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Abstract

Drug Name Recognition in Reports on Concomitant
Medication

Arvid Gräns

This thesis evaluates if and how drug name recognition can be used to 
find drug names in verbatims from reports on concomitant medication 
in clinical trial studies. In clinical trials, reports on concomitant 
medication are written if a trial participant takes other drugs than 
the studied drug. This information needs to be coded to a drug 
reference dictionary. Coded verbatims were used to create the data 
needed to train the drug name recognition models in this thesis. 
Labels for where in each verbatim the coded drugs name was, were 
created using a Levensthein distance. The drug name recognition 
models were trained and tested on verbatims with labels. 

Drug name recognition was performed using a logistic regression model 
and a bidirectional long short-term memory model. The bidirectional 
long short-term memory model performed the best result with an F1 
score of 82.5% on classifying which words in the verbatims that were 
drug names. When the results were studied from case to case, they 
showed that the bidirectional long short-term memory classifications 
sometimes outperformed labels it was trained on in single word 
verbatims. The model was also tested on manually labelled golden 
standard data where it performed an F-score of 46.4%. The results 
indicate that a bidirectional long short-term memory model can be 
implemented for drug name recognition, but that label reliability is 
an issue in this thesis.
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Populärvetenskaplig sammanfattning 

De senaste årens tekniska utveckling har skapat förutsättningar för att processa och lagra 

stora mängder data. Detta förändrar sättet vi arbetar på och möjligheterna att utvinna 

information. Inom kliniska prövningar då nya läkemedel testas och utvecklas samlas stora 

mängder data in. Bland den datan finns information ifall studiedeltagande personer tar andra 

läkemedel än studieläkemedlet under den kliniska prövningen. Sådan information skrivs ned 

och behöver sedan kodas mot en läkemedelsordbok. Kodningen av vilket läkemedel utöver 

studieläkemedlet en studiedeltagare har tagit, görs för att standardisera datan mot en global 

standard och säkerställa vilket läkemedel studiedeltagaren tagit. Arbetet med att koda den här 

datan mot en ordbok över alla läkemedel, görs av en medicinsk kodare. Denne läser och 

tolkar informationen samt kodar mot läkemedelsordlistan vilket läkemedel studiedeltagaren 

tagit. När all data och alla kodningar samlas, skapar detta över tid stora mängder data. 

För att processa stora datamängder har maskininlärning blivit ett område inom 

datorvetenskapen som i allt större utbredning används inom industri och hos företag. 

Maskininlärning innehåller metoder för att få datorer att skapa egna regler för att exempelvis 

klassificera data till olika kategorier. Det finns ett antal underkategorier inom 

maskininlärning och klassificering varav läkemedelsigenkänning är en. Vilka ord som är 

läkemedel i olika typer av text har undersökt med hjälp av maskininlärning med positiva 

resultat i flera rapporter.  

Det arbete en medicinsk kodare gör och vad läkemedelsigenkänning ämnar att göra liknar 

varandra. Likheten i de två sysslorna skapade intresset för att i det här arbetet se hur 

läkemedelsigenkänning kan användas för att hitta vilka ord i data, inhämtad inom kliniska 

studier, som är läkemedelsnamn. Förhoppningen har varit att arbetet i framtiden kan 

användas som ett steg inom den medicinska kodningen.  

För att tillämpa läkemedelsigenkänning på tidigare beskrivna data har olika klassificerare 

tränats på stora mängder redan kodade data. Klassificerarna har under träningen skapat regler 

och mönster för att göra klassificeringar av tidigare osedda och ej kodade data efter 

träningen. De olika klassificerarnas prestanda mäts med hjälp av ett F1-mått som mäter hur 

väl varje ord i data klassificeras som läkemedelsnamn. Den bäst presterande klassificeraren är 

ett neuralt nätverk som har förmågan att ta med kontext i sin klassificering. Den presterar ett 

F1-mått på 82,7% vilket är i nivå med F1-mått nådda i tidigare liknande studier. 

När den bäst presterande klassificeraren testas på data av högre kvalitet än den tränat på, blir 

det däremot tydligt att för att klassificerarna i detta arbete ska bli tillämpbara inom det 

dagliga arbetet för en medicinsk kodare, krävs vidare arbete med att skapa bättre data att 

träna klassificerarna på. 
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1. Introduction 

As a part of World Health Organization programme for international drug monitoring, 

Uppsala Monitoring Centre (UMC) is leading the way on patient safety through safer 

medicines. The science of safer medicines is known as pharmacovigilance. As a part of 

the work in pharmacovigilance, certain clinical data produced as part of medical 

research needs to be collected. When drugs are tested on humans during medical 

research, data is collected if a trial participant takes other drugs than the study drug, 

which is the drug that is tested during medical research. The use of other drugs than the 

study drug is called concomitant medication. Information on concomitant medication is 

collected by a doctor who notes what drug alongside the study drug the trial participant 

has taken (verbatim), how the drug was taken (route), and why the drug was taken 

(indication). This information is called a report on concomitant medication. To be 

standardised over the world, this report needs to be coded to a global common standard 

on drugs. UMC has developed and maintains the most comprehensive and actively used 

drug reference dictionary in the world called WHODrug (UMC, 2019). The job of 

coding this information is done by a coding specialist, who is a specially trained 

pharmacist or nurse, who codes the information in the concomitant medication report to 

WHODrug. This process is called medical coding and ensures the reliability of reports 

on concomitant medication and which drug the trial participant has taken. 

The process of medical coding is often costly and time consuming as it takes manual 

labour by trained specialists. Machine learning (ML) is an area in data science which 

contains methods for computers to learn from data. ML has been implemented to 

increase efficiency in several applications in recent years (Columbus, 2018). A subtask 

of ML is Drug Name Recognition (DNR) which seeks to recognize drug names in 

unstructured texts (Liu et al., 2015). Some of the typical challenges in DNR are that 

drug names coincide with regular English words, they are often abbreviated, new drugs 

are constantly developed, drug names can contain nearly all characters, etcetera. A large 

amount of research has been done on DNR and great progress has been made over the 

last decades (Liu et al., 2015). Much of the work on DNR has been performed on longer 

sequences of texts such as article abstracts as seen in the work done by AbdelHaby and 

Dzunic (2018).  

Seeking to recognize which words in a text are drug names is similar to the work of a 

coding specialist. The similarity in the work of DNR and a coding specialist creates the 

idea if DNR may be applied in a medical coding context. This would mean that DNR is 

applied on verbatims from concomitant medication reports to find which words in the 

verbatims that are drug names. Verbatims are shorter texts than the ones DNR have 

typically been applied on in earlier work as seen in Liu et al. (2015). 
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Verbatims are supposed to include only what drug alongside the study drug the trial 

participant has taken. Cases when the verbatim includes other information are however 

common. An example of a verbatim that is coded to WHODrug is "You’ll love coles 

paracetamol". In this example, a coding specialist is going to say that "coles 

paracetamol" is a drug name as "coles paracetamol" exists in WHODrug and is most 

likely the drug name in the verbatim. We may however see that the verbatim contains 

other information as well. Examples of this are “TRIATEC/00885601/(RAMIPRIL)” 

which is coded to “Triatec”, “VEWNLAFAXINE-ER 150 MG TEVA” which contains 

a misspelled drug name and is coded to “Venlafaxine Teva”, and “LOCABIOSAL PRO 

SPR?HSTO? ZUR ANWENDUNG IN DER MUNDH?HLE” which also is misspelled 

and coded to “Locabiosol” in WHODrug. There are also examples where the drug name 

in the verbatim does not resemble the coded drug name such as in the verbatim 

“Argentum” which is coded to the drug “silver”. Verbatims may also include several 

drug names in the same verbatim. “ISONIAZID, PYRAZINAMIDE, RIFAMPICIN” is 

an example of this and is coded to “Isoniazid;pyrazinamide;rifampicin”. These 

verbatims give examples of when the coding process is not as easy as to make a direct 

comparison of drug names in WHODrug and words in the verbatims. Such an approach 

would also have been made difficult by the similarity between different drug names in 

WHODrug as well as some drug names similarity to regular English words. 

It is the coding specialists’ job to see which words that are drug names and what drug 

name they match in WHODrug. WHODrug contains over 480000 drug names and is the 

most comprehensive drug dictionary in the world. DNR, in contrast to the work of a 

medical coder, aims to find which word or words in a verbatim that is/are drug names 

rather than which drug in WHODrug they are. Considering the inherit problem of 

making a classification with over 480000 drug names and the nature of DNR, this thesis 

aims to investigate if and how DNR may be used to find which words in verbatims that 

are drug names. If successful, this work could act as a step in the work of medical 

coding. 

In this thesis, we have access to over 240000 verbatims that have been coded to each 

verbatims corresponding drug name or drug names in WHODrug. As the verbatims are 

already coded, WHODrug is not going to be used in this thesis. For each word in a 

verbatim, a classification if the word is part of a drug name is going to be made. 

1.1 Problem definition 

From the introduction a problem definition has been derived which is the following. 

▪ Can drug name recognition be used to find drug names in verbatims from 

concomitant medication reports? 

▪ What kind of drug name recognition may be used to find drug names in 

verbatims from concomitant medication reports? 
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1.2 Thesis disposition 

After the introduction where background and problem definition has been presented, 

section 2 presents the theories and concepts used in this thesis. Section 3 presents the 

data, methods, and limitations in this thesis. Section 4 presents the results that have been 

achieved through the work presented in section 3. The results are followed by section 5 

which contains a discussion of the results. The conclusion of this thesis along with a 

summary is presented in section 6 which is followed by section 7 on future work that 

may be done in order to research the subject further.   
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2. Machine Learning 

Machine learning (ML) is an area in data science which contain methods for computers 

to learn from data. ML if often divided in two sub-categories (Goodfellow, Bengio and 

Courville, 2016). 

▪ Supervised learning - Methods where the computer is handed data to learn from, 

as well as labels for this data. An example of this is, if the computer is passed a 

picture of a cat, and an answer which says that this is a picture of a cat. From 

this information the computer creates rules so that if it sees a similar picture in 

the future, it will predict it as a cat. This is called classification which is a 

supervised learning method. 

 

▪ Unsupervised learning - Methods where the computer is handed data without 

labels to it. These methods learn useful properties from the structure of the data, 

rather than creating rules derived from data with labels. An example of this is if 

the computer is handed pictures of cats and dogs. It is then up to the computer to 

decide how to differentiate between these pictures and categorize them. This is 

called clustering which is a unsupervised learning method. 

 

Many of the ML methods used today have been around since the 90’s (Mitchell, 1997) 

but have been increasingly utilized since then (Columbus, 2018) because of a rise in 

computational resources and available data that can be stored. Powerful computers of 

today combined with ML methods, has proven to be an effective tool in many 

applications (Goodfellow, Bengio and Courville, 2016). 

2.1 Classification and binary classification 

Classification is a technique to decide which class an object belongs to based on one or 

more variables from the data. Classes are discrete and divisible, such as blood type, 

species, or true or false. Classification is part of pattern recognition and is an instance of 

supervised learning. Classification problems that are limited to two classes, true or false, 

are called binary classification problems. 

This thesis aims to label words in verbatims as true if the word is a drug name, or false 

if it is not. This is a binary classification problem. There are several different models 

that can be used for binary classification. What they have in common is that they are 

trained on labelled data. After training, the models may be used to predict labels of 

previously unseen data. If the model performs well, it can prove to be an efficient tool to 

label data. 
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2.2 Logistic regression 

Logistic regression is a statistical model which uses a logistic function for binary 

classification. The logistic function calculates the probability of data to belong to a class 

of 0 or 1, where the probability 𝑝(𝑋)  is a value between 0 and 1. A threshold (section 

2.8.6) between 0 and 1 is chosen to make the final decision of which values classify as 0 

or 1. Data with calculated probability of 0.7 with a threshold of 0.5 would be classified 

to belong to the class 1 (Gareth James Daniela Witten, 2013). 

 
𝑝(𝑋) =

𝑒𝛽0+∑ 𝛽𝑖𝑋𝑖
𝑛
𝑖=1

1 + 𝑒𝛽0+∑ 𝛽𝑖𝑋𝑖
𝑛
𝑖=1

 

 

(1) 

In the equation of a logistic function seen above, 𝑝(𝑋) is the probability and it is 

calculated as a linear function of one or more variables of the data represented by 𝑋𝑖 

with corresponding coefficients 𝛽𝑖 which are parameters of the model (Gareth James 

Daniela Witten, 2013). 

2.3 Artificial neural networks 

Artificial neural networks (ANNs) is an attempt to process information like in the 

nervous system. The ANN systems are built on neurons, which are mini functions with 

their own coefficients as seen in Figure 1. The neuron may take several variables of data 

𝑥1 … 𝑥𝑖 as input. Each of the variables are assigned a weight 𝑤1 … 𝑤𝑖 which the 

variables are multiplied with. In the body of the neuron, the information is integrated 

usually just by adding the different signals. The information is then passed to an 

activation function 𝑓 which is a primitive function, usually a ReLU function. 𝑓 outputs 

𝑦 which is the result of the activation function, given the sum of the information from 

the weighted variables as seen in Figure 1 (Rojas, 2013).  

 

Figure 1. A model of a single neuron. 
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To form more advanced neural networks, more neurons can be used. An example of this 

is shown in Figure 2 where the neural network consists of several neurons. The input 

layer consists of 5 neurons which takes one or more variables of the data. The 

information from the input layer is passed to neurons in the next layer, called a hidden 

layer, whose output is condensed down to one single neuron in the output layer which 

outputs the result of the whole neural network. This architecture of neural networks is 

called feed-forward which means that the information is not passed in loops or 

backwards in the system, but is only fed forward (Rojas, 2013). 

 

Figure 2. A more advanced neural network consisting of several connected neurons. 

 

2.4 Recurrent neural networks 

There are several variants of neural networks for different applications. Recurrent 

Neural Networks (RNNs) are neural networks specialized on processing sequences of 

data (Goodfellow, Bengio and Courville, 2016). RNNs contains cycles within the 

network graph which allow values in the data to be influenced by data in previous 

timesteps. This property allows RNNs to perform well if data values are dependent on 

past data. If data values should also be dependent on future data values, a bidirectional 

architecture can be applied to the RNN architecture (section 2.5) (Graves, 2008). 

The structure of a simple RNN with no outputs can be described by the following 

equation:  

 ℎ(𝑡) = 𝑓(ℎ(𝑡), 𝑥(𝑡)) (2) 
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The variable ℎ(𝑡) represents the state at time 𝑡, 𝑓 is the function of this RNN, 𝑥(𝑡) is 

data at time 𝑡, and is what parameters the function 𝑓. The equation can be represented as 

seen in Figure 3 (left). The RNN processes information from the data variable 𝑥 which 

is incorporated into ℎ which is passed forward in time to itself. In the unfolded version 

(right), each neuron represents a time step.  

 

 

Figure 3. Circuit and unfolded simple RNN. 

 

There are several variants of RNNs and three of the most common according to 

Goodfellow, Bengio and Courville (2016) are: 

▪ RNNs which have an output at each time-step and recurrent connections 

between the hidden units. 

▪ RNNs which have an output at each time-step and recurrent connections 

between the output and the hidden layer in the next time step. 

▪ RNNs which have recurrent connections between hidden units and create only 

one output after reading the whole sequence. 

An example of an RNN which has an output at each time-step and recurrent connections 

between the hidden units can be seen in Figure 4. This RNN has output 𝑜 and a loss 

function 𝐿 which calculates how far each 𝑜 is from the corresponding label 𝑦. This is a 

representation of a supervised machine learning model as discussed in section 2.1. 𝑈, 

𝑊, and 𝑉 are weight matrixes. 

 



8 
 

 

Figure 4. An RNN with a recurrent connection between output and the hidden layer at 

the next timestep. x is a data variable, h the hidden layer, o the output, L the loss, and y 

the label. U, V, and W are weights. 

 

2.5 Bidirectional recurrent neural networks 

When the whole sequence of data is known and the prediction would benefit from being 

influenced from future values, a bidirectional version of an RNN can be used. The 

bidirectional architecture combines two RNNs where one RNN is inverted to present 

data variables from future data. The combined standard RNN and the inverted RNN 

creates the bidirectional RNN whose output is predicted both from past and future data 

(Graves, 2008). 

2.6 Long short-term memory 

RNNs allow data variable values to be influenced by past data. Despite this, RNNs 

typically have problems learning long-term dependencies. Gradients propagated over 

many time steps tend to either vanish or explode. Even if the RNN succeeds in storing 

memories without the gradients exploding, the problem of the RNN assigning 

exponentially smaller weights to long-term interactions compared to short term ones 

remain. One efficient way to deal with this problem has been to introduce gates in the 

network instead of recurrently connected hidden layers. The gates are paths through 
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time that have derivatives that neither vanish or explode. The idea is that the 

accumulated information is used by the neurons and that the RNN learns when to clear 

the state of accumulated information in the gates, when not needed anymore. One of 

these gated RNNs is called long short-term memory (LSTM) (Goodfellow, Bengio and 

Courville, 2016). 

The cells in the LSTM are recurrently connected to each other which can be seen in 

Figure 5. This replaces the recurrently connected hidden units of regular RNNs.  

 

 

 

Figure 5. The LSTM network cell 

 

A shallow LSTM recurrent network architecture using forward propagation according to 

Goodfellow, Bengio and Courville (2016) is given below. 

 

The internal state unit is the most important component of the LSTM which has a linear 

self-loop as represented in Figure 5. The weight of the self-loop is controlled by the 

forget gate unit 𝑓𝑖
(𝑡)

 where 𝑡 representes the time step and 𝑖 the cell. It calculates a 

weight between 0 and 1 through the sigmoid unit as seen in the equation below. 

 𝑓𝑖
(𝑡)

=  𝜎(𝑏𝑖
𝑓

+ ∑ 𝑈𝑖,𝑗
𝑓

𝑥𝑗
(𝑡)

𝑗

+ ∑ 𝑊𝑖,𝑗
𝑓

ℎ𝑗
(𝑡−1)

𝑗

)      (3) 
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The input vector is 𝑥 and ℎ is the hidden layer which contains the output from all the 

LSTM cells. The equation also contains the biases 𝑏𝑓 , the input weights 𝑈𝑓 , and the 

recurrent weights 𝑊𝑓  for the forget gates. Using the forget gate, the internal state is 

updated as seen in the equation below. 

 𝑠𝑖
(𝑡)

=  𝑓𝑖
(𝑡)

𝑠𝑖
(𝑡−1)

+ 𝑔𝑖
(𝑡)

𝜎(𝑏𝑖 + ∑ 𝑈𝑖,𝑗𝑥𝑗
(𝑡)

𝑗

+ ∑ 𝑊𝑖,𝑗ℎ𝑗
(𝑡−1)

𝑗

) (4) 

In this equation it can be seen how the biases 𝑏, input weights 𝑈, and recurrent cells 𝑊 

are passed into the LSTM cell. 

The external input gate 𝑔𝑖
(𝑡)

 is calculated using a sigmoid unit to calculate a weight 

between 0 and 1 much like the forget gate as seen in the equation below. 

 𝑔𝑖
(𝑡)

= 𝜎(𝑏𝑖
𝑔

+ ∑ 𝑈𝑖,𝑗
𝑔

𝑥𝑗
(𝑡)

𝑗

+ ∑ 𝑊𝑖,𝑗
𝑔

ℎ𝑗
(𝑡−1)

𝑗

) (5) 

The output ℎ𝑖
(𝑡)

 is calculated according to the following equation: 

 ℎ𝑖
(𝑡)

= tanh (𝑠𝑖
(𝑡)

)𝑞𝑖
(𝑡)

 (6) 

 𝑞𝑖
(𝑡)

= 𝜎(𝑏𝑖
𝑜 + ∑ 𝑈𝑖,𝑗

𝑜 𝑥𝑗
(𝑡)

𝑗

+ ∑ 𝑊𝑖,𝑗
𝑜 ℎ𝑗

(𝑡−1)

𝑗

) (7) 

Here the output gate 𝑞𝑖
(𝑡)

 can shut off the output ℎ𝑖
(𝑡)

 as the output gate 𝑞𝑖
(𝑡)

 uses a 

sigmoid to calculate a weight between 0 and 1 much just like the external gate, but 

using its own parameters. If the output gate returns 0, ℎ𝑖
(𝑡)

 will therefore also be 0. 

2.7 Word embeddings and word comparison 

Regular text written in text strings is a way for humans to communicate with each other. 

Computers are however a lot better at processing numbers than text. Much more so than 

humans. This means that an effective way of presenting words for a computer to handle 

them, is to convert them to numbers. The representation of words in numbers is called 

word embeddings. Word embedding is an efficient way of representing words for neural 

networks. 

2.7.1 Word2Vec 

Word2Vec is a unsupervised model that is used to create word embeddings and consists 

of a two-layer neural network. This is a model proposed by Mikolov et al (2013). It 

takes text as input and outputs vectors of a chosen dimension that represents these 

words in a shared vector space. Words with similar context are located closer to each 

other in vector space than words with unsimilar context. As the words are given a 
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relation to each other depending on their context, the following relations should be true: 

vec("King") + vec("Woman") - vec("Man") = vec("Queen") (Mikolov et al., 2013). 

The Word2vec model can use two different methods of finding word relations. One is 

the Continuous Bag Of Words (CBOW) which uses a window of surrounding words to 

predict the current word. The other is Skip-Gram, which uses the current word to 

predict the surrounding window of context words. CBOW is the faster of the two but 

Skip-Gram is better for predicting words that do not appear frequently (Mikolov et al., 

2013). 

Several pre-trained Word2Vec word and phrase vectors exists. One of them being 

trained on Google News which is a comprehensive news database that contains news 

articles from all over the world. (Google, 2019) These pre-trained vectors contains 300-

dimensional vectors for 3 million words and phrases and performs well on datasets 

containing English words. This gives the opportunity to use Word2vec both as pre-

trained word vectors, or to train domain-specific word vectors. 

2.7.2 Levensthein distance 

When comparing word context similarity, Word2vec is an efficient way of doing this. If 

we are more interested in the similarity of two words from the perspective of how much 

they resemble each other, not in context, but in actual letters, a distance called the 

Levensthein distance can be a more efficient method. The Levensthein distance is a 

metric for comparing the difference between two sequences of text. It calculates the 

minimum number of how many deletions, insertions, and substitutions that is needed to 

change one of the words into the other. This distance, or a ratio computed from the 

distance, can be used to compare text similarity character-wise (Yujian and Bo, 2007). 

2.8 Metrics for evaluation 

To evaluate a model’s performance there are different metrics to be used which will 

give different results. Metrics are the basis at which a model is evaluated to be good or 

bad compared to other models and is dependent on what the output is going to be used 

for. Metrics is therefore one of the backbones when creating and comparing models. 

2.8.1 Confusion matrix 

A confusion matrix displays how a model performs compared to test data in actual 

numbers. The classification is compared to the label and the result of the comparison is 

counted in accordance to the following list: 

▪ True Negatives (TN) - True Negatives are items of class 0, classified as class 0 

▪ False Negatives (FN) - False Negatives are items of class 1, classified as class 0 

▪ True Positives (TP) - True Positives are items of class 1, classified as class 1 

▪ False Positives (FP) - False Positives are items of class 0, classified as class 1 
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The confusion matrix lets us explicitly see the results of how the classifications compare 

to the labels as seen in Table 1. 

Table 1. Confusion matrix 

 Classified 0 Classified 1 

Label 0 TN FP 

Label 1 FN TP 

 

2.8.2 Accuracy 

Accuracy is the overall performance on true positives and true negatives, divided by the 

total number of classifications. If the classes are balanced and true positives and true 

negatives is of equal interest, accuracy is a good measure. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(8) 

 

2.8.3 Recall 

Recall is a metric on the models ability to correctly classify true positives. It does not 

consider false positives and a model with high recall may include a lot of false 

positives. This is a good measure if we want to make sure to predict all the positives and 

that negatives are neglectable for the model performance, as well as if false positives 

does not bother our evaluation.  

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

(9) 

 

2.8.4 Precision 

Precision measures the models ability to correctly classify positives. If the model 

classifies a lot of false positives the precision will be low. It does not take predicted 

negatives into account. Precision may be used when false negatives is of no interest but 

it is important that the classifications made as positives, are correctly classified.  

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 

(10) 
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2.8.5 F1-score 

F1-score uses both recall and precision to compute a score that is considered to be a 

harmonic average of the two, as it takes every category of positive classifications into 

its calculation. A high F1-score means that the model has few false positives and few 

false negatives. F1-score is a good score for data with uneven class distribution and 

when we are not interested in true negatives.  

 
𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(11) 

 

2.8.6 Threshold 

In binary classification, a value of 1 is classified as true and a value of 0 is classified as 

false. Binary classifiers predict a probability between 0 and 1 which then needs to be 

converted to 0 or 1 to be compared to labels. To decide if a value should be rounded to 

0 or 1, a threshold needs to be introduced. A threshold of 0.5 will classify values of 0.5 

or above to 1 and values under, to 0. Thresholds are problem dependent and is a 

parameter to be tuned. Depending on the data and model, a different threshold may be 

applied. One way to do this is to optimize the threshold depending on the F1-score. This 

is done by testing different thresholds and choosing the one which gives the highest F1-

score as proposed by Lipton, Elkan and Naryanaswamy (2014). 

2.9 Related work 

Domain specific word embeddings using Word2vec together with LSTM has 

successfully been used in earlier applications of extracting biomedical entities. Dzunic 

and AbdelHaby (2018) trained a domain specific word embedding model using 

Word2vec on 27 million abstracts from medical publications PubMed. The word 

embeddings were used in combination with a labelled training data set to train a LSTM 

model for entity extraction. Using this approach, they reached an F1-score of 76% on 

finding biomedical entities in the abstracts, which was considered a success. Word 

embeddings using unsupervised learning has shown to improve performance for entity 

extraction compared to only using an RNN model as well. In a study done by Song et al. 

(2018) the results of an RNN algorithm gave a F1-score of 60% while applying word 

embeddings, a F1-score of 72% was reached. Dzunic and AbdelHaby (2018) concludes 

from their work, a recipe for building a custom entity extraction pipeline with the 

following points:  

1) Get a large amount of in-domain unlabelled data. 

2) Train a Word2vec model on unlabelled data. 

3) Get as much labelled data as possible 

4) Train an LSTM-based Neural Network 
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Dzunic and AbdelHaby (2018) also conclude their findings on word embeddings that 

they are powerful to use in the context of entity extraction as they convey word 

semantics, perform better than traditional features, and that no feature engineering is 

needed. This means that entities can be extracted with no or little domain knowledge.  

 

More researchers have found that domain knowledge is not a necessity when dealing 

with biomedical entity extraction. Korkontzelos et al. (2015) studied how a model based 

on a manually annotated corpus of training data compared to a model trained on data 

that had not been manually annotated. The results showed to be similar and that drug 

named entity extraction can be done competitively without manually annotated data. 

This was done using heterogenous models built on dictionary knowledge and comparing 

the results to the best models trained on gold-standard data.  

 

Related work that has been presented is similar to the work done in this thesis. They are 

similar in what kind of methods have been used and in what kind of entities are 

searched for. The entity extraction in the work of AbdelHaby and Dzunic (2018), 

Korkontzelos et al. (2015), and Song et al. (2018) are from longer texts giving a lot of 

context to the data. In this thesis a similar approach as in the work of AbdelHaby and 

Dzunic (2018) will be taken, but with a different data set which contains shorter strings 

of text rather than longer texts. 
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3. Method and data 

The aim of this thesis is to investigate if and how drug name recognition can be used to 

find drug names in concomitant medication reports. This is going to be done by 

classifying which words in verbatims that are drug names. This section will explain 

what kind of data and methods that has been used to perform this. 

A schematic figure of the method in this thesis is presented in Figure 6. 

 

Figure 6. Schema for the work process in this thesis. 

3.1 Data set 

To train and test a drug name recognition model, data is needed. In this thesis, data from 

a UMC database containing verbatims manually coded by coding specialists at the 

UMC has been used. The manually coded verbatims are verbatims where a coding 

specialist has coded which drug name or drug names each verbatim contain. This 

information is found in the column coded drug name in Table 2. The data in the 

database are from cases when verbatims were not managed to be automatically coded 

by an in-house automatic drug coder. The data has been collected over several years and 

contains over 246000 verbatims which has successfully been coded to WHODrug by 

the coding specialists. Each row contains the verbatim, the coded drug name for each 

verbatim, and a unique identification number (ID) for each row. See Table 2 for an 

example of 5 different rows. 
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Table 2. Raw data. 

ID Verbatim Coded drug name 

90192 Chemotherapy with Hycamptin1 hycamtin 

168655 (VFend) ????? vfend 

211710 Chemo iberica Omeprazole omeprazole 

151132 Metilbromuro Homatropine homatropine methylbromide 

145277 Excedrin menstrual complete express excedrin menstrual complete 

 

3.2 Data tokenization 

The data consists of complete strings of text as seen in Table 2. It contained non 

alphanumeric characters (characters other than A-Z, 0-9), lower- and upper-case letters, 

etcetera. To make the text more uniform and easier to handle in later stages, without 

removing context in the text, the text was processed in several stages. To shorten the 

length of long verbatims containing for example 15 question marks in a row, sequences 

of more than three of the same character in a row was shortened to three characters. To 

handle commas, parenthesis, and other non-alphanumeric characters in words, 

whitespaces were placed in front of and after all non-alphanumeric characters as well as 

numbers. Line breaks and tabs were converted to single whitespaces.  

After pre-processing the texts, they were split on white spaces and the result was 

appended to a list for each verbatim and coded drug name as seen in Table 3. 

Table 3. Tokenized data 

ID Verbatim Coded drug name 

90192 [chemotherapy, with, hycamptin, 1] [hycamtin] 

168655 [(, vfend, ), ?, ?, ?] [vfend] 

211710 [chemo, iberica, omeprazole] [omeprazole] 

151132 [metilbromuro, homatropine] [homatropine, methylbromide] 

145277 [excedrin, menstrual, complete, express] [Excedrin, menstrual, complete] 
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3.3 Creation of labels 

The verbatims are coded by hand to which drug the patient has taken from the 

WHODrug dictionary. In our case we are interested in which word in the verbatim that 

is the drug name. Because of this, we need to create a new column with a field 

connected to each row that contain a labelling system.  

To create the labels, an array was created with the same length as the list of tokens in 

verbatim for each row. Labels of ones were placed at the index where the drug name 

were placed in the verbatim and zeroes in the other indices. To decide on which index to 

put the ones, fuzzy matching (Fuzzywuzzy, 2019), which uses the Levensthein distance 

between words as seen in section 2.8.2, was used to compare the similarity of words in 

coded drug name and verbatim. If the words were similar enough, a one was placed at 

the index of the drug name in the corresponding label array. An example how this 

would look like is seen in Table 3. 

Table 3. Labeled data 

ID Verbatim Coded drug name Label 

90192 [chemotherapy, with, 

hycamptin, 1] 

[hycamtin] [0, 0, 1, 0] 

168655 [(, vfend, ), ?, ?, ?] [vfend] [0, 1, 0, 0, 0, 0] 

211710 [chemo, iberica, omeprazole] [omeprazole] [0, 0, 1] 

151132 [metilbromuro, homatropine] [homatropine, 

methylbromide] 

[1, 1] 

145277 [excedrin, menstrual, 

complete, express] 

[Excedrin, menstrual, 

complete] 

[1, 1, 1, 0] 

 

Different thresholds for Levenstein distance ratio were tested before choosing a ratio of 

80%. The words in coded drug name and verbatim had to be at least a 80% match for a 

word in Verbatim to be labelled as one in the label. The evaluation of the Levensthein 

distance was done by looking at the examples and deciding on where the matching was 

good enough without being too generous and mislabelling words. The Fuzzywuzzy 

(Fuzzywuzzy, 2019) package was used to calculate the Levensthein distance ratio.  

As used in Ribeiro et al. (2018), as a complement to the main data set, a small set of 

golden standard data was created to be used in model evaluation. To create this golden 

standard data, 320 random rows were extracted from the main data set. The 320 rows 

were then manually labelled by three coding specialists at UMC instead of being 

labelled by the fuzzy matching.  
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3.4 Feature extraction from text 

To extract textual features of the verbatims and to make it easier for the models later 

implemented to process them, Word2vec (section 2.7.1) was used to create vector 

representations of all tokens. Each tokenized verbatim was fed into the Word2vec 

algorithm using Skip-Gram to be vectorised into a vector of dimension 100, thus 

creating a domain specific Word2vec model from this data. Using the domain specific 

Word2vec model, a representation of each verbatim was created using each tokens 

vector representation instead of the token. This information was stored in a new column 

to be passed into the models at a later stage. This method has proven to be effective in 

previous work such as AbdelHaby and Dzunic (2018) who claim that part of the recipe 

of successful entity extraction is to use a domain specific Word2vec (section 2.9). 

3.5 Classification models 

This thesis handles the binary classification problem of classifying words in a sequence 

of either being a drug name or not (section 2.1). In binary terms, this may be translated 

to words being classified as true (label 1) if it is a drug name, false (label 0) if it is not. 

To solve this classification problem, two different classification models are going to be 

implemented. 

3.5.1 Logistic regression 

A simple and popular classifier is the logistic regression model as seen in section 2.2. It 

is easy to implement for binary classification and this made it an interesting model to 

test in this thesis. It is used to give a baseline. 

A logistic regression model takes one input at a time and does not have a function for 

remembering past or future words. To make the classifications from the logistic 

regression model more context dependent, windows of two different sizes were created 

to be passed to the model. Windows of size one was passed to the model to test it in its 

basic form. Windows of size three were also tested to give the model more context. An 

example would be the verbatim [metilbromuro, homatropine] that would be translated 

into the following windows, [<B> , metilbromuro, homatropine], [metilbromuro, 

homatropine, <E>], where the <B> and <E> tags were added to mark beginning and end 

of verbatim. This also meant that the label lists were padded with a 0 at the beginning 

and the end for windows of size three and that corresponding windows were created 

from the labels as well. The verbatim windows were translated into Word2vec vector 

representations (section 3.4) of the windows. The Word2vec vectors, each of dimension 

100, were merged into one vector with dimension 300 to represent the three words in 

each window of size three. In our implementation this gave over 1160000 windows of 

size three. 

The windows were fed into the logistic regression model together with corresponding 

labels that labelled the window as a drug name if the middle word in the window was a 
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drug name. The model gave an output of a probability between 0 and 1 and a threshold 

of 0.65 for window size one and 0.68 for window size three for predicting true. These 

thresholds were chosen through F1-score maximizing of the thresholds as seen in 

section 2.8.5 and 2.8.6. 

As there were class imbalances where the label 0 occurred four more times than 1, class 

weights were fed into the model together with the data where weights for 0 was one and 

weights for 1 was set to four. 

The activation function for the model in Keras (section 3.6) was sigmoid as this is the 

standard S-curve for logistic regression. Adam was used as optimizer with a learning 

rate of 0.001. Binary cross entropy was used as loss function 

3.5.2 Bi-LSTM 

Earlier work such as AbdelHaby and Dzunic (2018) and Korkontzelos et al. (2015) has 

implemented neural networks for entity extraction (section 2.9). To try if neural 

networks (section 2.3) could be useful in the application of this thesis, a neural network 

was implemented. As our input was sequences of data, an RNN (section 2.4) was 

chosen as it takes sequences as input and is able to transfer information from earlier 

timesteps when predicting a word. For the RNN to better catch the context of the whole 

sequence and to avoid the inherit problem of exploding or vanishing gradients in RNNs, 

a LSTM type of RNN is chosen as it is better at passing information through the 

sequence (section 2.6).  

In our data we had access to the whole sequence of data, both past and future words, 

when classifying words. This led us into applying a bidirectional function to our LSTM 

model. This lets the LSTM predict each word using data from the past and future in the 

sequence (section 2.5). This gave us a bidirectional LSTM model.  

In order for us to use batch-learning, where a batch is a number of samples and batch-

learning in when the Bi-LSTM models variables gets updated in training, in our 

implementation, the sequences fed to the Bi-LSTM needs to be of equal length. To 

make the sequences of equal length, the length of the longest verbatim was measured 

and all the vector representations of verbatims and labels were padded with zeroes in the 

beginning of the sequences to match this length. This created a class imbalance in the 

labels which was compensated for when the model was fitted by adding class weights 

according to the class imbalances.  

The output of the model was probabilities between 0 and 1 for each word and a 

threshold for predicting 1 was chosen by which threshold gave the maximum F1-score 

on the training data (section 2.8.5, 2.8.6). This maximum F1-score was reached with a 

threshold of 0.17. 

The Bi-LSTM model implemented in Keras (section 3.6) used an embedding layer 

which contains numbers linked to Word2vec vector representations of the verbatims. 
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The Word2vec vectors are together with corresponding labels the input for the model. 

The implementation also used a batch-size of 128, a dropout of 0.5, a binary cross 

entropy loss function and the adam optimizer with a learning rate of 0.001. 

3.6 Tools 

To read and process the large amount of data, an efficient tool has been needed. Pandas 

(Pandas, 2019) and Numpy (NumPy, 2019) are popular libraries in Python (Python, 

2019) used for data processing. These tools were used to fulfil the requirement of 

efficient and easy data processing.  

To be able to implement the models used, Keras (Keras, 2019) running on top of 

Tensorflow (Tensorflow, 2019) has been used. Keras is a high-level neural networks 

API and Tensorflow is an open source machine learning library. SciKit-learn (SciKit-

learn, 2019) has been used to evaluate the models. 

To implement the word embeddings, a Word2vec implementation through gensim 

(Rehurek, 2019) was used. The training and testing of the models was run in GPU mode 

for faster processing. 

3.7 Evaluating classifiers 

The logistic regression classifier was implemented to give a baseline on performance 

with a simpler classifier. The baseline of the logistic regression model was used to 

compare it to a more advanced bidirectional LSTM model. As the data showed large 

imbalances before but even more so after padding, F1-score was chosen as the 

measurement to compare models. As the target of this thesis has been to label drug 

names rather than to label non-drug names, the F1-score is considered a well performing 

measurement for such a task as it gives a measure on how well the models predict ones 

rather than zeroes and deals with class imbalances (section 2.8.5). In addition to F1-

score, precision has been measured. 

To test the models, a test dataset was created by randomly taking 10% of the rows from 

the processed data set (section 3.3) before training the models. The models were then 

evaluated against each other using this test data. To evaluate the best performing model, 

a gold standard data, manually annotated by specialists was used (section 3.3). This 

gave a measurement on how well the model performed on perfect data. The labels 

created using the Levensthein distance (section 3.3) was also tested on the golden 

standard data to give a measurement how well the Levensthein distance labels were 

created. 

3.8 Limitations 

The work has been limited in time and on available data. The data that was found for the 

application in this thesis, was coded with coded drug name. It was not labelled with 
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indexes of where in the verbatims the drug names were. Having to label the data 

automatically has limited the quality of the labels and therefore also the results of the 

models. A limitation was also set that the data is classified in true or false rather than 

classifying which drug in WHODrug each word is. This was done because a 

classification problem of over 480000 classes, which represents how many drugs are 

represented in WHODrug, would be a hard to solve classification problem which would 

not fit in this thesis.  

The work has also been limited to testing two classifiers that was thought to give the 

best results. If more time was given, more classifiers could have been tested. 

3.9 Place for work 

The work was done at Uppsala Monitoring Centre (UMC) in Uppsala, Sweden. UMC 

has provided data, office space, guidance and a computer.  
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4. Results 

The results in this thesis are classifications produced from a logistic regression model as 

seen in section 3.5.1, and a bidirectional long short-term memory model (Bi-LSTM) as 

seen in section 3.5.2. The models have been trained on Word2vec vector representations 

of verbatims with corresponding labels of where in the verbatim a drug name exists 

(section 3.6). Verbatims are short texts on which concomitant drug a trial participant has 

taken and comes from concomitant medication reports (section 1). The labels have been 

created using the Levensthein distance ratio between words in verbatims and words in 

coded drug name (section 3.3). The coded drug names are manually coded by coding 

specialists of which drug names are present in each verbatim. 

The logistic regression model (section 3.5.1) and the Bi-LSTM model (section 3.5.2) 

that are implemented are evaluated using an F1-score. F1-score is a metric that performs 

well on unbalanced classes and gives a number on how the model performs on 

classifying true labels (section 3.8). 

The models have been trained on 90% of the data and tested on 10% of the data (section 

3.3). The best performing model is then tested on a small gold standard data set (section 

3.1). The thresholds for predicting true or false are chosen through which threshold 

optimizes F1-score for the different models (section 3.8). 

The logistic regression model was trained on 1000 epochs and used a sigmoid activation 

function, an adam optimizer with a learning rate of 0.001, and a binary cross entropy 

loss function (section 3.5.1). The Bi-LSTM model was trained on 100 epochs and used 

a Word2vec embedding layer (section 3.5.2), a bidirectional LSTM layer, a dropout of 

0.5, a time distributed dense layer with outputs for each sequence with a sigmoid 

activation function. The model was compiled with a binary cross entropy loss function 

and an adam optimizer with a learning rate of 0.001. 

Results from the logistic regression and Bi-LSTM model performance on test data is 

seen in Table 4. 

Table 4. Performance on test data. 

Model Threshold F1-score Accuracy 

Bi-LSTM > 0.18 82.7% 99.4% 

Logistic Regression 

window size three 

> 0.68 70.7% 76.0% 

Logistic Regression 

windows size one 

> 0.65 66.2% 80.5% 
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The Bi-LSTM model gives an F1-score of 82.7% on test data with a threshold of 0.18 

whereas the logistic regression model with window size three produces an F1-score of 

70.7% with a threshold of 0.68. The logistic regression model fed with windows of size 

one produced the lowest F1-score of 66.2% and a threshold of 0.65. The Bi-LSTM 

model is the model that performs best with the highest F1-score and this model is 

therefore evaluated further. 

Eight representative examples as seen in a larger portion of the data of when the 

classification from the Bi-LSTM model matches the labels is shown in Table 5. The 

table contains the verbatims and the labels that the model is tested on. For evaluation 

purposes, the table also contains the model output classification, and the coded drug 

name for each corresponding row. Note that the model is not trained using the coded 

drug name. The label and model classification are compared in the column match, 

which contains information if label and classification matches 100% or not. Note that 

the models are trained on Word2vec representations of the verbatims and not the 

verbatims themselves. 

Table 5. Examples on cases when the Bi-LSTM classification matches the label. The 

verbatim ['bascupan'] is classified by the Bi-LSTM model as [1] wich is a correct 

classification as it matches with the label [1]. 

Coded drug name Verbatim Label Classification Match 

['buscopan'] ['bascupan'] [1] [1] Yes 

['dextseran', 'r'] ['331955403'] [0] [0] Yes 

['ropivacaine'] ['ropivacaine', 'strength', 

'do', 'not', 'know'] 

[1 0 0 0 0] [1 0 0 0 0] Yes 

['cyanocobalamin', 

'; ',  'pyridoxine', ';',  

'thiamine'] 

['cyanocobalamin', '/', 

'pyridoxine', '/', 

'thiamine'] 

[1 0 1 0 1] [1 0 1 0 1] Yes 

['ometasone', 

'furoate'] 

['mometasone', 'furoate', 

'(', 'mometasone', 

'furoate', ')', '(', 'nasal'] 

[1 1 0 1 1 0 

0 0] 

[1 1 0 1 1 0 0 

0] 

Yes 

['casanthranol', ';', 
'docusate', 'sodium'] 

 

['casanthranol', 'and', 
'docusate', 'sodium'] 

[1 0 1 1] [1 0 1 1] Yes 

['fentanyl'] ['sandoz', 'fentanyl', 
'transdremal', 'system'] 

[0 1 0 0] [0 1 0 0] Yes 
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['pyralvex'] 
 

['pyralvex', '(', 'salicylzuur', 
'/', 'rheum', ')', 

'aanstipvloeistof', ',', '(', 
'millig'] 

[1 0 0 0 0 0 0 
0 0 0] 

[1 0 0 0 0 0 0 0 
0 0] 

Yes 

 

Table 6 contains typical examples as seen in a larger portion of the data of when the Bi-

LSTM classification and the labels do not match. The coded drug name ['good', 'sense', 

'dual', 'action', 'complete'] shows how regular English words can be used in a drug name. 

Table 6. Examples on cases when the Bi-LSTM classification did not match the label. 

Coded drug name Verbatim Label Classification Match 

['good', 'sense', 

'dual', 'action', 

'complete'] 

['good', 'sense', 

'complete'] 

[1 1 1] [0 0 0] No 

['pemetrexed'] ['培美曲塞'] [0] [1] No 

['humulus', 'lupulus'] ['houblon'] [0] 

 

[1] 

 
No 

['hmg', 'coa', 
'reductase', 
'inhibitors'] 

['stating', '(', 'hmg', 'coa', 
'reductase', 'inhibitors', ')'] 

[0 0 1 1 1 1  
0] 

[0 0 1 1 1 0 0] No 

['cough', 'and', 
'cold', 

'preparations'] 

['dayquil', 'fox', '(', 
'dextromethorphan', 
'hydrobromied', ',', 
'pseudoephedrine', 

'hydrochlorid'] 
 

[0 0 0 0 0 0 0 
0] 
 

[0 0 0 1 0 0 1 
1] 
 

No 

 

The Bi-LSTM model was tested on the golden standard data (section 3.3) and its 

performance is shown in Table 7. 

Table 7. Performance on golden standard data 

Model Threshold F1-score Accuracy 

Bi-LSTM > 0.18 46.4% 97.9% 
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To test how the labels created using the Levensthein distance compared to the manually 

labeled golden standard data (section 3.7), an F1-score of how the Levensthein labels 

performed on the golden standard data was calculated as seen in Table 8. 

Table 8. Levensthein labels performance on golden standard labels 

Label F1-score 

Levensthein 86.5% 
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5. Discussion 

The F1-scores of the logistic regression model and the Bi-LSTM model are shown in 

Table 4. We can see that the Bi-LSTM model performs better as there is a difference of 

over 10% between the logistic regression model with a window size of three and the Bi-

LSTM model. The difference is not immense which shows that the logistic regression 

model can perform well with its relatively simple structure, compared to Bi-LSTM. The 

logistic regression model fed with window size three performs better than the logistic 

regression model fed with window size one. This shows that a model with more context 

performs better than a model with less context. This may also be why the Bi-LSTM 

performs the best as this model is built to take context into consideration. Bi-LSTM is 

not limited by a window size in what context it considers for its classifications. 

 

The logistic regression is a linear model. Its relatively good performance shows that our 

data in many cases are linearly classifiable. However, the F1-score shows that some 

cases our data is better classified using a non-linear and more flexible model such as Bi-

LSTM, which leads to better results. The thresholds between the models shows a big 

difference in which threshold maximizes the F1-score for logistic regression and Bi-

LSTM. This may be connected to that the Bi-LSTM model is padded which creates a 

larger class imbalance. This may create lower classification values for words that are 

drug names which may have resulted in that a lower threshold is favoured. 

 

In Table 5 and 6, the four verbatim examples ['bascupan'], ['houblon'], ['培美曲塞'], and 

['331955403'] are shown. They are chosen from a larger portion of tested data as typical 

examples of how the Bi-LSTM model classifies when the verbatim contains one word. 

When studying the tested data, we can see that for verbatims containing one word, it 

will be classified as true unless the verbatim only consists of a number, which will be 

classified as false. This is seen throughout the data and shows that the model sometimes 

makes a better classification which words are drug names than the Levensthein distance, 

used for labelling, does. When studying the verbatims and comparing them to the coded 

drug name in the three true-classified verbatims, the prediction should indeed be true, 

which the Bi-LSTM model classifies, rather than false, which it has been labelled as. 

This gives an indication that the model may handle non-English text better than the 

labelling process. For further discussion on label reliability, see section 5.3. When the 

model is confronted by numbers, the numbers are classified as false. This is the same 

behaviour as when the Levensthein distance labels, as numbers in verbatims do not 

resemble drug names in coded drug names. 

 

In ['good', 'sense', 'complete'] all words are classified as false, in contrast to the label 

where all words are labelled as true. It is seen throughout the test data that the model 

performs poorly on labelling drug names that contains words that are also regular 

English words. This may be because regular English words are not common as drug 

names in the data. The model therefore has learnt that these words are usually not drug 

names. This behaviour makes the model ill-suited for some applications of drug name 
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recognition. However, it shows better performance on drug names which look like 

typical drug names to a human. Considering that a human may also predict regular 

English words as false, the model could be performing as good as a human without any 

access to the WHODrug dictionary would. 

 

Longer verbatims when the model performs well are for example ['azijnzuur', '/', 

'triamcinolonacetonide', '(', 'mg', 'per'], ['ropivacaine', 'strength', 'do', 'not', 'know'], and 

['cyanocobalamin', '/', 'pyridoxine', '/', 'thiamine'] which gives examples of when the 

model classifies 100% correctly on verbatims containing drug names and regular 

English words. These are also examples of when the verbatims are longer and therefore 

gives context the words. As Bi-LSTM can handle context, it could be that Bi-LSTM 

therefore performs well on longer verbatims as well. There are however also examples 

as seen in Table 6 where it performs less well on longer verbatims. 

5.1 Model performance on golden standard data 

The F1-score of the Bi-LSTM model in Table 7 was 46.4% with an accuracy of 97.8% 

on the golden standard test data. The high accuracy is, as in the other test data, not an 

appropriate measure as it does not deal with the imbalanced classes that are seen in the 

padded sequences of the data, that is fed to the Bi-LSTM model. The F1-score of 46.4% 

is almost half of that of the F1-score on the test data. This result shows that the Bi-

LSTM performs poorly on the golden standard data.  

In the process of manually labelling the golden standard data, the terminology 

specialists who labelled the data, reported that they were adding a substantial number of 

true labels. This was measured as an F1-score of how well the Levensthein labels 

compared to the golden standard ones. The F1-score was 86.5% as seen in Table 8. The 

difference between the Levensthein labels and the golden standard labels may be 

because words in verbatims sometimes are abbreviations or otherwise hard to map using 

a Levensthein distance as seen in section 3. 

The difference in the two labels may be why Bi-LSTM performs poorly on the golden 

standard data. It is therefore not robust in the sense that it does not perform well on 

other kind of data than it was trained on. As the golden standard resembles the training 

data in other ways, it is possible that if the model was to be trained exclusively on 

golden standard data, it would perform well on this kind of data as well. 

5.2 Data set and pre-processing 

As drugs in WHODrug can contain almost all characters, it is not thought to be a good 

idea to remove characters from verbatims as this potentially could remove important 

information for certain drugs. To be able to split data efficiently for cases when special 

characters were present without removing them, a compromise was to add whitespaces 

to the beginning and the end of the special characters. This retained context that could 

be perceived in the models as well as helping to split cases where two drugs were 
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connected, such as ”paracetamol;orifarm”. Characters that occurred more than three 

times in a row were however shortened to length of three. This retains the information 

of many characters, without weighing down the model with extra-long verbatims 

without rational information. In addition to this, the verbatims were made to lower case 

letters and split on whitespaces to create single words. 

A more aggressive split on the data could have been implemented which would have 

removed all characters other than a-z. This would have drastically reduced the amount 

of characters in the verbatim. A test was made on this and the loss of information did 

affect he quality of the data to a substandard level which is why it was not used. 

5.3 Label reliability 

The labels in the training data were created using a fuzzy matching with a ratio of the 

Levensthein distance. As seen in Table 5, ['houblon'] is a verbatim that is coded to 

['humulus', 'lupulus'] in WHODrug. The verbatim is labelled as 0 while the 

classification is 1. In this case, the classification could be argued to be correct even 

though the label is not 1. Typically seen as a trend in the classified data, in each 

verbatim containing one word, this word is classified as 1. This has in many cases, as in 

the case of ['houblon'], shown to be a correct classification as ['houblon'] represents the 

drug ['humulus', 'lupulus'] in WHODrug. This, together with the statements made from 

the terminology specialists, highlights that fuzzy matching with Levensthein distance in 

many cases gives the wrong label to words in verbatim.  

The labelling method did not handle cases where the language in verbatim was not 

English and therefore differed from the language in coded drug name. One such 

verbatim is ['培美曲塞'] which is Chinese for the drug ['pemetrexed'] which it was 

coded as. Such cases are impossible for the Levenshtein distance to predict as it takes a 

complete deletion and writeback of the verbatim. This would take a Levensthein 

matching ratio of 0%, which would label all words in verbatim as 1. This is also true for 

cases such as ['331955403'] which has a coded drug name which it shares no similarity 

within terms of characters. 

5.4 Comparison to related work 

The closest comparison in related work that has been done may be seen in AbdelHaby 

and Dzunic (2018) who used domain specific word embeddings with Word2vec in 

combination with a labelled training data set to train a LSTM model for entity 

extraction (section 2.9). They reached an F1-score of 76% on finding biomedical 

entities. In comparison with the binary classifier in this thesis, their classifier handled 

several classes. Their work included a data set of labelled data which they did not create 

automatically in the scope of their work. The reliability of their labels is therefore 

thought to be higher than in this thesis. The F1-score reached with the Bi-LSTM model 

in this thesis is however higher which may have to do with the bidirectional architecture 
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applied. The work of AbdelHaby and Dzunic (2018) could potentially benefit from 

implementing a bidirectional architecture to their work. 
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6. Conclusion and summary 

This thesis aimed to investigate if, and in that case, what kind of drug name recognition 

could be used to find drug names in verbatims from concomitant medication reports. It 

has been proven that it is possible to implement drug name recognition in the form of a 

machine learning model. The model produces positive results on classifying which 

words in the short text of a verbatim that are drug names. This has been done by 

implementing a bidirectional long short-term memory recurrent neural network model, 

which has been trained on Word2vec representations of verbatims with corresponding 

labels of wherever in the verbatim drug names exists. 

The model that has been implemented shows good performance with an F1-score of 

82.7% on the kind of data it has been trained on. The model shows poorer results on 

manually annotated data which it has not been trained on. The main improvement point 

of this thesis is to create more reliable labels for the data the model trains on. 
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7. Future work 

In this thesis, the main improving point is the quality of the labels. In future work, 

efforts should be made on making all the labels of gold standard quality. A better label 

quality in combination with the Bi-LSTM model implemented in this thesis could have 

the potential of improving tools of automatic drug coding in the future, as well as the 

daily work of medical coders. 

In the future, the word embeddings may benefit from being trained on a larger data set, 

such as the WHODrug dictionary and potentially concomitant drug case reports which 

are longer reports on concomitant medication. This approach may increase the 

reliability of relations between drug names and other regular English words. Such an 

approach might however decrease the domain specific aspect sought after as discussed 

in section 2.7 when the word embedding is trained on only verbatims. 

Fasttext (Fasttext, 2019) was initially the word embedding method and implemented for 

this thesis. Due to technical problems which were not solved before the end of the thesis 

work, Word2vec was implemented instead as a substitute. Future work should include 

implementing and testing the Bi-LSTM model using Fasttext or similar word 

embeddings, which handle previously unseen words better than Word2vec. This could 

make the model more robust. 

In this thesis some optimization of hyperparameters has been done. To make the Bi-

LSTM model better in the future, a more extensive testing may be done on 

hyperparameter optimization for the Bi-LSTM model. 
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