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Hatami and Molloy [24] identified theritical window; they showed that (under weak technical
conditions) ifE Dn(D,$2) = O(nSt 3(E D})? %), thenv( ) is of the orden? 3(E D) * 3, while v( 1)
is larger fED,(D, S2)  n°! 3(EDZ)? 3, and smaller i€ Dy(Dy S 2) < 0 with | EDp(Dy, S 2)|
nS1 3(E D3)2 3. (See also Remark 2.16 for related work identifying the scaling limits of clusters in
the critical window.) This parallels the well-known critical behavior of the random g&(php) with
p=(1+ ) n,orG(n,M)withM = (1+ ,)n 2, where it was shown by Bollobas [7] and suczak
[44] that the critical window is characterized by = O(nSl 3); see also [8, 39].

Here we are mainly concerned with tharely supercriticategime, wher&€ D,(D,S2) 0, with
E Dn(Dn S 2) > 0 and outside the critical window just defined. We find (under weak technical condi-
tions) precise asymptotics of 1), up to a factor ¥ o,(1), in this regime. In the case when the degree
distributionD,, has a bounde + )th moment, these asymptotics were found by Janson and Luczak
[36]; this result was extended to the case when the third p@#és uniformly integrable by Janson,
Luczak, and Windridge [38]. In this paper, we only assume that the second mEmgmxists and is
uniformly bounded. Our study reveals that there is a kind of phase transition. Roughly speaking, as lonc
as the asymptotic degree distribution has a finite third moment (to be precise, asIbjig asiformly
integrable, the case studied in [36,38]), the size of the largest component is proportioBéDigD, S
2)). However, when the degree distribution has heavier tails, then the largest component is smaller; typi
cally (but not always) of the orderE(D(D,,S2)) E DZ. Precise results are given in Theorems 2.6-2.9,
where Theorem 2.8 corresponds to the important example when the third moment of the degree distri
bution converges. Also, Example 2.15 discusses power-law degree sequences with possibly unbound
third moment of the degree distribution. (The same difference between theEBges O(1) and
ED? is also evident in the result on the critical window by Hatami and Molloy [24] cited above.)

As said above, our results (Theorem 2.6 in particular) show that in the barely supercritical phase,
the size of the largest component is concentrated within a factood(1), that is, normalized by
dividing by a suitable constant, the size converges in probability to 1. As a complement, we also show
(Theorem 2.12) that this isottrue in the critical window identified by Hatami and Molloy [24], and
further investigated in [18, 19, 41, 51]. Inside the critical window, the size after normalization will
converge in distribution, at least along subsequences, but the limit will not be constant; in fact any
such limit will be unbounded. Again, this is precisely as in the well-known ca&myfp), see [1,45],
so this provides another reason to regard the window defined above as the critical window, at least ol
the supercritical side. (We conjecture that the size of the largest component is concentrated also in th
subcritical case, but, as far as we know, this has not yet been proved.)

It is well known that the process of exploration of the component containing a given vertex can be
approximated by a Galton-Watson branching process; this gives, for example, a heuristic argument fo
the condition lim  E D,(D, S 2) > 0 above. (See further Remark 2.5.) Indeed, in our main theorem
(Theorem 2.6), we express the size of the largest component in terms of the survival probability of
the approximating Galton-Watson process. In our case, Bb(D, S2) 0, we have to consider
one Galton-Watson process for eagtso the question of asymtotics of the survival probability of an
asymptotically critical sequence of branching processes arises. This was studied by for example, [3,27]
we give some further general results (needed to prove our results for random graphs) in Section 3.

Our proofs, however, do not use the branching process approximation directly; instead, they are
based on extending the method of [36], where the exploration process is considered one vertex at a tim
yielding a kind of random walk with drift (closely related to the branching process), which is then ana-
lyzed. Molloy and Reed [46,47] and Hatami and Molloy [24] use similar methods, but there are several
differences; for example, we use a continuous-time version of the exploration process, which gives u:
additional independence, and we use a different method to obtain bounds for the random fluctuations
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2 | MODEL, ASSUMPTIONS, AND MAIN RESULTS

2.1 | The configuration model

Given a positive integen and adegree sequencdhat is, a sequence af positive integers
(1, 2of , n),weletG(n,( i)i n) be a simple graph (ie, without loops or multiple edges) with the
set[n] ={1,f ,n} of vertices, chosen uniformly at random subject to verteaving degree;, for
i [ n]. We tacitly assume that there is any such graph at all, so, for exaEp[Ie,], i must be even.

We follow the standard path of studyir@(n, ( ;)i[ ) using theconfiguration modeldefined as
follows, see for example [8, 25]. Given a degree sequéngig n with ); [n i€ven,we start with;
free half-edges adjacent to verexorj [ n]. The random multigrap®® (n, ( ;)}) is constructed by
successively pairing, uniformly at random, free half-edges into edges, until no free half-edges remain
(In other words, we create a uniformly random matching of the half-edges.) Loops and multiple edges
may occur inG (n,( i)i[ n), but we can obtaiG(n, ( i)i| n) by conditioningG (n, ( i)i[ n) ON being
simple (ie, without loops or multiple edges). Moreover, our condition (A2) implies that the probability
of obtaining a simple graph is bounded away from das ; see [2,29, 33].

We assume that we are given such a degree seq(ege; for eachn (at least in a subsequence),
and we consider asymptoticsms . The degrees; = i(”) may depend on, but for simplicity we
do not show this in the notation.

2.2 | Basic assumptions and notation

All unspecified limits are as . We use standard notation for asymptotics. In particalar, b,
wherea, andb, are sequences of positive numbers, meansathdt, is bounded above and below by
positive constants; equivalently, = O(b,) andb, = O(a,). In contrasta, b, means the stronger
ap b, 1. Furthermorea, b, meansa, by . Also, given two real numbersy, x vy will
denote mifix,y}, andx y will denote maxx, y}.

For random variableX,, and positive numbera,, X, = 0p(a,) meansX, a, Sp 0, that is,
P(IXn| > a,) Oforevery > 0.Also, X, = Oy(a,) means thak, a, is bounded in probability,
that is, for every > 0 there exist€ <  such thaP(|X,| > Ca,) < for all n (or, equivalently, for
all largen).

Welet , = max[ idenote the maximum degree@{n, ( i)i; n) @andG (n, ( )i n)-

Fork Z, we denote by

n=#i =Kk, (2.1)

the number of vertices of degré&eso thatn = ', _, ny. Furthermore, let

b= ) 0= kZikn(. 2.2)

irn

be the total number of half-edges; thus the number of edggs &
LetD,, be the degree of arandomly chosen verte&(n, ( ;)i ) orG (n, ( )i ny); the distribution
of D, is given by

P(Dn=Kk) =ng n. (2.3)
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n EDH:ank n= ¢, n, (2.4)
k=1

_ EDnDnS1) _ D kS ¥ k(kS Dng 25
n E D, Zkzl kl’]( z . .
Thus , is the average degree; can be interpreted as the expected number of new half-edges
found when the endpoint of a random half-edge is explored, see (2.16) and Remark 2.5.
As stated in Section 1, we will studyear-critical behavior; we assumg, 1 and, for the most
part, also that, > 1 (and not too small); this is thus a subcase of the critical cas¢ sp= 0p(n).
We define

3 ED,(DnS2)
= ,51=—"71-=
n n EDn

(2.6)
Our basic assumptions are as follows (See also the remarks below, and additional conditions in th
theorems.):

(A1) Dy, the degree of a randomly chosen vertex, converges in distribution to a random variable
with a finite and positive mean = ED. In other words, there exists a probability distribution
(PK),=o SUch that

X op koo @7)

and =Y, _,kpc (0,) .(Thuspc= P(D = k).)
(A2) The second mometi D2 is uniformly boundedE D2 = O(1).
(A3) We haveP(D { 0,2}) > 0. Equivalentlypy + p, < 1.
(A4) , 1.Equivalently, see (2.6),

n O (2.8)
Assuming (Al), this is also equivalent to

ED,(DnS2) O. (2.9)

Remark2.1 The assumption (Al) th&t, converges in distribution is mainly for convenience. By
(A2), the sequendd, is always tight, so every subsequence has a further subsequence that convergesii
distributionto som®; moreovelE D <  follows from (A2) ande D > 0 follows from (A3), provided

the latter is reformulated as liminf P(D, { 0,2}) > 0. It follows, using standard subsequence
arguments, that results such as Theorem 2.6 that do n@ (eseplicitly or implicitly) in the statement

hold also without (Al).

Remark2.2  Condition (A2) implies uniform integrability dd, and thus, together with (A1),

N (2.10)
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Furthermore, itis easy to see that, assuming (Al) and (A2) is equivalentt®(1). In particular,
(A2) is implied by (A4); however, we list (A2) separately for emphasis and for easier comparison with
conditions in other papers.

By Fatouss lemma, (A2) also impli&sD? <

Remark2.3 Condition (A2) is weaker than the condition
(A2) D3 are uniformly integrable.

As is well known, (A2) is, assuming (A1), equivalent D2 ED? < , and thus also to
ED?< and
ED(DS 1)
= —. 211
" =5 (211)
In this case, (A4) is thus equivalent to= 1, or, equivalentyE D(D S2) = 0, orED%2= 2 .
On the other hand, if (Al), (A2) and (A4) are satisfied but (A2 not, then (by Fatoues lemma)
ED?<2 ,ED(DS2)<0and < 1.
We will not need (A2) in the present paper, except when explicitly stated; it is satisfied in most
examples.

Remark2.4 Condition (A3) rules out the degenerate case wben{ 0,2} a.s.; for examples of
exceptional behavior in this case, see [36, Remark 2.7].

SinceED(DS2) 0, see Remark 2.3, (A3) is equivalenf(D = 1) > 0. Furthermore, iD2 are
uniformly integrable, s& D(DS2) = 0, see Remark 2.3, then (A3) is also equivalefi(® > 2) > 0.

2.3 | The size-biased distribution

Let D,, denote the size-biased distributionf, ie,

P(Dy = k) = ﬁp(on = K, (2.12)

and letD, = D, S 1, thatis,

KP(Dn = K) _ kn

P(D,=kS1) = P(D,=Kk) = ED — k 1 (2.13)
n n
For any nonnegative functidn
_ EDnf(Dn),
Ef(Dn) = ED. (2.14)
and thus
ED.f(D,S 1)
Ef(Dy) = ——————; 2.15
(On) = — =" (2.15)
in particular
EDn: E(Dnél):w: n=1+ . (216)

EDn
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Similarly, letD have the size-biased distributionBf and letD = D S1.ThusED= = 1.

-d -d d
SinceD, S Dby (Al)andED, ED by (2.10),itfollowsthaD,S D andD,S D.
Note that (A3) implies that (and, given (A1), is equivalent to)

mPD, )=PO 1)=PO 2)>0. (2.17)

Let , be the survival probability of a Galton-Watson process with offspring distribljgistart-
ing from one individual. By (2.16) and basic branching process thegqry, 0 n> 0, and,in
this case , is the unique solution i(0, 1] to

18 .= EQS o) = ZE—W(S o)t (2.18)
k=1 N

We study the asymptotics of, in Section 3.

Remark2.5 We can interprdd, as the degree of a vertex chosen randomly by choosing a uniformly
random half-edge, arid, as the number of additional half-edges at that vertex. Consequently, the ini-
tial stages of the exploration of a componenGgh, ( i)i| nj), starting from a random vertex, can be
approximated by a Galton-Watson process with offspring distribudigrexcept that the first genera-

tion has distributio,,. The survival probability , is thus closely connected to the probability that this
modified Galton-Watson process is infinite, which approximates the probability that the chosen vertex
lies in a large component. (In the supercritical case, this is asymptotically the same as the probability of
the chosen vertex lying in tHargestcomponent.) To be precise, the modified Galton-Watson process
has survival probabilitf(1S (1S ,)Pn) n n,» Which agrees with the factor, ,in Theorem 2.6,

giving the proportion of vertices in the largest component.

2.4 | Main results

Our results in this section hold for both the random simple gréph= G(n,( i)i; n) and the
random multigraphG, = G (n,( i)if ). We first prove our theorems fdB,; they then hold

for G,, as is standard, by conditioning d&, being simple. To be precise, (A2) implies that
liminf, P(G,is simplg > 0, see [29, 33], and thus the results below (which all say that certain
events have small probabilities) transfer immediately f@gto G,,, except Theorem 2.12(ii), which

is of a different kind and requires a special argument (given in Section 6.3).

In order to state our results, choose eitBgor G,;; let ; denote the largest connected component,
and let , denote the second largest component. (For definiteness, we choose the component at rando
if there is a tie, and we define, =  if there is only one component.)

For a component , we writev( ) ande( ) to denote the number of vertices and edges ,in
respectively. Our main theorem is the following precise and general result concerning the supercritica
case:

Theorem 2.6 Suppose thafAl).(A4) are satisfied, in particular , = 0(1). Suppose also that
n>! 3(EDZ)? 3. Then

V(1) = n an(1+ 0p(2)), (2.19)
V( 2) = 0p( nN). (2.20)
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Furthermore, € 1) = (1+ op()V( 1) = n nN(1+ 0p(1)) and & 2) = 0p( nN).

Remark2.7 Letv( 1) denote the number of vertices of degkam ;. It can be seen from our proof
of Theorem 2.6 thati( 1) = n nP(Dn = KIN(1 + 0p(1)).

In particular, Theorem 2.6 leads to the following special cases.
Define, recalling Remark 2.4

E[D(D S 1)(D S 2)]

= ED(DS 1) = E[D]

0. (2.21)

Notethat = ifandonlyifED3= . Furthermore, iDZ are uniformly integrable (ie, (A2
holds), therP(D > 2) > 0 by Remark 2.4, and thus> 0. In this case, we also ha&D(D S 2)] = 0,
see Remark 2.3, and thus we also have the alternative formula

3& 2 38 S 2)] S 3 =
_ED sagg +2ED _ED S3E[DéDDSZ)]S4ED: ED" &4 (2.22)

The next three theorems are easy consequences of Theorem 2.6, under our assumptions.

Theorem 2.8 Suppose thafAl).(A4) are satisfied, and that Dis uniformly integrable. (Thus,

ED3 ED®< .)Suppose further that,n® 3 . Then
2 2nE(Dn(Dn $ 2))
V(1) = — an(1+ 0p(1)) = (1+ op(D)), (2.23)
V( 2) = 0p( nn), (2.24)

where ( 0,) isgiven by (2.21). Furthermore(e) = (1+ 0,(1))v( 1) and € 2) = 0p( nN).

Theorem 2.9  Suppose thdiAl). (A4) are satisfied, and the D3= . (ThusE D .) Suppose
furtherthat , n°! 3(EDJ)2 3. Then

V(1) = 0p( nN). (2.25)

Furthermore, € 1) = (1+ 0,(1))V( 1) = 0p( nh).

The results in Theorems 2.8 and 2.9 are more or less best possible of this type: in inter-
mediate cases, whefgéD?® < but limsupED? > E D83, neither (2.23) nor (2.25) holds in
general, see Remark 3.3. To be precise, it follows from Examples 3.7 and 3.B Bfat O(1)
is neither necessary nor sufficient for (2.23). Similarly, it follows from Examples 3.7 and 3.8 that
ED? is not sufficient for (2.25) ancED® = is not necessary for (2.25). In such
intermediate cases, partial answers are given by the following inequalities. Define, in analogy
with (2.21),

E[Dn(Dn S 1)(Dn S 2)]
E[Dn] '

n = E[Dn(DnS1)]= (2.26)
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Note that, since,, > 0, by (2.6) we havéE[D,(D, S 2)] > 0, which in turn implies , > 0.
Furthermore, by Fatouss lemma and (2.9),

oo 5 o2 -
IiLninf - liminf, E[Dn(Dn S 2)“]+ lim,  E[Dn(Dn S 2)] (2.27)

ED
EIDOS27 _
ED '

Thus , is bounded away from 0, and it follows that
. ED:. (2.28)

Theorem 2.10 Suppose thafAl).(A4) are satisfied. Suppose also that nS! 3(ED3)? 3.
(i) Then

v( 1) 2 n “n(1+ op(D)). (2.29)

n

(i) If EDS = O(1), then there exists constant@> 0 such that w.h.p.
can V(1) Cqn (2.30)

(iiy If , »= o(ED?),then there exists constantg C,C > 0 such that w.h.p.

nN CL” v( 1) CL” C nf

C .
ED3 n i ED3

(2.31)

The lower bounds in (iii) are clearly less precise than the more general (2.29), but are given as
companions to the upper bounds. A weaker and less precise version of the lower bound (2.29) wa
given by Hatami and Molloy [24, Theorem 1.3].

Remark2.11 We see from Theorems 2.8-2.10 that in the barely supercritical regime, for a given
sequence ,, the giant component is smaller in cases wHe@® =  than in cases wherg D3 is
bounded. (In both cases, the size of the giant component is by Theorem 2.6 roughlyhe barely
supercritical behavior of the largest connected component &RBf| = O(1) is similar to that in the
Erdos-Rényi random graph.

The condition | nS1 3(ED3)2 3 in the theorems above is best possible and characterizes
supercritical behavior in the sense that, jfis smaller, then, unlike (2.19)( 1) is not concentrated,
as is shown by the following theorem for the critical window. Part (i) is proved by Hatami and Molloy
[24, Theorem 1.1] under very similar conditions, including a slightly stronger assumption than (2.32).

Theorem 2.12 Suppose thafAl).(A4) hold and , = O(nS! 3(E D3)? 3). Suppose further that

n=0((NED)"?). (2.32)
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Then the following hold:

(i) v( 1) = Op(n? 3(EDY)3! 3). In other words, for any > 0 there exists K= K( ) such that
P(V( 1) > Kn? 3ED}S 3) < . (2.33)
(i) Moreover, forany K<
liminf P(v( 1) > Kn® *(E D)3 3) > 0. (2.34)

Both (i) and (ii) hold with \( 1) replaced by € 1).

Theorem 2.12 says thaf 1) (n? 3(E D3)S! 3) is bounded in probability, but not w.h.p. bounded
by any fixed constant. In particulav( ;) normalized in this way converges in distribution, at least
along suitable subsequences, but it does not converge to a constant along any subsequence; her
the limit in distribution (along a subsequence) is really random and not deterministic. Moreover,
Theorem 2.12(ii) shows that any subsequential limit has unbounded support. (The result by Hatami an
Molloy [24, Theorem 1.1(a)] shows that any subsequential limit is strictly positive a.s.) This is in con-
trast to the supercritical case in Theorem 2.6. (This contrast is well known in the classiocsiR&dyi
caseG(n, p), see e.g. Aldous [1], who describes the limit distribution explicitly.)

Remark2.13 Condition (2.32) can be written as

max 3= O(i[zﬁ] |3> (2.35)

It thus says that no single vertex gives a significant ContributioE;pn] |3 See [24, Section
1.2] and Example 6.3 for counterexamples in the case when (2.32) does not hold. Note also tha
alwaysnED} = ¥,y 2 350 o (nED})'3 Hence, (2.32) is only a weak restriction.
(Hatami and Molloy [24] use a slightly stronger assumption, which, roughly, amounts to assuming
n=O((NEDY)" ? logn).)

Remark2.14 If , nS1 3(ED3)?2 3, so we are on the upper boundary of the critical win-
dow in Theorem 2.12, then, using (2.32), ,» = o(E D?) and thus Theorem 3.1(iv) applies to a
Galton-Watson process with offspring distributibp starting with one individual (as in the proof of
Theorem 2.10(iii)), and yields, , ED? nS!3(E D3)5! 3, Thus Theorem 2.12 shows that the
giant component is of ord&Dy(n ) in this case too, althoug 1) (n ) does not converge to a
constant.

Example 2.15Power-law degrees) Many real-world networks are claimed to have power-law degree

sequences, see for example, [25, Chapter 1] and the references therein. As a result, various randc
graph models have been proposed that can yield such graphs, the configuration model being one ¢
the most popular. Let> 1 and assume that, in addition to the assumptions above, for some constants
C,c>0,

PD.>K CK, k 1, (2.36)
POn>k ok, 1 k< S1S2 (2.37)
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(The upper limit $1¢ 3 in (2.37) could be reduced by any fixed constant factor. Note that some

limit is required, smceDn is discrete and (2.36) implies, = O(n' ).) Then, in Theorem 3.1(i) and
Example 3.4, we show that,  ,when > 3 (soE D2 = O(1)), while

5052 (2.38)

when  ( 2,3). Theorem 2.6 applies and yields that, for 3, and using the form in Theorem 2.8,

V( 1) = 2E(Dn(Dn $ 2)(1+ 0p(1), while, for  (2,3),w( 1) n 552,

Remark2.16 The critical regime as in Theorem 2.12 has attracted considerable attention, see for
example, [18, 19, 41, 51] for results on the sizes of the largest connected components. Riordan [51
investigates the scaling behavior of near-critical clusters under the assumption that all degrees ar
uniformly bounded. Dhara and coworker [18] perform an analysis under conditions that are close to
ours whenED2  E D3, but focus on the scaling limit of critical clusters when= 1+ nS13+

o(nSl 3) (also for percolation on the configuration model, where the dependenceitentified

as the multiplicative coalescent, see also Aldous [1] for theo&iRényi setting and [22, 26, 30] for
percolation on random graphs with given degrees).

In the case wherED® = , and in the same vein as Example 2.15, often stronger assumptions
are made and our results in Theorem 2.12 in this case are closest in spirit to those in [24] in that the)
only depend on the scaling of andE[DZ]. Order the degrees suchthat , --- . Joseph
[41] assumes thdt ;)i [  are an i.i.d. sample from a distribution whose distribution function satisfies
1SFKX = od (1 + o(2)) for x large. In this case( in5! ); 1 jointly converge in distribution to
(c fl )i 1, Wwhere( )i 1 form a Poisson point process. Dhara and coworker [18] mstead takeh
that ;nS! ¢, and, in particularED2  n® St Y 1C, where itis assumed th®, ;¢ <
while Y, lclz = (asisthe case whan i1 with ( 2,3)). Inthis case, Theorem 2. 12 suggests
that the largest critical components should scale like

r-]2 3(E Dﬁ)él 3 r-12 3(n3 él)él 3 _ n( 31) ) (239)

The resultsin [19,41] confirm this scaling, and show that the sizes of the largest connected component:
rescaled bynS( SV | converge to a limiting sequence, while the critical window is of orfér5?
Interestingly, the description of this limit looks quite different in [41] compared to [19], which is prob-
ably due to the fact that Joseph [41] also averages out over the randomness in the degrees. Interesting
our results are also used in Dhara and coworker [17] to study the barely supercritical regime of perco-
lation on the configuration model for ( 1,2), where the percolation parameter tends to zero with
the graph size to observe near-critical behavior.

2.5 | Complexity of large components

The structure of components has received substantial attention in the literature, in particular, the exis
tence of multicyclic components, that is, componentsith e( ) > v( ). The detailed scaling limit
results in [18,19, 41, 51] resolve this question completely in the critical case. We investigate this ques-
tion in the barely supercritical setting in Section 7 and find the asymptotic complexity of the largest
component 1, see Theorems 7.1 and 7.4-7.5. Here, for power-law degrees as in Example 2.15, the
width of the critical window is tightly related to the growth of the complexity of the barely supercriti-
cal clusters. As can be expected, the complexity,dhterpolates between tight, as in the critical case,
and linear im as in the strictly supercritical regime (as shown in [47]).
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2.6 | Discussion

In this section, we discuss our results and pose further questions.

2.6.1 | CLT for the giant component

It would be of interest to extend Theorem 2.6 to a statement about the fluctuatiofs, paround
n nN. In the light of central limit results for the processes that characterize the component sizes (see
eg, Lemma 6.4), it is tempting to conjecture that a CLT holdwor). From our methodology, how-
ever, this does not follow easily. A related question involves proving a CLT for the compléxity
in the barely supercritical regime. (Cf. [49] for the BsdRényi case.)

2.6.2 | Related random graphs

Often, one can deduce results for rank-1 inhomogeneous random graphs (see [9] for the definition
from those derived for the configuration model conditioned on simplicity. Examples of such graphs

are the Poissonian dtorros-Reitturandom graph [48], thgeneralized random graph modéfl], and

the expected degreer Chung-Lurandom graph [13...16]. In each of these models, edges are present
independently: an edge betweiep [ n] is present with probability;, wherep; is close toww; ¢

for appropriately chosen vertex weigh{is )i j, and?, = Zi[ n Wi denotes the total weight. When

the weight sequence satisfies conditions similar to (Al)...(A4), then also the random vertex degrees d
and thus results carry over rather easily from the configuration model to these models.

In slightly more detail, by [31], in the case whefgD?]  E[D?], the above three random graph
models are asymptotically equivalent, so that proving a result for one immediately establishes it for any
of the others as well. Furthermore, when conditioned on the degree sequence, the generalized rando
graph is a uniform random graph with that degree sequence [11]. We already know that Theorem
2.6 holds for uniform random graphs whose vertex degrees obey conditions (Al)...(A4), so that, b
conditioning on the degree sequence, in order to deduce the same for rank-1 inhomogeneous rando
graphs, it suffices to prove that (Al)...(A4) indeed hold (with convergence in probability) for the degrees
for the generalized random graph in the critical case. This proof is standard, and can, for example, b
found in [4] or [25, Section 7.7]. The critical case of these models was studied in [5, 6].

3 | THE BRANCHING PROCESS SURVIVAL PROBABILITY

Our proofs of Theorems 2.6 and 2.8-2.10 will use some estimates of the survival probability of barely
supercritical Galton-Watson processes. In this section, we state and prove these estimates in a gene
form, for general Galton-Watson processes with offspring distributjoiVe will return to the setting

of the configuration model in the later sections, where we apply the results stated below with offspring
distributionX,, = D,,. We will write ,, for the survival probability of a branching process with offspring
distribution X, starting with one individual. We also defing =S log(1S ).

Relation (3.5) below was conjectured and supported by a heuristic argument by Ewens [21]; Eshel
[20] gave counter-examples but also a proof of (3.5) under some conditions. More general sufficient
conditions were given by Hoppe [27] and Athreya [3]; both also gave a necessary and sufficient con-
dition for (3.5) in terms of the probability generating function of the offspring distribupn(The
necessary and sufficient conditions in[3,27] are stated differently, but they can be seen to be equivalen
using integration by parts.) Here we give further results, stated in a form more suitable for our pur-
poses, but note that there are overlaps with earlier ones in the literature. In particular, Theorem 3.1(ii
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follows easily from results in both [3, 27]. Furthermore, (3.3) was given by [27, Corollary 3.3] (in an
equivalent formulation).

Theorem 3.1(Survival probability of a near-critical branching processlet X, be a sequence of
nonnegative integer-valued random variables such Eja,] = 1+ ,,where ,>0and , Oas

n . Suppose also thdiminf,P(X, 1) > 0. Let , be the survival probability of a branching
process with offspring distribution X starting with one individual, that is, the unique solution in
(0,1] to

1S ,=E[(1S %] (3.1)
Then ,  0and, more precisely,
n=0O( n). 3.2)
Furthermore,
2 q
n m, 3.3)
and
n E(Xa (nX9). (3.4)
Moreover:

() If EX2= O(1), then n  n.
.d
(i) If X, S X for some random variable X arif[X2] E[X?] < ,then,

2 n
—— 3.5
" E[X(XS1)] (3.5)
d
(i) If X, S X for some random variable X wifB[X?] = , then
n=0( pn). (3.6)
(iv) If ,arenumberssuchthatX ,a.s.and, ,= o(EX3),then
AR = 3.7
" B8] EX (3.1
Proof We first showthat, = 0(1) asn . (Foramore general result on continuity of the survival
probability as a functional of the offspring distribution, see [12, Lemma 4.1].) To see this, assume,
for a contradiction, that there exists a subsequensech that > 0. SinceE X, = 0O(2), the

sequenceX; is tight, so there exists a further subsequence w,i.ti$d X along the subsequence, for
some nonnegative integer-valued random variXbleurthermore, by the Skorohod coupling theorem
[42, Theorem 4.30], we may assume that the variakleme defined on a probability space where the
convergence is almost sure. Then, by dominated convergence, along the subsdg[(&8ce,)%"]

E[(1S )], and so, by (3.1),

15 =E[(1S ). (3.8)
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In other words, is the survival probability of a branching process with offspring distribuo®n the
other hand, by Fatoues lemnfaX lim E X, = 1, so this branching process is critical or subcritical;
furthermoreP(X 1) liminf,P(X, 1) > 0 which excludes the casé= 1 a.s. Consequently,
the survival probability = 0, a contradiction. Hencg, 0 asn

Note that , = Slog(1S ) > 0,andthat,, 0implies

non (3.9)

Also let

F(x) = eXS1+x (3.10)
note thatF(x) x? 2asx 0. Then (3.1) can be written
Ees i =EQ1S =18 =€, (3.11)
and thus
EF( nX) = E(€8 ™81+ X)) =€ 181+ 1+ n)=F( )+ nn (3.12)

Hence,

e FLoX) _ FCo)

2
n n

T L (3.13)
n 2

n

Suppose now that (3.2) fails. Then there exists a subsequencewith 0 and thus, by (3.9)
and (3.13),

E F( n2Xn) 1

> (3.14)

n

As above, by considering a subsubsequence, we may also assuige thata.s. for some random
variableX, and then a.s., sincg, 0,

F(nXn) X2
- 3 (3.15)
n
By Fatoues lemma, (3.15) and (3.14) yield
Lo F(nXn) 1
1 2 n —
> EX I|Ln|nf E—s—= > (3.16)

n

Furthermore, since the functidi(x) xis increasing o0, ) , (3.14) implies that, for aniK > 0,

KECoXo) iy 1
F(oK) " F(K) K

lim supE (X 1¢x, k;) limsupE (3.17)
n n
Hence, still along the subsequence, the random variaglese uniformly integrable, and, since
EX, 1landX, Xa.s.,wehav& X = 1.However, thistogether with (3.16) yieldar(X) = 0, so
X = 1 a.s., which as above is excluded by our assumption ligR@K, 1) > 0. This contradiction
shows that (3.2) holds.



16 VAN DER HOFSTAD ET AL .
WILEY

Next, for any integem Oand [ 0,1],(1S )™ 1Sm + () 2 Hence,

18 .= EQS )% E(léxn n+w ﬁ), i1s
EX(% 5 1) , (3.18)

=181+ ) nt > s

and (3.3) follows, recalling, > 0.
To show (3.4), note that (3.2) and (3.9) show that= O( ;) and thus , , is bounded below.
FurthermoreF(x) x? xforx 0, and thus, by (3.13),

n

F( nXn)
2

n

_”+% E E(( $1%) X2). (3.19)
n

n

Hence, using (3.9) again,

n E(Xn (nXd) E(Xn ( nXd). (3.20)

(): An immediate consequence of (3.2) and (3.3).
(ii): As above, we may assum§, X a.s. (now for the full sequence), and thus (3.15). Since

.d

XS XandEX2 EX?< ,the sequenck? is uniformly integrable. Furthermore, 0 F(x)

x> 2forx Oandthus 0 F( X)) 2 X2 2, sothe sequend&( ,X,) 32 is also uniformly
integrable, which together with (3.15) implies

F( nXn)

2
n

E

SEX (3.21)

Moreover, the uniform integrability ok? also impliesE X = lim,, EX, = 1. Using (3.21) in
(3.13), we thus find

F(nXn) & 1

=E SZ+o0(1) = F(EX?S1) +0(1) = SEX(XS 1)) + o). (3.22)

N
N

As noted aboveE(X(X S 1)) = Var X > 0 and thus (3.22) yields, recalling (3.9),

L 2 2EX(XS 1) (3.23)

n n

A rearrangement yields (3.5).
(ii): We may again assume that (3.15) holds a.s., which now by Fatouss lemma implies (cf. (3.16))

E F( nzxn)

n

(3.24)

Thus , by (3.13). This yield (3.6), again using (3.9).

(iv): Note first that (3.2) and (3.3) imply that E[X,(X, S 1)] = O(1), that is, thaE[X,(X, S 1)]
is bounded below. Sinc%,(X, S1) X2 1+ 2X,(X, S 1), it follows thatE[X,(X, S 1)] EX?,
and thus the final » Z in (3.7) holds.

A lower bound for , is given by (3.3), and it remains only to show a matching upper bound.
By (3.4), there exists a consta@tsuch thatE(X, ( ,X?) < C . Let , = C, EX2. Then
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n n=Cn n EX2=0(1) by assumption, so for largewe have , , 1andthen,X, 1a.s.
soX, ( nX3) = X2a.s.and

E(xn ( an%)) = nEXr%: Cn> E(Xn ( an%))- (3.25)

Hence, , < ,forlargen, andthus , = O( ) = O( , EX?). n

-d
Remark3.2 The assumption limi?(X, 1) > Ois essential: iX, S X = 1, almost anything

can happen. For a simple example,Xgt { 0,1,2} with P(X, = 0) = g,, P(X, = 2) = py and
P(X, = 1) = 1S p, S g, wherep, > g, > Oandp, 0. Then , = p, S g, and, by (3.1) and a
simple calculation (we have equality in (3.18) and thus in (3.3)% 1S gy Pn= n Pn. Thus (3.2)
fails. Moreover, , = 1S g, p,» may converge to any number [, 1], or may oscillate. (See also the
examples in [27].)

.d
Remark3.3 IfEX2 butX, S Xwith EX? < it is not necessarily the case that (3.6)

-d
holds, but it is still possible; see Examples 3.7 and 3.8. SimilargXf C< andX,S Xbut
E X2 < C, then (3.5) may or may not hold; see Examples 3.7 and 3.9.

We consider several examples illustrating various possible behaviors. See also the examples b
Hoppe [27].

Example 3.4(Power laws) Letk < 2 and assume that for some constays > O,

PXa>% CX, x>0, (3.26)

P(X, > x) oS | 1 x< fl( s, (3.27)

Here, due to the size-biasing in (2.13)is related to in Example 2.15by = S 1. Then, by an
integration by parts (or an equivalent Fubini argument), forramy0,

1r

E(X: (rX3)) = 2rx P(X, > x) dx + P(X, > X) dx,
0 1r
1r . .
2Cr XIS dx+ C x> dx, (3.28)
0 1r
_( 2 1 81
= (35 57)o ™

Takingr = |, this and (3.4) yield
1= O n™h). (3.29)

On the other hand, taking= A ﬁ( Dfora (large) constart > 1, and assuming thatis so large
thatr < 1, by (3.27),

E(Xe (X)) %P(Xn %) or St=cASt (3.30)
ChoosingA sufficiently large, this and (3.4) yield (for largg

E(Xn (rX3)>E(Xa ( nX3), (3.31)



18 VAN DER HOFSTAD ET AL .
WILEY

and thug > . Consequently,, = O( ¢ 59), which together with (3.29) yield
. oS (3.32)
This example shows that may decrease as an arbitrarily large powerp{Choose closeto1.)
Example 3.5 For an instance of Example 3.4, let & < 2, and letX be a nonnegative

integer-valued random variable withX = 1 andP(X > x) xS asx . Fixasequence, O
(with , > 0) and a sequendd,, of integers withM, ﬁl( =D, LetX, = X M, and defineX, by

PX,=0)S n, k=0,
PXn =K =qP(X,= 1)+ », k=1, (3.33)
P(X, = K), kK 2

where , = o+ E(XSX,). ThenEX, = EX,+ n= 1+ ,as required. Note th&(X S X,)
M5 = 0O(,),s0 n  ninparticular , 0 and the definition (3.33) is valid at least for lange

(sinceP(X = 0) > 0 by E X = 1). Clearly,X, g x

Furthermore, (3.26) and (3.27) hold, and thus (3.32) holds. }

Moreover, we may choosil, arbitrarily large, and thug& X3 Mﬁs can be made arbitrarily
large; this shows that there is no formula similar to (3.5) givingeven within a constant factor, in
terms of ,, andE X2 (or E X,(X, S 1)).

We may also také/, = ; then (3.32) still holds an8& X2 =

Example 3.6 Choose,, ( 0,1]with , Oandp, ( 0,1 nJwithnp, 0anddefine (fon 3)
Xn by

1S +(nS2)p, _
1 - )

2 0
P(Xp = k) = 4 220 2, (3.34)
n

2 I
Pn,

k
k
k

.d
ThenEX, = 1+ ,as requiredX, S Xwith P(X = 0) = P(X = 2) = 2, and thusEX = 1,
EX2=2andEX(XS1)=1,and

E X2 = 2+ n’p, + o(1). (3.35)

In particular,EX2  EX?ifand only ifn?p, 0.

Furthermore,
EF( )= T 2UF@ )+ pEm ) = R0+ o)+ pFm D, (330
and thus (3.12) implies
vn= 3+ o) + paF(n o) (3.37)

We consider several cases of this in the following examples.



VAN DER HOFSTAD ET AL . WI LEY—'—19

Example 3.7 Choose ,, andp, in Example 3.6 such thatp, = o( ). Thenp,F(n ) = O(pnn ) =
o( n n), and thus (3.37) yields, » 3 3and thus

noon 2n (3.38)

just as given by (3.5). This includes cases witp, 0, when Theorem 3.1(ii) applies by (3.35), but
also cases with?p, , WhenE X2 by (3.35). (For example, take = nS! 4 andp, = n53 2))

If we instead takep, = nS2 and , = n5' 2 thenEX2 3 > EX?2 by (3.35), while (3.5)
nevertheless holds by (3.38).

Example 3.8 Choose, nSlin Example 3.6, 50, = O(nS) by (3.2). Then X, = O(1), so (3.4)
yields
n E( nxr%) = n EX,%. (3.39)

If we further choosg, with np, 0 andn?p,, . thenE X2 by (3.35), and thus, = o( n)
by (3.39). (For example, takg, = nS! andp, = n>3 2)

Example 3.9 Choose , = nS! andp, = An®2 in Example 3.6, for some constaat> 0. Thus

EXZ 2+Aby(3.35), andE[X,(X,S1)]  1+A. InparticularE X2 = O(1) and thus Theorem 3.1())
yields , . n°L More precisely, (3.37) yields, after multiplication by,

nno 3002+ AR p). (3.40)

As justsaidh , = , ,isbounded above and below, and (3.40) shows that,if aalong
some subsequence, ther %az + AF(a), or

< 1.0
asS Ea
F(a)

= A (3.41)

Hence 0< a < 2. Furthermore, it is easy to see (by differentiating) ) (a S %az) is strictly
increasing or(0, 2). Hence (3.41) has a unique solutiare a(A) ( 0,2) for anyA > 0, and thus
n , a(A). Consequently,also, n=n, a(A),givenby (3.41).

It is easily verified that 2> a(A) > 2 ( 1+ A). Hence, (3.5) does not hold, and neither does (3.5)
with E[X(X S 1)] replaced byE[Xn(Xn S 1)].

4 | FURTHER PRELIMINARIES

4.1 | Moreon ,and ,inthe barely supercritical case

Suppose that (Al)...(A4) are satisfied, and furthermgre> 0. (Note that the assumptions of
Theorems 2.6 and 2.8...2.10 imply that 0, except possibly for some smalthat we may ignore.)

In what follows, , will denote the survival probability of a Galton-Watson process with offspring
distributionD,,, see Section 2.3 and (2.18). As in Section 3, it will often be convenient to work with

n =S log1S ). (4.1)
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Lemma4.1 If (Al).(A4) are satisfied and, > 0, then , 0,

noon (4.2)

and

n E(D} ( aD3) E(DR ( nDR). (4.3)

Proof Theorem 3.1 applies t&, = D,, with X = D and with , as in Section 2.1 by (2.16). In
particular, , = O( ) 0andthus, by (4.1),, n. Furthermore, by (3.4),

n E(Dn ( nDR) E(Dn ( a(Dn)?)) (4.4)
Moreover, ifD, > 1 thenD,, 2D,. Thus, using (3.2) and (3.4),
E(Dn ( n(Dn)z)) nt 4E(Dn ( nDﬁ)) = O( n). (4.5)

Combining (4.4)...(4.5) and using (2.14), we find

1
n E(Dn ( n(Dn)z)): ED E(Dn(Dn ( nDﬁ))) E(D% ( nDﬁ)), (4.6)
n
proving the first part of (4.3); the second follows from . n

Note also that (2.18) implies, by (2.14),

< D, < D
1S - EQS o= E(Dn(El[S) ™) _ E(Da(1S ) ), @7

which can be rewritten as

E(Dnpe® ) = e%2n. (4.8)

Inthe cas€ED? ED®< | thatis, wherD? are uniformly integrable, we haeD?  E D?
by (2.15); hence (3.5) applies and yields, using (2.15) again and the notation (2.21), where ow
by (3.5) or Remark 2.4,

20 2 n = 2n

EODS1) EDDS1(DS2) (4.9)

4.2 | The Skorohod coupling theorem

We assume in (Al) thaD, éd D. By the Skorohod coupling theorem [42, Theorem 4.30], we
may without loss of generality assume the stror@eréﬁLS D; this will be convenient (although

not really necessary) in some proofs. (We have already used the Skorohod coupling theorem ir
a similar way for X, in Section 3, and will use it for a third set of variables in the proof of
Lemma5.7.)
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4.3 | A semimartingale inequality

Our proofs below will use a semimartingale inequality to control the deviations of various random
processes.
We say that a stochastic procegs), defined on an intervdD, T], is asemimartingale with drift
(t) (with respect to a filtratiorf {)) if X(t) is adapted and

X(t) = M(t) + t (u) du, (4.10)
0

for some martingal®(t). It is proved in [28, Lemma 2.2] that, K(t) is a bounded semimartingale
with drift (t), then

u 2
E sup X(H)2 13E [X(u)]+ 13( VE (02 dt)
stu S

u (4.11)
13E [X(u)[*+ 13uSs)  E[ (1)?] dt.
S
We will be using the following modification of (4.11).
Lemma4.2 Let X(t) be a semimartingale with drift(t), defined or{0, u]. Then
. u
E sup [X(1)|? 132 EIX(Ju)?+ 13  tE[ (t)?]dt. (4.12)
Otu i=0 0
Proof Lety = 25iu. We have
sup X@®)IZ D) sup X(®F, (4.13)
Otu =0 Ui+1 ty

sinceX(t) is a.s. right-continuous at 0 (and everywhere) by (4.10). We take the expectation, and note
that by (4.11),

.
E sup IX®P 13E XU+ 13u Sus)  E[ (07 dt
UJ+1 t Uj Ui UJ+1 (4'14)
13E [X(w)[>+ 13 tE[ (t)?] dt.
Uj+1

The result follows by (4.13) and (4.14). m

Inequality (4.12) will yield better estimates than inequality (4.11) in cases when prEX¢ps
takes relatively small values near time 0 (so th?__tO E |X(2%u)|? is finite and not too large) but has

quite significant drift (so that, 't E[ (t)? dt is significantly smaller than ' E[ (t)?] dt).
5 | THE SUPERCRITICAL CASE
As explained in Section 2.4, it suffices to prove Theorems 2.6 and 2.8...2.10 for the muBBigrsipbe

the simple graph case follows by conditioning on simplicity. We thus consider the random multigraph
G, = G (n,( 1)} constructed by the configuration model.
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5.1 | A more general theorem

We follow the structure of proof in [36]. We explore the clusters of the multigraph given by the con-
figuration model one by one, using the cluster exploration strategy introduced in [36, Section 4]. We
regard each edge as consisting of two half-edges, each half-edge having one endpoint. We label tt
vertices asleepingor awake and the half-edges ateeping activeor dead The sleeping and active
half-edges are callelidzing half-edges. (During the exploration, the endpoint of a sleeping half-edge
is sleeping, while the endpoint of an active or dead half-edge is awake.)

We start with all vertices and half-edges sleeping. We pick a vertex, make it awake and label its
half-edges as active. We then take any active half-edgex,sayd find its partner half-edgein the
graph; we label these two half-edges as dead; furthermore, if the endpwiist slEeping, we label it
awake and all the other half-edges at this vertex active. We repeat the above steps as long as there
an active half-edge available. When there is no active half-edge left, then we have obtained the firs
component. We then pick another vertex, and reveal its component, and so on, until all the component
have been found.

We apply this procedure 1G,,, revealing its edges during the process. This means that, initially,
we only observe the vertex degrees and the half-edges, but not how they are joined into edges. Henc
each time we need a partner of an edge, it is uniformly distributed over all living half-edges, and the
dead half-edges correspond to the half-edges that have already been paired. We choose our pairings
giving the half-edges i.i.d. random maximal lifetimes with distribution @Xpln other words, each
half-edge dies spontaneously at rate 1 (unless killed earlier), and the probability that, if not killed, it
survives until time is €3t. Each time we need to find the partner of a half-edgee then wait until the
next living half-edge xdies, and take that one. This gives the following algorithm for simultaneously
constructing and exploring the componentso(n, ( i)}):

C1 Select a sleeping vertex and declare it awake and all of its half-edges active. To be precise, we
choose the vertex by choosing a half-edge uniformly at random among all sleeping half-edges.
The process stops when there is no sleeping half-edge left; the remaining sleeping vertices are a
isolated and we have explored all other components.

C2 Pick an active half-edge (which one does not matter) and kill it, that is, change its status to dead.

C3 Wait until the next half-edge dies (spontaneously). This half-edge is paired to the one killed in
the previous ste@2 to form an edge of the graph. If the vertex it belongs to is sleeping, then
we declare this vertex awake and all of its other half-edges active. RepeaCfdthere is any
active half-edge; otherwise fro@i.

The components are created between the successivedihigperformed: the vertices in the com-
ponent created between two successive such times are the vertices awakened during the correspond
interval.

We letS,(t) andA,(t) be the numbers of sleeping and active half-edges, respectively, dt tirfie
and letLy(t) = S,(t) + An(t) denote the number of living half-edges. Furthermore, w¥/|gft) denote
the number of sleeping vertices of degkeat timet, and letV,(t) be the number of sleeping vertices
at timet; thus

V() = D" Vak(®), Si(t) = D kVk(t). (5.1)
k=0 k=0

These (random) functions are right-continuous by definition. We denote left limits by, for example,
Si(tS).



VAN DER HOFSTAD ET AL . WI LEY—I—23

LetT; < T, be random times whe@1 are performed. Then the exploration starts on new compo-
nents at time3; andT,, and the components found betwdgrandT, in total haveVn(T1S) S Vi (T.S)
vertices ands,(T1S) S Sy(T»S) half-edges, and hend&(T:S) S S(T»S)] 2 edges. Note also that
Aq(tS) = 0 whenC1 is performed, and\,(t) O for everyt.

We also introduce variants (,(t), An(t), Va(t)): o obtained by ignoring the effect @f1. LetV, (t)
denote the number of vertices of degkesuch that all of theik half-edges have their exponential
maximal life times greater than ThenV,k(t) has aBin(ny, &5k distribution, and thgVnk(),., are
independent random variables for any fixetet

Va() = D Vax(®), Sit) = ) KVak(d), (5.2)
k=0 k=0
and
An(t) = Ln(t) S Si(t) = An(t) S (Su(t) S Su(1)). (5.3)

It is obvious thatS,(t)  Sh(t); moreoverSy(t) S Si(t) increases only whe@1 is performed, and
it is not difficult to show that, see [36, Lemma 5.3 and (5.7)],

0 SOSSO=AMOSAD < SNfAG+ o (5.4)

where, as before,, = max ; , ;isthe maximum vertex degree.

In order to explain the argument used to prove Theorem 2.6 more clearly, and to explain the connec
tions to the previous versions of this argument used in [36], we give the argument in a general form (tha

includes the two versions in [36]), using certain parameters and functjons, n, g(t), h(t), n(t). We

assume that these satisfy certain regularity and asymptotic conditions (B1)...(B8), and then prove a ge

eral result, Theorem 5.4. The sequenggs, are near-critical scaling parameters, wigi(g), h(t), n(t)
are asymptotic approximations for the processgs, S.(t), An(t) introduced above to study the explo-

ration process. The choices of these parameters and functions used in the proofs of [36, Theorems 2
and 2.4] are described in Remarks 5.5 and 5.6. In order to prove Theorem 2.6, we instead make th
choices in (5.17)...(5.21) below. (The reader who only wants a proof of Theorem 2.6 can thus assun
these choices throughout.) We verify in Section 5.2 that the choices in (5.17)-(5.21) actually satisfy

the assumptions (B1)...(B8).
Assumptions (B1)...(B8) are as follows.

(B1) > Ois fixed.

(B2) ( n)and( ,) are sequences of positive numbers such that O( ).

(B3) g,h [0,) R are continuous functiong) is strictly positive on(0, ) andh is strictly
increasing or{0, ) .

(B4) ( ) is asequence of continuous functions[02 ] such that:

(@ n(0)=0;

(b) ()=o)

(c) forsome >0, ,(t) O0on[0, ];

(d) for any compactintervdb,b] (0, ), liminf, infy{p n(t)> 0;
(e) foreveryt> ,limsup, n(t) < 0;

() ( n)isequicontinuous at, that is, ift, ,then .(t,) O.
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(B5)
sup| = A S 0| E 0.
t2 |Nhn
(86)
sup‘i(vn(O) S Vo( o) S g(t)' & o
t2 |Nn
(87)
sup| =L (SO 8 S( 1) $h0| & o
(88)
oy
nn

Note that (B6) and (B7) imply that necessaugp) = h(0) = 0.

Remark5.1 (Some intuition behind (B1)-(B8)) In all our applications, we will take= | h-

We see that, arises in two ways in our conditions. The first is the time scale on which the giant is
found as all our processes are evaluated at tighél'he second as the scaling®fandV,,, which scale

like n . The fact that these are the same is a sign$@} is close to linear for smatl Furthermore,

n ,is the size of\,, which will be proved to be close t,. SinceA, is the difference of two processes
that both run on scala , and are positive, it follows that, = O( ) should hold due to possible
cancellations. In Remark 5.9, we will intuitively explain how which is the scale of the number of
active vertices, arises and how our conditions goan be interpreted in terms of the concentration of
the proces$An( nt)):t o-

Remark5.2 Inthe case when, = does not depend am (B4) says simply that is continuous
with (0)= ()=0, > 0on(0, )and < 0Oon(, 2 ). Ingeneral, (B4) should be interpreted
as an asymptotic version of this. In particular, for amy O with < ,we have ,( S ) > 0and

n( + ) < Oforall largen; it follows that, at least for large, , has a zerad, > 0 such that,
Furthermore, every zero of, iso(1), + o(1) or

Remark5.3 If, at least for all largen, , is concave or[0,2 ] (which is the case in our main
application), then (B4) can be replaced by the simpler

(B4) niscontinuous and concave §f 2 ] and such that ,(0) = 0, »( )= 0(1), n(2 )= 0O(1)
and liminf, n( 2)>0;

in fact, (B4) is easily seen to imply (B4) (with, eg, =  2), at least for larg@®, which suffices.

We now state a general theorem concerning the largest and second largest component sizes unc
assumptions (B1)-(B8). Recall that, for a componenive writev( ) ande( ) to denote the number
of vertices and edges in the component, respectively. (In Lemma 5.8 we extend this notation to the
case where is a union of several components.)
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Theorem 5.4 Under assumptionéB1)-(B8),

V(1) = nng( )+ op(n ), (5.5)
& 1) = nah() 2+ 0p(n ). (5.6)

Furthermore, ¥ 2),&( 2) = 0p(N n).

The proof of Theorem 5.4 follows [36, Sections 5 and 6] with minor modifications, omitting
some details (and repeating others). Before giving the details, we offer some intuition behind its
statement. Suppose that we are able to show (as we will later§S(8t An(t), Va(t)): o are close to
(S (1), An(), Va(D): o- By Remark 5.2 and (B5), there is a large component whose exploration com-
mences within tim@y( » ) and ends attime, (1+ 0p(1)); this turns out to be the largest component.
Moreover, by (B6), the number of vertices in this componemt j®( )(1 + 0y(1)); and, by (B7), the
number of half-edges is closemo,h( )(1 + 0p(1)).

Remarks.5 We note that [36, Theorem 2.3] is one example of Theorem 5.4, witls In , , =
n=1, )= (t)=HE), gt) = 1SgeE), ht) = h(1) She) = (1Se?)+ (t); inthis
case, (B5), (B6), (B7) are [36, (5.6), (5.2), (5.3)]. (Herg(t) is not always concave.)

Remark5.6 Similarly, [36, Theorem 2.4] is another instance of Theorem 5.4, now withr
EDn(DnS2) Oasin[36],,= 2 nt)= (®=tS t22, =2 ,gt)= t ht)=2 t; for
(B5), (B6), (B7), see [36, (6.7), Lemma 6.3 and the Taylor expansions in the proof of Lemma 6.4]. Note
that (B8) holds, since? 2 |, and , = o(n! 3), becaus®? is uniformly integrable. (Warning:

n here has a different meaning thamand , in [36, Theorem 2.4 and (2.11)].)

We will see later that also Theorem 2.6 follows from Theorem 5.4.
The proof of Theorem 5.4 will use the following lemmas; the second generalizes [36, Lemmas 5.6
and 6.4].

Lemma5.7 AssumgB1).(B8)and let T, be random times such thaf, ¥ . Then

sup =[S ) S S( )] = sup |An( ) SA( ]S 0. (5.7)
0t T,Nn 0t T,Nn

Proof We may replacé, by T, (2 ), since wh.pT, (2 ) = T,; hence we may assume that
T, 2 .Furthermore, using the Skorohod coupling theorem, we may assumﬁtﬁat . We note
next that this implies
Oi?an nt) O (5.8)

a.s., and thus in probability. In fact, if (5.8) fails at some point in the probability spaceland ,
then there existt,, at least for some subsequencapivith0 t, T,= +o(l)and ,(t)< S ,
for some < 0. (Recall that ,(0) = 0, so the infimum is never positive.) We may select a further
subsequence with, t [ O, ]; this contradicts (B4). (Consider the casess 0,t = and
0<t < separately, and use (B4)(c), (B4)(f), (B4)(d).)

By (5.8) and (B5),

. 1 <P
Olprn n—nA,( at)S 0, (5.9
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and thus, by (5.4) and (B8),

sup ——|Su( ) S S )| = SUP —|An( nt) S Ac( nt)
0t T,Nn 0t T,Nn
. (5.10)
S inf —A()+—"8 o
T, N nn,

In what follows we consider several random times. They generally depencdahwe simplify
the notation and denote them by, T,, f as an abbreviation dfin, f

Lemma5.8 LetT andT,be two (random) times whe are performed, withT T,, and assume

that T n Sp t; and T, n Sp towhere0 t; t .If isthe union of all components explored
between Tand T,, then, under assumptioiiB1)-(B8),

V()= 1 a(g) S ) + opln o)
o )= 3n n(h(ta) S h(t)) + 05(n ).

In particular, if t; = t5, then{ ) = op(n n) and € ) = gp(n p).

Proof Taking, forj = 1,2, Ta=T, o+ St in (5.7), we see that

0stur;) |Sh(t) S Sh(t)] = 0p(n ). (5.11)

Since further 0 V,(t) S Va(t)  Si(t) S Si(t), see (5.1), we have also

sup |Va(t) S Va()| = 0p(n ). (5.12)
0t 'I'J

Since consists of the vertices awakened in the intef¥aJ T,), by (5.12), (B6) and (B3), as well
as n = O( n),

V() = Va(T,8) 8 Va(T,8) = V(T,8) 8 Via(T,S) + 0p(n 1)
=n (9T, ST, )+ 0D)

N n(9(t2) S g(ta) + 0p(2)).

Similarly, using (5.11) and (B7),

2¢( ) = S\(T,S) S SW(T,S) = S(T,9) S S(T,S) + 0p(n )
N n(h(T, o) Sh(T, n)+op(1))

n n(h(tz) Sh(ty) + op(1)).
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Proof of Theorem 5.4 Note that (5.7) (withl,, = ) and (B5) show that

sup niAn( 03 .0l o (5.13)
t

n

Hence, using (B4)(d), for every> 0, w.h.p.Ay(t) > 0on[ , n( S )], S0 no new components
are started during that interval. On the other hand,<f &<, then by (5.3), (B5) and (5.7),

LUSCal + DSSCal + ) S (S )SS( )]
= (Ao + DSACA+ ) S (A 0 )S A )]

LA ol + ))én—ln(m )8 A n))

=5 o+ )+ o).

This is w.h.p. positive, since limsyp ,( + ) < 0 by (B4)(e), and the1 is performed at
least once between, and ,( + ).

Consequently, ifT; is the last timeC1 is performed before,, 2 andT, is the next time, then
whp.0 T nand (S ) T n( + ). Since can be chosen arbitrarily small, this

shows thafl;, & OandT, &
Let be the component explored betweRrandT,. By Lemma 5.8 (witht; = O andt, = ),
has

V() =nn(9( )+ 0p(1)) (5.14)

vertices and

e( )= 3n n(h( )+ 0p(2)) (5.15)

edges.

It remains to prove that all other components have aply ) edges (and thus vertices) each.
(Thisimplies 1 = .) We argue as in [36, pp. 213-214 (end of Section 6)]. We fix a smxallD and
say that a component large if it has at least n ,, edges, and thus at leastr2 , half-edges. If is
small enough, then w.h.p. is large by (5.15), and furthéh( )S )n ,< 2e( )< (h( )+ )n ,.Let

be the eventthate? ) < (h( )+ )n ,and that the total number of half-edges in large components
isatleasth( )+ 2 )n p.

It follows by Lemma 5.8 applied tdo = 0 andT; that the total number of vertices and half-edges
in components found before is op(n ). Thus there exists a sequenggof constants such thaf, =
o( ) and w.h.p. at most , vertices are awakened and at most half-edges are made active before
T1, when the first large component is found.

Let us now condition on the final graph obtained through our component-finding algorithm. It
follows from our specification of ; that, givenG (n, ( )7), the components appear in our process in
size-biased order (with respect to the number of edges), obtained by picking half-edges uniformly at
random (with replacement, for simplicity) and taking the corresponding components, ignoring every
component that already has been taken. We have seen that w.h.p. this finds components containing
mostn ,, vertices and half-edges before a half-edge in a large component is picked. Therefore, starting
again afT,, w.h.p. we find at most , half-edges in new components before a half-edge is chosen in
some large component; this half-edge may belong tdut if  holds, then with probability at least
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1= 1S(h()+ )(h()+2)> 0itdoes not, and therefore it belongs to a new large component.
Consequently, with probability at leastP( ) + o(1), the algorithm finds a second large component
at a timeTs, and less than |, vertices and half-edges betwe&nandTs. In this case, leT, be the
time this second large component is completed. If no such second large component is found, let fol
definitenesdz = T4 = T,.
The number of half-edges found betwebnandTs is, usingS,(t)  Si\(t), (5.7) withT, =T,
(B2) and (B7) together with the factthds , 2 w.h.p.,

Si(T2S) S S(T3S)  S(T2S) S (S(T2S) S Si(T29)) S Si(TsS)
= S\(T25) S S\(T3S) + 0p(n 1)
Sh(TZS) é 31((2 n ) TSé) + Op(n n)
=na(h(2) (Ts n))ShT2 n))+ 0N n).

Since, by the definitions above, this is at masf, = o(n ), it follows thath((2 ) (Ts ) S
h(T2 ) 0p(1). FurthermoreT, TzandT, , ép ,and thusw.h.pT, , 2 .Hence, using

(B3), itfollowsthat(2 ) (Ts n)S = 0p(1), and thusTz & . Consequently, (5.7) applies to
T, =Ts n, and, since n@1 is performed betweem; andT,, using also (B8) again,

SIS S SO]  SuSOS SO+ 7= o o). (5.16)

Letty ( , 2 );then by (B4)(e), forsome> 0, n(to) < S2 for all largen, and thus (B5) shows
that w.h.pA.( nto) Sn , and thus

Si( nto) S Si( nto) = An( nto) éAn( nto) éAn( nto) Nn.

Hence (5.16) shows that w.hJps < nto. Sincety S can be chosen arbitrarily small, and further
T, T3 T,andT, , g itfollows thatT, , g

Finally, by Lemma 5.8 again, this time appliedTgandT,, the number of edges found between
Tz andTsis op(n n). Hence, w.h.p. there is no large component found there, although the construction
gave a large component with probability at leasP( ) + o(1). Consequently,; P( ) = o(1) and
thusP( ) = o(2).

Recalling the definition of , we see thatw.h.p. the total number of half-edges in large components
is less thar(h( ) + 2 )n »; since w.h.p. at leagh( ) S )n , of these belong to , see (5.15), there
are at most 3n , half-edges, and therefore at mésin n+ 1 vertices, in any other component.

Choosing small enough, this shows thatw.h.g.= ,andfurthew( 5) ¢ 2)+1 g n,+1.
This completes the proof of Theorem 5.4. m

5.2 | Proof of Theorems 2.6...2.10

Now suppose that we are given a sequence of degree distribudigrssitisfying the conditions
(Al1)...(A4). We choose the parameters in (B1)-(B8) as follows, wh@®before is the survival prob-
ability of a Galton-Watson process with offspring distributidg see (2.18); recall that, > 0 since

n > 0. (Note that , in (5.18) is the same as in (4.1).) Also recall that E D. Define

=1, (5.17)
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n= n=Slog(lS ), (5.18)
g =t hi) =2t (5.19)
n = E(Dn(l  nDn)?), (5.20)
) = S €2t SE(Dye® ). (5.21)

Recall that, by Lemma 4.1, Oand = , 0.

Remarlks.9 (Intuition behind (B1)-(B8) continued) Recall by (B5) tinat is the size ofA,( nt). See
(5.51), where we show th&[A( nt)] = €52 o'+ O(1) S T, _, knke® o, which by Taylor expansion
is indeed of the ordem , = NnE(Dy(1  Dy)?). This explains how, in (5.20) arises.

Let us next relate this to the condition ~ nS! 3(E D3)52 3. Every time whenA, hits zero, a
connected component is explored. Sikgé ,t) An( ot) by Lemma 5.7, one can therefore expect
that the size of the barely supercritical component is well concentrated precisely when the hitting time
of zero of A, is. This follows when the process An( nt) is well concentrated (and its limit has a
unique first zero). NowAn( nt) = Ln( nt) S Si( nt), and both processes turn out to have similar vari-
ances, the one fa@( nt) being easier to compute singg(t) = Y, _ o kKVnk(t) with V,,(t) independent
Bin(n, €K) random variables. Thus,

Var(Si( ot) = Y Konee™ (1S e* ) nE[DR(L ( WDa)] N, (5.22)
k 0

where we crucially rely on (4.3). This suggests that the protess A,( nt) is well concentrated
precisely whem ,  (n ,)2. The latter turns out to be the case whgn nS! 3(E D3)52 3. Indeed,
by Cauchy-Schwarz,; = O( nED}) (see also Lemma 5.19), so that, (n n)?> = 7 ( 4n3) =

O ((EDJ)? (n 3)). This explains the barely supercriticality condition ~ n>* 3(E D3)>2 2 that we
assume throughout this paper. While the above argumentpongthe one-way bounds that we need
in the proof, the fact that we observe critical behavior wher O(nS! 3(E D3)S2 3) (see Theorem
2.12) suggests that the above inequalities are in fact asymptotically sharp.

We next show that under the conditions of Theorem 2.6, these parameters satisfy (B1)...(B8
(possibly except for some smailtthat we may ignore). This will take a series of lemmas.

Lemma 5.10 AssumdAl).(A4). Then the parameters defined in (5.17)...(5.21) s&Bdfy (B2),
(B3) and (B4 ), and thus als¢B4), at least for n large. Furthermore,

i =0( n). (5.23)

Proof (B1): Trivial.
(B2): Since ,, > 0, we have , > 0 and thus , > 0 and ,, > 0. Furthermore, by (5.20),

n EDn( nDn)) = nED2=0( ). (5.24)

(B3): Trivial by (5.19).
(B4 ): By the definition (5.21) and (4.8),,(0) = 0and »( )= n(1)=0.
n(t) is trivially continuous. (Recall that eady, is a discrete random variable taking only a finite
number of different values.)
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We next show that , is concave oifi0, 2 ] =[0, 2] for largen. (It is not always concave d, ) ,
nor does it have to be concave () 2] for smalln, as can be seen by simple counterexamples with

n 52 n®) =4 2 SE(DIS ). (5.25)
For everyt [ 0,2] we have

E(D3e® "Pr) = E(Dn(Dn S 2)%€° n'Pn) + 4E(D2€® ') § 4E(Dye® rOr)

E(Dn(Dn S 2)%€%2 ") + 4E(D3e °r) S 4ED,, (5:26)

For the first term on the right-hand side of (5.26) we may assume, by the Skorohod coupling (see
Section 4.2), thaD, &~ D and thuDa(Dn § 2)2652 10 §° D(D § 2)2; thus Fatouss lemma yields

liminf E(Dn(Dn S 2)%e%2:>)  E(D(D $ 2)?). (5.27)
Next, using (4.3),
E(DZ(15€%2 ")) 2E(D3(1  nDn)) = O( n) = 0(2) (5.28)
and thus, using also (2.9),
E(D2e% Pn) = E(DZ) + O( n) = E(Dn(Dn$2)) + 2EDy + O( n) = 2 + 0(2). (5.29)
Combining (5.26)-(5.29) anED, = | , We obtain
iiminf inf, E(D3e® ™) E(D(DS2?)+8 $4 (5.30)
and thus by (5.25) and (A3),

limsupsup » 32 o () SE(D(D$2?) <0 (5.31)
n t[ 0,2

Consequently, fonlarge, ,(t) < 00on][0,2], and thus , is concave in this interval.
Next we verify (5.23). In fact, iD, 0,then1 D, n and thus the definition (5.20) implies

n EOnf)= o (5.32)

Thus 2 , 1 ,=0(1),since , > 0.
We now complete the proof of (B We can write the definition (5.21) as

n o) = E(Dh(1S € ™)) S (18552 ). (5.33)
Since (1) = 0, we thus have
n n(2) = n n(2) S2, [1(1)

= SE(Dp(1526% On + €2 :0n)) + (152627 + €% n) (5.34)
SE(Dn(1Se® P)?) + (15e520)%,



VAN DER HOFSTAD ET AL . WI LEY—'—31

Consequently, using (5.32),

n @ n(15€20)° 4,2 4, (5.35)
and, by (5.20),
S. @ E(Dn(1Se® %) E(Dy(l Dp)?) = n (5.36)

ConsequenthS1  ,(2) 4andthug .(2)| 4.
Similarly,

25 n(%)zzn n(%)é n n(1) } i .
= E(Dn(152€ 1P 2+ €2 D)) § (15 2€ v+ €% 1) (5.37)
=E(Dn(15e® ™ ?)?2) 3 (155 0)%
Denote the two terms on the right-hand side of (5.37AbandA,. Since 1S e 1 X,

A E(Dn(l ( nDn))z): n- (5.38)

In order to show that lim inf n(%) > 0, it thus remains only to show thAj is not cancelled
by Ao. First, , Oandthush, , 2 2. Furthermore, since§ e xe>* forx 0,

2 ~
A Z” E(D3e> nPn). (5.39)
Thus, using (5.30) and (A3),
E(D3e :>n) E(D(DS2)?)+4
iminf A jiming 208 ) E(POSAH+4 (5.40)
no A, n 4 4

SinceA;, A, 0, it follows thatA; S A, A, and thus (5.37) and (5.38) yield
20 0(3) A (5.41)
which verifies liminf, n(%) > 0. This completes the proof of (B4 m
Remarks.11 Note, for later use, that we haye shown that, for Iarg:eleast, n is concave or[nO,?]
with ,(0)= () =0and,by(5.36),,(2) S1;hence0 ,(1) S1,andthusQO () 1St

fort [ 0,4 and1St ,(t) Ofort [ 0,2],s0| n(t)] 1fort [ 0,2].

We next show that (B5)-(B7) hold if we replace the random proceése¥,, and S, by their
expectations, at least under the extra assumptiomthat

Lemma 5.12(Asymptotics of means d&,(t), An(t), Va(t)) AssumédAl)-(A4), , > 0, and addition-
ally that n , . Then, with parameter values as in (5.17)-(5.21), for any fiyed t

sup| = (E[SI(0)1 S EISi( +0]) S )] = o(0), (5.42)
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1

sup| - (EVA(0) S EVA( 1) S 00| = o(0), (5.43)
o n
1 -

sup|—E[An( nt)] S n(t)| = o(1). (5.44)

tt|Nn
Proof We have, using

o_ 1 2 _ & _ _
EDn—Hank—EDn(Dn81)+EDn— nnt n= aR+ ), (5.45)
k

n= n, and the definition (3.10),

= (ELS(0] S EIS( ) K(ELVax(01 8 EVai( 1))

1
Y

1
Y

kn(15 €5 )= L E(D (156" )
n

(5.46)
— tEDZ+ inE(Dn(lé g D))
=t @2+ n)éinE(DnF( +tDn)).
We now estimate the last term, noting that
0 F(¥ x X (5.47)
Thus, for allt [ 0,to],
0 inE(DnF( D)) E(Dn(toDn ( n2D2)) (to+2)E(DZ ( WDY)). (5.48)

By (4.3), this isO( n) = 0(1), and (5.42) follows from (5.46) by the definition (5.19)t).
The proof of (5.43) is similar, and easier, as there is one fewer poweingblved.
To prove (5.44), note first that,(t) is a death process where individuals die at rate 1, except that
when someone dies, another is immediately killed@BY, so the number of living individuals drops
by 2, except when the last is killed; moreotg(0) = #,S 1, where we recall from (2.2) that, = n ,
is the total number of half-edges. We can couplg) with a similar procesk,(t) starting at.,(0) = ¢,
so that both processes jump whenever the smaller jumps, and then

ILa() SLa(t)] 1 (5.49)

for all t, cf. [36, Proof of Lemma 6.1]. The%Ln(t) is a standard death process with intensity 2, starting
atZ, 2, and thus L(t) = Z,e°2. Hence,

E L) $ fne32t| = |[ELn(t) SELa(t)| 1 (5.50)

forallt 0. Consequently, uniformly inatl 0,

E[An( )] = E[Ln( o] S E[Si( nt)] = £0€%2 '+ O(1) § ) kne® otk (5.51)
k=0
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and thus, by (5.21) and the assumptiop ,
%EAH( )= 12 SE(Dpe® ") + O(nSt) = o, o(t) + of n), (5.52)
which proves (5.44). ]

Remark5.13  In the case wheB; is uniformly integrable, or equivalentg D3 ED3 < | the
sequencé °D,) Dg is uniformly integrable (sinc®g is), and converges a.s. B if we assume
a.

Dn & D, as we may by Section 4.2; consequently, using (5.20),
=E( $°D,) D3 ED3< . (5.53)

N
2
n

Thus, in this case,, 2. In other words, we could have defineglas 2 or, for example, , 2
in this case, instead of by (5.20) (provided we modifyaccordingly). Moreover, a simple calculation
using (4.9), which we omit, shows that, withgiven by (2.21) and (2.22),

a(t) = tSt3) + o(1), (5.54)

2ED3

uniformly on each compact interval; thus we may in this case as an alternative{ake= ﬁ(t S
t2), independently oh. (Cf. Remark 5.2 and, with a simple change of time scale, Remark 5.6.)

On the other hand, IED® = , then, assuming agaid, & D, we have s2p, D3 & p3
since , 0. Thus Fatouss lemma yields, instead of (5.53), 2 ED®= | thatis,
2= 0( ). (5.55)

Moreover, in this case it is, using (5.55), easy to see that if we define
o) = E(Da(18€ ™)) S2 o, (5.56)
then
n®) = n) n+o(l) (5.57)

uniformly on each compact interval; thus we may in this case as an alternativejgke=  n(t) .
In both these cases we can thus use simpler versionsaofd ,; however, we prefer not to do so;
instead we use definitions (5.20) and (5.21), which work in all cases.

Remark5.14  Typically, as in Example 2.1%,(Dn(( nDn) ( nDn)?)) E(Dn(1 ( nDn)?)) and
then, by (5.20) and (4.3),

n= E(Dn(l ( nDn)Z)) E(Dn( nDn ( nDn)Z)) n n- (5.58)

In this case, we could have used = |, , instead of the choice (5.20) (provided we modify
accordingly).

We next show that the random variabisgt), Vi (t) and S,(t) are so well concentrated for 4l
that we may replace them in conditions (B5), (B6), (B7) by their expectations. For later use, we state
the next estimates in a more general form than needed here; we then give simpler consequences
Lemma 5.16.
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Lemma 5.15(Concentration 05,(t), An(t), Va(t)) AssumdAl)-(A4). Then there exists a constant
C such that, forany u 0,

E[supl&(t)é E&(t)lz] CnE(D3(1 uDy)), (5.59)

tu

E[sup|vn(t)é Evn(t)|2] CnE(D3(1 uDy)), (5.60)
tu

E[sup|An(t)éEAn(t)|2] CnE(D3(1 uD,)) + C. (5.61)
tu

The final <+ CZ in (5.61) is probably an artefact of our proof, but it is harmless for our purposes.

Proof The procesd/nhk(t) is a simple death process where each individual dies withkiatefol-
lows thatV,k(t) is a semimartingale with drif6kV,x(t). ConsequentlyS,(t) = Deo KVnk(t) is a
semimartingale with drif§ Do K2V (1), andSy(t) S E Sy(t) is a semimartingale with drift(t) =
S Yo KE(Vnk(t) S E Vi(t)). )

We have, noting that,,(t) are independent andh(t) Bin( ny, e>K) for eachk,

EIS(0) SES®I? = Y, VarkVnk(t) = 2 K* Var (V1))
k=0 k=0

(5.62)
= ) Kne (18 ™) ank2 (kt (ktSt).
k=0
Similarly
El O = Y Var(@Vadt) = Y’ K Var(va(®) = Y, k'ne™{(1S €%
k=0 k=0 k=0 (563)

D ke k).
k=0
Hence, for some consta@y,

ZE|S1(ZSJU)SES1(ZSJU)|2 ankzz (25ku ( 25ku)H).
k=0 =0 (5.64)
Cr ) ndk(ku 1)
k=0
and
[ )] ank"’ eékt(t kP)dt ) k(1 (ku)?).
k=0

Consequently, Lemma 4.2 yields

E[supS)) SES®IZ|  Co Y ndé(L k) + Ca Y nd(L (k)

k=0 k=0 (5.65)
Cs ). k(1 ku) = CanE(DE(1 (uDp)).
k=0

This yields (5.59).
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We obtain (5.60) similarly; the estimates are the same, but with smaller powkysvbfch can
only help us.

Moreover, by a similar argument (but without having to sum dgeor by [36, Lemma 6.1] (with
a modification foru > 1),

E[sup|Ln(t) 3 ELn(t)|2] Csn(u ), (5.66)
tu

and thus, by (5.49),
E[sup|Ln(t) = Ln(t)|2] Cen(u 1)+ Cy. (5.67)
tu

By definition, A,(t) = La(t) S Si(t), and thus (5.61) follows by combining (5.67) and (5.59), noting
thatED2(uD, 1) P[D,=1)u 1)andP(D,=1) P(D = 1)> 0byRemark 2.4. n

Lemma 5.16 (Concentration of§,(t), An(t), Va(t)) Assume (Al)...(A4). Let, as abowez , =
Slog(1S ), asin (5.18). Then, for any fixeg,t

?l}'p S ) SES( nt)| = Op((n )t 2): (5.68)
SUP|Va( nt) S EVa( nt)| = Op((n o)t 2): (5.69)
tt,
sup[Aa( nt) S EAW( )| = Op((n )" 2+ 1). (5.70)
tt,
Proof Takingu = nto, we obtain by (4.3),
E(DA(1 uDy) (1 t)E(DA(L  nDn)) = O( n)- (5.71)

Thus the right-hand sides of (5.59) and (5.60) and (5.61Déne,) andO(n , + 1), respectively;
hence (5.68)-(5.70) follow using Markoves inequality. n

The final three lemmas provide further estimates of the quantities , and , as set in (5.18)
and (5.20).

Lemma5.17 Assume (Al)...(A4). f = O(1), then

n
n E_Dﬁ, (5.72)
A
n  nn ED? (5.73)

Proof We have ,,D, n n= 0O(1), and thus
(1 Dn)  nDn. (5.74)

Hence (4.3) implies
n  E( D7) (5.75)

and (5.72) follows, recalling (4.2).
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Furthermore, (5.74) and (5.20) yield, using (5.75),

n E(ADR) = nE( DR n (5.76)
showing (5.73). [
Lemma5.18 AssumdAl)-(A4) and , > 0. If

(n ) ?=o(n ), (5.77)
then(B8) holds, that is,
n=0(N n). (5.78)

Proof Suppose firstthat, , 1. Then, using (5.73),

n: n:n:0<n_r12>:0<(:nr;2)' (5.79)

n

and thus (5.78) follows from (5.77) in this case.
Suppose nextthat, , 1.SinceP(D,= ) 1 n,we have by (4.3)

N

o E(DRL (D)) 3L (0= (5.:80)
Consequently, , = O((n n)* 2), and thus (5.77) implies (5.78) in this case too. .
Lemma5.19 AssumdgAl)-(A4) and , > 0. Then
5= 0( 1EDJ). (5.81)
Proof The Cauchy-Schwarz inequality yields, using (5.20),
(E(DXL1  «Dw))® E(Dn(l  wDn)?)E(DS) = O( ,EDJ). (5.82)
Hence the result follows by (4.3). m

Proof of Theorem 2.6 First note that (B1)-(B4) hold for the parameter values in (5.17)-(5.21) by
Lemma 5.10.
Next, by Lemma 5.19,

o __h :o<(EDﬁ)Z>, (5.83)

(2 2n3 n 3

which iso(1) by the assumption. Hence (5.77) holds. Consequently, Lemma 5.18 shows that (5.78)
holds. In other words, (B8) holds.
Since , 1, (5.78) implies

nno (5.84)

and thus Lemma 5.12 applies and shows (5.42)...(5.44).
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Moreover, (5.77) and (5.84) imply that the right-hand sides of (5.68)-(5.70p#re.). Fur-
thermore, , = O( ;) by (B2), see (5.24). Hence Lemmas 5.12 and 5.16 yield (B5), (B6) and
(B7).

We have verified (B1)-(B8), so Theorem 5.4 applies and the result follows, recalling (5.17), (5.19),
(2.10) and (4.2). Note tha ) = h( ) 2, so the asymptotics fa( ;) ande( ;) are the same. =

Proof of Theorem 2.8 By assumptionE D3 = O(1) and ,n! 3 , SO Theorem 2.6 applies; thus
(2.19) holds. Furthermore, as said in Section 4.1, Theorem 3.1(ii) appliesXwith D,, and yields
(4.9), which together with (2.10) yields the first equality in (2.23); the second equality then follows by
(2.6). Similarly, (2.20) and (4.9) (or (3.2)) yield (2.24). n

Proof of Theorem 2.9 Again, Theorem 2.6 applies. Moreover, by (2.15), we Ha@? = E(D(D S
1)2) ED = |, and so Theorem 3.1(iii) applies, yielding = o( n). n

Proof of Theorem 2.10 Theorem 2.6 applies.

(i): Follows from (2.19), (3.3) foiX,, = D,, and (2.26).

(ii): Now, by (2.15) ED2 ED? ED, = O(1). Hence Theorem 3.1(i) applies and yields n;
consequently (2.19) implies (2.30).

(iii): By (2.28) and (2.26)E D3 = O( ) = O(E[Dn(DnS1)]) = O(E[D3]). Thus, the assumption
implies , = o(E[DZ]). Hence, Theorem 3.1(iv) applies and (2.31) follows by (2.26) and (2s28).
6 | THE CRITICAL CASE

We define, for convenience and for comparison with Hatami and Molloy [24],
R, = ED:. (6.1)
The basic condition for the critical case in Theorem 2.12 is thus, as in [24],
n=O(nS3R2 %), (6.2)
Remark6.1 OurR, is not exactly the same &sdefined by Hatami and Molloy [24], which equals

ourED,(D,S2)2 ED,= ,S n see(2.26)and (2.6), but the two values are equivalent in the sense
Ry Ruatamimolioy: S€€ (2.28) and (2.27); hence the two values are equivalent for our purposes.

Note that, as said in Remark 2.13, % 3 and hence always
n (R 2. (6.3)
Note also that in Theorem 2.12 we impose the slightly stronger condition (2.32), that is,
n=0o((NR)* 3). (6.4)

Furthermore, by (A2),
Ri=ED} ,ED3=O( p). (6.5)
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Hence, (6.4) implies 2 = o(nR,) = o(n ) and thus 2 = o(n) and

n=o(n'?), (6.6)

and thus also, by (6.5),
R, = o(n* ?). (6.7)

In Theorem 2.12 we assume both (6.2) and (6.4), and it follows from (6.2) and (6.7) thai(1),
so (A4) follows from the other conditions. (However, for emphasis we keep it in the statements in
Theorem 2.12 and below.)

Note also that, using (5.45) and (2.1®, ED3 2 > 0, soR, is bounded below and
RS = O(1).

We continue to work with the configuration model and the multigr&phas in the preceding
section. In Section 6.3 we give additional arguments for the graph case.

6.1 | Proof of Theorem 2.12(i)

Theideais to use Theorem 2.6 for the supercritical case and a kind of monotonigitit i intuitively
clear that a larger, ought to result in a larger largest component, and thus the supercritical case will
provide an upper bound for the critical case. The formal details are as follows.

Proof of Theorem 2.1 Let (n) slowly, so slowly that, cf. (6.7) and (6.4),
(MR, = o(n* 2), (6.8)
(M o (R)>. (6.9)

Letm, = |n23R2® (n)2 3]. Change the degree sequelici| r to ( i)i[ ny by replacing 2,
vertices of degree 1 by, vertices of degree 0 and, vertices of degree 2. This is possible (at least
for largen) becausey, n= P(D,=1) P(D = 1)> 0, see Remark 2.4, and thus, using (6.8),

my  n? 3R, (M)*°=o(n) = o(m). (6.10)

We denote the variables for the modified degree sequenbg bnd so on. Note that the modifica-
tion does not change the sum of vertex degreek,Bp = ED, = ,, but it increase&[Dn(Dn S1)]
by 2m, n 2nS13R2 3 (n)? 3. Thus, using (6.2) and(n) ,

n= n+2my n 2051 3RE3 (n)23. (6.11)

Similarly, R, = E DZ is increased to

Rn:ngan+6Tm1=Rn+o(1) R, (6.12)

where we have used (6.10) to see that the difference is insignificant. Furthermore, it is easily seen tha
(A1)-(A4) still hold (with the samé), using (6.10) and (6.11) for (A1) and (A4).
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Since (6.11) and (6.12) imply, ~ nS13R2 3 and (6.11) and (6.9) implyn, n = O(Ry),
Theorem 2.10(iii) applies to the modified degree sequence and yields, w.h.p.,

V1) C %‘ = o(2 3RS % (n)). (6.13)

In particular, w.h.p.

V(1) MR (n). (6.14)

We can obtairG (n, ( ;)i ) fromG (n, ( )i nj) By mergingm, pairs of vertices of degree 1 into
vertices of degree 2, and adding, vertices of degree 0 to keep the total number of vertices. Any
connected set of vertices inG (n, ( i)i[ nj) then corresponds to a connected set of at le@st 2
vertices inG (n,( i)i[ nj)- Consequentlyy( 1) %v( 1) and thus (6.14) implies, w.h.p.,

V(1) (1) 2R3 (n). (6.15)

Since (n) arbitrarily slowly, (6.15) implies/( 1) = Op(n? 3R§l 3). (If not, we could find

> 0andK = K(n) such that, at least along a subsequeR¢e( 1) K(n)n? 3R>t 3) . We
choose (n) with (n) K(n) 2 to obtain a contradiction. See also [32].) This completes our proof

of (2.33). "

Remark6.2 In our proof we needed only the simple, deterministic box(ng)  2v( ;). Actually,

when Theorem 2.12(i) is proved, it implies together with Theorem 2.10(iii) that wb.pp ~ V( 1),

that is, that the giant component for the modified sequence w.h.p. is much larger tharor the
original sequence; the reason is that, in the merging described above, the giant component typicall
absorbs many small components.

Example 6.3 Consider a critical example with, = O(nS! 3), R, = O(1) and , = o(n® 3). For
example (as in [24]), we can let 8 of all vertices have degree 1 and the rest degree 3. Alternatively,
we can take the Eab-Rényi graptG(n, 1 n) and condition on the degree sequence, as described for
general rank-1 inhomogeneous random graphs in Section 2.6V hris typically of ordem? 3, see
[24, Theorem 2.12].

Let m, be integers witm! 2 m,  n! 2. Modify the degree sequenée )i nj to ( i)i[ by
mergingm, vertices of degree 1 to a single vertex of degrgeand addingn, S 1 vertices of degree
0. Thenitis easily seenthay m n,R, ng nand , = m, Thus (6.2) holds for the modified
sequence but not (6.4). Furthermore,

V(1) v 1)Sm (6.16)
sov( 1) is typically also of order (at leasty 3. Hence, (2.33) fails.

6.2 | Proof of Theorem 2.12(ii) in the multigraph case

In this section, we consider only the multigraph case. Unlike all other results in this paper, the graph
case does not follow immediately by conditioning. We treat the graph case in the next section.
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We use the cluster exploration process and notation from Section 5.1. Let

S13

t = (NRy)7 7, (6.17)
and note that; = O(nS1 3) = o(1) and, by (6.7)t1  nS! 2 and thusnt; andnt?
Furthermore, let

2 =Var S(ty). (6.18)
Lemma 6.4 AssumgAl)-(A4)and (6.4).
(i) Then

2 23

F(nRy)° . (6.19)
Moreover,S,(t1) is asymptotically normal;

< .d

(S SES(t) oS NO1). (6.20)

(i) Let f’n = 4nty . Then ly(t1) is asymptotically normal, with

(Lo(t) SELa(t)) 1nS N(O,1). (6.21)

Furthermorelimsup 2~ 2< 1.
(i) For any b> 0, there exists () > 0 such that

P(Ant)) SEAN(t) > b ) c(b) + o(l). (6.22)

Proof (i): We have, see Section 5.1 and in particular (582)) = Y, (n ili(t), whereli(t) is the indi-
cator that no half-edge at vertelRas died spontaneously up to tim&hese indicators are independent
andl;(t) Be( e it). Hence, as in (5.62) but written slightly differently, noting that t; , = o(1)

by (6.17) and (6.4),

Var Sy(ty) = Z 2Varli(ty) = Z 2e5 (185 i) Z 3y = ynR, = (nPn)2 3
i[n i[n i[n]

which is (6.19). Similarly, withy; = ;l;(t;) and using (6.4),
2 EMSEYP= Y PENMSENWE Y Pvarkt) Y i
i[n i[n i[n i[nl (6.23)

=t4nEDE  tin Ry = o(NRy) = of J).

Consequently, the central limit theorem with Lyapounoves condition [23, Theorem 7.2.2] applies
and yields (6.20).

(ii): We use the modified proceds(t) defined just before (5.50). ThejLq(t) Bin (3¢5, %)
for everyt 0. In particular, recalling from (2.2) and (2.4) thgt= n ,,

Varbn(ty) = 4- 2,521 (18 %) 4ty = 2 (6.24)

n
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Sincent; , we have fn , and the central limit theorem for the binomial distribution

yields (Ln(t)) SELn(t)) i g N(0, 1). Since|Ln(t1) S La(ty)| 1 by (5.49), (6.21) follows.
Furthermore,

2 2 23 E DS
_n = n (an)v — & = n (625)
24y o 4n(nR)S3 ., 4, 4ED,
Consequently, using (5.30) (with= 0),
2 |iminfED3 E(D(DS2)?) + 4
liminf —= = n . .
imin En 1ED 7 >1 (6.26)

(iii): By (ii), there exists > 0 such that, for large, |, < (1S2) . Leta = Sipand let
be the usual standard normal distribution function. Then, by (6.20) and (6.21),

P(S(t)SESMt)<San,) (S a), (6.27)
P(La(t)) SELn(t1) < S(1+ Ja rn) (S 1+ )a). (6.28)

Hence, with probability at least + o(1), wherec = (S a) S (S( 1+ )a) > 0, we have
Si(t1) SES\(t1) < Sa andLa(t)) SELq(t1) S(1+ )a L, and thus, recalling (5.3),

At)) SEA(t)>a S+ )an>a S+ )1S2)a,> an=b,. (6.29)

Remark6.5 PresumablyS,(t;) andLy(t;) are asymptoticallyointly normal, which would imply

that As(t1) is asymptotically normal and yield a more direct proof of (6.22). However, it seems more
technical to prove joint asymptotic normality here, so instead we prefer the more elementary argumen
above.

Lemma 6.6 AssumdgAl)-(A4) and (6.2) and (6.4). Then, uniformly for tty,

ES\®)=n nS2tn o+ O( ), (6.30)
ELi()=n 2+ 01)=n ,32tn ,+ O( ), (6.31)
E An(t) = O( n). (6.32)

Proof Similarly to the proof of Lemma 5.1%/n(t) Bin( ny, € and thus, using (5.45),

ESit)= ) KE V() = D knee™ = Y kn (1S kt+ O(K?))
k=0 5 k=0 k=0 (6.33)
nED, StnE D2+ O(t?nE DY)

naStn 2+ o)+ O(tinpn),

which yields (6.30) by (6.2), (6.17) and (6.19).
Furthermore, by (5.50),

ELa(=n &2 +0@10)=n ,$2tn o+ Ot + 1), (6.34)
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and (6.31) follows because, by (6.17) and (6.19),
n+1 n=nt3 23 RS1=0O( ). (6.35)
Finally, (6.32) follows from (6.30) and (6.31). m
Lemma 6.7 AssumgAl)-(A4) and (6.2) and (6.4). Then,

E|suran0f*| = of 3. (6.36)

Proof By Lemma 5.15, together with (6.17) and (6.19),

E[suplAn(t) 3 EAn(t)|2] CnE(D3(1 tDy))+C
tt
Cnt E(D3) + C= CntR, + C = O( 7).

(6.37)

Furthermore, syp, | EAq(t)] = O( n) by (6.32), and (6.36) follows. n

For ease of notation, I& = V,k(t1), the (random) number of vertices of degkesaich that none
of their half-edges dies spontaneously by timerhusS,(t1) = Y, KNy, see (5.2). Let further

Zy = Y K(MSNY) O (6.38)
k=0

Lemma6.8 AssumdAl)-(A4)and (6.2) and (6.4). Then, there exists a constayg@eh that w.h.p.
Z, Cg 2. (6.39)

Proof N Bin( ny,ek1) and thus, using (6.17) and (6.19),
Ez,= Z kznk(l S eéktl) z kgnktl =tnR, = O( %) (640)
k=0 k=0
Furthermore, using also (6.4),

varz, = Z K* Var Ny Z k' (1S ek4) z Konits
k=0 k=0 k=0

(6.41)
=4nED;  tin 3R, = o((NRy)* %) = of 7).
Now (6.39) follows by (6.40) and (6.41) and Chebysheves inequality. m

We condition on ¢, the -field generated by all events up to tirhe Note that ; determinesNy,
and thusS,(t;) andZ,, and alsd_,(t;) andAn(ts).

Lemma 6.9 AssuméAl)-(A4) and (6.2) and (6.4). Forany fixed8 andallt [ 0,Bt],

E(S(ti+1) )= Si(t)S2tn o+ 1tZ,+ O( n), (6.42)
E(Lati+1t) ) La(t)S2tn o+ O( n), (6.43)
E(Ati+1) ) An(ty) StZ,+ O( n). (6.44)
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Proof We have, in analogy with (6.33), using (6.38),

E(Sit+t) )= Y kNS =D kN(1S kt+ O(K?))
k=0 k=0
. . 6.45
= S(t) S t(Z Kne S zn> + o<t2 D k3nk> (6.45)
k=0 k=0
= Si(t1) StEDE + tZ, + O(t°nR,).
Then (6.42) follows by (5.45) and estimates as in the proof of Lemma 6.6, using (6.2), (6.17), (6.19)

and the assumption= O(t).
ForL,, we use again the coupling with,. As gLn(t) is a standard death process with intensity 2,

E(latti+) ) =E(Lati+1) )+ O(1) = Lo(t1)e> + O(1) 6.46
= Lp(ty) S 2tLn(ty) + O(1 + nt?). (6.46)

Then (6.43) follows, sincep(t;) < £ = n y, using again (6.35).
Finally, (6.44) follows from (6.42) and (6.43). m

Lemma 6.10 AssumégAl)-(A4). Forany fixed B< andallt [ O,Bt],

- 2 1
E[supsit + 9 SE(SM+ 0 )| o] =0 (6.47)

1 5 ) ]
E|suplLa(t + DS E(Lati+ 0 o) | o] =0 ), (6.48)

1 ) 5 ]
E|supjn(t + D SE(At+ ) )| | o] =02 (6.49)

Proof Conditioned on ., the proces§(t; + t) is exactly as§(t), but starting withNy vertices of
degreek instead ofnk. Hence the arguments in (5.62)-(5.65) in the proof of Lemma 5.15 hold in this
case too and, sindéx  ng, we obtain, forany 0,

E[suq&(tl+t)SE(&(tl+t) t1)|2' tl] CanE(D3uD, 1)) CanuEDE.
tu

The result (6.47) follows by taking = Bt;, using again (6.1), (6.17) and (6.19).
Similarly, as in (5.67), or by [36, Lemma 6.1] after conditioning qpy we obtain, sincé; = o(1),

« 2
E[sgp L(ts + O SE(La+ 0 )] | tl] = O(nty + 1). (6.50)
t B
Furthermore, as said abovs; andR,?1 = 0O(1), and thus, cf. (6.35),
nh+1 ny=ndRE3  2RSL= O 2). (6.51)

Hence, (6.50) yields (6.48). Finally, (6.49) follows by combining (6.47) and (6.48). n
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Lemma 6.11 AssumdAl)-(A4) and (6.2) and (6.4). For any fixed B 1, there is some(fB) > 0
such that with probability at least(B) + o(1),

An(t) >0 forallt [ ti,Bt]. (6.52)
Proof Fix B> 1. Letb > 0 be another fixed number, to be determined later. Consider the event
(0 = {At) SEA)>b and Z, Cs 3}, (6.53)

with Cg as in Lemma 6.8. By (6.22) and (6.39), (b)) c(b) + o(1), wherec(b) > 0 is independent
of n. Define also the family of even{s 1(C) C > 0}, with 1(C) given by

1(©) = {suplAn(ti+ D SE(At+ D) )
t Bt

c n}. (6.54)

Furthermore, let

(b,C) = () 1O (6.55)

Note that (b) t,- Hence, by Lemma 6.10 and Chebyshevess inequality, there exists a constant
Cg such that

2
P( (C) (b)) 15 (g"ngz =18 % (6.56)

Consequently, if we choose = ZC; 2 then
P( (5,C)=P(1(C) ()P () 2P( (b)) 3c(b)+ o). (6.57)
On the event (b, C), we have by (6.54), (6.44), (6.53), (6.32) and (6.17), fortanly O, Bt;],

At +1t) E(Atz+t) )SCn Aty StZo+ O( )
>b n+ EAN(t) S Cgt 2+ O( 1) (6.58)
=b n+ O( p).

The implicit constants here depends®but not orb; thus the final error ter®( ) SCio(B) n
for someC,0(B). Hence we may for an3 chooseb = b(B) = Cjo(B), and the result follows, with
P(B) = 30(b(B)). .

We can obtain results fof, similar to the results fo&, above (in Lemmas 6.4, 6.6, 6.9, and 6.10)
by the same arguments. However, we have no need for such results involving conditioning and uniforrr
estimates; the following simple results are enough.

Lemma6.12 AssumdAl)-(A4) and (6.4). Fix B> 0. Foranyt [ 0,Bt],

Vo) = nSn ot+ Op(nt2+ 4/nty) = nSn ot + op(nty). (6.59)
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Proof Recall thatVa(t) = Y, Vak(t) whereV,i(t) are independent and,(t) Bin (nk,eé'“).
Hence,

EVa(t) = )| ekt = D n(1S kt+ O(t?)) = nSn o+ O(nt?) (6.60)
k=0 k=0
and
VarVo(t) = )’ e (18 %) D nkt=n ot = O(nt). (6.61)
k=0 k=0

The first equality in (6.59) follows from (6.60)-(6.61). The second follows becatfse o(nty)
and+/nt; = o(nty). m

Lemma 6.13 AssumdA1)-(A4) and (6.4), and define \t) = V,(t) SV,(t) 0.Fix B> 1. Then

Va(t) S Va(Bt)  Op(ts n) = 0p(Nty). (6.62)
Proof V. (t) = Vnk(t) S Vik(t) is the number of vertices of degrkehat are awake at timig but
their k half-edges all have maximal life times larger thaThis number may increase whén is

performed, and it decreases when a half-edge at one of these vertices dies spontaneo@gygand
performed). Consequently, conditioning of, for anyt 0,

E((Vo () SV, (ti+ 1)+ v) KtV (ta).
Summing ovek yields, using (5.2),
E((Va(t) SValti + 1)+ 1)  t(Si(t) S Si(tr))- (6.63)
By (5.4) and Lemma 6.7, noting that, = O( ) by (6.3) and (6.19),

Silt2) S Si(ta) < SUp|A®] + = Op( n)- (6.64)

In other words, for every> 0 there exisK( ) independent ofi such that
P(S(t) S Si(t) > K() n) - (6.65)
Furthermore, for any fixe&, (6.63) implies
E((Valt2) S Va(ts + 1)s - Si(t2) SSi(t) K n) = Oft ). (6.66)
It follows by (6.66), Markoves inequality and (6.65) that, for ary 0,
(Va(t2) S Vit + 1)+ = Op(t n). (6.67)

Now taket = (B S 1t;. .
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Proof of Theorem 2.1#) Note that the assumptions include (6.2) and (6.4). Recall als@\iigt
An(t) for all t, see (5.4). Hence by Lemma 6.11, for ev8ry 1, there existp(B) > 0 such that with
probability at leasp(B) + o(1), An(t) An(t) > Oforallt [ ty,Bt;]. By the discussion in Section 5.1,
this means that1 is not performed during the intervith, Bt;] and thus all vertices awakened during
this interval belong to the same component, safhe number of these vertices\s(t1) S Vi (Bty).
Consequently, with probability at legB) + o(1),

V(1) V() Va(t) S Va(Bt). (6.68)
Furthermore, by Lemmas 6.13 and 6.12,

Vn(t]_) é Vn(Btj_) = Vn(t]_) é‘, Vn(Bt]_) + Vn(Btj_) é VnStl) Vn(tj_) é Vn(Bt]_) + op(ntl) (6 69)
=n n(BS 1ty + op(nty) = n (BS L)ty + op(nty). '
Hence Va(t) S Va(Bt) > ( (BS 1) S 1)nty w.h.p.
Finally, given anyK > 0, chooseB such that (BS 1) = K + 1. Then (6.68) and (6.69) thus show
that, with probability at leagt(B) + o(1), recalling (6.17),

V(1) Va(t) § Va(Bt) > Knty = Kn? 3RS 3, (6.70)

which completes the proof of (2.34). m

6.3 | Proof of Theorem 2.12(ii) in the graph case

Unlike the other results in this paper, Theorem 2.12(ii) says that a certain event asymptotically has &
positive but possibly small probability. In order to obtain the same result for the simple random graph
G, from the result forG,, we have to show that this event has a large intersection with the event
s ={ G, is simplg.
Recall that (A2) implie®( s) c¢s+ o(1) for somecs > 0. In fact, (6.6) and (A4) imply, see e.qg.
[29, Corollary 1.4] or [2, Theorem 1.1],

P()=€51250440(1) = €34+ 0(1), (6.71)

so we takeg, = €53 4,
We claim the following:

Lemma 6.14 AssumgAl)-(A4) and (6.4). Then the asymptotic normality (6.20) and (6.21) hold
also conditioned on. (The expectations in (6.20) and (6.21) are still for the configuration model,
without conditioning.)

We postpone the proof of the lemma.

Proof of Theorem 2.1#) in the graph case Note that, given Lemma 6.14, we obtain also (6.22)
conditioned on ¢ by the argument in the proof of Lemma 6.4. That is, for &ny 0, there exists
c(b) > 0 such that

P(An(tl) SEA(t]))> b , s) c(b) + o(1). (6.72)
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Consider now Lemma 6.11. It follows, similarly to the first part of the proof of Lemma 6.11, that
P( (b) ) c(b)+o(1).HenceP( (b) ) c(b)cs+ o(l).Since ¢ t,» we modify the next
part of the proof of Lemma 6.11. By (6.56),

P(1C) s () P( 1éC) (0)+P(s (b)S1
18 C—g +P(s (M)S1 (6.73)

csc(b) $ % +0(1)  3csc(b) + o(d),

for a suitable choice o€. The rest of the proof of Lemma 6.11 works as before. We obtain, using
(6.73),

P( (0O )=P( () 1C) ) 3ccb)?+o(l). (6.74)
Hence we conclude, using (6.58) as before, that, foreany1,
P{A®>0 t [t,Bu]} ) p(B)+ o) (6.75)

for some (newp(B) > 0, wheret; is as in (6.17). Finally, the proof of Theorem 2.12(ii) above yields,
cf. (6.70),P{v( 1) Km23R;'°} o) p(B) + o(1), and thusP(v( ;) Kn23R;'® )
p(B) + o(1), which completes the proof of Theorem 2.12(ii) for the simple random g&Gph L]

It remains only to prove Lemma 6.14. This could be done by the method used for similar results in
[37,38], see also [35], but we prefer an alternative, simpler, argument.

Proof of Lemma 6.14 Consider the conditional analogue of (6.20); the proof of conditional (6.21) is
identical.
Leta Randlet 5 ={ (S\(t) SES\(t1)) «n a};thus, by (6.20),

P(a) (a. (6.76)

LetT denote the firsttime that a connected componentis completely explored aftéy.tiraeB >
1.1f T > Bt;, then the component explored untilT has at leastn(t;)) SVa(T S)  Va(t1) S Va(Bty)
vertices, and hence, using Lemmas 6.12 and 6.13,

V(1) V() Vi(t) SVa(B) = n n(BS 1)t + op(nta). (6.77)

It follows from Theorem 2.12(i) that, for any> 0 and any fixed such that (BS 1) > K( ), we
haveP(T > Bt;) < + o(1). Consequently, iB;, , thenP(T > Byty) < 2 forany > 0Oand all
largen, and thusl  Bpt; w.h.p. Note that (6.17) and (6.7) imply that

Ry = n51 3R% 3 = 0(1), (6.78)

and that, since = O(R,), we also have; = o(1). We may thus fix a sequends, such that
Bnt:1 = o(1) andBpt1R, = 0o(2).

LetT be the first time that the number of sleeping half-edggs drops below’,, 2. (Recall that
$(0) = £ = n ,.) Attime Bty the expected number of times ti@g& has been performed is at most
Bnt1Zn = 0(Zyn), and corresponding to a few of these times &dowas performed; it follows easily
that the expected number of sleeping half-edgé&tis ¢, S o(¢y), and thus w.h.pT > Byty.
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Let 1 denote the event that all the components explored by Tinrage simple.

The probability that vertex is awakened no later than tin{B,t;) T by usingC1 or C3 is
O(Bnt1 i), and, in the event that it is awakened, the probability that two of its half-edges will form a
loop is O( i2 ¢n) and the probability that it will be joined by a multiple edge to a vejtawakened
later isO( 2 J.Z £2). Consequently,

P( S {T Bt} {T >Bati})

‘n On ‘n

OBt:) Y, [—' .t —J]:O(tlsan):o(l), (6.79)
ifn itn

and thusP( $) = o(1), thatis, 1 holds w.h.p.
Then, we condition on the-algebra 1 of all randomness up to time, and note that, and 7
are 1 Smeasurable to obtain

Pla )=P(a s 71)+to@)=E[1l,  P(s 1)+ o0(1). (6.80)

T

The configuration model multigraph can be partitioned into the connected components found until time
T and those that are found afterwards. The multigraph consisting of all the connected component:
found after timeT is again (conditioned on+ ) a configuration model, now with a random number

n = n(1 S o(1)) vertices and degrees that are a (random) subset ohdizen [n]. We denote this
degree sequence y:)i[ . In particular, conditional on

P(s 1)=1 PG, (i n)simple. (6.81)

By the discussion above (6.79), the probability that the e{/&nt Bty T } occurs and that
vertexi is part of one of the connected components found before TinleO(B,t; ;). Hence,

E[(Z 25y )11{T BW}] OBnt) Y 2= O(MtB,Ry) = o).  (6.82)

i i[n i[n

Consequently, using Markoves inequality and recalling that Bst; T w.h.p., we obtain

Y =) ZSoM = (1+0(1) ), 2 (6.83)
i[n i[n i[n

Similarly, or as a consequenck; ; i = (1+ 0p(2)) Sitn i
Thus, with , denoting , in (2.5) for the (random) degree sequeficgi | , and noting that, =
Y 2 Y iSland, =Y 2 Y iS1weobtain
n= n+0p(1) = 1+ 0p(1). (6.84)

Consequently, (6.71) yields

P(G(N, ( i) Simple) = €% » 258 4+ 05(1) = €% 4+ 0y(1) = P( 5) + 0p(1), (6.85)
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and, since 1 holds w.h.p., (6.81) yields
P(s 1)=P(s)+0(2) (6.86)
Finally, (6.80) and (6.86) yield, together with (6.76),
Pla )=E[M, [ P(Jl+o(1)=P(a 1)P(s)+0(1)=( a)P(s)+0(1), (6.87)

andthusP( 5 ) ( &), which completes the proof of the lemma, and thus of the theorermm

7 | THE COMPLEXITY

Define thecomplexityof a component byk( ) = e )Sv( )+ 1; this is the number of independent
cycles in . The estimates in Theorem 2.6 show only tkiat;) = op(v( 1)). (This is in contrast to the
strongly supercritical casg D(D S 2) > 0, whenv( 1) = ¢,n(1+ 0,(1)) ande( 1) = cen(1+ 0p(1))

for two positive constants, andce, see for example [36, Theorem 2.3], and it is easily verified that
Ce > C, SOK( 1) alsois linearim.) We can use our methods to obtain a much sharper result. As before,
we write , =S log(1S ,), where , is the survival probability of a branching process with offspring
distributionD,, = D, S 1, with D, the size-biased version &%,.

Theorem 7.1 Suppose tha(Al)-(A4) are satisfied, in particular , = o(1). Suppose also that,
n>! 3(EDZ)? 3. Then

K( )= n n(1+ 0p(1), (7.1)
where

n= 3158 ) SE(LSAS ) (7.2)
= 2 o(18621) SE(18 e O (7.3)
= Eh( nDy) $ 3 EDsH(2 1), (7.4)

with ]
ho = (1+3)es1+ 5= %é(él)ngl%zx”. (7.5)

Moreover,ny . n=O( 2 »)=O( 3 and

nnn E((aDn) ( nDn)®). (7.6)

Remark7.2 The expression (7.2) is what would be intuitively expected from the branching process
approximation: if we multiply byn, then the first term is the number of edges 2 = n , 2) times

the approximate probability that one of the endpoints of an edge attaches to the largest component, ar
the second term is the approximate probability that a random vertex attaches to the largest componer
Indeed, it follows from Theorem 2.6 that the two terms approxineate) n andv( 1) n within a

factor 1+ 0y(1). However, the two terms in (7.2) differ only by a factor &(1), so there is a significant
cancellation and we need a different argument to show the result.
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Remark7.3 By (7.5) and simple calculub(0) = h (0) = 0 andh (x) = 2xe, soh(x) is positive

and convex on{0, ) . Moreover,h(x) lizx3 asx 0 andh(x) 1i2x3 for x 0. Although the
expressions in (7.2)-(7.3) are simpler, there is (as said in Remark 7.3) a lot of cancellation, and (7.4)
better highlights the order of,.

We postpone the proof of Theorem 7.1 and state first some consequences for the most importar
cases.

Theorem 7.4 Suppose thafA1)-(A4) are satisfied, and that Dis uniformly integrable. Suppose
further that ,nt 3 . Then

k( 1) = =" 1+ o0p(1) = %n 3(1+ 0p(D)), (7.7)

where ( 0,) isgiven by (2.21).

This extends the result for the ErstRényi random grapB(n, p). There, in the barely supercritical
casek( 1) %n 3 (see, with more details, [49] and, for n' 12, [34]), which corresponds to the case
D Po(1)(when = = 1), of Theorem 7.4 by conditioning on the vertex degrees as in Section 2.6.
The order of the complexity in (7.7) interpolates nicely between the known casges»f > 0
independently ofi, wherek( 1) is of ordem, and the critical casg, = O(nSl 3), wherek( 1) converges
in distribution [18].

Theorem 7.5 Suppose tha\1)-(A4) are satisfied, and thdE D% = . (ThusE D2 .) Suppose
furtherthat , n°! 3(EDJ)? 3. Then

k( 1) = 0p(n ). (7.8)

Example 7.6 (Power-law degrees) Consider again the power-law example in Example 2.15, with
2 < < 3. lItfollows from (7.6), (5.58) and (2.38) that, n n( 2, Again, this interpolates
nicely between the known cases gf= > 0 independently of, wherek( ;) is of ordern, and the
critical case , = O(n( 52 ), wherek( ;) converges in distribution. The latter is shown in [19] under
stronger power-law assumptions on the degrees, including skt ¢ with ), 4 Ci3 < ,while

> lclz = ,suchasfoc iS5t with ( 2,3). (Recall Remark 2.16, where this is discussed in
more detail.)
Example 7.7 Suppose that (A1)-(A4) are satisfiet®D® = , and, furthermore,, , = O(1).

Then Lemma 5.17 applies and yields together with (7.6)
n nn  a(EDR (7.9)

showing that (7.8) in this case can be sharpendd tg n 3 ( ED3)? w.h.p.
Lemma 7.8 Suppose thafAl)-(A4) are satisfied and that,  nS! 3(ED3)2 3. Then n,, »

Proof We consider onlyr such that ,, > 0; this holds at least for all large
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First,if , n 1,thenlLemma5.17 and the assumptions yield

3

Nnn nm : (7.10)

On the other hand, if, , > 1, then by (B8), which was verified in the proof of Theorem 2.6,
1< 5 n=0( pn pn), and thus , in this case too. n

Proof of Theorem 7.1 LetN(t) be the number of times up to tini¢hat a new cycle is created. Thus,
if T is a time whenC1 is performed, theiN(T) is the sum of the complexities of the components
explored up tar.

During the exploration process, we create a new cycle eachatieperformed and the half-edge
that dies is an active half-edge, i.e, each time an active half-edge dies spontaneously. This happer
with rateA,(t). Consequently,

M(t) = NS tAn(u)du (7.11)
0

is a martingale, wittM(0) = O.

Let T, andT, be as in the proof of Theorem 5.4, so w.h.pis explored betweem; andT,. Thus
w.h.p.k( 1) = N(T2) SN(T1). Recall that, since, is setto ,, T1 & oandT, ,& =1,and
note thafT, is a stopping time.

Recall that (B1)-(B8) were verified in the proof of Theorem 2.6. By (B5) and Lemma 5.7,

sup niAn( 03 .0l o (7.12)

tT, , n

Consequently, using also that(t) is uniformly bounded or0,2] by Remark 5.11, and that
To ép lsothafl, , 2w.h.p.,

TZ T2 n T2 n
Ap(U)du= An( nu)du=n, g n(u) du + Op(n n n)
0 o 0 (7.13)
=N nn n(U)du+ 0(N 1 n).
0
Let
1
e n(t) dt, (7.14)

0
and note that by Remark 5.11 and (B4)(d), 1. Define also the stopping timeby
T

AW du=n , ( nt+1). (7.15)
0

By (7.13),T, Tw.h.p.
All jumps in the martingal®(t) are+1, so the quadratic variation (see e.g. [42, Theorem 26.6]) is

M ML= Y (M) =Y M) = N (7.16)

ut ut
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Hence, for the stopped marting&lgt T), using (7.11) and the definition (7.15) ®f as well as
[50, Corollary 3 to Theorem 11.6.27, p. 73],

T
E(MT, T)?)=E[M,M];, r=ENT, T)=E An(U)du+ EM(T, T)
0

Nnn( n+t1)+0=0(nqn).
Hence it follows that, using also Lemma 7.8,
M(T2 T)=Op((n n n)* ) = 0p(N nn). (7.17)

By (7.11), (7.13), (7.17) andl, T = T, w.h.p,,
T2
N(T) = Ay(Wdu+M(T2)=npnpn nt Op(n n n)- (7.18)
0
Furthermore, for any fixed> 0,T; < ,wh.p.andthudN(T; T) N(T ( .)). Hence,
again sinceM is a martingale,
TC W
EN(Tl T) EN(T ( n)) =E An(u) du. (7.19)
0
Furthermore, by (7.12) and Remark 5.11,
T(

I'I) n
An(u) du An(U)du="  Aq( nt)dt
0 0

0 (7.20)

=nnn(  aOd+ D) na( *on(D).
0
It follows from (7.19) and (7.20), by dominated convergence justified by (7.15), that
(N n)élEN(Tl T +oD). (7.21)

Since  ( 0,1) is arbitrary, it follows thatEN(T; T) = o(n , n), and thus w.h.pN(T;) =
N(T1 T) = op(n 1 n). Consequently, recalling (7.18), w.h.p.

k( 1) = N(T2) SN(T) =n , n( nt op(l)) =Nnn n(1+ Op(1)>: (7.22)

which shows (7.1) with
n= nn n (7.23)

Recalling , 1, we have , n n and thusn , by Lemma 7.8. Furthermore, (7.6)
follows from (5.20). It follows from (7.6) and (4.3) that

n E((nDn) ( nDn)®)  E((nDn)* ( aDn)°) &, (7.24)

thatis, , = O( 2 ,); furthermore ,  ,= O( ) by (3.2).
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It remains to evaluate, in (7.23) and show that it agrees with (7.2)-(7.4). By (7.14), (5.21) and
Fubinies theorem,

o (7.25)

which shows (7.3). By the definition (4.1) of, this is the same as (7.2). Furthermore, the equality of
(7.4) and (7.3) follows by a simple calculation using (4.8). n

Proof of Theorem 7.4 Under the assumptions in Theorem 7.4, 2E D3 by (5.53) and

1

= t)ydt —— 7.26
R CL e (7.26)
as a consequence of (5.54). Hence (7.7) follows from (7.1), (7.23) and (4.9). L]
Proof of Theorem 7.5 As in the proof of Theorem 2.9, (3.6) yields = o( ). Hence, (7.24) implies
n = o( ), and (7.8) follows. n
ACKNOWLEDGEMENTS

This work was commenced while the authors were visiting the Mittag-Leffler Institute in 2009 for the
program <Discrete Probability.Z Part of the work was done during the authorse visit to the International
Centre for Mathematical Sciences in Edinburgh to attend a workshop <Networks: stochastic models
for populations and epidemicsZ in 2011. The paper was completed during the authorse visit to the Isaa
Newton Institute for Mathematical Sciences for the program Theoretical Foundations for Statistical

Network Analysis,Z supported by EPSCR grant EP/K032208/1. RvdH is supported by the Netherland:
Organisation for Scientific Research (NWQO) through VICI grant 639.033.806 and the Gravitation

NETWORKS grant 024.002.003. S.J. is supported by a grant from the Knut and Alice Wallenberg

Foundation and a grant from the Simons foundation. M.L. was supported by an EPSRC Leadershiy
Fellowship, grant reference EP/J004022/2, and then by ARC Future Fellowship FT170100409.

REFERENCES

1. D. Aldous,Brownian excursions, critical random graphs and the multiplicative coaleséemt. Probab25(1997),
no. 2, 812...854.

2. 0. Angel, R. van der Hofstad, and C. Holmgren, Limit laws for self-loops and multiple edges in the configuration
model. Preprint arXiv:1603.07172 (2016).

3. K.B. Athreya,Rates of decay for the survival probability of a mutant gehéath. Biol.30(1992), 577...581.

4. S. Bhamidi, R. van der Hofstad, and G. Hooghiemsfrayersality for first passage percolation on sparse random
graphs Ann. Probab45 (2017), 2568...2630.

5. S. Bhamidi, R. van der Hofstad, and J.S.H. van Leeuwaafgaling limits for critical inhomogeneous random
graphs with finite third moment&lectron. J. Probald5(2010), 1682...1702.

6. S. Bhamidi, R. van der Hofstad, and J.S.H. van Leeuwaaidevel scaling limits for critical inhomogeneous

random graphsAnn. Probab40(2012), 2299...2361.

B. Bollobas;The evolution of random graph$rans. Amer. Math. So@86(1984), no. 1, 257...274.

B. BollobdsRandom graph2nd ed., Cambridge Univ. Press, Cambridge, 2001.

© N



54 VAN DER HOFSTAD ET AL .
WILEY

9. B.Bollobés, S. Janson, and O. Riord&@he phase transition in inhomogeneous random graRasdom Structures

Algorithms.31(2007), no. 1, 3...122.

10. B. Bollobas and O. Riordamn old approach to the giant componedt Combin. Theor. Ser. BL13 (2015),
236...260.

11. T. Britton, M. Deijfen, and A. Martin-L6fGenerating simple random graphs with prescribed degree distribution
J. Stat. Physl124(2006), no. 6, 1377...1397.

12. T. Britton, S. Janson, and A. Martin-Ld@raphs with specified degree distributions, simple epidemics, and local
vaccination strategiesAdv. Appl. Probab39 (2007), no. 4, 922...948.

13. F. Chung and L. LuThe average distances in random graphs with given expected degmes Natl. Acad. Sci.
USA. 99(2002), no. 25, 15879...15882.

14. F. Chung and L. LuZonnected components in random graphs with given expected degree segadenc€omb.
6(2002), no. 2, 125...145.

15. F. Chung and L. LuThe average distance in a random graph with given expected dedgnamet Math1 (2003),
no.1,91...113.

16. F. Chung and L. LuThe volume of the giant component of a random graph with given expected dejisiels].
Discrete Math20 (2006), 395...411.

17. S.Dhara, R. van der Hofstad, and J.S.H. van Leeuwaarden. Critical percolation on scale-free random graphs: Effec

of the single-edge constraint, (in preparation).
18. S. Dhara, R. van der Hofstad, J.S.H. van Leeuwaarden, and SCi&@a| window for the configuration model:
Finite third moment degreeg&lectron. J. Probal22 (2017), 1...33.

19. S.Dhara, R. van der Hofstad, J.S.H. van Leeuwaarden, and S. Sen, Heavy-tailed configuration models at criticality

Preprint arXiv:1612.00650 (2016).

20. 1. EshelOn the survival probability of a slightly advantageous mutant gene with a general distribution of progeny
size, A branching process model. Math. Biol.12(1981), no. 3, 355...362.

21. W.J. EwensPopulation geneticsMethuen & Co., Ltd., London, 1969.

22. N. FountoulakisPercolation on sparse random graphs with given degree sequénreenet Math4 (2007), no. 4,
329...356.

23. A. Gut,Probability: A graduate course2nd ed., Springer, New York, 2013.

24. H. Hatami and M. Molloy,The scaling window for a random graph with a given degree sequdRardom
Structures Algorithms41(2012), no. 1, 99...123.

25. R.van der HofstadRandom graphs and complex networisl. 1, Cambridge University Press, Cambridge, 2017.

26. R.vander Hofsta&tochastic processes on random graglecture notes for the 47th summer school in probability
Saint-Flour, available at www.win.tue.nl/ rhofstad/SPoRG.pdf.

27. F.M. HoppeAsymptotic rates of growth of the extinction probability of a mutant géndath. Biol.30(1992), no.
6, 547...566.

28. S. JansorQrthogonal decompositions and functional limit theorems for random graph statisies). Amer.
Math. Soc111(1994), no. 534.

29. S. JansoriThe probability that a random multigraph is simpl&ombin. Probab. Compul8 (2009a), no. 1-2,
205...225.

30. S. JansorOn percolation in random graphs with given vertex degrddectron. J. Probatl4 (2009b), no. 5,
87...118.

31. S. JansorAsymptotic equivalence and contiguity of some random graRhsdom Structures Algorithm86
(2010), no. 1, 26...45.

32. S. Janson, Probability asymptotics: Notes on notation. Preprint arXiv:1108.3924 (2011).

33. S.JansorThe probability that a random multigraph is simple, J. Appl. Probab51A (2014), 123...137.

34. S.Janson, D.E. Knuth, T. suczak, and B. Pit®he birth of the giant componeriRandom Structures Algorithms.
4(1993), no. 3, 231...358.

35. S. Janson and M.J. Luczaksymptotic normality of the k-core in random grapBAsin. Appl. Probab18 (2008),
no. 3, 1085...1137.

36. S. Janson and M.J. Luczaknew approach to the giant component probléandom Structures Algorithm34
(2009), no. 2, 197...216.

37. S.Janson, M. Luczak, and P. Windridlgaw of large numbers for the SIR epidemic on a random graph with given
degreesRandom Structures Algorithmd5 (2014), no. 4, 724...761.



VAN DER HOFSTAD ET AL . WI LEY—'—55

38. S. Janson, M. Luczak, P. Windridge, and T. Holdear-critical SIR epidemic on a random graph with given
degreesJ. Math. Biol.74(2017), no. 4, 843...886.

39. S.Janson, T. euczak, and A. Riaski, Random graphsWiley, New York, 2000.

40. F.Joos, G. Perarnau, D. Rautenbach, and B. Remdto determine if a random graph with a fixed degree sequence
has a giant componenProbab. Theory Related Fields70(2018), no. 1-2, 263...310.

41. A. JosephThe component sizes of a critical random graph with given degree sequameceAppl. Probab24
(2014), no. 6, 2560...2594.

42. 0. Kallenbergiroundations of modern probabilitgnd ed., Springer, New York, 2002.

43. M. Kang and T.G. Seierstathe critical phase for random graphs with a given degree sequé&mbin. Probab.
Comput.17(2008), no. 1, 67...86.

44, T. euczak, Component behavior near the critical point of the random graph progd@asdom Structures Algo-
rithms.1(1990), no. 3, 287...310.

45. T.euczak, B. Pittel, and J.C. Wiermanhe structure of a random graph at the point of the phase transificans.
Amer. Math. Soc341(1994), no. 2, 721...748.

46. M. Molloy and B. ReedA critical point for random graphs with a given degree sequerr@andom Structures
Algorithms.6 (1995), no. 2-3, 161...179.

47. M. Molloy and B. ReedThe size of the giant component of a random graph with a given degree seg@endgin.
Probab. Compuf7 (1998), 295...305.

48. 1. Norros and H. ReittuQn a conditionally Poissonian graph procegsiv. Appl. Probab38(2006), no. 1, 59...75.

49. B. Pittel and N.C. WormaldZounting connected graphs inside-pdt Combin. Theory Ser. B3 (2005), no. 2,
127...172.

50. P.E. ProtterStochastic integration and differential equatio@eid ed., Springer-Verlag, Berlin, 2004.

51. O. RiordanThe phase transition in the configuration modegbmb. Probab. Compu21 (2012), 1...35.

How to cite this article: van der Hofstad R, Janson S, Luczak M. Component struc-
ture of the configuration model: Barely supercritical cd®andom Struct Alg2019;55:3...55.
https://doi.org/10.1002/rsa.20837



