Section 1.2. Also, recall that as the
population size N→ ∞, the scaled WF frequency process ξ N

t converges to the
WF diffusion ξt , which is given by the solution of the SDE

dξt = γξt(1−ξt)dt−ρ01ξt dt +ρ10(1−ξt)dt +
√

ξt(1−ξt)dBt ,

where ρ01 and ρ10 are the mutation rates scaled with N, γ is the scaled se-
lection coefficient, and Bt is a Brownian motion. For the construction of the
species model, we consider a two-type, continuous time branching process,
Xu = (Ku,Lu), u ≥ 0, with Ku being the number of type 0 species and Lu
the number of type 1 species. We also consider an alternative representation
(Pu,Ru), where

Pu =
Ku

Ku +Lu
and Ru = Ku +Lu

is the fraction of type 0 species and the total number of species, respectively.
We let λ0 and λ1 be the speciation rates, µ0 and µ1 the extinction rates of type
0 and type 1 species, respectively. The species are also allowed to transition
both ways, hence, type 0 (type 1) species transition to type 1 (type 0) with
rate δ01(δ10). Let X (n)

u = (K(n)
u ,L(n)

u ) denote the branching process scaled by
n, with λ

(n)
i , µ

(n)
i , i = 0,1, and δ

(n)
01 , δ

(n)
10 the corresponding parameters of

speciation, extinction and transition for the two types. As n→ ∞,

µ
(n)
i → µi, λ

(n)
i → µi, n(λ (n)

i −µ
(n)
i )→ βi, nδ

(n)
01 → ρ01, nδ

(n)
10 → ρ10,

where µi, βi, i = 0,1, and ρ01, ρ10 are the scaled parameters which control
speciation/extinction, net diversification and transition of species on an evolu-
tionary time scale. Note that we take µi as the reference parameter for both
speciation and extinction events for trait i, and let βi be the evolutionary net
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diversification rate of trait i, i = 0,1. The process Xn
t = n−1X (n)

nt gives the
frequency of the two types of species on an evolutionary time scale of nt gen-
erations. Correspondingly, the alternative representation is

Pn
t =

K(n)
nt

K(n)
nt +L(n)

nt

and Rn
t =

K(n)
nt +L(n)

nt

n
,

where Pn
t is comparable to the frequency process ξ N

t in the WF model. As
n→∞, Xn

t converges to a continuous state branching process Xt , and (Pn
t ,R

n
t )

converges to (Pt ,Rt), which is the solution of a system of SDEs given by

dPt =Pt(1−Pt)
(

β0−β1−
2(µ0−µ1)

Rt

)
dt−ρ01Pt dt +ρ10(1−Pt)dt

+

√
2Pt
(
1−Pt

)(
µ0(1−Pt)+µ1Pt

) 1
Rt

dB−t ,

dRt = Rt
(
β0Pt +β1(1−Pt)

)
dt +

√
2Rt

(
µ0Pt +µ1(1−Pt)

)
dB+

t ,

where B−t , B+
t are standard Brownian motions. From the above system, we

deduce the following results.
a) The equation in Pt is analogous to the WF diffusion process with popula-

tion size dependent selection, i.e., comparing with the WF diffusion equa-
tion, the selection coefficient γ equals β0− β1− 2(µ0−µ1)/Rt . On the
other hand, the equation in Rt is a measure of the total species richness,
with trait dependent drift and diffusion functions.

b) If we let β0 = β1, the equation in Pt is a WF diffusion process with popu-
lation size dependent drift and diffusion parameters, whereas the equation
in Rt is a Feller-type diffusion process in which the diffusion parameter is
regulated by the trait proportions.

c) If we let µ0 = µ1, the equation in Pt is again a WF diffusion, but only the
genetic drift term is population size dependent, while the equation in Rt
is a Feller-type diffusion process in which the drift function is modulated
by the trait frequencies. Moreover, the Brownian motions B− and B+ are
independent when µ0 = µ1.

d) If we let β0 = β1 and µ0 = µ1, the equation in Pt is a WF diffusion with
mutation and population size dependent genetic drift but no selection, while
the equation in Rt is a standard Feller diffusion equation.

We also study the effect of diversity-dependence in species families, and ex-
amine three cases as follows.
1) We consider a logistic type model in which the scaled diversification pa-

rameter, βi, i = 0,1, is replaced by βi(1−Rt/c)+, where c represents the
carrying capacity. Putting Rt/c = R̃t , and then letting c→ ∞, we deduce
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from the resulting ODE in Pt , that selection acts on the net diversification
rates βi, and is regulated by the population size process.

2) We consider another logistic model, such that the diversity-dependence acts
directly on the speciation parameter, λ

(n)
i , i = 0,1, in the population time

scale. We derive again the SDE system, put Rt/c = R̃t , and then letting
c→ ∞, we infer from the resulting ODE system that under the conditions
ρ01 = ρ10 = 0, β0 < µ0, β1 < µ1, as t → ∞ if β0/µ0 > β1/µ1 then type 0
gets fixed in the population while β0/µ0 < β1/µ1 leads to type 1 getting
fixed.

3) We replace µi by µiRt , i = 0,1, that is, population size dependence is
achieved by letting the extinction rates increase with increasing diversity.
As a result, the equation in Pt becomes independent of the total size of
the system, and is thus analogous to the WF diffusion process, but with a
frequency-dependent variance function. Moreover, the equation in Rt is
found to have a solution which is a form of a geometric Brownian motion.

Contribution: I performed the background research on density dependent
species diversification, and helped writing the introduction and various diver-
sity dependent cases in the paper.
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4. Sammanfattning på svenska

Matematiska modeller ger kvantitativ och kvalitativ information om naturligt
förekommande fenomen. Stokastiska modeller baserade på slumpmässiga
biologiska processer, som evolutionära genetiska mekanismer och befolkn-
ingstillväxt, kan användas för att analysera variabiliteten som kännetecknar
dessa processer. I denna avhandling använder vi olika stokastiska modeller,
i synnerhet Markov-förgreningsmodeller, för att försöka förstå egenskapernas
utveckling och deras effekt på artens födelse och överlevnad. För detta än-
damål undersöker vi först den allmänna teorin om diskreta och kontinuerliga
tidsförgreningsprocesser, och sedan tillämpar vi det på olika biologiska mod-
eller. Vi presenterar våra resultat i fyra artiklar, av vilka korta sammanfat-
tningar presenteras nedan.

I Artikel I modellerar vi samtidigt effekten av egenskaper på artdiversifier-
ingshastigheter och på molekylär evolution. För detta ändamål utvecklar vi
först en probabilistisk modelleringsram för ett slumpmässigt, binärt träd, där
antalet arter och deras egenskaper är representerade genom en asymmetrisk,
två-typ, kontinuerlig tid Markov-förgreningsprocess. Därefter utforskar vi
olika egenskaper hos de reducerade träden, såsom de förväntade storlekarna
och grenarnas längder. Slutligen beskriver vi en egenskapsberoende substi-
tutionsprocess längs grenarna på artens träd, genom en Poissonprocess. Vi
demonstrerar också våra metoder genom att tillämpa dem på en fylogeni av
växtarter och drar slutsatsen att egenskapsberoende diversifieringsprocesser
kan ha en stark inverkan på molekylär evolution.

Vi utökar de två typerna av förgreningsprocesser som studerats ovan, till
fyra typer av Markov-förgreningsmodeller i Artikel II, för att analysera pato-
gena egenskaper hos E.coli bakteriestammar. Vi studerar först flera generella
egenskaper för förgreningsprocesser med flera typer. Vi undersöker också
några grundläggande befintliga teorem som förklarar beteendet hos förgren-
ingsprocesser i lång tidshorisont. Sedan tillämpar vi våra resultat på en pub-
licerad klinisk data-mängd av virulenta och icke-virulenta E. coli bakteries-
tammar. Vi kan dra slutsatsen från analysen att kända maximala sannolikhet-
stekniker kan utnyttjas för att effektivt estimera parametervärdena i flera typer
av förgreningsmodeller och de uppskattade parametrarna kan sedan användas
för att ge information om gränserna för proportionerna av bakteriestammar i
olika tillstånd av modeller.

Artikel III ger ytterligare utökningar av de två-typ, asymmetriska förgren-
ingsmodellerna som studerades tidigare i Artikel I, till förgreningsmodeller
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som innefattar beroendet av populationsstorlek. Således får arterna i detta fall
inte växa obegränsat. Istället styrs deras tillväxt av själva populationsstor-
leken. Vi analyserar stokastiska ekvationer och begränsar resultaten för både
grundprocessen och dess populationsstorleksberoende version. Vi undersöker
även befintliga teorem beträffande beteendet hos dessa processer under en
lång tidsperiod och under olika skalningar. Det visas att processens gränsbe-
teende kan kännetecknas av egenvärdena och egenvektorerna hos motsvarande
medelvärdes-matris. Dessutom analyserar vi skalade versioner av förgren-
ingsmodellerna med stora talens lag och beskriver fluktuationsprocessen runt
gränserna för dessa processer med hjälp av centrala gränsvärdessatsen.

Motiverad av den matematiska analysen av densitetsberoende modeller i
Artikel III analyserar vi liknande typer av processer i Artikel IV, den här
gången med hjälp av begrepp från populationsgenetik. För detta ändamål
konstruerar vi först ett ramverk för modellering på en evolutionär tidsskala.
Därför skalas rymd, tid och modellparametrar av speciering, utdöende och
övergång över en lång geologisk tidsskala. Dessutom får vi en diffusionsap-
proximation av processen för att tillhandahålla en analogi med Wright Fisher-
diffusionsprocesser. Slutligen tillämpas det analytiska ramverk som utvecklas
på olika populationsberoende modeller.
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Part II:
Research papers

This part of the thesis consists of four appended research papers. Paper I
deals with the application of a supercritical, two-type, continuous time Markov
branching process to the evolution of binary traits on a random species tree,
as well as a molecular evolutionary process which runs as a Poisson process
along all branches of the tree. The study of two-type branching models on
the naturally occurring process of mating systems evolving in plant species,
then leads to further applications in the form of: (i) analysis of pathogenic-
ity in clinical bacterial strains data sets using four-type Markov branching
models in Paper II, and (ii) the extension of the application of branching pro-
cesses in populations with unbounded growth, to modified population mod-
els in which the net growth is restricted. This motivates Paper III in which
continuous time branching models with population size dependence are ana-
lyzed in a framework of stochastic equations, and fundamental theorems for
the behavior of these models under a long time limit are surveyed. The inves-
tigation of such systems demands even further applications, and this finally
leads to Paper IV, in which, under a long geological time scale, various cases
of diversity-dependent species models are explored and also compared with
frequency processes in population genetics models.
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