
4 VAN DER HOFSTAD ET AL .

Hatami and Molloy [24] identified thecritical window; they showed that (under weak technical
conditions) ifE Dn(DnŠ2) = O

(
nŠ1� 3(E D3

n)2� 3
)
, thenv(� 1) is of the ordern2� 3(E D3

n)Š1� 3, whilev(� 1)
is larger ifE Dn(Dn Š 2) � nŠ1� 3(E D3

n)2� 3, and smaller ifE Dn(Dn Š 2) < 0 with |E Dn(Dn Š 2)| �
nŠ1� 3(E D3

n)2� 3. (See also Remark 2.16 for related work identifying the scaling limits of clusters in
the critical window.) This parallels the well-known critical behavior of the random graphG(n,p) with
p = (1 + � n)� n, or G(n,M) with M = (1 + � n)n� 2, where it was shown by Bollobás [7] and •uczak
[44] that the critical window is characterized by� n = O(nŠ1� 3); see also [8,39].

Here we are mainly concerned with thebarely supercriticalregime, whereE Dn(DnŠ2) � 0, with
E Dn(Dn Š 2) > 0 and outside the critical window just defined. We find (under weak technical condi-
tions) precise asymptotics ofv(� 1), up to a factor 1+ op(1), in this regime. In the case when the degree
distributionDn has a bounded(4+ � )th moment, these asymptotics were found by Janson and Luczak
[36]; this result was extended to the case when the third powerD3

n is uniformly integrable by Janson,
Luczak, and Windridge [38]. In this paper, we only assume that the second momentE D2

n exists and is
uniformly bounded. Our study reveals that there is a kind of phase transition. Roughly speaking, as long
as the asymptotic degree distribution has a finite third moment (to be precise, as long asD3

n is uniformly
integrable, the case studied in [36,38]), the size of the largest component is proportional tonE(Dn(DnŠ
2)). However, when the degree distribution has heavier tails, then the largest component is smaller; typi-
cally (but not always) of the ordernE(Dn(DnŠ2))� E D3

n. Precise results are given in Theorems 2.6-2.9,
where Theorem 2.8 corresponds to the important example when the third moment of the degree distri-
bution converges. Also, Example 2.15 discusses power-law degree sequences with possibly unbounded
third moment of the degree distribution. (The same difference between the casesE D3

n = O(1) and
E D3

n � � is also evident in the result on the critical window by Hatami and Molloy [24] cited above.)
As said above, our results (Theorem 2.6 in particular) show that in the barely supercritical phase,

the size of the largest component is concentrated within a factor 1+ op(1), that is, normalized by
dividing by a suitable constant, the size converges in probability to 1. As a complement, we also show
(Theorem 2.12) that this isnot true in the critical window identified by Hatami and Molloy [24], and
further investigated in [18, 19, 41, 51]. Inside the critical window, the size after normalization will
converge in distribution, at least along subsequences, but the limit will not be constant; in fact any
such limit will be unbounded. Again, this is precisely as in the well-known case ofG(n,p), see [1,45],
so this provides another reason to regard the window defined above as the critical window, at least on
the supercritical side. (We conjecture that the size of the largest component is concentrated also in the
subcritical case, but, as far as we know, this has not yet been proved.)

It is well known that the process of exploration of the component containing a given vertex can be
approximated by a Galton-Watson branching process; this gives, for example, a heuristic argument for
the condition limn� � E Dn(Dn Š 2) > 0 above. (See further Remark 2.5.) Indeed, in our main theorem
(Theorem 2.6), we express the size of the largest component in terms of the survival probability of
the approximating Galton-Watson process. In our case, withE Dn(Dn Š 2) � 0, we have to consider
one Galton-Watson process for eachn, so the question of asymtotics of the survival probability of an
asymptotically critical sequence of branching processes arises. This was studied by for example, [3,27];
we give some further general results (needed to prove our results for random graphs) in Section 3.

Our proofs, however, do not use the branching process approximation directly; instead, they are
based on extending the method of [36], where the exploration process is considered one vertex at a time,
yielding a kind of random walk with drift (closely related to the branching process), which is then ana-
lyzed. Molloy and Reed [46,47] and Hatami and Molloy [24] use similar methods, but there are several
differences; for example, we use a continuous-time version of the exploration process, which gives us
additional independence, and we use a different method to obtain bounds for the random fluctuations.
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2 MODEL, ASSUMPTIONS, AND MAIN RESULTS

2.1 The configuration model

Given a positive integern and a degree sequence, that is, a sequence ofn positive integers
(� 1, � 2, ƒ , � n), we letG(n, (� i )i�[ n] ) be a simple graph (ie, without loops or multiple edges) with the
set[n] = { 1,ƒ ,n} of vertices, chosen uniformly at random subject to vertexi having degree� i , for
i � [ n]. We tacitly assume that there is any such graph at all, so, for example,

∑
i�[ n] � i must be even.

We follow the standard path of studyingG(n, (� i )i�[ n] ) using theconfiguration model, defined as
follows, see for example [8,25]. Given a degree sequence(� i )i�[ n] with

∑
i�[ n] � i even, we start with� j

free half-edges adjacent to vertexj, for j � [ n]. The random multigraphG� (n, (� i )n
1) is constructed by

successively pairing, uniformly at random, free half-edges into edges, until no free half-edges remain.
(In other words, we create a uniformly random matching of the half-edges.) Loops and multiple edges
may occur inG� (n, (� i )i�[ n] ), but we can obtainG(n, (� i )i�[ n] ) by conditioningG� (n, (� i )i�[ n] ) on being
simple (ie, without loops or multiple edges). Moreover, our condition (A2) implies that the probability
of obtaining a simple graph is bounded away from 0 asn � � ; see [2,29,33].

We assume that we are given such a degree sequence(� i )i�[ n] for eachn (at least in a subsequence),
and we consider asymptotics asn � � . The degrees� i = � (n)

i may depend onn, but for simplicity we
do not show this in the notation.

2.2 Basic assumptions and notation

All unspecified limits are asn � � . We use standard notation for asymptotics. In particular,an � bn,
wherean andbn are sequences of positive numbers, means thatan� bn is bounded above and below by
positive constants; equivalently,an = O(bn) andbn = O(an). In contrast,an � bn means the stronger
an� bn � 1. Furthermore,an � bn meansan� bn � � . Also, given two real numbersx, y, x 	 y will
denote min{ x, y} , andx 
 y will denote max{ x, y} .

For random variablesXn, and positive numbersan, Xn = op(an) meansXn� an
p

Š� 0, that is,
P(|Xn| > � an) � 0 for every� > 0. Also,Xn = Op(an) means thatXn� an is bounded in probability,
that is, for every� > 0 there existsC < � such thatP(|Xn| > Can) < � for all n (or, equivalently, for
all largen).

We let� n �= maxi�[ n] � i denote the maximum degree inG(n, (� i )i�[ n] ) andG� (n, (� i )i�[ n] ).
For k � Z, we denote by

nk �= #{ i � � i = k} , (2.1)

the number of vertices of degreek, so thatn =
∑�

k=1 nk. Furthermore, let

𝓁n �=
∑
i�[ n]

� i =
�∑

k=1

knk, (2.2)

be the total number of half-edges; thus the number of edges is𝓁n� 2.
LetDn be the degree of a randomly chosen vertex inG(n, (� i )i�[ n] ) orG� (n, (� i )i�[ n] ); the distribution

of Dn is given by

P(Dn = k) = nk� n. (2.3)
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Let

� n �= E Dn =
�∑

k=1

knk� n = 𝓁n� n, (2.4)

� n �=
E Dn(Dn Š 1)

E Dn
=

∑�
k=1 k(k Š 1)nk∑�

k=1 knk
=

∑�
k=1 k(k Š 1)nk

𝓁n
. (2.5)

Thus� n is the average degree;� n can be interpreted as the expected number of new half-edges
found when the endpoint of a random half-edge is explored, see (2.16) and Remark 2.5.

As stated in Section 1, we will studynear-critical behavior; we assume� n � 1 and, for the most
part, also that� n > 1 (and not too small); this is thus a subcase of the critical case sov(� 1) = op(n).
We define

� n �= � n Š 1 =
E Dn(Dn Š 2)

E Dn
. (2.6)

Our basic assumptions are as follows (See also the remarks below, and additional conditions in the
theorems.):

(A1) Dn, the degree of a randomly chosen vertex, converges in distribution to a random variableD
with a finite and positive mean� �= E D. In other words, there exists a probability distribution
(pk)�

k=0 such that

nk

n
� pk, k � 0, (2.7)

and� =
∑�

k=0 kpk � ( 0, �) . (Thuspk = P(D = k).)
(A2) The second momentE D2

n is uniformly bounded:E D2
n = O(1).

(A3) We haveP(D 
 { 0,2}) > 0. Equivalently,p0 + p2 < 1.
(A4) � n � 1. Equivalently, see (2.6),

� n � 0. (2.8)

Assuming (A1), this is also equivalent to

E Dn(Dn Š 2) � 0. (2.9)

Remark2.1 The assumption (A1) thatDn converges in distribution is mainly for convenience. By
(A2), the sequenceDn is always tight, so every subsequence has a further subsequence that converges in
distribution to someD; moreoverE D < � follows from (A2) andE D > 0 follows from (A3), provided
the latter is reformulated as lim infn� � P(Dn 
 { 0, 2}) > 0. It follows, using standard subsequence
arguments, that results such as Theorem 2.6 that do not useD (explicitly or implicitly) in the statement
hold also without (A1).

Remark2.2 Condition (A2) implies uniform integrability ofDn and thus, together with (A1),

� n � �. (2.10)
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Furthermore, it is easy to see that, assuming (A1) and (A2) is equivalent to� n = O(1). In particular,
(A2) is implied by (A4); however, we list (A2) separately for emphasis and for easier comparison with
conditions in other papers.

By Fatou•s lemma, (A2) also impliesE D2 < � .

Remark2.3 Condition (A2) is weaker than the condition

(A2� ) D2
n are uniformly integrable.

As is well known, (A2� ) is, assuming (A1), equivalent toE D2
n � E D2 < � , and thus also to

E D2 < � and

� n � � �=
E D(D Š 1)

E D
. (2.11)

In this case, (A4) is thus equivalent to� = 1, or, equivalently,E D(D Š 2) = 0, orE D2 = 2� .
On the other hand, if (A1), (A2) and (A4) are satisfied but (A2� ) is not, then (by Fatou•s lemma)

E D2 < 2� , E D(D Š 2) < 0 and� < 1.
We will not need (A2� ) in the present paper, except when explicitly stated; it is satisfied in most

examples.

Remark2.4 Condition (A3) rules out the degenerate case whenD � { 0,2} a.s.; for examples of
exceptional behavior in this case, see [36, Remark 2.7].

SinceE D(D Š 2) � 0, see Remark 2.3, (A3) is equivalent toP(D = 1) > 0. Furthermore, ifD2
n are

uniformly integrable, soE D(DŠ2) = 0, see Remark 2.3, then (A3) is also equivalent toP(D > 2) > 0.

2.3 The size-biased distribution

Let D�
n denote the size-biased distribution ofDn, ie,

P(D�
n = k) =

k
E[Dn]

P(Dn = k), (2.12)

and let�Dn �= D�
n Š 1, that is,

P(�Dn = k Š 1) = P(D�
n = k) =

kP(Dn = k)
E Dn

=
knk

n� n
, k � 1. (2.13)

For any nonnegative functionf ,

E f (D�
n) =

E Dnf (Dn)
E Dn

; (2.14)

and thus

E f (�Dn) =
E Dnf (Dn Š 1)

E Dn
; (2.15)

in particular

E �Dn = E(D�
n Š 1) =

E(Dn(Dn Š 1))
E Dn

= � n = 1 + � n. (2.16)
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Similarly, letD� have the size-biased distribution ofD, and let�D �= D� Š 1. ThusE �D = � = 1.

SinceDn
d

Š� D by (A1) andE Dn � E D by (2.10), it follows thatD�
n

d
Š� D� and�Dn

d
Š� �D.

Note that (A3) implies that (and, given (A1), is equivalent to)

lim
n� �

P(�Dn � 1) = P(�D � 1) = P(D� � 2) > 0. (2.17)

Let � n be the survival probability of a Galton-Watson process with offspring distribution�Dn, start-
ing from one individual. By (2.16) and basic branching process theory,� n > 0 �� � n > 0, and, in
this case� n is the unique solution in(0,1] to

1 Š � n = E(1 Š � n)�Dn =
�∑

k=1

knk

n� n
(1 Š � n)kŠ1. (2.18)

We study the asymptotics of� n in Section 3.

Remark2.5 We can interpretD�
n as the degree of a vertex chosen randomly by choosing a uniformly

random half-edge, and�Dn as the number of additional half-edges at that vertex. Consequently, the ini-
tial stages of the exploration of a component ofG(n, (� i )i�[ n] ), starting from a random vertex, can be
approximated by a Galton-Watson process with offspring distribution�Dn, except that the first genera-
tion has distributionDn. The survival probability� n is thus closely connected to the probability that this
modified Galton-Watson process is infinite, which approximates the probability that the chosen vertex
lies in a large component. (In the supercritical case, this is asymptotically the same as the probability of
the chosen vertex lying in thelargestcomponent.) To be precise, the modified Galton-Watson process
has survival probabilityE(1 Š (1 Š � n)Dn) � � n� n, which agrees with the factor� n� n in Theorem 2.6,
giving the proportion of vertices in the largest component.

2.4 Main results

Our results in this section hold for both the random simple graphGn �= G(n, (� i )i�[ n] ) and the
random multigraphG�

n �= G� (n, (� i )i�[ n] ). We first prove our theorems forG�
n; they then hold

for Gn, as is standard, by conditioning onG�
n being simple. To be precise, (A2) implies that

lim inf n� � P(G�
n is simple) > 0, see [29, 33], and thus the results below (which all say that certain

events have small probabilities) transfer immediately fromG�
n to Gn, except Theorem 2.12(ii), which

is of a different kind and requires a special argument (given in Section 6.3).
In order to state our results, choose eitherGn or G�

n; let � 1 denote the largest connected component,
and let� 2 denote the second largest component. (For definiteness, we choose the component at random
if there is a tie, and we define� 2 �= � if there is only one component.)

For a component� , we write v(� ) and e(� ) to denote the number of vertices and edges in� ,
respectively. Our main theorem is the following precise and general result concerning the supercritical
case:

Theorem 2.6 Suppose that(A1)…(A4) are satisfied, in particular� n = o(1). Suppose also that
� n � nŠ1� 3(ED3

n)2� 3. Then

v(� 1) = � n� nn(1 + op(1)), (2.19)

v(� 2) = op(� nn). (2.20)
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Furthermore, e(� 1) = (1 + op(1))v(� 1) = � n� nn(1 + op(1)) and e(� 2) = op(� nn).

Remark2.7 Letvk(� 1) denote the number of vertices of degreek in � 1. It can be seen from our proof
of Theorem 2.6 thatvk(� 1) = � n� nP(D�

n = k)n(1 + op(1)).

In particular, Theorem 2.6 leads to the following special cases.
Define, recalling Remark 2.4

	 �= E �D(�D Š 1) =
E[D(D Š 1)(D Š 2)]

E[D]
� 0. (2.21)

Note that	 = � if and only if E D3 = � . Furthermore, ifD2
n are uniformly integrable (ie, (A2� )

holds), thenP(D > 2) > 0 by Remark 2.4, and thus	 > 0. In this case, we also haveE[D(D Š 2)] = 0,
see Remark 2.3, and thus we also have the alternative formula

	 =
E D3 Š 3E D2 + 2E D

E D
=

E D3 Š 3E[D(D Š 2)] Š 4E D
E D

=
E D3

�
Š 4. (2.22)

The next three theorems are easy consequences of Theorem 2.6, under our assumptions.

Theorem 2.8 Suppose that(A1)…(A4) are satisfied, and that D3n is uniformly integrable. (Thus,
E D3

n � E D3 < � .) Suppose further that� nn1� 3 � � . Then

v(� 1) =
2�
	

� nn(1 + op(1)) =
2nE

(
Dn(Dn Š 2)

)
	

(1 + op(1)), (2.23)

v(� 2) = op(� nn), (2.24)

where	 � ( 0, �) is given by (2.21). Furthermore, e(� 1) = (1 + op(1))v(� 1) and e(� 2) = op(� nn).

Theorem 2.9 Suppose that(A1)…(A4) are satisfied, and thatE D3 = � . (ThusE D3
n � � .) Suppose

further that� n � nŠ1� 3(E D3
n)2� 3. Then

v(� 1) = op(� nn). (2.25)

Furthermore, e(� 1) = (1 + op(1))v(� 1) = op(� nn).

The results in Theorems 2.8 and 2.9 are more or less best possible of this type: in inter-
mediate cases, whereE D3 < � but lim supE D3

n > E D3, neither (2.23) nor (2.25) holds in
general, see Remark 3.3. To be precise, it follows from Examples 3.7 and 3.9 thatE D3

n = O(1)
is neither necessary nor sufficient for (2.23). Similarly, it follows from Examples 3.7 and 3.8 that
E D3

n � � is not sufficient for (2.25) andE D3 = � is not necessary for (2.25). In such
intermediate cases, partial answers are given by the following inequalities. Define, in analogy
with (2.21),

	 n �= E[ �Dn(�Dn Š 1)] =
E[Dn(Dn Š 1)(Dn Š 2)]

E[Dn]
. (2.26)
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Note that, since� n > 0, by (2.6) we haveE[Dn(Dn Š 2)] > 0, which in turn implies	 n > 0.
Furthermore, by Fatou•s lemma and (2.9),

lim inf
n� �

	 n =
lim inf n� � E[Dn(Dn Š 2)2] + limn� � E[Dn(Dn Š 2)]

ED
(2.27)

�
E[D(D Š 2)2]

ED
> 0.

Thus	 n is bounded away from 0, and it follows that

	 n � E D3
n. (2.28)

Theorem 2.10 Suppose that(A1)…(A4) are satisfied. Suppose also that� n � nŠ1� 3(ED3
n)2� 3.

(i) Then

v(� 1) �
2� n� n

	 n
n(1 + op(1)). (2.29)

(ii) If E D3
n = O(1), then there exists constant c,C > 0 such that w.h.p.

c� nn � v(� 1) � C� nn. (2.30)

(iii) If � n� n = o(E D3
n), then there exists constants c, c� ,C,C� > 0 such that w.h.p.

c� � nn

E D3
n

� c
� nn
	 n

� v(� 1) � C
� nn
	 n

� C� � nn

E D3
n

. (2.31)

The lower bounds in (iii) are clearly less precise than the more general (2.29), but are given as
companions to the upper bounds. A weaker and less precise version of the lower bound (2.29) was
given by Hatami and Molloy [24, Theorem 1.3].

Remark2.11 We see from Theorems 2.8-2.10 that in the barely supercritical regime, for a given
sequence� n, the giant component is smaller in cases whereE D3 = � than in cases whereE D3

n is
bounded. (In both cases, the size of the giant component is by Theorem 2.6 roughlyn� n.) The barely
supercritical behavior of the largest connected component whenE[D3

n] = O(1) is similar to that in the
Erd�os-Rényi random graph.

The condition� n � nŠ1� 3(E D3
n)2� 3 in the theorems above is best possible and characterizes

supercritical behavior in the sense that, if� n is smaller, then, unlike (2.19),v(� 1) is not concentrated,
as is shown by the following theorem for the critical window. Part (i) is proved by Hatami and Molloy
[24, Theorem 1.1] under very similar conditions, including a slightly stronger assumption than (2.32).

Theorem 2.12 Suppose that(A1)…(A4) hold and� n = O(nŠ1� 3(E D3
n)2� 3). Suppose further that

� n = o
(
(nE D3

n)1� 3). (2.32)
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Then the following hold:

(i) v(� 1) = Op
(
n2� 3(E D3

n)Š1� 3
)
. In other words, for any
 > 0 there exists K= K(
 ) such that

P
(
v(� 1) > Kn2� 3(E D3

n)Š1� 3) < 
. (2.33)

(ii) Moreover, for any K< � ,

lim inf
n� �

P
(
v(� 1) > Kn2� 3(E D3

n)Š1� 3) > 0. (2.34)

Both(i) and(ii) hold with v(� 1) replaced by e(� 1).

Theorem 2.12 says thatv(� 1)�
(
n2� 3(E D3

n)Š1� 3
)

is bounded in probability, but not w.h.p. bounded
by any fixed constant. In particular,v(� 1) normalized in this way converges in distribution, at least
along suitable subsequences, but it does not converge to a constant along any subsequence; hence
the limit in distribution (along a subsequence) is really random and not deterministic. Moreover,
Theorem 2.12(ii) shows that any subsequential limit has unbounded support. (The result by Hatami and
Molloy [24, Theorem 1.1(a)] shows that any subsequential limit is strictly positive a.s.) This is in con-
trast to the supercritical case in Theorem 2.6. (This contrast is well known in the classical Erd�os-Rényi
caseG(n,p), see e.g. Aldous [1], who describes the limit distribution explicitly.)

Remark2.13 Condition (2.32) can be written as

max
i

� 3
i = o

(∑
i�[ n]

� 3
i

)
. (2.35)

It thus says that no single vertex gives a significant contribution to
∑

i�[ n] � 3
i . See [24, Section

1.2] and Example 6.3 for counterexamples in the case when (2.32) does not hold. Note also that
alwaysnE D3

n =
∑

i�[ n] � 3
i � � 3

n, so � n � (nE D3
n)1� 3. Hence, (2.32) is only a weak restriction.

(Hatami and Molloy [24] use a slightly stronger assumption, which, roughly, amounts to assuming
� n = O((nE D3

n)1� 3� logn).)

Remark2.14 If � n � nŠ1� 3(E D3
n)2� 3, so we are on the upper boundary of the critical win-

dow in Theorem 2.12, then, using (2.32),� n� n = o(E D3
n) and thus Theorem 3.1(iv) applies to a

Galton-Watson process with offspring distribution�Dn starting with one individual (as in the proof of
Theorem 2.10(iii)), and yields� n � � n� E D3

n � nŠ1� 3(E D3
n)Š1� 3. Thus Theorem 2.12 shows that the

giant component is of orderOp(n� n) in this case too, althoughv(� 1)�( n� n) does not converge to a
constant.

Example 2.15(Power-law degrees) Many real-world networks are claimed to have power-law degree
sequences, see for example, [25, Chapter 1] and the references therein. As a result, various random
graph models have been proposed that can yield such graphs, the configuration model being one of
the most popular. Let� > 1 and assume that, in addition to the assumptions above, for some constants
C,c > 0,

P(Dn > k) � CkŠ� , k � 1, (2.36)

P(Dn > k) � ckŠ� , 1 � k < � Š1�( � Š2)
n . (2.37)
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(The upper limit� Š1�( � Š1)
n in (2.37) could be reduced by any fixed constant factor. Note that some

limit is required, sinceDn is discrete and (2.36) implies� n = O(n1� � ).) Then, in Theorem 3.1(i) and
Example 3.4, we show that� n � � n when� > 3 (soE D3

n = O(1)), while

� n � � 1�( � Š2)
n (2.38)

when� � ( 2, 3). Theorem 2.6 applies and yields that, for� > 3, and using the form in Theorem 2.8,
v(� 1) = 2n

	
E
(
Dn(Dn Š 2)

)
(1 + op(1)), while, for � � ( 2, 3), v(� 1) � n� 1�( � Š2)

n .

Remark2.16 The critical regime as in Theorem 2.12 has attracted considerable attention, see for
example, [18, 19, 41, 51] for results on the sizes of the largest connected components. Riordan [51]
investigates the scaling behavior of near-critical clusters under the assumption that all degrees are
uniformly bounded. Dhara and coworker [18] perform an analysis under conditions that are close to
ours whenE D3

n � E D3, but focus on the scaling limit of critical clusters when� n = 1 + 
 nŠ1� 3 +
o(nŠ1� 3) (also for percolation on the configuration model, where the dependence on
 is identified
as the multiplicative coalescent, see also Aldous [1] for the Erd�os-Rényi setting and [22, 26, 30] for
percolation on random graphs with given degrees).

In the case whereE D3 = � , and in the same vein as Example 2.15, often stronger assumptions
are made and our results in Theorem 2.12 in this case are closest in spirit to those in [24] in that they
only depend on the scaling of� n andE[D3

n]. Order the degrees such that� 1 � � 2 � · · · � � n. Joseph
[41] assumes that(� i )i�[ n] are an i.i.d. sample from a distribution whose distribution function satisfies
1 Š F(x) = cxŠ� (1 + o(1)) for x large. In this case,(� inŠ1� � )i� 1 jointly converge in distribution to
(c� � Š1� �

i )i� 1, where(� i )i� 1 form a Poisson point process. Dhara and coworker [18] instead take� i such
that � inŠ1� � � ci , and, in particular,E D3

n � n3� � Š1 ∑
i� 1 c3

i , where it is assumed that
∑

i� 1 c3
i < � ,

while
∑

i� 1 c2
i = � (as is the case whenci � iŠ1� � with � � ( 2, 3)). In this case, Theorem 2.12 suggests

that the largest critical components should scale like

n2� 3(E D3
n)Š1� 3 � n2� 3(n3� � Š1)Š1� 3 = n(� Š1)� � . (2.39)

The results in [19,41] confirm this scaling, and show that the sizes of the largest connected components,
rescaled bynŠ(� Š1)� � , converge to a limiting sequence, while the critical window is of ordernŠ(� Š2)� � .
Interestingly, the description of this limit looks quite different in [41] compared to [19], which is prob-
ably due to the fact that Joseph [41] also averages out over the randomness in the degrees. Interestingly,
our results are also used in Dhara and coworker [17] to study the barely supercritical regime of perco-
lation on the configuration model for� � ( 1, 2), where the percolation parameter tends to zero with
the graph size to observe near-critical behavior.

2.5 Complexity of large components

The structure of components has received substantial attention in the literature, in particular, the exis-
tence of multicyclic components, that is, components� with e(� ) > v(� ). The detailed scaling limit
results in [18,19,41,51] resolve this question completely in the critical case. We investigate this ques-
tion in the barely supercritical setting in Section 7 and find the asymptotic complexity of the largest
component� 1, see Theorems 7.1 and 7.4-7.5. Here, for power-law degrees as in Example 2.15, the
width of the critical window is tightly related to the growth of the complexity of the barely supercriti-
cal clusters. As can be expected, the complexity of� 1 interpolates between tight, as in the critical case,
and linear inn as in the strictly supercritical regime (as shown in [47]).
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2.6 Discussion

In this section, we discuss our results and pose further questions.

2.6.1 CLT for the giant component

It would be of interest to extend Theorem 2.6 to a statement about the fluctuations ofv(� 1) around
� n� nn. In the light of central limit results for the processes that characterize the component sizes (see,
eg, Lemma 6.4), it is tempting to conjecture that a CLT holds forv(� 1). From our methodology, how-
ever, this does not follow easily. A related question involves proving a CLT for the complexityk(� 1)
in the barely supercritical regime. (Cf. [49] for the Erd�os-Rényi case.)

2.6.2 Related random graphs

Often, one can deduce results for rank-1 inhomogeneous random graphs (see [9] for the definition)
from those derived for the configuration model conditioned on simplicity. Examples of such graphs
are the Poissonian orNorros-Reitturandom graph [48], thegeneralized random graph model[11], and
theexpected degreeor Chung-Lurandom graph [13…16]. In each of these models, edges are present
independently: an edge betweeni, j � [ n] is present with probabilitypij , wherepij is close towiwj� 𝓁n

for appropriately chosen vertex weights(wi)i�[ n] , and𝓁n =
∑

i�[ n] wi denotes the total weight. When
the weight sequence satisfies conditions similar to (A1)…(A4), then also the random vertex degrees do,
and thus results carry over rather easily from the configuration model to these models.

In slightly more detail, by [31], in the case whereE[D2
n] � E[D2], the above three random graph

models are asymptotically equivalent, so that proving a result for one immediately establishes it for any
of the others as well. Furthermore, when conditioned on the degree sequence, the generalized random
graph is a uniform random graph with that degree sequence [11]. We already know that Theorem
2.6 holds for uniform random graphs whose vertex degrees obey conditions (A1)…(A4), so that, by
conditioning on the degree sequence, in order to deduce the same for rank-1 inhomogeneous random
graphs, it suffices to prove that (A1)…(A4) indeed hold (with convergence in probability) for the degrees
for the generalized random graph in the critical case. This proof is standard, and can, for example, be
found in [4] or [25, Section 7.7]. The critical case of these models was studied in [5,6].

3 THE BRANCHING PROCESS SURVIVAL PROBABILITY

Our proofs of Theorems 2.6 and 2.8-2.10 will use some estimates of the survival probability of barely
supercritical Galton-Watson processes. In this section, we state and prove these estimates in a general
form, for general Galton-Watson processes with offspring distributionXn. We will return to the setting
of the configuration model in the later sections, where we apply the results stated below with offspring
distributionXn = �Dn. We will write � n for the survival probability of a branching process with offspring
distributionXn, starting with one individual. We also define� n �= Š log(1 Š � n).

Relation (3.5) below was conjectured and supported by a heuristic argument by Ewens [21]; Eshel
[20] gave counter-examples but also a proof of (3.5) under some conditions. More general sufficient
conditions were given by Hoppe [27] and Athreya [3]; both also gave a necessary and sufficient con-
dition for (3.5) in terms of the probability generating function of the offspring distributionXn. (The
necessary and sufficient conditions in [3,27] are stated differently, but they can be seen to be equivalent,
using integration by parts.) Here we give further results, stated in a form more suitable for our pur-
poses, but note that there are overlaps with earlier ones in the literature. In particular, Theorem 3.1(ii)
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follows easily from results in both [3, 27]. Furthermore, (3.3) was given by [27, Corollary 3.3] (in an
equivalent formulation).

Theorem 3.1(Survival probability of a near-critical branching process.)Let Xn be a sequence of
nonnegative integer-valued random variables such thatE[Xn] = 1 + � n, where� n > 0 and� n � 0 as
n � � . Suppose also thatlim inf n P(Xn � 1) > 0. Let � n be the survival probability of a branching
process with offspring distribution Xn, starting with one individual, that is, the unique solution in
(0,1] to

1 Š � n = E[(1 Š � n)Xn]. (3.1)

Then� n � 0 and, more precisely,

� n = O(� n). (3.2)

Furthermore,

� n �
2� n

E Xn(Xn Š 1)
, (3.3)

and

� n � E
(
Xn 	 ( � nX2

n)
)
. (3.4)

Moreover:

(i) If E X2
n = O(1), then� n � � n.

(ii) If Xn
d

Š� X for some random variable X andE[X2
n] � E[X2] < � , then,

� n �
2� n

E[X(X Š 1)]
. (3.5)

(iii) If Xn
d

Š� X for some random variable X withE[X2] = � , then

� n = o(� n). (3.6)

(iv) If � n are numbers such that Xn � � n a.s. and� n� n = o(E X2
n), then

� n �
� n

E[Xn(Xn Š 1)]
�

� n

E X2
n

. (3.7)

Proof We first show that� n = o(1) asn � � . (For a more general result on continuity of the survival
probability as a functional of the offspring distribution, see [12, Lemma 4.1].) To see this, assume,
for a contradiction, that there exists a subsequencenl such that� nl

� � > 0. SinceE Xn = O(1), the

sequenceXn is tight, so there exists a further subsequence withXn
d

Š� X along the subsequence, for
some nonnegative integer-valued random variableX. Furthermore, by the Skorohod coupling theorem
[42, Theorem 4.30], we may assume that the variablesXn are defined on a probability space where the
convergence is almost sure. Then, by dominated convergence, along the subsequence,E[(1Š � n)Xn] �
E[(1 Š � )X], and so, by (3.1),

1 Š � = E[(1 Š � )X]. (3.8)
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In other words,� is the survival probability of a branching process with offspring distributionX. On the
other hand, by Fatou•s lemma,E X � lim E Xn = 1, so this branching process is critical or subcritical;
furthermore,P(X � 1) � lim inf n P(Xn � 1) > 0 which excludes the caseX = 1 a.s. Consequently,
the survival probability� = 0, a contradiction. Hence� n � 0 asn � � .

Note that� n = Š log(1 Š � n) > 0, and that� n � 0 implies

� n � � n. (3.9)

Also let

F(x) �= eŠx Š 1 + x; (3.10)

note thatF(x) � x2� 2 asx � 0. Then (3.1) can be written

E eŠ� nXn = E(1 Š � n)Xn = 1 Š � n = eŠ� n, (3.11)

and thus

E F(� nXn) = E
(
eŠ� nXn Š 1 + � nXn

)
= eŠ� n Š 1 + � n(1 + � n) = F(� n) + � n� n. (3.12)

Hence,

E
F(� nXn)

� 2
n

=
F(� n)

� 2
n

+
� n

� n
=

1
2

+ o(1) +
� n

� n
. (3.13)

Suppose now that (3.2) fails. Then there exists a subsequence with� n� � n � 0 and thus, by (3.9)
and (3.13),

E
F(� nXn)

� 2
n

�
1
2

. (3.14)

As above, by considering a subsubsequence, we may also assume thatXn � X a.s. for some random
variableX, and then a.s., since� n � 0,

F(� nXn)

� 2
n

�
X2

2
. (3.15)

By Fatou•s lemma, (3.15) and (3.14) yield

1
2

E X2 � lim inf
n� �

E
F(� nXn)

� 2
n

=
1
2

. (3.16)

Furthermore, since the functionF(x)� x is increasing on[0, �) , (3.14) implies that, for anyK > 0,

lim sup
n� �

E
(
Xn1{ Xn� K}

)
� lim sup

n� �
E

KF(� nXn)
F(� nK)

= lim
n� �

K� 2
n� 2

F(� nK)
=

1
K

. (3.17)

Hence, still along the subsequence, the random variablesXn are uniformly integrable, and, since
E Xn � 1 andXn � X a.s., we haveE X = 1. However, this together with (3.16) yieldsVar(X) = 0, so
X = 1 a.s., which as above is excluded by our assumption lim infn P(Xn � 1) > 0. This contradiction
shows that (3.2) holds.
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Next, for any integerm � 0 and� � [ 0, 1], (1 Š � )m � 1 Š m� +
(m

2

)
� 2. Hence,

1 Š � n = E(1 Š � n)Xn � E
(

1 Š Xn� n +
Xn(Xn Š 1)

2
� 2

n

)
,

= 1 Š (1 + � n)� n +
E(Xn(Xn Š 1))

2
� 2

n,
(3.18)

and (3.3) follows, recalling� n > 0.
To show (3.4), note that (3.2) and (3.9) show that� n = O(� n) and thus� n� � n is bounded below.

Furthermore,F(x) � x2 	 x for x � 0, and thus, by (3.13),

� n

� n
�

� n

� n
+

1
2

� E
F(� nXn)

� 2
n

� E
(
(� Š1

n Xn) 	 X2
n
)
. (3.19)

Hence, using (3.9) again,

� n � E
(
Xn 	 ( � nX2

n)
)

� E
(
Xn 	 ( � nX2

n)
)
. (3.20)

(i): An immediate consequence of (3.2) and (3.3).
(ii): As above, we may assumeXn � X a.s. (now for the full sequence), and thus (3.15). Since

Xn
d

Š� X andE X2
n � E X2 < � , the sequenceX2

n is uniformly integrable. Furthermore, 0� F(x) �
x2� 2 for x � 0 and thus 0� F(� nXn)� � 2

n � X2
n� 2, so the sequenceF(� nXn)� � 2

n is also uniformly
integrable, which together with (3.15) implies

E
F(� nXn)

� 2
n

� 1
2

E X2. (3.21)

Moreover, the uniform integrability ofX2
n also impliesE X = limn� � E Xn = 1. Using (3.21) in

(3.13), we thus find

� n

� n
= E

F(� nXn)

� 2
n

Š
1
2

+ o(1) = 1
2

(
E X2 Š 1

)
+ o(1) = 1

2
E(X(X Š 1)) + o(1). (3.22)

As noted above,E(X(X Š 1)) = Var X > 0 and thus (3.22) yields, recalling (3.9),

� n

� n
�

� n

� n
� 1

2
E(X(X Š 1)). (3.23)

A rearrangement yields (3.5).
(iii): We may again assume that (3.15) holds a.s., which now by Fatou•s lemma implies (cf. (3.16))

E
F(� nXn)

� 2
n

� � . (3.24)

Thus� n� � n � � by (3.13). This yield (3.6), again using (3.9).
(iv): Note first that (3.2) and (3.3) imply that 1� E[Xn(Xn Š 1)] = O(1), that is, thatE[Xn(Xn Š 1)]

is bounded below. SinceXn(Xn Š 1) � X2
n � 1 + 2Xn(Xn Š 1), it follows thatE[Xn(Xn Š 1)] � E X2

n,
and thus the final •� Ž in (3.7) holds.

A lower bound for� n is given by (3.3), and it remains only to show a matching upper bound.
By (3.4), there exists a constantC such thatE(Xn 	 ( � nX2

n)) < C� n. Let � n �= C� n� E X2
n. Then
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� n� n = C� n� n� E X2
n = o(1) by assumption, so for largen we have� n� n � 1 and then� nXn � 1 a.s.

soXn 	 ( � nX2
n) = � nX2

n a.s. and

E
(
Xn 	 ( � nX2

n)
)

= � n E X2
n = C� n > E

(
Xn 	 ( � nX2

n)
)
. (3.25)

Hence,� n < � n for largen, and thus� n = O(� n) = O(� n� E X2
n). ▪

Remark3.2 The assumption lim infP(Xn � 1) > 0 is essential: ifXn
d

Š� X = 1, almost anything
can happen. For a simple example, letXn � { 0, 1,2} with P(Xn = 0) = qn, P(Xn = 2) = pn and
P(Xn = 1) = 1 Š pn Š qn wherepn > qn > 0 andpn � 0. Then� n = pn Š qn and, by (3.1) and a
simple calculation (we have equality in (3.18) and thus in (3.3)),� n = 1 Š qn� pn = � n� pn. Thus (3.2)
fails. Moreover,� n = 1 Š qn� pn may converge to any number in[0,1], or may oscillate. (See also the
examples in [27].)

Remark3.3 If E X2
n � � but Xn

d
Š� X with E X2 < � , it is not necessarily the case that (3.6)

holds, but it is still possible; see Examples 3.7 and 3.8. Similarly, ifE X2
n � C < � andXn

d
Š� X but

E X2 < C, then (3.5) may or may not hold; see Examples 3.7 and 3.9.

We consider several examples illustrating various possible behaviors. See also the examples by
Hoppe [27].

Example 3.4(Power laws) Let 1< � < 2 and assume that for some constantsC,c > 0,

P(Xn > x) � CxŠ� , x > 0, (3.26)

P(Xn > x) � cxŠ� , 1 � x < � Š1�( � Š1)
n . (3.27)

Here, due to the size-biasing in (2.13),� is related to� in Example 2.15 by� = � Š 1. Then, by an
integration by parts (or an equivalent Fubini argument), for anyr > 0,

E
(
Xn 	 ( rX2

n)
)

=
�

1� r

0
2rx P(Xn > x) dx +

�

�

1� r
P(Xn > x) dx,

� 2Cr
�

1� r

0
x1Š� dx + C

�

�

1� r
xŠ� dx,

=
( 2

2 Š �
+

1
� Š 1

)
Cr� Š1.

(3.28)

Takingr = � n, this and (3.4) yield

� n = O(� � Š1
n ). (3.29)

On the other hand, takingr = A� 1�( � Š1)
n for a (large) constantA > 1, and assuming thatn is so large

thatr < 1, by (3.27),

E
(
Xn 	 ( rX2

n)
)

�
1
r

P
(

Xn �
1
r

)
� cr� Š1 = cA� Š1� n. (3.30)

ChoosingA sufficiently large, this and (3.4) yield (for largen)

E
(
Xn 	 ( rX2

n)
)

> E
(
Xn 	 ( � nX2

n)
)
, (3.31)
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and thusr > � n. Consequently,� n = O(� 1�( � Š1)
n ), which together with (3.29) yield

� n � � 1�( � Š1)
n . (3.32)

This example shows that� n may decrease as an arbitrarily large power of� n. (Choose� close to 1.)

Example 3.5 For an instance of Example 3.4, let 1< � < 2, and letX be a nonnegative
integer-valued random variable withE X = 1 andP(X > x) � xŠ� asx � � . Fix a sequence� n � 0
(with � n > 0) and a sequenceMn of integers withMn � � Š1�( � Š1)

n . Let X�
n �= X 	 Mn, and defineXn by

P(Xn = k) =

⎧⎪⎨⎪⎩
P(X�

n = 0) Š 
 n, k = 0,

P(X�
n = 1) + 
 n, k = 1,

P(X�
n = k), k � 2,

(3.33)

where
 n �= � n + E(X Š X�
n). ThenE Xn = E X�

n + 
 n = 1 + � n as required. Note thatE(X Š X�
n) �

MŠ(� Š1)
n = O(� n), so
 n � � n; in particular
 n � 0 and the definition (3.33) is valid at least for largen

(sinceP(X = 0) > 0 byE X = 1). Clearly,Xn
d

Š� X.
Furthermore, (3.26) and (3.27) hold, and thus (3.32) holds.
Moreover, we may chooseMn arbitrarily large, and thusE X2

n � M2Š�
n can be made arbitrarily

large; this shows that there is no formula similar to (3.5) giving� n, even within a constant factor, in
terms of� n andE X2

n (or E Xn(Xn Š 1)).
We may also takeMn = � ; then (3.32) still holds andE X2

n = � .

Example 3.6 Choose� n � ( 0, 1] with � n � 0 andpn � ( 0, 1� n] with npn � 0 and define (forn � 3)
Xn by

P(Xn = k) =

⎧⎪⎨⎪⎩
1Š� n+(nŠ2)pn

2
, k = 0,

1+� nŠnpn

2
, k = 2,

pn, k = n.

(3.34)

ThenE Xn = 1 + � n as required,Xn
d

Š� X with P(X = 0) = P(X = 2) = 1
2
, and thusE X = 1,

E X2 = 2 andE X(X Š 1) = 1, and

E X2
n = 2 + n2pn + o(1). (3.35)

In particular,E X2
n � E X2 if and only if n2pn � 0.

Furthermore,

E F(� nXn) =
1 + o(1)

2
F(2� n) + pnF(n� n) = � 2

n(1 + o(1)) + pnF(n� n), (3.36)

and thus (3.12) implies

� n� n = � 2
n
( 1

2
+ o(1)

)
+ pnF(n� n). (3.37)

We consider several cases of this in the following examples.
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Example 3.7 Choose� n andpn in Example 3.6 such thatnpn = o(� n). ThenpnF(n� n) = O(pnn� n) =
o(� n� n), and thus (3.37) yields� n� n � 1

2
� 2

n and thus

� n � � n � 2� n, (3.38)

just as given by (3.5). This includes cases withn2pn � 0, when Theorem 3.1(ii) applies by (3.35), but
also cases withn2pn � � , whenE X2

n � � by (3.35). (For example, take� n = nŠ1� 4 andpn = nŠ3� 2.)
If we instead takepn = nŠ2 and � n = nŠ1� 2, thenE X2

n � 3 > E X2 by (3.35), while (3.5)
nevertheless holds by (3.38).

Example 3.8 Choose� n � nŠ1 in Example 3.6, so� n = O(nŠ1) by (3.2). Then� nXn = O(1), so (3.4)
yields

� n � E(� nX2
n) = � n E X2

n. (3.39)

If we further choosepn with npn � 0 andn2pn � � , thenE X2
n � � by (3.35), and thus� n = o(� n)

by (3.39). (For example, take� n = nŠ1 andpn = nŠ3� 2.)

Example 3.9 Choose� n = nŠ1 andpn = AnŠ2 in Example 3.6, for some constantA > 0. Thus
E X2

n � 2+ Aby (3.35), andE[Xn(XnŠ1)] � 1+ A. In particular,E X2
n = O(1) and thus Theorem 3.1(i)

yields� n � � n � nŠ1. More precisely, (3.37) yields, after multiplication byn2,

n� n � 1
2
(n� n)2 + AF(n� n). (3.40)

As just said,n� n = � n� � n is bounded above and below, and (3.40) shows that, ifn� n � a along
some subsequence, thena = 1

2
a2 + AF(a), or

a Š 1
2
a2

F(a)
= A. (3.41)

Hence 0< a < 2. Furthermore, it is easy to see (by differentiating) thatF(a)�( a Š 1
2
a2) is strictly

increasing on(0,2). Hence (3.41) has a unique solutiona = a(A) � ( 0, 2) for any A > 0, and thus
n� n � a(A). Consequently, also� n� � n = n� n � a(A), given by (3.41).

It is easily verified that 2> a(A) > 2�( 1 + A). Hence, (3.5) does not hold, and neither does (3.5)
with E[X(X Š 1)] replaced byE[Xn(Xn Š 1)].

4 FURTHER PRELIMINARIES

4.1 More on � n and � n in the barely supercritical case

Suppose that (A1)…(A4) are satisfied, and furthermore� n > 0. (Note that the assumptions of
Theorems 2.6 and 2.8…2.10 imply that� n > 0, except possibly for some smalln that we may ignore.)

In what follows,� n will denote the survival probability of a Galton-Watson process with offspring
distribution�Dn, see Section 2.3 and (2.18). As in Section 3, it will often be convenient to work with

� n �= Š log(1 Š � n). (4.1)
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Lemma 4.1 If (A1)…(A4) are satisfied and� n > 0, then� n � 0,

� n � � n (4.2)

and

� n � E
(
D2

n 	 ( � nD3
n)
)

� E
(
D2

n 	 ( � nD3
n)
)
. (4.3)

Proof Theorem 3.1 applies toXn = �Dn, with X = �D and with � n as in Section 2.1 by (2.16). In
particular,� n = O(� n) � 0 and thus, by (4.1),� n � � n. Furthermore, by (3.4),

� n � E
(
�Dn 	 ( � n �D2

n)
)

� E
(
D�

n 	 ( � n(D�
n)2)

)
. (4.4)

Moreover, ifD�
n > 1 thenD�

n � 2�Dn. Thus, using (3.2) and (3.4),

E
(
D�

n 	 ( � n(D�
n)2)

)
� � n + 4E

(
�Dn 	 ( � n �D2

n)
)

= O(� n). (4.5)

Combining (4.4)…(4.5) and using (2.14), we find

� n � E
(
D�

n 	 ( � n(D�
n)2)

)
=

1
E Dn

E
(
Dn(Dn 	 ( � nD2

n))
)

� E
(
D2

n 	 ( � nD3
n)
)
, (4.6)

proving the first part of (4.3); the second follows from� n � � n. ▪

Note also that (2.18) implies, by (2.14),

(1 Š � n)2 = E(1 Š � n)D�
n =

E
(
Dn(1 Š � n)Dn

)
E Dn

=
E
(
Dn(1 Š � n)Dn

)
� n

, (4.7)

which can be rewritten as

E
(
DneŠ� nDn

)
= � neŠ2� n. (4.8)

In the caseE D3
n � E D3 < � , that is, whenD3

n are uniformly integrable, we haveE �D2
n � E �D2

by (2.15); hence (3.5) applies and yields, using (2.15) again and the notation (2.21), where now	 > 0
by (3.5) or Remark 2.4,

� n � � n �
2� n

E(�D(�D Š 1))
=

2� n�
E(D(D Š 1)(D Š 2))

=
2� n

	
. (4.9)

4.2 The Skorohod coupling theorem

We assume in (A1) thatDn
d

Š� D. By the Skorohod coupling theorem [42, Theorem 4.30], we

may without loss of generality assume the strongerDn
a.s.
Š� D; this will be convenient (although

not really necessary) in some proofs. (We have already used the Skorohod coupling theorem in
a similar way for Xn in Section 3, and will use it for a third set of variables in the proof of
Lemma 5.7.)
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4.3 A semimartingale inequality

Our proofs below will use a semimartingale inequality to control the deviations of various random
processes.

We say that a stochastic processX(t), defined on an interval[0,T], is asemimartingale with drift
� (t) (with respect to a filtration(� t)) if X(t) is adapted and

X(t) = M(t) +
�

t

0
� (u) du, (4.10)

for some martingaleM(t). It is proved in [28, Lemma 2.2] that, ifX(t) is a bounded semimartingale
with drift � (t), then

E sup
s� t� u

|X(t)|2 � 13E |X(u)|2 + 13
(

�

u

s

√
E � (t)2 dt

)2

� 13E |X(u)|2 + 13(u Š s)
�

u

s
E
[
� (t)2]dt.

(4.11)

We will be using the following modification of (4.11).

Lemma 4.2 Let X(t) be a semimartingale with drift� (t), defined on[0,u]. Then

E sup
0� t� u

|X(t)|2 � 13
�∑
j=0

E |X(2Šju)|2 + 13
�

u

0
t E

[
� (t)2]dt. (4.12)

Proof Let uj �= 2Šju. We have

sup
0� t� u

|X(t)|2 �
�∑
j=0

sup
uj+1� t� uj

|X(t)|2, (4.13)

sinceX(t) is a.s. right-continuous at 0 (and everywhere) by (4.10). We take the expectation, and note
that by (4.11),

E sup
uj+1� t� uj

|X(t)|2 � 13E |X(uj)|2 + 13(uj Š uj+1)
�

uj

uj+1

E
[
� (t)2]dt

� 13E |X(uj)|2 + 13
�

uj

uj+1

t E
[
� (t)2] dt.

(4.14)

The result follows by (4.13) and (4.14). ▪

Inequality (4.12) will yield better estimates than inequality (4.11) in cases when process(X(t))
takes relatively small values near time 0 (so that

∑�
j=0 E |X(2Šju)|2 is finite and not too large) but has

quite significant drift (so that� u
0 t E

[
� (t)2

]
dt is significantly smaller thanu� u

0 E
[
� (t)2

]
dt).

5 THE SUPERCRITICAL CASE

As explained in Section 2.4, it suffices to prove Theorems 2.6 and 2.8…2.10 for the multigraphG�
n, since

the simple graph case follows by conditioning on simplicity. We thus consider the random multigraph
G�

n �= G� (n, (� i )n
1) constructed by the configuration model.
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5.1 A more general theorem

We follow the structure of proof in [36]. We explore the clusters of the multigraph given by the con-
figuration model one by one, using the cluster exploration strategy introduced in [36, Section 4]. We
regard each edge as consisting of two half-edges, each half-edge having one endpoint. We label the
vertices assleepingor awake, and the half-edges assleeping, activeor dead. The sleeping and active
half-edges are calledliving half-edges. (During the exploration, the endpoint of a sleeping half-edge
is sleeping, while the endpoint of an active or dead half-edge is awake.)

We start with all vertices and half-edges sleeping. We pick a vertex, make it awake and label its
half-edges as active. We then take any active half-edge, sayx, and find its partner half-edgey in the
graph; we label these two half-edges as dead; furthermore, if the endpoint ofy is sleeping, we label it
awake and all the other half-edges at this vertex active. We repeat the above steps as long as there is
an active half-edge available. When there is no active half-edge left, then we have obtained the first
component. We then pick another vertex, and reveal its component, and so on, until all the components
have been found.

We apply this procedure toG�
n, revealing its edges during the process. This means that, initially,

we only observe the vertex degrees and the half-edges, but not how they are joined into edges. Hence,
each time we need a partner of an edge, it is uniformly distributed over all living half-edges, and the
dead half-edges correspond to the half-edges that have already been paired. We choose our pairings by
giving the half-edges i.i.d. random maximal lifetimes with distribution Exp(1). In other words, each
half-edge dies spontaneously at rate 1 (unless killed earlier), and the probability that, if not killed, it
survives until timet is eŠt. Each time we need to find the partner of a half-edgex, we then wait until the
next living half-edge� x dies, and take that one. This gives the following algorithm for simultaneously
constructing and exploring the components ofG� (n, (� i )n

1):

C1 Select a sleeping vertex and declare it awake and all of its half-edges active. To be precise, we
choose the vertex by choosing a half-edge uniformly at random among all sleeping half-edges.
The process stops when there is no sleeping half-edge left; the remaining sleeping vertices are all
isolated and we have explored all other components.

C2 Pick an active half-edge (which one does not matter) and kill it, that is, change its status to dead.
C3 Wait until the next half-edge dies (spontaneously). This half-edge is paired to the one killed in

the previous stepC2 to form an edge of the graph. If the vertex it belongs to is sleeping, then
we declare this vertex awake and all of its other half-edges active. Repeat fromC2 if there is any
active half-edge; otherwise fromC1.

The components are created between the successive timesC1 is performed: the vertices in the com-
ponent created between two successive such times are the vertices awakened during the corresponding
interval.

We letSn(t) andAn(t) be the numbers of sleeping and active half-edges, respectively, at timet � 0,
and letLn(t) = Sn(t) + An(t) denote the number of living half-edges. Furthermore, we letVn,k(t) denote
the number of sleeping vertices of degreek at timet, and letVn(t) be the number of sleeping vertices
at timet; thus

Vn(t) =
�∑

k=0

Vn,k(t), Sn(t) =
�∑

k=0

kVn,k(t). (5.1)

These (random) functions are right-continuous by definition. We denote left limits by, for example,
Sn(tŠ).
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Let T1 < T2 be random times whenC1 are performed. Then the exploration starts on new compo-
nents at timesT1 andT2, and the components found betweenT1 andT2 in total haveVn(T1Š)ŠVn(T2Š)
vertices andSn(T1Š) Š Sn(T2Š) half-edges, and hence[Sn(T1Š) Š Sn(T2Š)]� 2 edges. Note also that
An(tŠ) = 0 whenC1 is performed, andAn(t) � 0 for everyt.

We also introduce variants of(Sn(t),An(t),Vn(t))t� 0 obtained by ignoring the effect ofC1. Let �Vn,k(t)
denote the number of vertices of degreek such that all of theirk half-edges have their exponential
maximal life times greater thant. Then�Vn,k(t) has aBin(nk, eŠkt) distribution, and the(�Vn,k(t))�

k=1 are
independent random variables for any fixedt. Let

�Vn(t) �=
�∑

k=0

�Vn,k(t), �Sn(t) �=
�∑

k=0

k�Vn,k(t), (5.2)

and

�An(t) �= Ln(t) Š �Sn(t) = An(t) Š (�Sn(t) Š Sn(t)). (5.3)

It is obvious that�Sn(t) � Sn(t); moreover,�Sn(t) Š Sn(t) increases only whenC1 is performed, and
it is not difficult to show that, see [36, Lemma 5.3 and (5.7)],

0 � �Sn(t) Š Sn(t) = An(t) Š �An(t) < Š inf
s� t

�An(s) + � n, (5.4)

where, as before,� n �= max1� i� n � i is the maximum vertex degree.
In order to explain the argument used to prove Theorem 2.6 more clearly, and to explain the connec-

tions to the previous versions of this argument used in [36], we give the argument in a general form (that
includes the two versions in [36]), using certain parameters and functions,�, � n, � n, �g(t), �h(t), � n(t). We
assume that these satisfy certain regularity and asymptotic conditions (B1)…(B8), and then prove a gen-
eral result, Theorem 5.4. The sequences� n, � n are near-critical scaling parameters, while�g(t), �h(t), � n(t)
are asymptotic approximations for the processes�Vn(t), �Sn(t), �An(t) introduced above to study the explo-
ration process. The choices of these parameters and functions used in the proofs of [36, Theorems 2.3
and 2.4] are described in Remarks 5.5 and 5.6. In order to prove Theorem 2.6, we instead make the
choices in (5.17)…(5.21) below. (The reader who only wants a proof of Theorem 2.6 can thus assume
these choices throughout.) We verify in Section 5.2 that the choices in (5.17)-(5.21) actually satisfy
the assumptions (B1)…(B8).

Assumptions (B1)…(B8) are as follows.

(B1) � > 0 is fixed.
(B2) (� n) and(� n) are sequences of positive numbers such that� n = O(� n).
(B3) �g, �h� [ 0, �) � R are continuous functions;�g is strictly positive on(0, �) and �h is strictly

increasing on(0, �) .
(B4) (� n) is a sequence of continuous functions on[0,2� ] such that:

(a) � n(0) = 0;
(b) � n(� ) = o(1);
(c) for some� � > 0, � n(t) � 0 on[0, � � ];
(d) for any compact interval[a, b] � (0, � ), lim inf n� � infa� t� b � n(t) > 0;
(e) for everyt > � , lim supn� � � n(t) < 0;
(f) (� n) is equicontinuous at� , that is, iftn � � , then� n(tn) � 0.
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(B5)

sup
t� 2�

|||| 1
n� n

�An(� nt) Š � n(t)
|||| p

Š� 0.

(B6)

sup
t� 2�

|||| 1
n� n

(
�Vn(0) Š �Vn(� nt)

)
Š �g(t)

|||| p
Š� 0.

(B7)

sup
t� 2�

|||| 1
n� n

(
�Sn(0) Š �Sn(� nt)

)
Š �h(t)

|||| p
Š� 0.

(B8)

� n

n� n
� 0.

Note that (B6) and (B7) imply that necessarily�g(0) = �h(0) = 0.

Remark5.1 (Some intuition behind (B1)-(B8)) In all our applications, we will take� n = � n � � n.
We see that� n arises in two ways in our conditions. The first is the time scale on which the giant is
found as all our processes are evaluated at time� nt. The second as the scaling of�Sn and�Vn, which scale
like n� n. The fact that these are the same is a sign that�Sn(t) is close to linear for smallt. Furthermore,
n� n is the size of�An, which will be proved to be close toAn. Since�An is the difference of two processes
that both run on scalen� n and are positive, it follows that� n = O(� n) should hold due to possible
cancellations. In Remark 5.9, we will intuitively explain how� n, which is the scale of the number of
active vertices, arises and how our conditions on� n can be interpreted in terms of the concentration of
the process(�An(� nt))t� 0.

Remark5.2 In the case when� n = � does not depend onn, (B4) says simply that� is continuous
with � (0) = � (� ) = 0, � > 0 on(0, � ) and� < 0 on(�, 2� ). In general, (B4) should be interpreted
as an asymptotic version of this. In particular, for any� > 0 with � < � , we have� n(� Š � ) > 0 and
� n(� + � ) < 0 for all largen; it follows that, at least for largen, � n has a zerotn > 0 such thattn � � .
Furthermore, every zero of� n is o(1), � + o(1) or � � .

Remark5.3 If, at least for all largen, � n is concave on[0,2� ] (which is the case in our main
application), then (B4) can be replaced by the simpler

(B4� ) � n is continuous and concave on[0,2� ] and such that� n(0) = 0, � n(� ) = o(1), � n(2� ) = O(1)
and lim infn� � � n(� � 2) > 0;

in fact, (B4� ) is easily seen to imply (B4) (with, eg,� � = � � 2), at least for largen, which suffices.

We now state a general theorem concerning the largest and second largest component sizes under
assumptions (B1)-(B8). Recall that, for a component� , we writev(� ) ande(� ) to denote the number
of vertices and edges in the component, respectively. (In Lemma 5.8 we extend this notation to the
case where� is a union of several components.)
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Theorem 5.4 Under assumptions(B1)-(B8),

v(� 1) = n� n �g(� ) + op(n� n), (5.5)

e(� 1) = n� n �h(� )� 2 + op(n� n). (5.6)

Furthermore, v(� 2), e(� 2) = op(n� n).

The proof of Theorem 5.4 follows [36, Sections 5 and 6] with minor modifications, omitting
some details (and repeating others). Before giving the details, we offer some intuition behind its
statement. Suppose that we are able to show (as we will later) that(Sn(t),An(t),Vn(t))t� 0 are close to
(�Sn(t), �An(t), �Vn(t))t� 0. By Remark 5.2 and (B5), there is a large component whose exploration com-
mences within timeop(� n� ) and ends at time� n� (1+ op(1)); this turns out to be the largest component.
Moreover, by (B6), the number of vertices in this component isn� n �g(� )(1 + op(1)); and, by (B7), the
number of half-edges is close ton� n �h(� )(1 + op(1)).

Remark5.5 We note that [36, Theorem 2.3] is one example of Theorem 5.4, with� = Š ln � , � n =
� n = 1, � n(t) = � (t) = H(eŠt), �g(t) = 1 Š g(eŠt), �h(t) = h(1) Š h(eŠt) = � (1 Š eŠ2t) + � (t); in this
case, (B5), (B6), (B7) are [36, (5.6), (5.2), (5.3)]. (Here,� n(t) is not always concave.)

Remark5.6 Similarly, [36, Theorem 2.4] is another instance of Theorem 5.4, now with� n =
E Dn(Dn Š 2) � 0 as in [36],� n = � 2

n, � n(t) = � (t) = t Š � t2� 2, � = 2� � , �g(t) = � t, �h(t) = 2� t; for
(B5), (B6), (B7), see [36, (6.7), Lemma 6.3 and the Taylor expansions in the proof of Lemma 6.4]. Note
that (B8) holds, sincen2� 3� n � � and� n = o(n1� 3), becauseD3

n is uniformly integrable. (Warning:
� n here has a different meaning than� and� n in [36, Theorem 2.4 and (2.11)].)

We will see later that also Theorem 2.6 follows from Theorem 5.4.
The proof of Theorem 5.4 will use the following lemmas; the second generalizes [36, Lemmas 5.6

and 6.4].

Lemma 5.7 Assume(B1)…(B8) and let Tn be random times such that Tn
p

Š� � . Then

sup
0� t� Tn

1
n� n

|||�Sn(� nt) Š Sn(� nt)||| = sup
0� t� Tn

1
n� n

|||�An(� nt) Š An(� nt)||| p
Š� 0. (5.7)

Proof We may replaceTn by Tn 	 ( 2� ), since w.h.p.Tn 	 ( 2� ) = Tn; hence we may assume that

Tn � 2� . Furthermore, using the Skorohod coupling theorem, we may assume thatTn
a.s.
Š� � . We note

next that this implies

inf
0� t� Tn

� n(t) � 0 (5.8)

a.s., and thus in probability. In fact, if (5.8) fails at some point in the probability space, andTn � � ,
then there existstn, at least for some subsequence ofn, with 0 � tn � Tn = � + o(1) and� n(tn) < Š� ,
for some� < 0. (Recall that� n(0) = 0, so the infimum is never positive.) We may select a further
subsequence withtn � t� � [ 0, � ]; this contradicts (B4). (Consider the casest� = 0, t� = � and
0 < t� < � separately, and use (B4)(c), (B4)(f), (B4)(d).)

By (5.8) and (B5),

inf
0� t� Tn

1
n� n

�An(� nt)
p

Š� 0, (5.9)
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and thus, by (5.4) and (B8),

sup
0� t� Tn

1
n� n

|||�Sn(� nt) Š Sn(� nt)||| = sup
0� t� Tn

1
n� n

|||An(� nt) Š �An(� nt)|||
� Š inf

0� t� Tn

1
n� n

�An(� nt) +
� n

n� n

p
Š� 0.

(5.10)

▪

In what follows we consider several random times. They generally depend onn but we simplify
the notation and denote them byT1,T�

1, ƒ as an abbreviation ofT1n, ƒ

Lemma 5.8 Let T�
1 and T�

2 be two (random) times whenC1 are performed, with T�1 � T�
2, and assume

that T�
1� � n

p
Š� t1 and T�

2� � n
p

Š� t2 where0 � t1 � t2 � � . If �� is the union of all components explored
between T�1 and T�

2, then, under assumptions(B1)-(B8),

v( �� ) = n� n
(

�g(t2) Š �g(t1)
)

+ op(n� n),

e( �� ) =
1
2

n� n
(

�h(t2) Š �h(t1)
)

+ op(n� n).

In particular, if t1 = t2, then v( �� ) = op(n� n) and e( �� ) = op(n� n).

Proof Taking, forj = 1,2, Tn = T�
j � � n + � Š tj in (5.7), we see that

sup
0� t� T�

j

||�Sn(t) Š Sn(t)|| = op
(
n� n

)
. (5.11)

Since further 0� �Vn(t) Š Vn(t) � �Sn(t) Š Sn(t), see (5.1), we have also

sup
0� t� T�

j

||�Vn(t) Š Vn(t)|| = op
(
n� n

)
. (5.12)

Since �� consists of the vertices awakened in the interval[T�
1,T�

2), by (5.12), (B6) and (B3), as well
as� n = O(� n),

v( �� ) = Vn(T�
1Š) Š Vn(T�

2Š) = �Vn(T�
1Š) Š �Vn(T�

2Š) + op(n� n)

= n� n
(

�g(T�
2� � n) Š �g(T�

1� � n) + op(1)
)

= n� n
(

�g(t2) Š �g(t1) + op(1)
)
.

Similarly, using (5.11) and (B7),

2e( �� ) = Sn(T�
1Š) Š Sn(T�

2Š) = �Sn(T�
1Š) Š �Sn(T�

2Š) + op(n� n)

= n� n
(

�h(T�
2� � n) Š �h(T�

1� � n) + op(1)
)

= n� n
(

�h(t2) Š �h(t1) + op(1)
)
.

▪
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Proof of Theorem 5.4 Note that (5.7) (withTn = � ) and (B5) show that

sup
t� �

|||| 1
n� n

An(� nt) Š � n(t)
|||| p

Š� 0. (5.13)

Hence, using (B4)(d), for every� > 0, w.h.p.An(t) > 0 on[� n�, � n(� Š � )], so no new components
are started during that interval. On the other hand, if 0< � < � , then by (5.3), (B5) and (5.7),

1
n� n

[(
�Sn(� n(� + � )) Š Sn(� n(� + � ))

)
Š
(
�Sn(� n� ) Š Sn(� n� )

)]
=

1
n� n

[(
An(� n(� + � )) Š �An(� n(� + � ))

)
Š
(
An(� n� ) Š �An(� n� )

)]
� Š

1
n� n

�An(� n(� + � )) Š
1

n� n

(
An(� n� ) Š �An(� n� )

)
= Š� n(� + � ) + op(1).

This is w.h.p. positive, since lim supn� � � n(� + � ) < 0 by (B4)(e), and thenC1 is performed at
least once between� n� and� n(� + � ).

Consequently, ifT1 is the last timeC1 is performed before� n� � 2 andT2 is the next time, then
w.h.p. 0 � T1 � � n� and� n(� Š � ) � T2 � � n(� + � ). Since� can be chosen arbitrarily small, this

shows thatT1� � n
p

Š� 0 andT2� � n
p

Š� � .
Let � � be the component explored betweenT1 andT2. By Lemma 5.8 (witht1 = 0 andt2 = � ), � �

has

v(� � ) = n� n( �g(� ) + op(1)) (5.14)

vertices and

e(� � ) = 1
2
n� n( �h(� ) + op(1)) (5.15)

edges.
It remains to prove that all other components have onlyop(n� n) edges (and thus vertices) each.

(This implies� 1 = � � .) We argue as in [36, pp. 213-214 (end of Section 6)]. We fix a small� > 0 and
say that a component islarge if it has at least� n� n edges, and thus at least 2� n� n half-edges. If� is
small enough, then w.h.p.� � is large by (5.15), and further( �h(� )Š � )n� n < 2e(� � ) < (�h(� )+ � )n� n. Let
	 � be the event that 2e(� � ) < (�h(� )+ � )n� n and that the total number of half-edges in large components
is at least( �h(� ) + 2� )n� n.

It follows by Lemma 5.8 applied toT0 = 0 andT1 that the total number of vertices and half-edges
in components found before� � is op(n� n). Thus there exists a sequence� �

n of constants such that� �
n =

o(� n) and w.h.p. at mostn� �
n vertices are awakened and at mostn� �

n half-edges are made active before
T1, when the first large component is found.

Let us now condition on the final graph obtained through our component-finding algorithm. It
follows from our specification of� 1 that, givenG� (n, (� i )n

1), the components appear in our process in
size-biased order (with respect to the number of edges), obtained by picking half-edges uniformly at
random (with replacement, for simplicity) and taking the corresponding components, ignoring every
component that already has been taken. We have seen that w.h.p. this finds components containing at
mostn� �

n vertices and half-edges before a half-edge in a large component is picked. Therefore, starting
again atT2, w.h.p. we find at mostn� �

n half-edges in new components before a half-edge is chosen in
some large component; this half-edge may belong to� � , but if 	 � holds, then with probability at least
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� 1 �= 1 Š ( �h(� ) + � )�( �h(� ) + 2� ) > 0 it does not, and therefore it belongs to a new large component.
Consequently, with probability at least� 1 P(	 � ) + o(1), the algorithm finds a second large component
at a timeT3, and less thann� �

n vertices and half-edges betweenT2 andT3. In this case, letT4 be the
time this second large component is completed. If no such second large component is found, let for
definitenessT3 = T4 = T2.

The number of half-edges found betweenT2 andT3 is, using�Sn(t) � Sn(t), (5.7) withTn = T2� � n,
(B2) and (B7) together with the fact thatT2� � n � 2� w.h.p.,

Sn(T2Š) Š Sn(T3Š) � �Sn(T2Š) Š (�Sn(T2Š) Š Sn(T2Š)) Š �Sn(T3Š)

= �Sn(T2Š) Š �Sn(T3Š) + op(n� n)

� �Sn(T2Š) Š �Sn((2� n� ) 	 T3Š) + op(n� n)
= n� n

(
�h((2� ) 	 ( T3� � n)) Š �h(T2� � n)

)
+ op(n� n).

Since, by the definitions above, this is at mostn� �
n = o(n� n), it follows that �h((2� ) 	 ( T3� � n)) Š

�h(T2� � n) � op(1). Furthermore,T2 � T3 andT2� � n
p

Š� � , and thus w.h.p.T2� � n � 2� . Hence, using

(B3), it follows that(2� ) 	 ( T3� � n) Š � = op(1), and thusT3� � n
p

Š� � . Consequently, (5.7) applies to
Tn = T3� � n, and, since noC1 is performed betweenT3 andT4, using also (B8) again,

sup
t� T4

||�Sn(t) Š Sn(t)|| � sup
t� T3

||�Sn(t) Š Sn(t)|| + � n = op(n� n). (5.16)

Let t0 � ( �, 2� ); then by (B4)(e), for some
 > 0, � n(t0) < Š2
 for all largen, and thus (B5) shows
that w.h.p.�An(� nt0) � Šn� n
 and thus

�Sn(� nt0) Š Sn(� nt0) = An(� nt0) Š �An(� nt0) � Š�An(� nt0) � n� n
.

Hence (5.16) shows that w.h.p.T4 < � nt0. Sincet0 Š � can be chosen arbitrarily small, and further

T2 � T3 � T4 andT2� � n
p

Š� � , it follows thatT4� � n
p

Š� � .
Finally, by Lemma 5.8 again, this time applied toT3 andT4, the number of edges found between

T3 andT4 is op(n� n). Hence, w.h.p. there is no large component found there, although the construction
gave a large component with probability at least� 1 P(	 � ) + o(1). Consequently,� 1 P(	 � ) = o(1) and
thusP(	 � ) = o(1).

Recalling the definition of	 � , we see that w.h.p. the total number of half-edges in large components
is less than(�h(� ) + 2� )n� n; since w.h.p. at least( �h(� ) Š � )n� n of these belong to� � , see (5.15), there
are at most 3� n� n half-edges, and therefore at most3

2
� n� n + 1 vertices, in any other component.

Choosing� small enough, this shows that w.h.p.� 1 = � � , and furtherv(� 2) � e(� 2)+1 � 3
2
� n� n+1.

This completes the proof of Theorem 5.4. ▪

5.2 Proof of Theorems 2.6…2.10

Now suppose that we are given a sequence of degree distributionsDn satisfying the conditions
(A1)…(A4). We choose the parameters in (B1)-(B8) as follows, where� n as before is the survival prob-
ability of a Galton-Watson process with offspring distribution�Dn, see (2.18); recall that� n > 0 since
� n > 0. (Note that� n in (5.18) is the same as in (4.1).) Also recall that� = E D. Define

� �= 1, (5.17)
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� n �= � n = Š log(1 Š � n), (5.18)

�g(t) �= � t, �h(t) �= 2� t, (5.19)

� n �= E(Dn(1 	 � nDn)2), (5.20)

� n(t) �= � Š1
n
(
� neŠ2� nt Š E

(
DneŠ� ntDn

))
. (5.21)

Recall that, by Lemma 4.1,� n � 0 and� n = � n � 0.

Remark5.9 (Intuition behind (B1)-(B8) continued) Recall by (B5) thatn� n is the size of�An(� nt). See
(5.51), where we show thatE[�An(� nt)] = 𝓁neŠ2� nt + O(1) Š

∑�
k=0 knkeŠ� ntk, which by Taylor expansion

is indeed of the ordern� n = nE(Dn(1 	 � nDn)2). This explains how� n in (5.20) arises.
Let us next relate this to the condition� n � nŠ1� 3(E D3

n)Š2� 3. Every time whenAn hits zero, a
connected component is explored. SinceAn(� nt) � �An(� nt) by Lemma 5.7, one can therefore expect
that the size of the barely supercritical component is well concentrated precisely when the hitting time
of zero of�An is. This follows when the processt �� �An(� nt) is well concentrated (and its limit has a
unique first zero). Now,�An(� nt) = Ln(� nt) Š �Sn(� nt), and both processes turn out to have similar vari-
ances, the one for�Sn(� nt) being easier to compute since�Sn(t) =

∑�
k=0 k�Vn,k(t) with �Vn,k(t) independent

Bin(nk, eŠkt) random variables. Thus,

Var(�Sn(� nt)) =
∑
k� 0

k2nkeŠk� nt(1 Š eŠk� nt) � nE[D2
n(1 	 ( � nDn))] � n� n, (5.22)

where we crucially rely on (4.3). This suggests that the processt �� �An(� nt) is well concentrated
precisely whenn� n � (n� n)2. The latter turns out to be the case when� n � nŠ1� 3(E D3

n)Š2� 3. Indeed,
by Cauchy-Schwarz,� 2

n = O
(
� n E D3

n
)

(see also Lemma 5.19), so thatn� n�( n� n)2 = � 4
n�( � 2

nn� 3
n) =

O
(
(E D3

n)2�( n� 3
n)
)
. This explains the barely supercriticality condition� n � nŠ1� 3(E D3

n)Š2� 3 that we
assume throughout this paper. While the above arguments onlyprovethe one-way bounds that we need
in the proof, the fact that we observe critical behavior when� n = O(nŠ1� 3(E D3

n)Š2� 3) (see Theorem
2.12) suggests that the above inequalities are in fact asymptotically sharp.

We next show that under the conditions of Theorem 2.6, these parameters satisfy (B1)…(B8)
(possibly except for some smalln that we may ignore). This will take a series of lemmas.

Lemma 5.10 Assume(A1)…(A4). Then the parameters defined in (5.17)…(5.21) satisfy(B1), (B2),
(B3) and(B4� ), and thus also(B4), at least for n large. Furthermore,

� 2
n = � 2

n = O(� n). (5.23)

Proof (B1): Trivial.
(B2): Since� n > 0, we have� n > 0 and thus� n > 0 and� n > 0. Furthermore, by (5.20),

� n � E(Dn(� nDn)) = � n E D2
n = O(� n). (5.24)

(B3): Trivial by (5.19).
(B4� ): By the definition (5.21) and (4.8),� n(0) = 0 and� n(� ) = � n(1) = 0.
� n(t) is trivially continuous. (Recall that eachDn is a discrete random variable taking only a finite

number of different values.)
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We next show that� n is concave on[0,2� ] = [ 0,2] for largen. (It is not always concave on(0, �) ,
nor does it have to be concave on[0,2] for small n, as can be seen by simple counterexamples with
Dn � { 1, 3} .) By (5.21),

� n� Š2
n � ��

n (t) = 4� neŠ2� nt Š E
(
D3

neŠ� ntDn
)
. (5.25)

For everyt � [ 0, 2] we have

E
(
D3

neŠ� ntDn
)

= E
(
Dn(Dn Š 2)2eŠ� ntDn

)
+ 4E

(
D2

neŠ� ntDn
)

Š 4E
(
DneŠ� ntDn

)
� E

(
Dn(Dn Š 2)2eŠ2� nDn

)
+ 4E

(
D2

neŠ2� nDn
)

Š 4E Dn.
(5.26)

For the first term on the right-hand side of (5.26) we may assume, by the Skorohod coupling (see

Section 4.2), thatDn
a.s.
Š� D and thusDn(Dn Š 2)2eŠ2� nDn

a.s.
Š� D(D Š 2)2; thus Fatou•s lemma yields

lim inf
n� �

E
(
Dn(Dn Š 2)2eŠ2� nDn

)
� E

(
D(D Š 2)2). (5.27)

Next, using (4.3),

E
(
D2

n
(
1 Š eŠ2� nDn

))
� 2E

(
D2

n(1 	 � nDn)
)

= O(� n) = o(1) (5.28)

and thus, using also (2.9),

E
(
D2

neŠ2� nDn
)

= E
(
D2

n
)

+ O(� n) = E
(
Dn(Dn Š 2)

)
+ 2E Dn + O(� n) = 2� + o(1). (5.29)

Combining (5.26)-(5.29) andE Dn = � n � � , we obtain

lim inf
n� �

inf
t�[ 0,2]

E
(
D3

neŠ� ntDn
)

� E
(
D(D Š 2)2) + 8� Š 4� (5.30)

and thus by (5.25) and (A3),

lim sup
n� �

sup
t�[ 0,2]

� n� Š2
n � ��

n (t) � Š E
(
D(D Š 2)2) < 0. (5.31)

Consequently, forn large,� ��
n (t) < 0 on[0,2], and thus� n is concave in this interval.

Next we verify (5.23). In fact, ifDn � 0, then 1	 � nDn � � n and thus the definition (5.20) implies

� n � E(Dn� 2
n) = � 2

n� n. (5.32)

Thus� 2
n� � n � 1� � n = O(1), since� n � � > 0.

We now complete the proof of (B4� ). We can write the definition (5.21) as

� n� n(t) = E
(
Dn(1 Š eŠ� ntDn)

)
Š � n

(
1 Š eŠ2� nt). (5.33)

Since� n(1) = 0, we thus have

� n� n(2) = � n� n(2) Š 2� n� n(1)
= Š E

(
Dn(1 Š 2eŠ� nDn + eŠ2� nDn)

)
+ � n

(
1 Š 2eŠ2� n + eŠ4� n

)
= Š E

(
Dn(1 Š eŠ� nDn)2) + � n

(
1 Š eŠ2� n

)2
.

(5.34)
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Consequently, using (5.32),

� n� n(2) � � n
(
1 Š eŠ2� n

)2
� 4� n� 2

n � 4� n, (5.35)

and, by (5.20),

Š� n� n(2) � E
(
Dn(1 Š eŠ� nDn)2) � E

(
Dn(1 	 � nDn)2) = � n. (5.36)

Consequently,Š1 � � n(2) � 4 and thus|� n(2)| � 4.
Similarly,

2� n� n( 1
2
) = 2� n� n( 1

2
) Š � n� n(1)

= E
(
Dn(1 Š 2eŠ� nDn� 2 + eŠ� nDn)

)
Š � n

(
1 Š 2eŠ� n + eŠ2� n

)
= E

(
Dn(1 Š eŠ� nDn� 2)2) Š � n

(
1 Š eŠ� n

)2
.

(5.37)

Denote the two terms on the right-hand side of (5.37) byA1 andA2. Since 1Š eŠx � 1 	 x,

A1 � E
(
Dn(1 	 ( � nDn))2) = � n. (5.38)

In order to show that lim infn� � � n( 1
2
) > 0, it thus remains only to show thatA1 is not cancelled

by A2. First,� n � 0 and thusA2 � � n� 2
n � �� 2

n. Furthermore, since 1Š eŠx � xeŠx for x � 0,

A1 �
� 2

n

4
E
(
D3

neŠ� nDn
)
. (5.39)

Thus, using (5.30) and (A3),

lim inf
n� �

A1

A2
� lim inf

n� �

E
(
D3

neŠ� nDn
)

4�
�

E
(
D(D Š 2)2

)
+ 4�

4�
> 1. (5.40)

SinceA1,A2 � 0, it follows thatA1 Š A2 � A1, and thus (5.37) and (5.38) yield

2� n� n( 1
2
) � A1 � � n, (5.41)

which verifies lim infn� � � n( 1
2
) > 0. This completes the proof of (B4� ). ▪

Remark5.11 Note, for later use, that we have shown that, for largen at least,� n is concave on[0,2]
with � n(0) = � n(1) = 0 and, by (5.36),� n(2) � Š1; hence 0� � �

n(1) � Š1, and thus 0� � n(t) � 1Š t
for t � [ 0, 1] and 1Š t � � n(t) � 0 for t � [ 0, 2], so|� n(t)| � 1 for t � [ 0, 2].

We next show that (B5)-(B7) hold if we replace the random processes�An, �Vn and �Sn by their
expectations, at least under the extra assumption thatn� n � � .

Lemma 5.12(Asymptotics of means of�Sn(t), �An(t), �Vn(t)) Assume(A1)-(A4), � n > 0, and addition-
ally that n� n � � . Then, with parameter values as in (5.17)-(5.21), for any fixed t0,

sup
t� t0

|||| 1
n� n

(
E[�Sn(0)] Š E[�Sn(� nt)]

)
Š �h(t)

|||| = o(1), (5.42)
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sup
t� t0

|||| 1
n� n

(
E �Vn(0) Š E �Vn(� nt)

)
Š �g(t)

|||| = o(1), (5.43)

sup
t� t0

|||| 1
n� n

E[�An(� nt)] Š � n(t)
|||| = o(1). (5.44)

Proof We have, using

E D2
n =

1
n

∑
k

k2nk = E Dn(Dn Š 1) + E Dn = � n� n + � n = � n(2 + � n), (5.45)

� n = � n, and the definition (3.10),

1
n� n

(
E[�Sn(0)] Š E[�Sn(� nt)]

)
=

1
n� n

�∑
k=1

k
(

E[ �Vn,k(0)] Š E[ �Vn,k(� nt)]
)

=
1

n� n

�∑
k=1

knk(1 Š eŠ� ntk) =
1
� n

E
(
Dn(1 Š eŠ� ntDn)

)
= t E D2

n +
1
� n

E
(
Dn(1 Š eŠ� ntDn Š � ntDn)

)
= t� n(2 + � n) Š

1
� n

E
(
DnF(� ntDn)

)
.

(5.46)

We now estimate the last term, noting that

0 � F(x) � x 	 x2. (5.47)

Thus, for allt � [ 0, t0],

0 �
1
� n

E
(
DnF(� ntDn)

)
� E

(
Dn(t0Dn 	 ( � nt20D2

n))
)

� (t0 + t20) E
(
D2

n 	 ( � nD3
n)
)
. (5.48)

By (4.3), this isO(� n) = o(1), and (5.42) follows from (5.46) by the definition (5.19) of�h(t).
The proof of (5.43) is similar, and easier, as there is one fewer power ofk involved.
To prove (5.44), note first thatLn(t) is a death process where individuals die at rate 1, except that

when someone dies, another is immediately killed (byC2), so the number of living individuals drops
by 2, except when the last is killed; moreoverLn(0) = 𝓁n Š 1, where we recall from (2.2) that𝓁n = n� n

is the total number of half-edges. We can coupleLn(t) with a similar process�Ln(t) starting at�Ln(0) = 𝓁n

so that both processes jump whenever the smaller jumps, and then

|Ln(t) Š �Ln(t)| � 1 (5.49)

for all t, cf. [36, Proof of Lemma 6.1]. Then1
2

�Ln(t) is a standard death process with intensity 2, starting
at𝓁n� 2, and thusE �Ln(t) = 𝓁neŠ2t. Hence,

|||E Ln(t) Š 𝓁neŠ2t||| = ||E Ln(t) Š E �Ln(t)|| � 1 (5.50)

for all t � 0. Consequently, uniformly in allt � 0,

E[�An(� nt)] = E[Ln(� nt)] Š E[�Sn(� nt)] = 𝓁neŠ2� nt + O(1) Š
�∑

k=0

knkeŠ� ntk (5.51)
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and thus, by (5.21) and the assumptionn� n � � ,

1
n

E �An(� nt) = � neŠ2� nt Š E
(
DneŠ� ntDn

)
+ O

(
nŠ1) = � n� n(t) + o(� n), (5.52)

which proves (5.44). ▪

Remark5.13 In the case whenD3
n is uniformly integrable, or equivalentlyE D3

n � E D3 < � , the
sequence(� Š2

n Dn) 	 D3
n is uniformly integrable (sinceD3

n is), and converges a.s. toD3 if we assume

Dn
a.s.
Š� D, as we may by Section 4.2; consequently, using (5.20),

� n

� 2
n

= E((� Š2
n Dn) 	 D3

n) � E D3 < � . (5.53)

Thus, in this case,� n � � 2
n. In other words, we could have defined� n as� 2

n or, for example,� n� 2
n

in this case, instead of by (5.20) (provided we modify� n accordingly). Moreover, a simple calculation
using (4.9), which we omit, shows that, with	 given by (2.21) and (2.22),

� n(t) �=
	�

2E D3
(t Š t2) + o(1), (5.54)

uniformly on each compact interval; thus we may in this case as an alternative take� n(t) �= 	�
2E D3 (t Š

t2), independently ofn. (Cf. Remark 5.2 and, with a simple change of time scale, Remark 5.6.)

On the other hand, ifE D3 = � , then, assuming againDn
a.s.
Š� D, we have� Š2

n Dn 	 D3
n

a.s.
Š� D3

since� n � 0. Thus Fatou•s lemma yields, instead of (5.53),� n� � 2
n � E D3 = � , that is,

� 2
n = o(� n). (5.55)

Moreover, in this case it is, using (5.55), easy to see that if we define

� n(t) �= E
(
Dn(1 Š eŠt� nDn)

)
Š 2� n� nt, (5.56)

then

� n(t) �= � n(t)� � n + o(1) (5.57)

uniformly on each compact interval; thus we may in this case as an alternative take� n(t) �= � n(t)� � n.
In both these cases we can thus use simpler versions of� n and� n; however, we prefer not to do so;

instead we use definitions (5.20) and (5.21), which work in all cases.

Remark5.14 Typically, as in Example 2.15,E
(
Dn((� nDn) 	 ( � nDn)2)

)
� E

(
Dn(1 	 ( � nDn)2)

)
and

then, by (5.20) and (4.3),

� n = E
(
Dn(1 	 ( � nDn)2)

)
� E

(
Dn(� nDn 	 ( � nDn)2)

)
� � n� n. (5.58)

In this case, we could have used� n �= � n� n instead of the choice (5.20) (provided we modify� n

accordingly).

We next show that the random variables�An(t), �Vn(t) and�Sn(t) are so well concentrated for allt
that we may replace them in conditions (B5), (B6), (B7) by their expectations. For later use, we state
the next estimates in a more general form than needed here; we then give simpler consequences in
Lemma 5.16.
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Lemma 5.15(Concentration of�Sn(t), �An(t), �Vn(t)) Assume(A1)-(A4). Then there exists a constant
C such that, for any u� 0,

E
[
sup
t� u

|�Sn(t) Š E �Sn(t)|2] � CnE
(
D2

n(1 	 uDn)
)
, (5.59)

E
[
sup
t� u

|�Vn(t) Š E �Vn(t)|2] � CnE
(
D2

n(1 	 uDn)
)
, (5.60)

E
[
sup
t� u

|�An(t) Š E �An(t)|2] � CnE
(
D2

n(1 	 uDn)
)

+ C. (5.61)

The final • + CŽ in (5.61) is probably an artefact of our proof, but it is harmless for our purposes.

Proof The process�Vn,k(t) is a simple death process where each individual dies with ratek; it fol-
lows that �Vn,k(t) is a semimartingale with driftŠk�Vn,k(t). Consequently,�Sn(t) =

∑�
k=0 k�Vn,k(t) is a

semimartingale with driftŠ
∑�

k=0 k2�Vn,k(t), and�Sn(t) Š E �Sn(t) is a semimartingale with drift� (t) �=
Š
∑�

k=0 k2(�Vn,k(t) Š E �Vn,k(t)).
We have, noting that�Vn,k(t) are independent and�Vn,k(t) � Bin( nk, eŠkt) for eachk,

E |�Sn(t) Š E �Sn(t)|2 =
�∑

k=0

Var(k�Vn,k(t)) =
�∑

k=0

k2 Var(�Vn,k(t))

=
�∑

k=0

k2nkeŠkt(1 Š eŠkt) �
�∑

k=0

nkk2(kt 	 ( kt)Š1). (5.62)

Similarly

E |� (t)|2 =
�∑

k=0

Var(k2�Vn,k(t)) =
�∑

k=0

k4 Var(�Vn,k(t)) =
�∑

k=0

k4nkeŠkt(1 Š eŠkt)

�
�∑

k=0

nkk4eŠkt(1 	 kt).

(5.63)

Hence, for some constantC1,

�∑
j=0

E |�Sn(2Šju) Š E �Sn(2Šju)|2 �
�∑

k=0

nkk2
�∑
j=0

(
2Šjku 	 ( 2Šjku)Š1).

� C1

�∑
k=0

nkk2(ku	 1)

(5.64)

and

�

u

0
t E

[
� (t)

]2
dt �

�∑
k=0

nkk4

�

u

0
eŠkt(t 	 kt2) dt �

�∑
k=0

nkk2(1 	 ( ku)3).

Consequently, Lemma 4.2 yields

E
[
sup
t� u

|�Sn(t) Š E �Sn(t)|2] � C2

�∑
k=0

nkk2(1 	 ku) + C3

�∑
k=0

nkk2(1 	 ( ku)3)

� C4

�∑
k=0

nkk2(1 	 ku) = C4nE
(
D2

n(1 	 ( uDn)
)
.

(5.65)

This yields (5.59).
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We obtain (5.60) similarly; the estimates are the same, but with smaller powers ofk, which can
only help us.

Moreover, by a similar argument (but without having to sum overk), or by [36, Lemma 6.1] (with
a modification foru > 1),

E
[
sup
t� u

|| �Ln(t) Š E �Ln(t)||2] � C5n(u 	 1), (5.66)

and thus, by (5.49),

E
[
sup
t� u

|Ln(t) Š E Ln(t)|2] � C6n(u 	 1) + C7. (5.67)

By definition, �An(t) = Ln(t)Š �Sn(t), and thus (5.61) follows by combining (5.67) and (5.59), noting
thatE D2

n(uDn 	 1) � P(Dn = 1)(u 	 1) andP(Dn = 1) � P(D = 1) > 0 by Remark 2.4. ▪

Lemma 5.16(Concentration of�Sn(t), �An(t), �Vn(t)) Assume (A1)…(A4). Let, as above,� n = � n =
Š log(1 Š � n), as in (5.18). Then, for any fixed t0,

sup
t� t0

|||�Sn(� nt) Š E �Sn(� nt)||| = Op
(
(n� n)1� 2), (5.68)

sup
t� t0

|||�Vn(� nt) Š E �Vn(� nt)||| = Op
(
(n� n)1� 2), (5.69)

sup
t� t0

|||�An(� nt) Š E �An(� nt)||| = Op
(
(n� n)1� 2 + 1

)
. (5.70)

Proof Takingu = � nt0, we obtain by (4.3),

E
(
D2

n(1 	 uDn)
)

� (1 
 t0) E
(
D2

n(1 	 � nDn)
)

= O(� n). (5.71)

Thus the right-hand sides of (5.59) and (5.60) and (5.61) areO(n� n) andO(n� n + 1), respectively;
hence (5.68)-(5.70) follow using Markov•s inequality. ▪

The final three lemmas provide further estimates of the quantities� n = � n and� n as set in (5.18)
and (5.20).

Lemma 5.17 Assume (A1)…(A4). If� n� n = O(1), then

� n � � n �
� n

E D3
n

, (5.72)

� n � � n� n �
� 2

n

E D3
n

. (5.73)

Proof We have� nDn � � n� n = O(1), and thus

(1 	 � nDn) � � nDn. (5.74)

Hence (4.3) implies

� n � E(� nD3
n) (5.75)

and (5.72) follows, recalling (4.2).
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Furthermore, (5.74) and (5.20) yield, using (5.75),

� n � E(� 2
nD3

n) = � n E(� nD3
n) � � n� n, (5.76)

showing (5.73). ▪

Lemma 5.18 Assume(A1)-(A4) and� n > 0. If

(n� n)1� 2 = o(n� n), (5.77)

then(B8) holds, that is,

� n = o(n� n). (5.78)

Proof Suppose first that� n� n � 1. Then, using (5.73),

� n

n� n
�

1
n� n� n

= O
( � n

n� 2
n

)
= O

( n� n

(n� n)2

)
, (5.79)

and thus (5.78) follows from (5.77) in this case.
Suppose next that� n� n � 1. SinceP(Dn = � n) � 1� n, we have by (4.3)

� n � E
(
D2

n(1 	 ( � nDn))
)

�
1
n

� 2
n(1 	 ( � n� n)) =

� 2
n

n
. (5.80)

Consequently,� n = O
(
(n� n)1� 2

)
, and thus (5.77) implies (5.78) in this case too. ▪

Lemma 5.19 Assume(A1)-(A4) and� n > 0. Then

� 2
n = O

(
� n E D3

n
)
. (5.81)

Proof The Cauchy-Schwarz inequality yields, using (5.20),(
E
(
D2

n(1 	 � nDn)
))2

� E
(
Dn(1 	 � nDn)2)E

(
D3

n
)

= O
(
� n E D3

n
)
. (5.82)

Hence the result follows by (4.3). ▪

Proof of Theorem 2.6 First note that (B1)-(B4) hold for the parameter values in (5.17)-(5.21) by
Lemma 5.10.

Next, by Lemma 5.19,

n� n

(n� n)2
=

� 4
n

� 2
nn� 3

n

= O
(

(E D3
n)2

n� 3
n

)
, (5.83)

which is o(1) by the assumption. Hence (5.77) holds. Consequently, Lemma 5.18 shows that (5.78)
holds. In other words, (B8) holds.

Since� n � 1, (5.78) implies

n� n � � , (5.84)

and thus Lemma 5.12 applies and shows (5.42)…(5.44).
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Moreover, (5.77) and (5.84) imply that the right-hand sides of (5.68)-(5.70) areop(n� n). Fur-
thermore,� n = O(� n) by (B2), see (5.24). Hence Lemmas 5.12 and 5.16 yield (B5), (B6) and
(B7).

We have verified (B1)-(B8), so Theorem 5.4 applies and the result follows, recalling (5.17), (5.19),
(2.10) and (4.2). Note that�g(� ) = �h(� )� 2, so the asymptotics forv(� 1) ande(� 1) are the same. ▪

Proof of Theorem 2.8 By assumption,E D3
n = O(1) and� nn1� 3 � � , so Theorem 2.6 applies; thus

(2.19) holds. Furthermore, as said in Section 4.1, Theorem 3.1(ii) applies withXn = �Dn and yields
(4.9), which together with (2.10) yields the first equality in (2.23); the second equality then follows by
(2.6). Similarly, (2.20) and (4.9) (or (3.2)) yield (2.24). ▪

Proof of Theorem 2.9 Again, Theorem 2.6 applies. Moreover, by (2.15), we haveE �D2 = E
(
D(D Š

1)2
)
� E D = � , and so Theorem 3.1(iii) applies, yielding� n = o(� n). ▪

Proof of Theorem 2.10 Theorem 2.6 applies.
(i): Follows from (2.19), (3.3) forXn = �Dn and (2.26).
(ii): Now, by (2.15),E �D2

n � E D3
n� E Dn = O(1). Hence Theorem 3.1(i) applies and yields� n � � n;

consequently (2.19) implies (2.30).
(iii): By (2.28) and (2.26),E D3

n = O(	 n) = O
(
E[ �Dn(�Dn Š1)]

)
= O

(
E[ �D2

n]
)
. Thus, the assumption

implies� n� n = o
(
E[ �D2

n]
)
. Hence, Theorem 3.1(iv) applies and (2.31) follows by (2.26) and (2.28).▪

6 THE CRITICAL CASE

We define, for convenience and for comparison with Hatami and Molloy [24],

Rn �= E D3
n. (6.1)

The basic condition for the critical case in Theorem 2.12 is thus, as in [24],

� n = O
(
nŠ1� 3R2� 3

n
)
. (6.2)

Remark6.1 OurRn is not exactly the same asR defined by Hatami and Molloy [24], which equals
ourE Dn(Dn Š 2)2� E Dn = 	 n Š � n, see (2.26) and (2.6), but the two values are equivalent in the sense
Rn � RHatamiMolloy, see (2.28) and (2.27); hence the two values are equivalent for our purposes.

Note that, as said in Remark 2.13,Rn � 1
n
� 3

n and hence always

� n � (nRn)1� 3. (6.3)

Note also that in Theorem 2.12 we impose the slightly stronger condition (2.32), that is,

� n = o
(
(nRn)1� 3). (6.4)

Furthermore, by (A2),

Rn = E D3
n � � n E D2

n = O(� n). (6.5)
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Hence, (6.4) implies� 3
n = o(nRn) = o(n� n) and thus� 2

n = o(n) and

� n = o
(
n1� 2), (6.6)

and thus also, by (6.5),

Rn = o
(
n1� 2). (6.7)

In Theorem 2.12 we assume both (6.2) and (6.4), and it follows from (6.2) and (6.7) that� n = o(1),
so (A4) follows from the other conditions. (However, for emphasis we keep it in the statements in
Theorem 2.12 and below.)

Note also that, using (5.45) and (2.10),Rn � E D2
n � 2� > 0, so Rn is bounded below and

RŠ1
n = O(1).

We continue to work with the configuration model and the multigraphG�
n as in the preceding

section. In Section 6.3 we give additional arguments for the graph case.

6.1 Proof of Theorem 2.12(i)

The idea is to use Theorem 2.6 for the supercritical case and a kind of monotonicity in� n; it is intuitively
clear that a larger� n ought to result in a larger largest component, and thus the supercritical case will
provide an upper bound for the critical case. The formal details are as follows.

Proof of Theorem 2.12(i) Let � (n) � � slowly, so slowly that, cf. (6.7) and (6.4),

� (n)Rn = o
(
n1� 2), (6.8)

� (n)� n � (nRn)1� 3. (6.9)

Let mn �= ⌊n2� 3R2� 3
n � (n)2� 3⌋. Change the degree sequence(� i )i�[ n] to ( �� i )i�[ n] by replacing 2mn

vertices of degree 1 bymn vertices of degree 0 andmn vertices of degree 2. This is possible (at least
for largen) becausen1� n = P(Dn = 1) � P(D = 1) > 0, see Remark 2.4, and thus, using (6.8),

mn � n2� 3(Rn� (n))2� 3 = o(n) = o(n1). (6.10)

We denote the variables for the modified degree sequence by�Dn and so on. Note that the modifica-
tion does not change the sum of vertex degrees, soE �Dn = E Dn = � n, but it increasesE[Dn(Dn Š 1)]
by 2mn� n � 2nŠ1� 3R2� 3

n � (n)2� 3. Thus, using (6.2) and� (n) � � ,

�� n = � n + 2mn� n � 2nŠ1� 3R2� 3
n � (n)2� 3. (6.11)

Similarly, Rn = E D3
n is increased to

�Rn = E �D3
n = Rn +

6mn

n
= Rn + o(1) � Rn, (6.12)

where we have used (6.10) to see that the difference is insignificant. Furthermore, it is easily seen that
(A1)-(A4) still hold (with the sameD), using (6.10) and (6.11) for (A1) and (A4).
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Since (6.11) and (6.12) imply�� n � nŠ1� 3 �R2� 3
n , and (6.11) and (6.9) imply�� n� n = o(Rn),

Theorem 2.10(iii) applies to the modified degree sequence and yields, w.h.p.,

v( �� 1) � C� �� nn
Rn

= o
(
n2� 3RŠ1� 3

n � (n)
)
. (6.13)

In particular, w.h.p.

v( �� 1) � n2� 3RŠ1� 3
n � (n). (6.14)

We can obtainG� (n, ( �� i )i�[ n] ) from G� (n, (� i )i�[ n] ) by mergingmn pairs of vertices of degree 1 into
vertices of degree 2, and addingmn vertices of degree 0 to keep the total number of vertices. Any
connected set� of vertices inG� (n, (� i )i�[ n] ) then corresponds to a connected set of at leastv(� )� 2
vertices inG� (n, ( �� i )i�[ n] ). Consequently,v( �� 1) � 1

2
v(� 1) and thus (6.14) implies, w.h.p.,

v(� 1) � 2v( �� 1) � 2n2� 3RŠ1� 3
n � (n). (6.15)

Since� (n) � � arbitrarily slowly, (6.15) impliesv(� 1) = Op(n2� 3RŠ1� 3
n ). (If not, we could find


 > 0 andK = K(n) � � such that, at least along a subsequence,P
(
v(� 1) � K(n)n2� 3RŠ1� 3

n
)

� 
 . We
choose� (n) with � (n) � K(n)� 2 to obtain a contradiction. See also [32].) This completes our proof
of (2.33). ▪

Remark6.2 In our proof we needed only the simple, deterministic boundv(� 1) � 2v( �� 1). Actually,
when Theorem 2.12(i) is proved, it implies together with Theorem 2.10(iii) that w.h.p.v(� 1) � v( �� 1),
that is, that the giant component�� 1 for the modified sequence w.h.p. is much larger than� 1 for the
original sequence; the reason is that, in the merging described above, the giant component typically
absorbs many small components.

Example 6.3 Consider a critical example with� n = O(nŠ1� 3), Rn = O(1) and� n = o(n1� 3). For
example (as in [24]), we can let 3� 4 of all vertices have degree 1 and the rest degree 3. Alternatively,
we can take the Erd�os-Rényi graphG(n,1� n) and condition on the degree sequence, as described for
general rank-1 inhomogeneous random graphs in Section 2.6. Thenv(� 1) is typically of ordern2� 3, see
[24, Theorem 2.12].

Let mn be integers withn1� 3 � mn � n1� 2. Modify the degree sequence(� i )i�[ n] to ( �� i )i�[ n] by
mergingmn vertices of degree 1 to a single vertex of degreemn, and addingmn Š 1 vertices of degree
0. Then it is easily seen that�� n � m2

n� n, �Rn � m3
n� n and �� n = mn. Thus (6.2) holds for the modified

sequence but not (6.4). Furthermore,

v( �� 1) � v(� 1) Š mn (6.16)

sov( �� 1) is typically also of order (at least)n2� 3. Hence, (2.33) fails.

6.2 Proof of Theorem 2.12(ii) in the multigraph case

In this section, we consider only the multigraph case. Unlike all other results in this paper, the graph
case does not follow immediately by conditioning. We treat the graph case in the next section.
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We use the cluster exploration process and notation from Section 5.1. Let

t1 �=
(
nRn

)Š1� 3
, (6.17)

and note thatt1 = O(nŠ1� 3) = o(1) and, by (6.7),t1 � nŠ1� 2 and thusnt1 � � andnt21 � � .
Furthermore, let

� 2
n �= Var �Sn(t1). (6.18)

Lemma 6.4 Assume(A1)-(A4) and (6.4).

(i) Then

� 2
n �

(
nRn

)2� 3
. (6.19)

Moreover,�Sn(t1) is asymptotically normal:

(
�Sn(t1) Š E �Sn(t1)

)
� � n

d
Š� N(0,1). (6.20)

(ii) Let � 2
L,n �= 4nt1� n. Then Ln(t1) is asymptotically normal, with

(
Ln(t1) Š E Ln(t1)

)
� � L,n

d
Š� N(0,1). (6.21)

Furthermore,lim sup� 2
L,n� � 2

n < 1.
(iii) For any b> 0, there exists c(b) > 0 such that

P
(
�An(t1) Š E �An(t1) > b� n

)
� c(b) + o(1). (6.22)

Proof (i): We have, see Section 5.1 and in particular (5.2),�Sn(t) =
∑

i�[ n] � i Ii (t), whereIi(t) is the indi-
cator that no half-edge at vertexi has died spontaneously up to timet. These indicators are independent
andIi(t) � Be( eŠ� i t). Hence, as in (5.62) but written slightly differently, noting thatt1� i � t1� n = o(1)
by (6.17) and (6.4),

Var �Sn(t1) =
∑
i�[ n]

� 2
i Var Ii (t1) =

∑
i�[ n]

� 2
i eŠ� i t1

(
1 Š eŠ� i t1

)
�

∑
i�[ n]

� 3
i t1 = t1nRn =

(
nRn

)2� 3
,

which is (6.19). Similarly, withYi �= � i Ii (t1) and using (6.4),

∑
i�[ n]

E |Yi Š E Yi|3 =
∑
i�[ n]

� 3
i E |Ii (t1) Š E Ii(t1)|3 �

∑
i�[ n]

� 3
i Var Ii (t1) �

∑
i�[ n]

� 4
i t1

= t1nE D4
n � t1n� nRn = o(nRn) = o

(
� 3

n
)
.

(6.23)

Consequently, the central limit theorem with Lyapounov•s condition [23, Theorem 7.2.2] applies
and yields (6.20).

(ii): We use the modified process�Ln(t) defined just before (5.50). Then1
2

�Ln(t) � Bin
( 1

2
𝓁n, eŠ2t

)
for everyt � 0. In particular, recalling from (2.2) and (2.4) that𝓁n = n� n,

Var �Ln(t1) = 4 ⋅ 1
2
𝓁neŠ2t1

(
1 Š eŠ2t1

)
� 4𝓁nt1 = � 2

L,n. (6.24)
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Sincent1 � � , we have� 2
L,n � � , and the central limit theorem for the binomial distribution

yields
(

�Ln(t1) Š E �Ln(t1)
)
� � L,n

d
Š� N(0,1). Since|Ln(t1) Š �Ln(t1)| � 1 by (5.49), (6.21) follows.

Furthermore,

� 2
n

� 2
L,n

=
� 2

n

4nt1� n
�

(nRn)2� 3

4n(nRn)Š1� 3� n
=

Rn

4� n
=

E D3
n

4E Dn
. (6.25)

Consequently, using (5.30) (witht = 0),

lim inf
n� �

� 2
n

� 2
L,n

=
lim inf E D3

n

4E D
�

E
(
D(D Š 2)2

)
+ 4�

4�
> 1. (6.26)

(iii): By (ii), there exists
 > 0 such that, for largen, � L,n < (1 Š 2
 )� n. Let a �= 
 Š1b and let�
be the usual standard normal distribution function. Then, by (6.20) and (6.21),

P
(
�Sn(t1) Š E �Sn(t1) < Ša� n

)
� �(Š a), (6.27)

P
(
Ln(t1) Š E Ln(t1) < Š(1 + 
 )a� L,n

)
� �(Š( 1 + 
 )a). (6.28)

Hence, with probability at leastc + o(1), wherec �= �(Š a) Š �(Š( 1 + 
 )a) > 0, we have
�Sn(t1) Š E �Sn(t1) < Ša� n andLn(t1) Š E Ln(t1) � Š(1 + 
 )a� L,n, and thus, recalling (5.3),

�An(t1) Š E �An(t1) > a� n Š (1 + 
 )a� L,n > a� n Š (1 + 
 )(1 Š 2
 )a� n > 
 a� n = b� n. (6.29)
▪

Remark6.5 Presumably,�Sn(t1) and Ln(t1) are asymptoticallyjointly normal, which would imply
that �An(t1) is asymptotically normal and yield a more direct proof of (6.22). However, it seems more
technical to prove joint asymptotic normality here, so instead we prefer the more elementary argument
above.

Lemma 6.6 Assume(A1)-(A4) and (6.2) and (6.4). Then, uniformly for t� t1,

E �Sn(t) = n� n Š 2tn� n + O(� n), (6.30)

E Ln(t) = n� neŠ2t + O(1) = n� n Š 2tn� n + O(� n), (6.31)

E �An(t) = O(� n). (6.32)

Proof Similarly to the proof of Lemma 5.12,Vn,k(t) � Bin( nk, eŠkt) and thus, using (5.45),

E �Sn(t) =
�∑

k=0

kE Vn,k(t) =
�∑

k=0

knkeŠkt =
�∑

k=0

knk
(
1 Š kt + O(k2t2)

)
= nE Dn Š tnE D2

n + O(t2nE D3
n)

= n� n Š tn� n(2 + � n) + O(t21nRn),

(6.33)

which yields (6.30) by (6.2), (6.17) and (6.19).
Furthermore, by (5.50),

E Ln(t) = n� neŠ2t + O(1) = n� n Š 2tn� n + O(nt21 + 1), (6.34)
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and (6.31) follows because, by (6.17) and (6.19),

nt21 + 1 � nt21 = n1� 3RŠ2� 3
n � � nRŠ1

n = O(� n). (6.35)

Finally, (6.32) follows from (6.30) and (6.31). ▪

Lemma 6.7 Assume(A1)-(A4) and (6.2) and (6.4). Then,

E
[
sup
t� t1

||�An(t)||2] = O(� 2
n). (6.36)

Proof By Lemma 5.15, together with (6.17) and (6.19),

E
[
sup
t� t1

|�An(t) Š E �An(t)|2] � CnE
(
D2

n(1 	 t1Dn)
)

+ C

� Cnt1 E
(
D3

n
)

+ C = Cnt1Rn + C = O(� 2
n).

(6.37)

Furthermore, supt� t1
|E �An(t)| = O(� n) by (6.32), and (6.36) follows. ▪

For ease of notation, letNk �= �Vn,k(t1), the (random) number of vertices of degreek such that none
of their half-edges dies spontaneously by timet1. Thus�Sn(t1) =

∑
k kNk, see (5.2). Let further

Zn �=
�∑

k=0

k2(nk Š Nk) � 0. (6.38)

Lemma 6.8 Assume(A1)-(A4) and (6.2) and (6.4). Then, there exists a constant C8 such that w.h.p.

Zn � C8� 2
n. (6.39)

Proof Nk � Bin( nk, eŠkt1) and thus, using (6.17) and (6.19),

E Zn =
�∑

k=0

k2nk
(
1 Š eŠkt1

)
�

�∑
k=0

k3nkt1 = t1nRn = O(� 2
n). (6.40)

Furthermore, using also (6.4),

Var Zn =
�∑

k=0

k4 Var Nk �
�∑

k=0

k4nk
(
1 Š eŠkt1

)
�

�∑
k=0

k5nkt1

= t1nE D5
n � t1n� 2

nRn = o
(
(nRn)4� 3) = o(� 4

n).

(6.41)

Now (6.39) follows by (6.40) and (6.41) and Chebyshev•s inequality. ▪

We condition on� t1, the� -field generated by all events up to timet1. Note that� t1 determinesNk,
and thus�Sn(t1) andZn, and alsoLn(t1) and�An(t1).

Lemma 6.9 Assume(A1)-(A4) and (6.2) and (6.4). For any fixed B< � and all t � [ 0,Bt1],

E
(
�Sn(t1 + t) � � t1

)
= �Sn(t1) Š 2tn� n + tZn + O(� n), (6.42)

E
(
Ln(t1 + t) � � t1

)
� Ln(t1) Š 2tn� n + O(� n), (6.43)

E
(
�An(t1 + t) � � t1

)
� �An(t1) Š tZn + O(� n). (6.44)
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Proof We have, in analogy with (6.33), using (6.38),

E
(
�Sn(t1 + t) � � t1

)
=

�∑
k=0

kNkeŠkt =
�∑

k=0

kNk
(
1 Š kt + O(k2t2)

)
= �Sn(t1) Š t

( �∑
k=0

k2nk Š Zn

)
+ O

(
t2

�∑
k=0

k3nk

)
= �Sn(t1) Š tnE D2

n + tZn + O
(
t2nRn

)
.

(6.45)

Then (6.42) follows by (5.45) and estimates as in the proof of Lemma 6.6, using (6.2), (6.17), (6.19)
and the assumptiont = O(t1).

For Ln we use again the coupling with�Ln. As 1
2

�Ln(t) is a standard death process with intensity 2,

E
(
Ln(t1 + t) � � t1

)
= E

(
�Ln(t1 + t) � � t1

)
+ O(1) = �Ln(t1)eŠ2t + O(1)

= Ln(t1) Š 2tLn(t1) + O(1 + nt2).
(6.46)

Then (6.43) follows, sinceLn(t1) < 𝓁n = n� n, using again (6.35).
Finally, (6.44) follows from (6.42) and (6.43). ▪

Lemma 6.10 Assume(A1)-(A4). For any fixed B< � and all t � [ 0,Bt1],

E
[

sup
t� Bt1

|||�Sn(t1 + t) Š E
(
�Sn(t1 + t) � � t1

)|||2 ||| � t1

]
= O(� 2

n), (6.47)

E
[

sup
t� Bt1

|||Ln(t1 + t) Š E
(
Ln(t1 + t) � � t1

)|||2 ||| � t1

]
= O(� 2

n), (6.48)

E
[

sup
t� Bt1

|||�An(t1 + t) Š E
(
�An(t1 + t) � � t1

)|||2 ||| � t1

]
= O(� 2

n). (6.49)

Proof Conditioned on� t1, the process�Sn(t1 + t) is exactly as�Sn(t), but starting withNk vertices of
degreek instead ofnk. Hence the arguments in (5.62)-(5.65) in the proof of Lemma 5.15 hold in this
case too and, sinceNk � nk, we obtain, for anyu � 0,

E
[
sup
t� u

|||�Sn(t1 + t) Š E
(
�Sn(t1 + t) � � t1

)|||2 ||| � t1

]
� C4nE

(
D2

n(uDn 	 1)
)

� C4nuE D3
n.

The result (6.47) follows by takingu = Bt1, using again (6.1), (6.17) and (6.19).
Similarly, as in (5.67), or by [36, Lemma 6.1] after conditioning on� t1, we obtain, sincet1 = o(1),

E
[

sup
t� Bt1

|||Ln(t1 + t) Š E
(
Ln(t1 + t) � � t1

)|||2 ||| � t1

]
= O(nt1 + 1). (6.50)

Furthermore, as said above,nt1 � � andRŠ1
n = O(1), and thus, cf. (6.35),

nt1 + 1 � nt1 = n2� 3RŠ1� 3
n � � 2

nRŠ1
n = O(� 2

n). (6.51)

Hence, (6.50) yields (6.48). Finally, (6.49) follows by combining (6.47) and (6.48). ▪
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Lemma 6.11 Assume(A1)-(A4) and (6.2) and (6.4). For any fixed B> 1, there is some p(B) > 0
such that with probability at least p(B) + o(1),

�An(t) > 0 for all t � [ t1,Bt1]. (6.52)

Proof Fix B > 1. Letb > 0 be another fixed number, to be determined later. Consider the event

	 (b) �=
{

�An(t1) Š E �An(t1) > b� n and Zn � C8� 2
n
}

, (6.53)

with C8 as in Lemma 6.8. By (6.22) and (6.39),P(	 (b)) � c(b) + o(1), wherec(b) > 0 is independent
of n. Define also the family of events{ 	 1(C) � C > 0} , with 	 1(C) given by

	 1(C) �=
{

sup
t� Bt1

|||�An(t1 + t) Š E
(
�An(t1 + t) � � t1

)||| � C� n

}
. (6.54)

Furthermore, let

	 (b,C) �= 	 (b) � 	 1(C). (6.55)

Note that	 (b) � � t1. Hence, by Lemma 6.10 and Chebyshev•s inequality, there exists a constant
C9 such that

P(	 1(C) � 	 (b)) � 1 Š
C9� 2

n

(C� n)2
= 1 Š

C9

C2
. (6.56)

Consequently, if we chooseC �= 2C1� 2
9 , then

P(	 (b,C)) = P(	 1(C) � 	 (b)) P(	 (b)) � 3
4

P(	 (b)) � 3
4
c(b) + o(1). (6.57)

On the event	 (b,C), we have by (6.54), (6.44), (6.53), (6.32) and (6.17), for anyt � [ 0,Bt1],

�An(t1 + t) � E
(
�An(t1 + t) � � t1

)
Š C� n � �An(t1) Š tZn + O(� n)

> b� n + E �An(t1) Š C8t� 2
n + O(� n)

= b� n + O(� n).
(6.58)

The implicit constants here depends onB but not onb; thus the final error termO(� n) � ŠC10(B)� n

for someC10(B). Hence we may for anyB chooseb = b(B) �= C10(B), and the result follows, with
p(B) = 3

4
c(b(B)). ▪

We can obtain results for�Vn similar to the results for�Sn above (in Lemmas 6.4, 6.6, 6.9, and 6.10)
by the same arguments. However, we have no need for such results involving conditioning and uniform
estimates; the following simple results are enough.

Lemma 6.12 Assume(A1)-(A4) and (6.4). Fix B> 0. For any t � [ 0,Bt1],

�Vn(t) = n Š n� nt + Op
(
nt21 +

√
nt1

)
= n Š n� nt + op(nt1). (6.59)
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Proof Recall that�Vn(t) =
∑

k
�Vn,k(t) where �Vn,k(t) are independent and�Vn,k(t) � Bin

(
nk, eŠkt

)
.

Hence,

E �Vn(t) =
�∑

k=0

nkeŠkt =
�∑

k=0

nk
(
1 Š kt + O(k2t2)

)
= n Š n� nt + O(nt2) (6.60)

and

Var �Vn(t) =
�∑

k=0

nkeŠkt(1 Š eŠkt) �
�∑

k=0

nkkt = n� nt = O(nt). (6.61)

The first equality in (6.59) follows from (6.60)-(6.61). The second follows becausent21 = o(nt1)
and

√
nt1 = o(nt1). ▪

Lemma 6.13 Assume(A1)-(A4) and (6.4), and define V�n(t) �= �Vn(t) Š Vn(t) � 0. Fix B > 1. Then

V�
n(t1) Š V�

n(Bt1) � Op(t1� n) = op(nt1). (6.62)

Proof V�
n,k(t) �= �Vn,k(t) Š Vn,k(t) is the number of vertices of degreek that are awake at timet, but

their k half-edges all have maximal life times larger thant. This number may increase whenC1 is
performed, and it decreases when a half-edge at one of these vertices dies spontaneously (andC3 is
performed). Consequently, conditioning of� t1, for anyt � 0,

E
(
(V�

n,k(t1) Š V�
n,k(t1 + t))+ � � t1

)
� ktV�

n,k(t1).

Summing overk yields, using (5.2),

E
(
(V�

n(t1) Š V�
n(t1 + t))+ � � t1

)
� t

(
�Sn(t1) Š Sn(t1)

)
. (6.63)

By (5.4) and Lemma 6.7, noting that� n = O(� n) by (6.3) and (6.19),

�Sn(t1) Š Sn(t1) < sup
t� t1

|�An(t)| + � n = Op(� n). (6.64)

In other words, for every� > 0 there existK(� ) independent ofn such that

P
(
�Sn(t1) Š Sn(t1)) > K(� )� n

)
� �. (6.65)

Furthermore, for any fixedK, (6.63) implies

E
(
(V�

n(t1) Š V�
n(t1 + t))+ � �Sn(t1) Š Sn(t1) � K� n

)
= O(t� n). (6.66)

It follows by (6.66), Markov•s inequality and (6.65) that, for anyt > 0,

(V�
n(t1) Š V�

n(t1 + t))+ = Op(t� n). (6.67)

Now taket = (B Š 1)t1. ▪
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Proof of Theorem 2.12(ii) Note that the assumptions include (6.2) and (6.4). Recall also thatAn(t) �
�An(t) for all t, see (5.4). Hence by Lemma 6.11, for everyB > 1, there existsp(B) > 0 such that with
probability at leastp(B) + o(1), An(t) � �An(t) > 0 for all t � [ t1,Bt1]. By the discussion in Section 5.1,
this means thatC1 is not performed during the interval[t1,Bt1] and thus all vertices awakened during
this interval belong to the same component, say� . The number of these vertices isVn(t1) Š Vn(Bt1).
Consequently, with probability at leastp(B) + o(1),

v(� 1) � v(� ) � Vn(t1) Š Vn(Bt1). (6.68)

Furthermore, by Lemmas 6.13 and 6.12,

Vn(t1) Š Vn(Bt1) = �Vn(t1) Š �Vn(Bt1) + V�
n(Bt1) Š V�

n(t1) � �Vn(t1) Š �Vn(Bt1) + op(nt1)
= n� n(B Š 1)t1 + op(nt1) = n� (B Š 1)t1 + op(nt1).

(6.69)

Hence,Vn(t1) Š Vn(Bt1) >
(
� (B Š 1) Š 1

)
nt1 w.h.p.

Finally, given anyK > 0, chooseB such that� (B Š 1) = K + 1. Then (6.68) and (6.69) thus show
that, with probability at leastp(B) + o(1), recalling (6.17),

v(� 1) � Vn(t1) Š Vn(Bt1) > Knt1 = Kn2� 3RŠ1� 3
n , (6.70)

which completes the proof of (2.34). ▪

6.3 Proof of Theorem 2.12(ii) in the graph case

Unlike the other results in this paper, Theorem 2.12(ii) says that a certain event asymptotically has a
positive but possibly small probability. In order to obtain the same result for the simple random graph
Gn from the result forG�

n, we have to show that this event has a large intersection with the event
	 s �= { G�

n is simple} .
Recall that (A2) impliesP(	 s) � cs + o(1) for somecs > 0. In fact, (6.6) and (A4) imply, see e.g.

[29, Corollary 1.4] or [2, Theorem 1.1],

P(	 s) = eŠ� n� 2Š� 2
n� 4 + o(1) = eŠ3� 4 + o(1), (6.71)

so we takecs �= eŠ3� 4.
We claim the following:

Lemma 6.14 Assume(A1)-(A4) and (6.4). Then the asymptotic normality (6.20) and (6.21) hold
also conditioned on	 s. (The expectations in (6.20) and (6.21) are still for the configuration model,
without conditioning.)

We postpone the proof of the lemma.

Proof of Theorem 2.12(ii) in the graph case Note that, given Lemma 6.14, we obtain also (6.22)
conditioned on	 s by the argument in the proof of Lemma 6.4. That is, for anyb > 0, there exists
c(b) > 0 such that

P
(
�An(t1) Š E �An(t1) > b� n � 	 s

)
� c(b) + o(1). (6.72)
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Consider now Lemma 6.11. It follows, similarly to the first part of the proof of Lemma 6.11, that
P(	 (b) � 	 s) � c(b) + o(1). Hence,P(	 (b) � 	 s) � c(b)cs + o(1). Since	 s 
 � t1, we modify the next
part of the proof of Lemma 6.11. By (6.56),

P
(
	 1(C) � 	 s � 	 (b)

)
� P

(
	 1(C) � 	 (b)

)
+ P

(
	 s � 	 (b)

)
Š 1

� 1 Š
C9

C2
+ P

(
	 s � 	 (b)

)
Š 1

� csc(b) Š
C9

C2
+ o(1) � 1

2
csc(b) + o(1),

(6.73)

for a suitable choice ofC. The rest of the proof of Lemma 6.11 works as before. We obtain, using
(6.73),

P
(
	 (b,C) � 	 s

)
= P

(
	 (b) � 	 1(C) � 	 s

)
� 1

2
csc(b)2 + o(1). (6.74)

Hence we conclude, using (6.58) as before, that, for anyB > 1,

P
(
{ �An(t) > 0� t � [ t1,Bt1]} � 	 s

)
� p(B) + o(1) (6.75)

for some (new)p(B) > 0, wheret1 is as in (6.17). Finally, the proof of Theorem 2.12(ii) above yields,
cf. (6.70),P({ v(� 1) � Kn2� 3RŠ1� 3

n } � 	 s) � p(B) + o(1), and thusP(v(� 1) � Kn2� 3RŠ1� 3
n � 	 s) �

p(B) + o(1), which completes the proof of Theorem 2.12(ii) for the simple random graphGn. ▪

It remains only to prove Lemma 6.14. This could be done by the method used for similar results in
[37,38], see also [35], but we prefer an alternative, simpler, argument.

Proof of Lemma 6.14 Consider the conditional analogue of (6.20); the proof of conditional (6.21) is
identical.

Let a � R and let	 a �= {
(
�Sn(t1) Š E �Sn(t1)

)
� � n � a} ; thus, by (6.20),

P(	 a) � �( a). (6.76)

LetT� denote the first time that a connected component is completely explored after timet1. LetB >
1. If T� > Bt1, then the component� explored untilT� has at leastVn(t1) Š Vn(T�Š) � Vn(t1) Š Vn(Bt1)
vertices, and hence, using Lemmas 6.12 and 6.13,

v(� 1) � v(� ) � Vn(t1) Š Vn(Bt1) = n� n(B Š 1)t1 + op(nt1). (6.77)

It follows from Theorem 2.12(i) that, for any
 > 0 and any fixedB such that� (BŠ 1) > K(
 ), we
haveP(T� > Bt1) < 
 + o(1). Consequently, ifBn � � , thenP(T� > Bnt1) < 2
 for any
 > 0 and all
largen, and thusT� � Bnt1 w.h.p. Note that (6.17) and (6.7) imply that

t1Rn = nŠ1� 3R2� 3
n = o(1), (6.78)

and that, since 1= O(Rn), we also havet1 = o(1). We may thus fix a sequenceBn � � such that
Bnt1 = o(1) andBnt1Rn = o(1).

Let T�� be the first time that the number of sleeping half-edgesSn(t) drops below𝓁n� 2. (Recall that
Sn(0) = 𝓁n = n� n.) At time Bnt1, the expected number of times thatC3 has been performed is at most
Bnt1𝓁n = o(𝓁n), and corresponding to a few of these times alsoC1 was performed; it follows easily
that the expected number of sleeping half-edges atBnt1 is 𝓁n Š o(𝓁n), and thus w.h.p.T�� > Bnt1.
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Let 
 T� denote the event that all the components explored by timeT� are simple.
The probability that vertexi is awakened no later than time(Bnt1) 	 T�� by usingC1 or C3 is

O(Bnt1� i ), and, in the event that it is awakened, the probability that two of its half-edges will form a
loop isO(� 2

i � 𝓁n) and the probability that it will be joined by a multiple edge to a vertexj awakened
later isO(� 2

i � 2
j � 𝓁2

n). Consequently,

P
(

 c

T� � { T� � Bnt1} � { T�� > Bnt1}
)

� O(Bnt1)
∑
i�[ n]

� i

[ � 2
i

𝓁n
+

� 2
i

𝓁n

∑
j�[ n]

� 2
j

𝓁n

]
= O(t1BnRn) = o(1), (6.79)

and thusP(
 c
T� ) = o(1), that is,
 T� holds w.h.p.

Then, we condition on the� -algebra� T� of all randomness up to timeT� , and note that	 a and
 T�

are� T� Šmeasurable to obtain

P(	 a � 	 s) = P(	 a � 	 s � 
 T� ) + o(1) = E[1	 a� 
 T� P(	 s � � T� )] + o(1). (6.80)

The configuration model multigraph can be partitioned into the connected components found until time
T� and those that are found afterwards. The multigraph consisting of all the connected components
found after timeT� is again (conditioned on� T� ) a configuration model, now with a random number
�n = n(1 Š o(1)) vertices and degrees that are a (random) subset of size�n from [n]. We denote this
degree sequence by( �� i )i�[ �n] . In particular, conditional on� T� ,

P(	 s � � T� ) = 1
 T� P(G(�n, ( �� i )i�[ �n] ) simple). (6.81)

By the discussion above (6.79), the probability that the event{ T� � Bnt1 � T�� } occurs and that
vertexi is part of one of the connected components found before timeT� is O(Bnt1� i ). Hence,

E
[(∑

i�[ n]

� 2
i Š

∑
i�[ �n]

�� 2
i

)
1{ T� � Bnt1<T�� }

]
� O(Bnt1)

∑
i�[ n]

� 3
i = O(nt1BnRn) = o(n). (6.82)

Consequently, using Markov•s inequality and recalling thatT� � Bnt1 � T�� w.h.p., we obtain

∑
i�[ �n]

�� 2
i =

∑
i�[ n]

� 2
i Š op(n) =

(
1 + op(1)

) ∑
i�[ n]

� 2
i . (6.83)

Similarly, or as a consequence,
∑

i�[ �n]
�� i =

(
1 + op(1)

)∑
i�[ n] � i .

Thus, with �� n denoting� n in (2.5) for the (random) degree sequence( �� i )i�[ �n] , and noting that� n =∑
i � 2

i �
∑

i � i Š 1 and�� n =
∑

i
�� 2
i �

∑
i

�� i Š 1 we obtain

�� n = � n + op(1) = 1 + op(1). (6.84)

Consequently, (6.71) yields

P(G(�n, ( �� i )i�[ �n] ) simple) = eŠ�� n� 2Š �� 2
n� 4 + op(1) = eŠ3� 4 + op(1) = P(	 s) + op(1), (6.85)
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and, since
 T� holds w.h.p., (6.81) yields

P(	 s � � T� ) = P(	 s) + op(1). (6.86)

Finally, (6.80) and (6.86) yield, together with (6.76),

P(	 a � 	 s) = E[1	 a� 
 T� P(	 s)] + o(1) = P(	 a � 
 T� ) P(	 s) + o(1) = �( a) P(	 s) + o(1), (6.87)

and thusP(	 a � 	 s) � �( a), which completes the proof of the lemma, and thus of the theorem.▪

7 THE COMPLEXITY

Define thecomplexityof a component� by k(� ) �= e(� )Š v(� )+ 1; this is the number of independent
cycles in� . The estimates in Theorem 2.6 show only thatk(� 1) = op(v(� 1)). (This is in contrast to the
strongly supercritical caseE D(D Š 2) > 0, whenv(� 1) = cvn

(
1 + op(1)

)
ande(� 1) = cen

(
1 + op(1)

)
for two positive constantscv andce, see for example [36, Theorem 2.3], and it is easily verified that
ce > cv sok(� 1) also is linear inn.) We can use our methods to obtain a much sharper result. As before,
we write� n = Š log(1Š � n), where� n is the survival probability of a branching process with offspring
distribution �Dn = D�

n Š 1, with D�
n the size-biased version ofDn.

Theorem 7.1 Suppose that(A1)-(A4) are satisfied, in particular� n = o(1). Suppose also that� n �
nŠ1� 3(ED3

n)2� 3. Then

k(� 1) = n� n
(
1 + op(1)

)
, (7.1)

where

� n �=
1
2

� n
(
1 Š (1 Š � n)2) Š E

(
1 Š (1 Š � n)Dn

)
(7.2)

=
1
2

� n
(
1 Š eŠ2� n

)
Š E

(
1 Š eŠ� nDn

)
(7.3)

= E h(� nDn) Š 1
2

E Dnh(2� n), (7.4)

with

h(x) �=
(

1 +
x
2

)
eŠx Š 1 +

x
2

=
1
2

∑
n� 3

(Š1)nŠ1 n Š 2
n!

xn. (7.5)

Moreover, n� n � � , � n = O(� 2
n� n) = O(� 3

n) and

� n � � n� n � E
(
(� nDn) 	 ( � nDn)3). (7.6)

Remark7.2 The expression (7.2) is what would be intuitively expected from the branching process
approximation: if we multiply byn, then the first term is the number of edges (𝓁n� 2 = n� n� 2) times
the approximate probability that one of the endpoints of an edge attaches to the largest component, and
the second term is the approximate probability that a random vertex attaches to the largest component.
Indeed, it follows from Theorem 2.6 that the two terms approximatee(� 1)� n andv(� 1)� n within a
factor 1+ op(1). However, the two terms in (7.2) differ only by a factor 1+ o(1), so there is a significant
cancellation and we need a different argument to show the result.
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Remark7.3 By (7.5) and simple calculus,h(0) = h� (0) = 0 andh�� (x) = 1
2
xeŠx, soh(x) is positive

and convex on(0, �) . Moreover,h(x) � 1
12

x3 asx � 0 andh(x) � 1
12

x3 for x � 0. Although the
expressions in (7.2)-(7.3) are simpler, there is (as said in Remark 7.3) a lot of cancellation, and (7.4)
better highlights the order of� n.

We postpone the proof of Theorem 7.1 and state first some consequences for the most important
cases.

Theorem 7.4 Suppose that(A1)-(A4) are satisfied, and that D3n is uniformly integrable. Suppose
further that� nn1� 3 � � . Then

k(� 1) =
	�
12

n� 3
n
(
1 + op(1)

)
=

2�
3	 2

n� 3
n
(
1 + op(1)

)
, (7.7)

where	 � ( 0, �) is given by (2.21).

This extends the result for the Erd�os-Rényi random graphG(n,p). There, in the barely supercritical
casek(� 1) � 2

3
n� 3

n (see, with more details, [49] and, for� � n1� 12, [34]), which corresponds to the case
D � Po( 1) (when� = 	 = 1), of Theorem 7.4 by conditioning on the vertex degrees as in Section 2.6.
The order of the complexity in (7.7) interpolates nicely between the known cases of� n = � > 0
independently ofn, wherek(� 1) is of ordern, and the critical case� n = O(nŠ1� 3), wherek(� 1) converges
in distribution [18].

Theorem 7.5 Suppose that(A1)-(A4) are satisfied, and thatE D3 = � . (ThusE D3
n � � .) Suppose

further that� n � nŠ1� 3(E D3
n)2� 3. Then

k(� 1) = op(n� 3
n). (7.8)

Example 7.6(Power-law degrees) Consider again the power-law example in Example 2.15, with
2 < � < 3. It follows from (7.6), (5.58) and (2.38) that� n � � �

n � � � �( � Š2)
n . Again, this interpolates

nicely between the known cases of� n = � > 0 independently ofn, wherek(� 1) is of ordern, and the
critical case� n = O(nŠ(� Š2)� � ), wherek(� 1) converges in distribution. The latter is shown in [19] under
stronger power-law assumptions on the degrees, including that� inŠ1� � � ci with

∑
i� 1 c3

i < � , while∑
i� 1 c2

i = � , such as forci � iŠ1� � with � � ( 2, 3). (Recall Remark 2.16, where this is discussed in
more detail.)

Example 7.7 Suppose that (A1)-(A4) are satisfied,E D3 = � , and, furthermore,� n� n = O(1).
Then Lemma 5.17 applies and yields together with (7.6)

� n � � n� n � � 3
n�( E D3

n)2, (7.9)

showing that (7.8) in this case can be sharpened tok(� 1) � n� 3
n�( E D3

n)2 w.h.p.

Lemma 7.8 Suppose that(A1)-(A4) are satisfied and that� n � nŠ1� 3(ED3
n)2� 3. Then n� n� n � � .

Proof We consider onlyn such that� n > 0; this holds at least for all largen.
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First, if � n� n � 1, then Lemma 5.17 and the assumptions yield

n� n� n � n
� 3

n

(E D3
n)2

� � . (7.10)

On the other hand, if� n� n > 1, then by (B8), which was verified in the proof of Theorem 2.6,
1 < � n� n = o(� nn� n), and thusn� n� n � � in this case too. ▪

Proof of Theorem 7.1 Let N(t) be the number of times up to timet that a new cycle is created. Thus,
if T is a time whenC1 is performed, thenN(T) is the sum of the complexities of the components
explored up toT.

During the exploration process, we create a new cycle each timeC3 is performed and the half-edge
that dies is an active half-edge, i.e, each time an active half-edge dies spontaneously. This happens
with rateAn(t). Consequently,

M(t) �= N(t) Š
�

t

0
An(u) du (7.11)

is a martingale, withM(0) = 0.
Let T1 andT2 be as in the proof of Theorem 5.4, so w.h.p.� 1 is explored betweenT1 andT2. Thus

w.h.p.k(� 1) = N(T2) Š N(T1). Recall that, since� n is set to� n, T1� � n
p

Š� 0 andT2� � n
p

Š� � = 1, and
note thatT2 is a stopping time.

Recall that (B1)-(B8) were verified in the proof of Theorem 2.6. By (B5) and Lemma 5.7,

sup
t� T2� � n

|||| 1
n� n

An(� nt) Š � n(t)
|||| p

Š� 0. (7.12)

Consequently, using also that� n(t) is uniformly bounded on[0,2] by Remark 5.11, and that

T2� � n
p

Š� 1 so thatT2� � n � 2 w.h.p.,

�

T2

0
An(u) du = � n �

T2� � n

0
An(� nu) du = n� n� n �

T2� � n

0
� n(u) du + op

(
n� n� n

)
= n� n� n�

1

0
� n(u) du + op

(
n� n� n

)
.

(7.13)

Let

� n �=
�

1

0
� n(t) dt, (7.14)

and note that by Remark 5.11 and (B4)(d),� n � 1. Define also the stopping timeT by

�

T

0
An(u) du = n� n� n

(
� n + 1

)
. (7.15)

By (7.13),T2 � T w.h.p.
All jumps in the martingaleM(t) are+1, so the quadratic variation (see e.g. [42, Theorem 26.6]) is

[M,M]t =
∑
u� t

(
� M(u)

)2
=
∑
u� t

� M(u) = N(t). (7.16)
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Hence, for the stopped martingaleM(t 	 T), using (7.11) and the definition (7.15) ofT, as well as
[50, Corollary 3 to Theorem II.6.27, p. 73],

E
(
M(T2 	 T)2) = E[M,M]T2	 T = E N(T2 	 T) = E

�

T2	 T

0
An(u) du + E M(T2 	 T)

� n� n� n
(
� n + 1

)
+ 0 = O

(
n� n� n

)
.

Hence it follows that, using also Lemma 7.8,

M(T2 	 T) = Op
(
(n� n� n)1� 2) = op

(
n� n� n

)
. (7.17)

By (7.11), (7.13), (7.17) andT2 	 T = T2 w.h.p.,

N(T2) =
�

T2

0
An(u) du + M(T2) = n� n� n� n + op

(
n� n� n

)
. (7.18)

Furthermore, for any fixed
 > 0, T1 < 
� n w.h.p. and thusN(T1 	 T) � N(T 	 ( 
� n)). Hence,
again sinceM is a martingale,

E N
(
T1 	 T

)
� E N

(
T 	 ( 
� n)

)
= E

�

T	( 
� n)

0
An(u) du. (7.19)

Furthermore, by (7.12) and Remark 5.11,

�

T	( 
� n)

0
An(u) du �

�


� n

0
An(u) du = � n �




0
An(� nt) dt

= n� n� n

(
�




0
� n(t) dt + op(1)

)
� n� n� n

(

 + op(1)

)
.

(7.20)

It follows from (7.19) and (7.20), by dominated convergence justified by (7.15), that

(
n� n� n

)Š1
E N(T1 	 T) � 
 + o(1). (7.21)

Since
 � ( 0, 1) is arbitrary, it follows thatE N(T1 	 T) = o(n� n� n), and thus w.h.p.N(T1) =
N(T1 	 T) = op(n� n� n). Consequently, recalling (7.18), w.h.p.

k(� 1) = N(T2) Š N(T1) = n� n� n
(
� n + op(1)

)
= n� n� n� n

(
1 + op(1)

)
, (7.22)

which shows (7.1) with

� n = � n� n� n. (7.23)

Recalling� n � 1, we have� n � � n� n and thusn� n � � by Lemma 7.8. Furthermore, (7.6)
follows from (5.20). It follows from (7.6) and (4.3) that

� n � E
(
(� nDn) 	 ( � nDn)3) � E

(
(� nDn)2 	 ( � nDn)3) � � 2

n� n, (7.24)

that is,� n = O(� 2
n� n); furthermore� n � � n = O(� n) by (3.2).
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It remains to evaluate� n in (7.23) and show that it agrees with (7.2)-(7.4). By (7.14), (5.21) and
Fubini•s theorem,

� n = � n� n� n = � n �

1

0

(
� neŠ2� nt Š E

(
DneŠ� ntDn

))
dt

=
1
2

� n
(
1 Š eŠ2� n

)
Š E

(
1 Š eŠ� nDn

)
,

(7.25)

which shows (7.3). By the definition (4.1) of� n, this is the same as (7.2). Furthermore, the equality of
(7.4) and (7.3) follows by a simple calculation using (4.8). ▪

Proof of Theorem 7.4 Under the assumptions in Theorem 7.4,� n � � 2
n E D3 by (5.53) and

� n =
�

1

0
� n(t) dt �

	�
12E D3

(7.26)

as a consequence of (5.54). Hence (7.7) follows from (7.1), (7.23) and (4.9). ▪

Proof of Theorem 7.5 As in the proof of Theorem 2.9, (3.6) yields� n = o(� n). Hence, (7.24) implies
� n = o(� 3

n), and (7.8) follows. ▪
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