Jämförelse av beräkningsprogrammen Novapoint Geosuite Stability och Geoslope SLOPE/W med avseende på släntstabilitet

Jonas Hagerfors
Jämförelse av beräkningsprogrammen Novapoint Geosuite Stability och Geoslope SLOPE/W med avseende på släntstabilitet

Jonas Hagerfors
Abstract

Comparison of the Calculation Programs Novapoint Geosuite Stability and Geoslope SLOPE/W with Regards to Slope Stability

Jonas Hagerfors

This thesis deals with the difference between two calculation programs for slope stability, namely Geoslope SLOPE/W and Novapoint GeoSuite Stability. The purpose of the thesis is to compare the two calculation programs with regard to the analysis of slope stability, as well as the two programs’ handling of data.

The two calculation programs use different Limit equilibrium methods to calculate safety factor and sliding surfaces for slopes. It can be expected that the result should be similar to one another, as well as the fact that both the calculation programs use different Limit equilibrium methods, but also when large differences in both safety factor and critical sliding surface give unreliable results.

The thesis will also address the factors that may lie behind the fact that a possible stability failure should take place in a slope, as it gives an increased understanding of the analyzes that have been done.

The work was carried out by modeling slopes with identical geometric relationships and identical material properties in the two calculation programs, a safety factor and a critical sliding surface for the slopes were developed for both programs and then compared with each other.

Keywords: Geoslope SLOPE/W, Novapoint GeoSuite Stability, shear strength, Limit Equilibrium

Independent Project in Earth Science, 1GV029, 15 credits, 2019
Supervisor(s): Esra Bayoglu Flener, Lars Maersk Hansen, Teddy Johansson.
Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36
Uppsala (www.geo.uu.se)

The whole document is available at www.diva-portal.org
Sammanfattning

Jämförelse av beräkningsprogrammen Novapoint Geosuite Stability och Geoslope SLOPE/W med avseende på släntstabilitet

Jonas Hagerfors

Föreliggande examensarbete behandlar skillnaden mellan två beräkningsprogram när det kommer till släntstabilitet, nämligen Geoslope SLOPE/W och Novapoint GeoSuite Stability.

Syftet med examensarbetet är att jämföra de båda beräkningsprogrammen avseende vid undersökning av släntstabilitet, samt de två programmens hantering av data.

De två beräkningsprogrammen använder sig av liknande Limit equilibrium-metoder för att beräkna säkerhetsfaktor samt glidytor för slänter. Man kan förvänta sig att resultatet bör vara varandra likt då dels att de både beräkningsprogrammen använder sig av liknande Limit equilibrium-metoder, men också då stora skillnader i både säkerhetsfaktor och kritisk glidyta ger opålitligt resultat.

Examensarbetet kommer även ta upp de faktorer som kan ligga bakom att ett eventuellt brott ska ske i en slänt, då det ger ökad förståelse för de analyser som gjorts.

Arbetet utfördes genom att slänter med identiska geometriska relationer samt identiska materialegenskaper modellerades i de båda beräkningsprogrammen, en säkerhetsfaktor samt kritisk glidyta för slänterna togs fram för båda programmen och jämfördes sedan med varandra.

Självständigt arbete i geovetenskap, 1GV029, 15 hp, 2019
Institutionen för geovetenskaper, Uppsala universitet, Villavägen 16, 752 36 Uppsala (www.geo.uu.se)

Hela publikationen finns tillgänglig på www.diva-portal.org
Innehållsförteckning

1. Inledning 1
 1.1 Bakgrund 1
 1.2 Syfte 1

2. Teori 2
 2.1 Massrörelser 2
 2.1.1 Skred 2
 2.1.2 Framåtgripande skred 2
 2.1.3 Bakåtgripande skred 3
 2.1.4 Ras 3
 2.1.5 Slamström 3
 2.2 Släntstabilitet 3
 2.3 Faktorer som påverkar släntstabilitet 4
 2.3.1 Erosion 4
 2.3.2 Vatten 5
 2.3.3 Vibrationer 5
 2.3.4 Kohesion- och friktionsjordar 5
 2.3.5 Utomstående ytlast 5
 2.4 Jordens uppbyggnad 6
 2.4.1 Dränerad och Odränerad skjuvhållfasthet 6
 2.5 Limit Equilibrium 6
 2.5.1 Historik 7
 2.5.2 Säkerhetsfaktor och beräkningar 8

3. Områdesbeskrivning 10

4. Metod 11
 4.1 Geoslope SLOPE/W 11
 4.2 Novapoint GeoSuite Stability 12

5. Analys & resultat 13
 5.1 Analys av dagvattendamm 13
 5.1.1 Typfall 1: Dränerad analys 13
 5.1.2 Typfall 2: Odränerad Analys 14
 5.1.3 Typfall 3: Odränerad Analys med höjd grundvattennivå 15
 5.1.4 Typfall 4: Odränerad Analys med höjd grundvattennivå och tyngd på jordlager 17
1. Inledning

1.1 Bakgrund

Typer av dessa beräkningsmetoder har använts inom geotekniken i flera decennier.
Limit Equilibrium-metoder har tidigare haft en del begränsningar på hur avancerade modeller man kan bygga, mest på grund av brister inom tekniken, men med nya mjukvaror såsom Geoslope SLOPE/W och Novapoint GeoSuite Stability har man kunnat räkna in flera parametrar än tidigare vilket ger en mer detaljerad bild av vad som undersöks.

Novapoint GeoSuite Stability är ett nyare program på marknaden som använder sig av olika beräkningsalgoritmer för stabilitetsberäkningar, i rapporten kommer fokus ligga på deras modell BEAST 2003.

1.2 Syfte
Syftet med detta kandidatarbete är att jämföra de två beräkningsprogrammen Geoslope SLOPE/W och Novapoint GeoSuite Stability med varandra. Skillnader mellan programmens förmåga att beräkna säkerhetsfaktor och glidyta för identiska modeller av slänter kommer att jämföras.
2. Teori

2.1 Massrörelser
Massrörelse är ett samlingsnamn på rörelser i jord och berg, detta innefattar ras, skred och slamströmmar.

2.1.1 Skred
Skred är en sammanhängande jordmassa som kommer i rörelse när jämvikten mellan skjuvhållfasthet och skjuvspänningen rubbas. Ett skreds omfattning bestäms i regel av markens geotekniska egenskaper, lutning på jordlager, glidytans form, samt volymen av massan i skredet.

Risken för skred är som högst under perioder när det är mycket vatten i rörelse, dessa perioder är oftast under våren och hösten då snösmältning och omfattande regnskurar sker. Risken sjunker generellt under sommaren då vattnet borta och sugs upp av vegetation. Vattnen sjunker även i vattendrag vilket minskar erosion (Caragounis, 2014).

Jordskred delas ofta in i två huvudtyper, translationsskred och rotationsskred. Translationsskred sker vid slänter som är flacka och långsträckta, ofta når jordlagret vilar på berggrund. Glidytan som bildas är ofta plan och ligger så nära berggrunden som möjligt då det är där jordtyngden blir som störst.
Rotationsskred sker i slänter som är kortare men brantare, vid dessa typer av skred är glidytan vanligtvis böjd (Axelsson och Mattsson, 2016).

2.1.2 Framåtgripande skred
Ett framåtgripande skred sker när ett inledande skred sker högt upp i en slänt. De jordmassor som rör sig nedåt lägger en extra ytlast på nedanliggande slänt vilket kan resultera i en kedjereaktion och flera separata skred bildas (Fig 1) (Caragounis, 2014).

![Figur 1. Ett framåtgripande skred med potentiell kedjereaktion (Caragounis, 2014).]
2.1.3 Bakåtgripande skred
Ett bakåtgripande skred har sitt inledande skred långt ner i slänten. Skredmassorna från det inledande skredet kommer eventuellt att orsaka ett rubbat jämviktsläge för jordlager högre upp i slänten, vilket kommer sätta igång en kedjereaktion och fler bakåtgripande skred sker (Fig 2). Kedjereaktionen stannar när jämnare mark eller berg i dagen nås (Caragounis, 2014).

Figur 2. Ett bakåtgripande skred med potentiell kedjereaktion (Caragounis, 2014).

2.1.4 Ras
Ras sker i friktionsjordar när enskilda block, stenar, grus- och sandpartiklar plötsligt kommer i rörelse. Detta sker när lutningen överskrider den maximala lutningen för slänten, vilket ofta sker utan förvarning i slänter med en lutning på 45-90 grader (Caragounis, 2014).

2.1.5 Slamström
En slamström beter sig som en trögflytande vätska som utgörs av jord, sten, organiskt material samt vatten.
Slamströmmar förekommer i slänter bestående av morän med till hög ytavrinning och vattendrag med höga flöden, störst risk för slamströmmar är på våren och sommaren i samband med snösmältning samt intensiv nederbörd (Caragounis, 2014).

2.2 Släntstabilitet
Släntstabilitet är släntens förmåga att motstå skred. För att en slänt ska kunna vara stabil måste dess skjuvhållfasthet kunna motstå summan av skjuvspänningen (Caragounis, 2014). Dessa skred kan åstadkomma skador som kan innebära höga kostnader för samhället, ibland resulterar skreden även i att liv förloras. Naturolyckor orsakade av skred i Sverige kostar samhället ca 200 miljoner kronor årligen.
Förutsättningarna för skred i Sverige är som störst vid slänter som innehåller lera eller branta slänter av sand och silt. Vid lerområdet kan högt portryck samt stora skjuvspänningar förekomma vilket minskar stabiliteten avsevärt.
Naturligt skapade slänter utan någon mänsklig påverkan kräver generellt en lutning över 1:10 för att kunna ha rätt förutsättning för skred (Fig 3) (Skredkommissionen, 1995).

Figur 3. Olika typer av slänter med förutsättningar till skred (med tillståtelse av Skredkommissionen, 1995).

2.3 Faktorer som påverkar släntstabilitet

Det finns många olika faktorer som påverkar stabiliteten i en slänt, bland annat släntens höjd, dess lutning, samt jordens egenskaper som skjuvhållfasthet och tyngd tillsammans med grundvatten och portryck. Utomstående företeelser spelar också in på släntstabiliteten såsom extra last på slänten samt olika typer av vibrationer och erosion.

2.3.1 Erosion

2.3.2 Vatten
Grundvattennivån kan höjas av flera olika anledningar, såsom nederbörd, omlagda
diken och borttagen vegetation. En höjd grundvattennivå ökar portrycket vilket
försämrar släntstabilitet då hållfastheten sjunker. Vid regn så perkolerar regnet ner i
jorden och lägger sig mellan de individuella kornen och sänker jordens kohesion.
Vattnet tränger sig även ner i existerande sprickor vilket ökar spänningsar i jorden och
då också risken för skred (Statens geotekniska institut, 2019).

2.3.3 Vibrationer
Vibrationer uppstår både av naturliga och mänskliga skäl. Under rätt förutsättningar
kan även små vibrationer som från ett förbipasserande tåg orsaka stora skred. Ett
exempel på detta är när jord ligger på en berggrund där vatten trängt in mellan
dessa, en sorts vattenplaning uppstår i detta fall och skredrisken ökar (Statens
geotekniska institut, 2019).

2.3.4 Kohesion- och friktionsjordar
Kohesion är ett fenomen som finns hos finkorniga jordar, en kohesionsjord innebär
att det finns attraktionskrafter mellan partiklarna i jorden vilket bidrar till högre
skjuvhållfasthet då partiklarna till viss grad binder ihop sig. Vanliga kohesionsjordar
är främst lerjordar, men egenskapen uppstår också inom siltjordar och lermorän
(Myndigheten för samhällsskydd och beredskap, 2017).

Ovanför grundvattenytan är jorden oftast inte vattenmättad, där finns då även
porluft i jorden som skapar en ytspänning. Denna ytspänning skapar en
sammandragande kraft som bidrar positivt till släntstabilitet. Detta fenomen kallas
falsk kohesion och kan vara förrädiskt då en slänt kan stå stabil i flera år tills
tillräckligt mycket vatten perkolerar ner och ersätter luftbubblorna vilket gör att
stabilitten sviker och slänten skredar (Myndigheten för samhällsskydd och
beredskap, 2017).

Grövre jordar såsom sand eller grus kallas friktionsjordar, dessa jordar bidrar till att
skjuvhållfasthet byggs upp genom friktionskrafter som verkar mellan dess individuella
korn. Dessa friktionskrafter påverkas starkt av vattennivån och tappar en del av sin
friktionskraft om kornen hamnar under grundvattenytan.
Frikctionsjordar har en friktionsvinkel, vilket är den brantaste vinkel mot det
horisontella planet som en friktionsjord kan packas i. Överskrids friktionsvinkeln sker
ett skred eller ras (Myndigheten för samhällsskydd och beredskap, 2017).

2.3.5 Utomstående ytlast
Ytlastar, exempelvis bebyggelse eller trafik som finns nära kanten till slänten ökar de
krafter som bidrar negativt till släntens stabilitet vilket kan leda till skred om lasten är
för stor. Om lasten placeras vid släntfoten bidrar lasten istället positivt till
släntstabiliteten.
2.4 Jordens uppbyggnad

2.4.1 Dränerad och Odränerad skjuvhållfasthet
En jords hållfasthet delas i regel in i två olika grupper, dränerad- och odränerad skjuvhållfasthet, detta pga. jordars olika permeabilitet.

För att beräkna jordhållfasthasten delas i dessa fall används Mohr-Coulomb metoden, vilket skrivs \(\tau_f = c' + \sigma' \tan \phi' \)

En odränerad jord som går till skred gör detta när dess håligheter är fyllda med porvatten, vilket bidrar med sämre släntstabilitet.

En dränerad jord har inget sittande porvatten (Axelsson och Mattsson, 2016).

2.5 Limit Equilibrium

Limit Equilibrium-analyser bygger på att man utvärderar en slänts skredrisk genom att lägga in egenskaper och parametrar för slänten, ex. tyngd, kohesion, portryck, grundvattennivå etc.

Inom Limit Equilibrium räknas en rad olika analysmetoder, där det som skiljer dem åt är programvarans sätt att hantera ekvationer samt vilka olika typer av tryck som finns med i beräkningen för släntstabilitet. Dessa metoder är alla relativt lika varandra.

Något både Novapoint GeoSuite Stability och Geoslope SLOPE/W har gemensamt är att båda räknar slänten som riskerar att skreda som en enhet.

I båda programmen finns möjligheten att extrahera detaljinformation om enheten som riskerar att skreda där Geoslope SLOPE/W delar upp denna enhet i olika vertikala lameller där varje enskild lamell har beräknats och angetts sina specifika mot- och pådrivande krafter som verkar i delen av slänten där lamellen är positionerad (Figur 4). I Novapoint GeoSuite Stability finns också möjligheten att få ut denna typ av detaljinformation, dock använder sig beräkningsprogrammet inte av lameller på samma sätt (Figur 5).
Figur 4. Slänt analyserad i Geoslope SLOPE/W, som är uppdelad i lameller med en säkerhetsfaktor på ca 1,8

Figur 5. Slänt analyserad i Novapoint GeoSuite Stability, med en säkerhetsfaktor på ca 1,76

2.5.1 Historik
I början av 1900-talet skedde den svåraste tågolycka som skett i anknytning till skred i Sverige. Skredet inträffade i Getå utanför Norrköping. Slänten där brottet skedde bestod av växelvis lera, silt, sand och grus som vilade på morän och låg i anknytning till landsväg och järnväg. En tid efter att skredet skett så kör ett tåg som färdades i 80km/h med ca 300 passagerare ner i den skredgropen. Tåget föll 8 meter och landade på intilliggande landsväg. Olyckan resulterade i att minst 41 personer miste
sina liv. Statens järnvägars Geotekniska Kommission analyserade sedan händelsen och man kunde konstatera att det rörde sig om ett rotationskred (Statens Geotekniska Institut, 2018).

2.5.2 Säkerhetsfaktor och beräkningar

Att räkna ut säkerhetsfaktorn manuellt görs med hjälp av följande ekvationer:

\[F_s = \frac{\tau_f}{\tau_d} \]

Där:

\(F_s \) = Säkerhetsfaktor
\(\tau_f \) = Jordens genomsnittliga skjuvhållfasthet
\(\tau_d \) = Genomsnittliga skjuvspänningen längs den potentiella glidytan

Mohr-Coulomb

Jordens genomsnittliga skjuvhållfasthet består av två komponenter och kan skrivas ut:

\[\tau_f = c' + \sigma' \tan \phi' \]

Där:

\(c' \) = Kohesion
\(\phi' \) = Friktionsvinkel
\(\sigma' \) = Normalspänning vid den potentiella glidytan

På ett liknande sätt kan \(\tau_d \) skrivas ut:

\[\tau_d = c'_d + \sigma' \tan \phi'_d \]

Där:

\(c'_d \) = Kohesionen vid den potentiella glidytan
\(\phi'_d \) = Friktionsvinkeln vid den potentiella glidytan
Detta skrivs om:

\[F_s = (c' + \sigma')\tan \phi' / (c'_d + \sigma')\tan \phi'_d \]

En slänt med en säkerhetsfaktor på 1 är precis på gränsen till skred. Kravet på säkerhetsfaktor varierar beroende på var slänten är belägen. En slänt som ex. ligger intill bebyggelse kräver en högre säkerhetsfaktor än en slänt som ligger intill en otrafikerad väg (se Tabell 1) (Coduto, Yeung och Kitch. 2011).

Tabell 1. Behövd säkerhetsfaktor för olika markanvändning (Skredkommissionen, 1995).

<table>
<thead>
<tr>
<th>Skede</th>
<th>Nyexploatering</th>
<th>Befintlig bebyggelse och anläggning</th>
<th>Annan mark</th>
<th>Naturmark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>1 (under förutsättning att omgivande mark ej påverkas)</td>
</tr>
<tr>
<td>Geoteknisk besiktning och överslagsberäkning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minst detaljerad utredning skall utföras</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fc ≥ 1,7 - 1,5 Fkomb</td>
<td>Fc ≥ 1,7 - 1,5</td>
<td>Fc > 2 + Fcφ > 1,5</td>
<td>Fc > 2 + Fcφ > 1,5</td>
<td></td>
</tr>
<tr>
<td>≥ 1,45 - 1,35 Fφ</td>
<td>≥ 1,45 - 1,35 Fkomb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1,3(sand)</td>
<td>Fφ ≥ 1,3(sand)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fördjupad utredning (och kompletterade utredning)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fc ≥ 1,5 - 1,4 Fkomb</td>
<td>Fc ≥ 1,4 - 1,3 Fkomb</td>
<td></td>
<td>Fc ≥ 1,3 - 1,2 Fkomb</td>
<td>Fc, Fkomb och Fφ > 1 (under förutsättning att omgivande mark ej påverkas)</td>
</tr>
<tr>
<td>≥ 1,35 - 1,3 Fφ</td>
<td>≥ 1,3 - 1,2 Fkomb</td>
<td></td>
<td>≥ 1,2 - 1,15 Fφ</td>
<td></td>
</tr>
<tr>
<td>≥ 1,3(sand)</td>
<td>Fφ ≥ 1,3 - 1,2(sand) (Under förutsättning att restriktioner införs)</td>
<td>≥ 1,2 - 1,5(sand)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Lägre värden avser befintlig anläggning av mindre betydelse.
3. Områdesbeskrivning

Det område som analyserats är en dagvattendamm som befinner sig i närheten till Fyrisån i Uppsala området. Dammen innefattar ca 3000 m³. Slänten utgörs av 5 olika typer av jordlager. En last har placerats 1 meter från släntkrönet med en angiven bredd på 3 meter och en lastintensitet på 20 kPa.

Marken i området utgörs av åkermark. Inga befintliga konstruktioner i området finns, däremot korsar en befintlig spillvattenledning området där en ny damm planeras. Grundvattnet baseras på tidigare undersökningar och tros ligga 2,5 till 5 m under markytan.
4. Metod
För att bygga de modeller som analyserats i respektive program används olika metoder och verktyg.

4.1 Geoslope SLOPE/W
I beräkningsprogrammet kan olika Limit equilibrium-metoder väljas. Vald Limit equilibrium metod för analyserna med Geoslope SLOPE/W är Spencer-metoden. Dock har andra Limit equilibrium-metoder testats, såsom bishop-metoden. De olika metoderna har gett en skillnad på säkerhetsfaktor mellan 0-0,001, vilket gör val av metod i princip oväsentlig för de analyser som gjorts.

För Geoslope SLOPE/W har nedanstående verktyg använts för att bygga upp modellerna som analyserna är gjorda på.

- **KeyIn Material**

- **KeyIn Regions/Points**
 För att illustrera geometrin på den slänt som ska undersökas användes KeyIn Regions/Points. Geometrin byggs med hjälp av x-y koordinater. Regioner används sedan för att lägga in det material som ska analyseras i slänten.

- **KeyIn Surcharge loads**
 Eventuella laster på markytan kan läggas in med detta verktyg. Lasten anges som en punkt eller som en yta. Vinkel på lasten kan bestämmas först efter att lasten som anges i kN/m\(^3\) lagts ut. Vinkeln på lasten anges i grader.

- **Draw Entry and Exit Slip Surface**

- **Draw Pore-water pressure**
 För att detta verktyg ska kunna användas måste man ställa in att analysen ska hämta sitt portryck från Piezometric line. Därefter tas grundvattenytan fram genom att använda koordinater. Eventuell grundvattenyta som överskrider markytan visualiseras med vertikala blå pilar.
4.2 Novapoint GeoSuite Stability

För Novapoint GeoSuite Stability har nedanstående verktyg används för att bygga upp modellerna som analyserna är gjorda på.

- **Soil**
 Denna funktion motsvarar Geoslope SLOPE/Ws KeyIn Materials, där material samt dess egenskaper och tillstånd bestäms. Dock byggs även geometrin för slänten i beräkningsprogrammet under denna funktion, vilket sker med koordinater.

- **C-Profile**
 För att kunna få ut en mer noggrann analys av en slänt med varierande odränerad skjuvhållfasthet användes detta verktyg. Koordinater används för att ange en punkt i slänten, och skjuvhållfastheten för punkten anges i kohesion [kPa]. Detta upprepas för varje punkt av fältdata man har för slänten, ju fler punkter desto noggrannare analys och resultat. C-profilen fungerar endast i jordar som innehåller odränerade egenskaper. Finns det fler än en C-profil kommer värden emellan dessa profiler att interpoleras.

- **Loads**
 Eventuella laster på markytan kan läggas in med detta verktyg. Lasten anges som en punkt eller som en yta. Vinkel på lasten kan bestämmas först efter att lasten som anges i kN/m² lagts ut. Vinkeln på lasten anges i grader.

- **Model data**

- **GW & pore pressure**
 I detta verktyg anges grundvattenytan med hjälp av x-y koordinater. Likt C-profilen kan man på samma sätt skapa en profil över portryck genom att lägga in det sämsta möjliga portrycket för slänten.
5. Analys & resultat

5.1 Analys av dagvattendamm
Modellering av dagvattendammen har skett i programmen Novapoint GeoSuite Stability samt Geoslope SLOPE/W. Sektionen som analyseras har getts de sämsta möjliga förutsättningarna som anses vara rimliga för typfallet.

5.1.1 Typfall 1: Dränerad analys
Slänten har indelats i 5 olika jordlager med en 3 meter bred last med en last på 20 kPa ca 1 meter från släntkrönet. Grundvattennivån ligger 0,2 meter ovan Le1 lagret.

Jordlagrens egenskaper för analysen visas i tabell 2.

Tabell 2. Jordlagrens egenskaper för dränerad analys.

<table>
<thead>
<tr>
<th>Torrskorpa</th>
<th>Siltlera</th>
<th>Sulfidlera</th>
<th>Lera 1</th>
<th>Lera 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,7</td>
<td>0,8</td>
<td>0,7</td>
<td>8,8</td>
</tr>
<tr>
<td>17</td>
<td>17,5</td>
<td>16</td>
<td>15,5</td>
<td>15,5</td>
</tr>
<tr>
<td>7</td>
<td>7,5</td>
<td>6</td>
<td>5,5</td>
<td>5,5</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>1,3</td>
<td>1,1</td>
<td>1</td>
<td>1</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Figur 7. Dränerad slänt analyserad i Geoslope SLOPE/W.

Säkerhetsfaktorn för dränerat beräknades enligt Novapoint GeoSuite Stability till ca. $F_{c\varphi} = 1,27$
Säkerhetsfaktorn för i Geoslope SLOPE/W beräknades till ca. $F = 1,29$
Säkerhetsfaktorn skiljer sig med ca 2 %.

5.1.2 Typfall 2: Odränerad Analys
Slänten har indelats i 5 olika jordlager med en 3 meter bred last med en last på 20 kPa ca 1 meter från släntkrönet. Grundvattennivån ligger 0,2 meter ovan Lera 1 lagret.
Jordlagrens egenskaper för analysen visas i tabell 3.

<table>
<thead>
<tr>
<th></th>
<th>Mäktighet [m]</th>
<th>Effektiv tunghet ρ' [kN/m3]</th>
<th>Odränerad skjuvhållfasthet Cu [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torrskorpa</td>
<td>1</td>
<td>7</td>
<td>12,5</td>
</tr>
<tr>
<td>Siltlera</td>
<td>1,7</td>
<td>7,5</td>
<td>11</td>
</tr>
<tr>
<td>Sulfidlera</td>
<td>0,8</td>
<td>6</td>
<td>9,5</td>
</tr>
<tr>
<td>Lera 1</td>
<td>0,7</td>
<td>5,5</td>
<td>10</td>
</tr>
<tr>
<td>Lera 2</td>
<td>8,8</td>
<td>5,5</td>
<td>12</td>
</tr>
</tbody>
</table>

Figur 9. Odränerad slänt analyserad i Geoslope SLOPE/W.

Säkerhetsfaktorn för odränerad analys beräknades enligt Novapoint GeoSuite Stability till ca $F_c = 0,94$
Säkerhetsfaktorn för odränerad analys beräknades enligt Geoslope SLOPE/W till ca $F = 0,97$
Säkerhetsfaktorn skiljer sig med ca 3,1 %

5.1.3 Typfall 3: Odränerad Analys med höjd grundvattennivå
Slänten har indelats i 5 olika jordlager med en 3 meter bred last med en last på 20 kPa ca 1 meter från släntkrönet. Grundvattennivån ligger 2,2 meter ovan Le1 lagret.
Jordlagrens egenskaper för analysen visas i tabell 4.
Tabell 4. Jordlagrens egenskaper för odränerad analys med höjd grundvattennivå.

<table>
<thead>
<tr>
<th>Torrskorpa</th>
<th>1</th>
<th>7</th>
<th>12,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siltlera</td>
<td>1,7</td>
<td>7,5</td>
<td>11</td>
</tr>
<tr>
<td>Sulfidlera</td>
<td>0,8</td>
<td>6</td>
<td>9,5</td>
</tr>
<tr>
<td>Lera 1</td>
<td>0,7</td>
<td>5,5</td>
<td>10</td>
</tr>
<tr>
<td>Lera 2</td>
<td>8,8</td>
<td>5,5</td>
<td>12</td>
</tr>
</tbody>
</table>

Figur 11. Odränerad slänt med höjd grundvattennivå analyserad i Geoslope SLOPE/W.
Säkerhetsfaktorn för odränerad analys med höjd grundvattennivå beräknades enligt Novapoint GeoSuite Stability till ca. $F_c = 1,10$
Säkerhetsfaktorn för odränerad analys med höjd grundvattennivå beräknades enligt Geoslope SLOPE/W till ca. $F = ca 1,17$
Säkerhetsfaktorn skiljer sig med ca 6,4 %

5.1.4 Typfall 4: Odränerad Analys med höjd grundvattennivå och tyngd på jordlager
Slänten har indelats i 5 olika jordlager med en 3 meter bred last med en last på 20 kPa ca 1 meter från släntkrönet. Grundvattennivån ligger på 2,2 meter ovan Le1 lagret.
Jordlagrens egenskaper för analysen visas i tabell 5.

Tabell 5. Jordlagrens egenskaper för odränerad analys med höjd grundvattennivå och tyngd på jordlager.

<table>
<thead>
<tr>
<th>Jordlagren</th>
<th>Mäktighet [m]</th>
<th>Effektiv tunghet $\rho'[kN/m^3]$</th>
<th>Odränerad skjuvhållfasthet $Cu[kPa]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torrskorpa</td>
<td>1</td>
<td>9</td>
<td>12,5</td>
</tr>
<tr>
<td>Siltlra</td>
<td>1,7</td>
<td>9,5</td>
<td>11</td>
</tr>
<tr>
<td>Sulfidlera</td>
<td>0,8</td>
<td>8</td>
<td>9,5</td>
</tr>
<tr>
<td>Lera 1</td>
<td>0,7</td>
<td>7,5</td>
<td>10</td>
</tr>
<tr>
<td>Lera 2</td>
<td>8,8</td>
<td>7,5</td>
<td>12</td>
</tr>
</tbody>
</table>

Figur 13. Odränerad slänt med höjd grundvattennivå och tyngd på jordlager analyserad i Geoslope SLOPE/W.

Säkerhetsfaktorn för odränerad analys med höjd grundvattennivå och tyngd på jordlager beräknades enligt Novapoint GeoSuite Stability till ca. $F_c = 1,01$
Säkerhetsfaktorn för odränerad analys med höjd grundvattennivå och tyngd på jordlager beräknades enligt Geoslope SLOPE/W till ca. $F = \text{ca.} 1,08$
Säkerhetsfaktorn skiljer sig med ca 6,9 %

5.1.5 Typfall 5: Kombinerad analys
Slänten har indelats i 5 olika jordlager med en 3 meter bred last med en last på 20 kPa ca 1 meter från släntkrönet. Grundvattennivån ligger på 0,2 meter ovan Le1 lagret.
Jordlagrens egenskaper för analysen visas i tabell 6.

<table>
<thead>
<tr>
<th>Mäktighet [m]</th>
<th>Tunghet ρ [kN/m3]</th>
<th>Effektiv tunghet ρ' [kN/m3]</th>
<th>Friktionsvinkel φ [$^\circ$]</th>
<th>Kohesion c' [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torrskorpa</td>
<td>1</td>
<td>17</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Siltlera</td>
<td>1,7</td>
<td>17,5</td>
<td>7,5</td>
<td>20</td>
</tr>
<tr>
<td>Sulfitlera</td>
<td>0,8</td>
<td>16</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Lera 1</td>
<td>0,7</td>
<td>15,5</td>
<td>5,5</td>
<td>20</td>
</tr>
<tr>
<td>Lera 2</td>
<td>8,8</td>
<td>15,5</td>
<td>5,5</td>
<td>20</td>
</tr>
</tbody>
</table>

Figur 15. Kombinerad analys i Geoslope SLOPE/W.
Säkerhetsfaktorn för kombinerad analys beräknades med Novapoint GeoSuite Stability till ca $F_{komb} = 0,83$

Säkerhetsfaktorn för kombinerad analys beräknades med Geoslope SLOPE/W till ca $F = 0,9$

Säkerhetsfaktorn skiljer sig med ca 8,4 %

5.1.6 Typfall 6: Kombinerad analys med höjd grundvattennivå

Slänten har indelats i 5 olika jordlager med en 3 meter bred last med en last på 20 kPa ca 1 meter från släntkrönet. Grundvattennivån ligger på 2,2 meter ovan Le1 lagret.

Jordlagrens egenskaper för analysen visas i tabell 7.

Tabell 7. Jordlagrens egenskaper för kombinerad analys med höjdgrundvattennivå.

<table>
<thead>
<tr>
<th></th>
<th>Mäktighet [t]</th>
<th>Tunghet ρ [kN/m^3]</th>
<th>Effektiv tunghet ρ' [kN/m^3]</th>
<th>Friktionsvinkel φ [$^\circ$]</th>
<th>Kohesion c' [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torrskorpa</td>
<td>1</td>
<td>17</td>
<td>7</td>
<td>20</td>
<td>1,3</td>
</tr>
<tr>
<td>Siltlera</td>
<td>1,7</td>
<td>17,5</td>
<td>7,5</td>
<td>20</td>
<td>1,1</td>
</tr>
<tr>
<td>Sulfidlera</td>
<td>0,8</td>
<td>16</td>
<td>6</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Lera 1</td>
<td>0,7</td>
<td>15,5</td>
<td>5,5</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Lera 2</td>
<td>8,8</td>
<td>15,5</td>
<td>5,5</td>
<td>20</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Figur 17. Kombinerad analys i Geoslope SLOPE/W.

Säkerhetsfaktorn för kombinerad analys med höjd grundvattennivå beräknades med Novapoint GeoSuite Stability till ca $F_{komb} = 0,96$
Säkerhetsfaktorn för kombinerad analys med höjd grundvattennivå beräknades med Geoslope SLOPE/W till ca $F = 1,01$
Säkerhetsfaktorn skiljer sig med ca 5,2 %
6. Resultat
För det summerade resultat från analysdelen se Tabell 8.

Tabell 8. Samtliga resultat från analyserna.

<table>
<thead>
<tr>
<th>Typfall</th>
<th>Säkerhetsfaktor Novapoint</th>
<th>Säkerhetsfaktor GeoSuite Stability</th>
<th>Differens</th>
<th>Skillnad i kritisk glidyta mellan Novapoint GeoSuite Stability och Geoslope SLOPE/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typfall 1</td>
<td>1,27</td>
<td>1,29</td>
<td>1,5</td>
<td>1 meter djupare och 2 meter bredare kritisk glidyta för Geoslope SLOPE/W.</td>
</tr>
<tr>
<td>Typfall 2</td>
<td>0,94</td>
<td>0,97</td>
<td>3,1</td>
<td>1 meter djupare och 2 meter bredare kritisk glidyta för Geoslope SLOPE/W.</td>
</tr>
<tr>
<td>Typfall 3</td>
<td>1,10</td>
<td>1,17</td>
<td>6,4</td>
<td>1 meter djupare och 1 meter bredare kritisk glidyta för Novapoint GeoSuite Stability.</td>
</tr>
<tr>
<td>Typfall 4</td>
<td>1,01</td>
<td>1,08</td>
<td>6,9</td>
<td>1 meter djupare och 1 meter bredare kritisk glidyta för Novapoint GeoSuite Stability.</td>
</tr>
<tr>
<td>Typfall 5</td>
<td>0,83</td>
<td>0,9</td>
<td>8,4</td>
<td>Likartad kritisk glidyta.</td>
</tr>
<tr>
<td>Typfall 6</td>
<td>0,96</td>
<td>1,01</td>
<td>5,2</td>
<td>1,5 meter djupare kritisk glidyta för Novapoint GeoSuite Stability.</td>
</tr>
</tbody>
</table>
7. Diskussion

- **Typfall 1, Dränerad Analys.**
 Det typfall mellan beräkningsprogrammen som är varandra mest likt, en skillnad på säkerhetsfaktor med 2 % och nästan identiska kritiska glidytor. Resultatet kan bero på att detta är också det enda typfallet där Novapoint Geosuite Stability inte använder sig utav någon C-profil, vilket resulterar i en mindre avancerad analys.

- **Typfall 2, Odränerad Analys.**
 I den odränerade analysen skiljer sig säkerhetsfaktorn med 3,1 %. Detta är också den enda analysen där Geoslope SLOPE/W får en större kritisk glidyta än Novapoint Geosuite Stability.

- **Typfall 3, Odränerad Analys med höjd grundvattennivå.**
 Höjer man grundvattennivån så ökar skillnaden i säkerhetsfaktorn till 6,4 %. Höjningen av grundvattennivån har ökat skillnaden med 3,3 % mellan beräkningsprogrammen vilket tyder på att de hanterar stabilitetsökningen av höjd grundvattenyta olika. Höjningen av grundvattennivån minskar även den kritiska glidytan i båda programmen, dock allra mest i Geoslope SLOPE/W som här också blir den mindre kritiska glidytan. Höjningen av grundvattnet och därmed släntstabilitet har också resulterat i att de båda kritiska glidytorna rör sig uppåt och skär i terrassen i mitten av slänten istället för i släntfoten. Ökningen av släntstabiliteten beror i detta fall på den ökad vattenmassa på mothållande sidan i dammen.

- **Typfall 4, Odränerad analys med höjd grundvattennivå och tyngd på jordlager.**
 Med en högre tyngd på jordlager i slänten så sänker man släntstabiliteten, skillnaden i säkerhetsfaktor ökar mellan de båda beräkningsprogrammen till 6,9 %. Ingen märkbar förändring syns i de kritiska glidytorna. Förändringen i säkerhetsfaktor från föregående analys är en ökning med 0,5 %, denna subtila ökning och oförändrade glidytor tyder på att ökad tyngd på jordlager hanteras av beräkningsprogrammen relativt lika.

- **Typfall 5, Kombinerad analys.**
 Det typfall där säkerhetsfaktorn visar störst skillnad, 8,4 %. De kritiska glidytorna är dock även här nästan identiska.

- **Typfall 6, Kombinerad analys med höjd grundvattenyta.**
 Med höjd grundvattenyta minskar skillnaden i säkerhetsfaktor till 5,2 %. De kritiska glidytorna ändrar även här position från släntfoten till terrassen i mitten av slänten.
Här syns återigen att beräkningsprogrammen hanterar höjd grundvattenyta olika då skillnaden i säkerhetsfaktor mellan Kombinerad analys och Kombinerad analys med höjd grundvattenyta är 3,2 %.

Resultatet från analyserna visar att de båda programmen får fram snarlika glidytor och säkerhetsfaktorer. Differensen på säkerhetsfaktorn ligger mellan 0.02-0.07. De största skillnaderna i både glidyta och säkerhetsfaktor återfinns i de odränerade och kombinerade analyserna, vilket troligen beror på att Novapoint GeoSuite Stability använder sig av C-profile.

En anledning till differensen i säkerhetsfaktor mellan de två programmen kan bero på de olika metoderna som används för att beräkna var i slänten glidytan skär. Novapoint GeoSuite Stability använder sig av en sökyta i formen av en kvadrat för att beräkna glidytan, medan Geoslope SLOPE/W använder sig av ett ändligt antal punkter utsatta längs släntytan. Eftersom programmen använder sig av olika metoder för att beräkna den kritiska glidytan kommer den nästan aldrig vara identisk mellan beräkningsprogrammen och skillnader i säkerhetsfaktor uppstår.
8. Slutsats

Geoslope SLOPE/W och Novapoint GeoSuite Stability har i de utförda analyserna presenterade i rapporten en differens i säkerhetsfaktor som ligger mellan 0,02-0,07. Säkerhetsfaktorn är i samtliga fall större i analyserna som gjorts med Geoslope SLOPE/W, skillnaden i säkerhetsfaktor mellan analyserna är dock så liten att den nästan är försumbar.

Bägge programmen framställer relativt likartade kritiska glidytor, skillnaden ligger i att i en majoritet av analyserna så framställer Novapoint GeoSuite Stability ofta kritiska glidytor som skär något djupare vertikalt och något längre horisontellt.

Resultatet från analyserna tyder på att båda programmen är varandra väldigt lika och kan därmed förväntas ge ett liknande resultat.

Tackord

9. Referenser

Böcker

Rapporter

Internet källor
