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Abstract

Detection of artefacts in FFPE-sample sequence data

Hugo Swenson

Next generation sequencing is increasingly used as a diagnostic tool in 
the clinical setting. This is driven by the vast increase in molecular 
targeted therapy, which requires detailed information on what genetic 
variants are present in patient samples. In the hospital setting, most 
cancer diagnostics are based on Formalin Fixed Paraffin Embedded (FFPE) 
samples. The FFPE routine is very beneficial for logistical purposes and 
for some histopathological analyses, but creates problems for molecular 
diagnostics based on DNA. These problems derive from sample immersion in 
formalin, which results in DNA fragmentation, interstrand DNA cross-
linking and sequence artefacts due to hydrolytic deamination. 
Distinguishing such artefacts from true somatic variants can be 
challenging, thus affecting both research and clinical analyses.

In order to identify FFPE-artefacts from true variants in next 
generation sequencing data from FFPE samples, I developed the novel 
program FUSAC (FFPE tissue UMI based Sequence Artefact Classifier) for 
the facility Clinical Genomics in Uppsala. FUSAC utilizes Unique 
Molecular Identifiers (UMI's) to identify and group sequencing reads 
based on their molecule of origin. By using UMI's to collapse duplicate 
paired reads into consensus reads, FFPE-artefacts are classified through 
comparative analysis of the positive and negative strand sequences. My 
findings indicate that FUSAC can succesfully classify UMI-tagged next 
generation sequencing reads with FFPE-artefacts, from sequencing reads 
with true variants. FUSAC thus presents a novel approach in 
bioinformatic pipelines for studying FFPE-artefacts.
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Sammanfattning

Det biotekniska fältet har under det senaste decenniet ändrats dramatiskt. Analys av DNA
sker numer via alltmer sofistikerade digitala program. Likt hur binär kod via ettor och nollor
kan bygga upp komplexa program, kan DNA representeras via ett set med bokstäver. Dessa
bokstäver, de så kallade nukleotiderna adenin, tymin, cytosin och guanin (A, T, C, G) är grund-
stenarna i vårt DNA, och parar ihop med varandra vilket bildar en dubbelsträngad helix. Mer
specifikt binder A till T, C till G [1]. För att veta hur en DNA-sekvens är uppbygd nyttjas så
kallad sekvensering, vilket är en teknik där en maskin läser ordningen av nukleotiderna på en
DNA-sträng. [2]. Denna data kan sedan användas till att hitta mätbara biologiska förteelser, så
kallade biomarkörer, som är associerade med sjukdomar och sedan skapa läkemedel som speci-
fikt interagerar med just dem. Denna typ av läkemedel kallas för Molecular Targeted Therapies
(MTT) och används aktivt för att behandla cancer. Dessa läkemedel nyttjas som ett alternativ
eller komplement till andra cancerbehandlingar, och kan bidra till effektivare behandling, min-
dre allvarliga biverkningar samt lägre kostnader inom sjukvården [3].

För att kunna sekvensera krävs DNA som startmaterial, vilket extraheras från prover av den
organism som skall studeras. Ett prov som tas från en levande organism börjar dock snabbt
att degradera då det lämnat värdkroppen. Detta är ett problem om man önskar studera dess
inre struktur, eller i fallet med sekvensering vill studera DNA som inte är skadat. Att lagra
prover i en frys kostar pegnar över tid, och det kan vara svårt att lagra i korrekt temperatur samt
undvika köldskador. Att kontinuerligt ta färska prov är för många inte heller en möjlighet då
det är dyrt, tidskrävande, och det dessutom finns etiska aspekter att ta hänsyn till. Om provet
tas från patienter med allvarliga sjukdomar riskerar de dessutom att avlida. Lyckligtvis finns
det en teknik kallad Formalin Fixated Parafin Embedded (FFPE) Tissue som eliminerar några
av dessa problematiska aspekter. Vid skapandet av ett FFPE-lagrat prov sänks vävnadsprovet
ned i en lösning kallad formalin vilket fixerar provet, en process som effektivt bevarar den inre
strukturen. Vidare inkapslas provet sedan i ett paraffinblock, vilket gör att slutprodukten kan
lagras i åratal i rumstemperatur utan att förstöras [4]. Med hänsyn till de förhållandesvis låga
kostnaderna, dess aplikationer inom histologi, samt hur väletablerad metoden är används FFPE
aktivt även idag. Majoriteten av världens lagrade genetiska material i så kallade biobankar, är
FFPE prov.

Fixering av vävnad via formalin leder dock till skador på DNA. Denna typ av skada är inte
ett problem om provet skall studeras under mikroskåp likt vid histologi, men leder till större
svårigheter då det skall sekvenseras. Det finns flera olika typer av skador som kan orsakas av
formalin och lagring i FFPE block, såsom fragmentering av DNA, tvärbindning mellan de två
strängarna samt hydrolytisk deaminering av cytosin. Mer specifikt deamineras cytosin till uracil
eller tymin, vilket leder till felmatchningar, så kallade artefakter i form av T-C eller G-A bindin-
gar. Artefakter likt dessa korrigeras normalt i kroppen av specifika enzym, men sådana saknas
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helt i FFPE blocket där de istället kvarstår, och dessutom ökar ju längre blocket lagras. Prob-
lemet med artefakter kvarstår även vid amplifiering av DNA. Vid amplifiering delas dubbel-
strängat DNA upp i två strängar. Dessa två strängar nyttjas sedan som mall för att bygga en
matchande sträng, och således ökar mängden DNA-fragment med en faktor 2n varje gång pro-
cessen utförs. Detta innebär att för hydrolytiskt deaminerat DNA bildas det två DNA-molekyler
som skiljer sig åt på en punkt, istället för två identiska DNA-molekyler. Då en DNA-molekyl
under provberedning ofta amplifieras miljontals gånger är det således mycket svårt att skilja
dessa artefakter från riktiga varianter [5]. Detta kan i sin tur, om datan ej hanteras med försik-
tighet, leda till felbedömningar rörande om en position är en verklig variant eller inte. Något
som i värsta fall kan leda till felaktig diagnosticering av en position som potentiell biomarkör,
och därmed även felaktig behandling av en patient. Alltså kan den omfattande mängd genetiskt
material som finns tillgängligt i FFPE format, inte användas som grundmaterial för utveckling
av MTT’s utan att riskera felaktig klassifiering.

För att hantera dessa problem, skapades via detta examensarbete programmet FUSAC. FUSAC
använder sig utav Unique Molecular Identifiers (UMI’s), en sorts id-kod uppbyggd av korta
nukleotidsekvenser. Dessa id-taggar fäster på ändarna hos ett DNA-fragment innan amplifiering
sker, vilket alltså innebär att alla kopior av molekylen kommer ha samma UMI [6]. Programmet
använder sig även utav en VCF-fil som guide, vilken listar genetiska positioner som behöver
kontrolleras för förekomst av mutationer. För varje position i filen finner programmet alla frag-
ment som överlappar med just den positionen, och dessa grupperas sedan baserat på sina UMI’s.
Med respekt till antalet möjliga UMI’s och vart i genomet ett fragment passar in, kan man med
stor sannolikhet anta att fragment som uppfyller båda kraven härstammar från samma molekyl.
Programmet finner sedan de vanligaste nukleotiderna tillhörandes molekylens positiva och neg-
ativa sträng, och dessa kan sedan jämföras med varandra för att korrekt klassifiera positionen.
Om konsensusnukleotiderna är identiska, men skiljer sig från ursprungsgenomet kan de antas
vara en riktig variant, men om de ej är identiska och en utav dem är i form av en hydrolytisk
deaminering kan de istället antas vara en FFPE artefakt [5].

Genom att utföra denna process för varje position i VCF-filen, kan sedan positioner identi-
fieras som är (1) fria från både FFPE och somatiska varianter, (2) fria från FFPE men med stöd
för somatiska varianter eller (3) fria från somatiska varianter men med stöd för FFPE artefakter.
Således kan FUSAC bidra till att ge mer information till dem som studerar denna typ av data,
vilket förväntas öka pålitligheten i genetisk diagnosticering utgående från FFPE behandlade
vävnadsprov.
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Introduction

Cancer is a prevalent and serious health problem, recognised as the worlds third leading cause
of death [7]. Many established treatment methods for cancer exist such as radiation therapy,
surgery, chemotherapy, immunotherapy and more recently molecular targeted therapies (MTT)
[8]. Based on the type of cancer, it’s location, tumour stage and overall patient health. One, or a
combination of treatment methods are traditionally selected with the goal of maximizing thera-
peutic efficacy [9]. However, information on genetic variation in the tumour is needed to guide
treatment decisions for some of the more powerful modern treatment options. Despite their
inherent advantages, the treatment methods may give rise to side effects which may result in
serious adverse effects on the physical health and emotional well-being of the patient [10][11].
Even for patients with identical or similar cancer-types, the effects of drug therapy need not
manifest in the same manner, but rather tends to show variability in it’s effectiveness between
individuals [12]. Such inconsistencies can derive from genetic variation between patients and
between tumours. As an example, alterations in tumor suppressing genes such as BRCA1 and
BRCA2 [13] are known to increase the rate of cancer formation (carcinogenesis) and spread
of the disease in some but not all breast cancer tumors. Thus drugs targeting BRCA-mutated
tumors are only likely to have an effect on tumors with genetic alterations in that gene. Unfor-
tunately, consecutive use of a treatment often results in a portion of the tumor cells acquiring
resistance towards the drug being used, a process which can lead to the drug having little to
no therapeutic effect on the patient, whilst side effects are still present. Finally, such resistance
can further lead to multi-drug resistance (MDR) of functionally unrelated anticancer drugs [14],
severely complicating further treatment. Understanding the type of genetic changes and what
effect they are likely to have on the tumor for the patient of interest, is therefore important when
choosing an effective treatment.

Due to the rapid recent advancements in biotechnology, genomics and bioinformatics, we now
have a wider understanding of how genetic variability may influence the effects of therapeutic
treatment and drug-response. Precision medicine is an emerging approach for the prevention
and treatment of disease. Based on the idea of tailoring the medical treatment for a patient based
on their characteristics, precision medicine has the goal of generating a specific diagnosis and
subsequently an effective individualized treatment plan [12]. Through identifying therapeutic
or preventive treatment for the patient, the side-effects and costs of drugs unlikely to benefit the
patient can be avoided. In addition to improving patient treatment response and overall quality
of life [15], precision medicine also brings with it the hope of reducing overall health-care costs
and time spent for the practitioner by avoiding unnecessary treatment and testing [3]. Increased
understanding of cancer biology has allowed researchers to create novel molecular targeted
therapies (MTT) specifically developed to act on molecular targets associated with carcinogen-
esis. These drugs typically bind to vital targets such as signaling molecules, growth factors or
cell death (adoptosis) modulators [17]. As such, they interfere with specific regions with high
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selectivity rather then act on all rapidly dividing cells as is the case in tradition chemotherapy
[16]. While side effects from MTT’s are of course still prevalent, their overall toxicity profile is
more favorable then that of chemotherapy [17]. Furthermore, due to their high selectivity, they
offer patients suffering from MDR new alternative treatment methods.

Formalin-fixed paraffin-embedded (FFPE) tissue is a major source for genetic material used in
pathology, immunochemistry, histology and oncology. Due to it’s convenience and long-term
storage cost-effectiveness when compared to ultra low temperature storage of fresh-frozen (FF)
tissue, it makes up a majority of diagnostic samples and cancer-tissue samples in bio-banks
worldwide [18]. However, fixing tissue with formalin induces serious damage to DNA such
as fragmentation, inter-strand cross-links and sequence artefacts in the form of the hydrolytic
deamination of cytosine to uracil, or methylated cytosine to thymine [5]. These sequence arte-
facts, when not treated, will give rise to a mismatch on the deaminated position. As such, FFPE
tissue sequence artefacts presents a challenge for researchers trying to identify true somatic
variants to be used as target regions in MTT.

1.1 Motivation

FFPE samples present a possibly vast and varied source of genetic material to be used in preci-
sion medicine. However, false positive classification of FFPE artefacts as true variants in FFPE
sample sequence data can lead to erroneous diagnosis and treatment of a patient. Despite ad-
vances in the biotechnical field, FFPE artefacts remain as a limiting factor in the viability of
FFPE samples as starting material for bioinformatic analysis in precision medicine. Prior se-
quence libraries have attempted to reduce the impact of FFPE artefacts [19] [20] [21]. However,
few methods have incorporated the use of UMI’s to improve sensitivity and allow for lower fre-
quency variants to be correctly classified.

The purpose of this thesis was the creation of a novel program FUSAC (FFPE tissue UMI-based
Sequence Artefact Classifier) for detecting and classifying FFPE artefacts in FFPE sample UMI-
tagged sequence data, as well as the evaluation of its performance. FUSAC was developed by
me, in cooperation with the facility Clinical Genomics in Uppsala.
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Background

2.1 Somatic variants

A somatic mutation is defined as a genetic alteration in the somatic cells of an individual, mean-
ing it is not inherited from the parents, nor will it be passed down to eventual offspring [22].
Such mutations instead arise over time in an individual as a consequence of erroneous replica-
tion or damage to DNA through external factors [22]. Most such damage is typically repaired,
however, a small fraction goes uncorrected and may be fixed as mutations [22]. The majority
of somatic mutations do not have a noticeable effect on the health of the individual harboring
them, however, some do bring with them alterations to important cellular functions.

While cancer is typically characterised by multiple accumulated genomic variants, certain mu-
tations may induce a selective advantage for the cancer-cells. These so called driver mutations
have been positively selected during the evolution of the cancer, and thus reside in regions highly
correlated with carcinogenesis. Other genetic changes are called passenger mutations. They are
biologically inert somatic mutations that have been selected alongside the driver-mutation. [22].
Due to recent advancements in technology, the widespread use of NGS-methods has brought
with them a major increase in our understanding of cancer-genomics. Through large-scale anal-
ysis of DNA originating from tumor samples, multiple genes affected by mutations present in
different tumor types have been identified [23]. As most somatic mutations are biologically
inert, these typically outnumber driver-mutations by a significant margin. The identification of
somatic driver mutations from somatic passenger-mutations is therefore a major challenge in
the fields of precision medicine and oncology [23].
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2.2 Formalin Fixation

When fresh tissue is removed from it’s host, it immediately begins to degrade. This presents a
problem as the tissue needs to be in a lifelike state for adequate clinical diagnostics. Fixation
is carried out to slow down or prevent this degenerative process from taking place, as well as
preserving the cellular morphology of the tissue.

Formalin (10% neutral buffered formaldehyde solution) is the most common fixative in the
world [24], and is made through dissolving formaldehyde gas in water. When a tissue-sample
of interest is immersed in formalin, the formaldehyde penetrates the tissue quickly through dif-
fusion to a cellular level. This gives rise to a hardening process, which effectively preserves
the tissue in a lifelike state, allowing for storage and analysis of the tissue without the risk of
immediate degradation [4]. However, formalin fixation also damages DNA in multiple ways.
Formalin fixation causes fragmentation of DNA, resulting in shorter DNA templates which can
prove problematic for certain sequencing techniques [25]. The fragmentation arises as a result
of the low pH of formalin, which over time may lead to an increase in the rate of apurinic
and apyrimidinic site formation which in turn leads to decomposition and fragmentation [26].
Furthermore, fixation by formalin may give rise to DNA-DNA inter-strand cross-links (ICL’s).
These lesions are highly cytotoxic [27] and have severe effects on translation and replication,
thus reducing the amount of available template even further [28]. Even after fixation, long-term
storage of FFPE blocks may induce DNA fragmentation due to environmental factors [29]. Fi-
nally, different labs may have different protocols for FFPE tissue sample processing, resulting
in varying sample quality [30].

2.3 FFPE Artefacts

Immersion in formalin may also give rise to sequence artefacts as a result of hydrolytic deamina-
tion. In living organisms, spontaneous hydrolytic deamination of cytosine may occur resulting
in a nucleotide change to uracil (figure 1 on the following page, A1). The sequence mismatch
is then identified and corrected by the enzyme uracil-DNA glycosylase (UDG) (figure 1 on
the next page, A2), which removes the uracil resulting in an abasic site [5]. The enzyme AP-
endonuclease recognises this newly formed abasic site, and breaks the DNA phosphodiester
bond at the site to allow for repair by DNA polymerase (figure 1 on the following page, A3) in
the form of a new cytosine molecule. To complete the repair, DNA-ligase forms a new phospho-
diester bond as to seal the site [31]. For 5-methyl-cytosine (m5c), the hydrolytic deamination
will instead result in thymine (figure 1 on the next page, B1). The mismatch is then identified by
thymine-DNA glycosylase (TDG) which removes the thymine (figure 1 on the following page,
B2), allowing for repair as in the case with UDG (figure 1 on the next page, B3) [32]. These
artefacts however, are more rare as the highest methylated regions of DNA only contain only
around 1% of m5c [33]. This mechanism of DNA repair is obviously absent in FFPE samples,
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and as a consequence any spontaneous hydrolytic deamination of DNA in the sample is left
uncorrected.

Because these kind of artefacts arise on one of the two DNA-strands after fixation, identifi-
cation of FFPE artefacts is made possible through comparison with the opposite strand. When
performing NGS experiments, relatively large amounts of DNA are required and the preparatory
steps most often involve PCR amplification to obtain sufficient material for sequencing. Dur-
ing amplification the heat-stable polymerase employed will elongate both strands separately
[34], yielding two nearly identical DNA molecules differing only on the sites where hydrolytic
deamination took place. Therefore, a cytosine that has been deaminated into a uracil will have
one correct sequence from one strand with a C-G pairing at the deaminated site, but also an
otherwise identical incorrect sequence with a U-A pairing at the deaminated site (figure 1, A4).
The U-A pairing arises as a consequence of DNA-polymerase recognising uracil as thymine
[35] and this pairing will then in subsequent rounds of the PCR replication give rise to a artefact
as the adenine after denaturation in the next cycle will pair with a thymine during replication
(figure 1, A5) [36].
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Figure 1: Hydrolytic deamination of cytosine to uracil (A) and hydrolytic deamination of m5c
to thymine (B) illustrated in step 1,2. The process seen in step 3 illustrates deamination and its
subsequent repair in-vivo. Step 4 (and for A 5) illustrates the creation of a new fragment
differing from the reference fragment by amplification, as a consequence of sequence artefacts.

These two artefact types will from this point onward be referred to as C->T:G->A, where C->T
(C to T) is representative of the artefact generated by a hydrolytic deamination on the positive
strand, and G->A (G to A) is representative of the hydrolytic deamination on the negative
strand. As such, FFPE artefacts may appear to be true somatic-variants in sequence data from
FFPE samples, presenting a difficult diagnostic challenge when trying to identify true somatic
variants that are key when selecting the appropriate treatment.
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2.4 Unique Molecular Identifiers

Many modern sequencing-based techniques in genomics are dependent on amplification to in-
crease the number of reads in the initial sequencing library, as inadequate levels of DNA will
yield insufficient sequence data. However, bias in the amplification process often results in
the increased prevalence of some sequences over others, and by extension a false represen-
tation of the original data set. Unique Molecular Identifiers or UMI’s for short, are random
oligonucleotide sequences which are attached onto fragmented DNA-molecules before the am-
plification process. By attaching these sequences to the end of a molecule of interest, each
molecule gets an easily recognizable identity (figure 2). Meaning one can with high confidence
identify subsequent copies of the source molecule, as these all share the same molecular iden-
tifier and align to the same position in the reference genome. This allows for the identification
of the source molecule and it’s subsequent copies, which yields a comprehensive view of the
amplification-process efficiency as well as the identification of possible artefacts, given enough
amplified reads to study [6]. Furthermore, by collapsing all reads with the same alignment-
coordinates and UMI into one representative read, a more accurate representation of sample
allele frequencies can be obtained [37].

P5

P7

UMI 1

UMI 2

Forward 

Reverse

DNA Pol.

Figure 2: Ligation of UMI-adapters to double-stranded DNA, followed by amplification. The
resulting two molecules differ seen to their UMI-orientation, and can thus be identified
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2.5 Using UMI-tagged reads to identify FFPE artefacts

Artefacts introduced during PCR amplification can present a problem when attempting to sep-
arate true variant sequence reads from sequence reads with artefacts. One cannot easily deter-
mine the origin of the reads, nor if biased amplification has led to a misrepresentation of the
original fragment distribution. For this purpose, UMI-tagged reads present a solution to this
issue, as one can easily identify reads based on their UMI’s in combination with their aligned
position. Furthermore, through identifying if a read in a read pair is read 1 or read 2, and com-
bining this information with the directionality that the read aligns with against the reference
genome, one can determine it’s strand of origin before amplification figure 3.

Figure 3: To determine the strand of origin, each read is checked whether it is read 1 (light
grey) or read 2 (dark grey), as well as if the read aligns to the reverse strand (left white arrow)
or forward strand (right white arrow). Based on these two facts, the UMI is then rearranged to
obtain the correct UMI sequence-tag order, and the read is classified as positive strand (Strand
1) or negative strand (Strand 2)

In cases where no PCR-artefacts occur on the position where hydrolytic deamination has taken
place, it should follow that because FFPE artefacts introduce a mismatch before amplification,
all subsequent amplified reads from that strand should also carry this mismatch. Therefore,
through collapsing all amplified reads belonging to the positive and negative strand separately,
one would end up with two consensus reads representing the original strands used for amplifi-
cation [38].

Once consensus sequences have been obtained for the positive and negative strand belonging
to the UMI, one can inspect the sequence from each strand to identify mismatches and true
variants. A site where hydrolytic deamination has taken place will typically show a C->T:G-
>A nucleotide mismatch, whereas true somatic variants display matching variant nucleotides.
Thus, through comparing UMI-tagged reads, it is possible to identify FFPE artefacts in NGS
fragments whenever information is available from both strands, regardless of amplification bias
(figure 4 on the following page).
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Figure 4: Illustration showing classification of FFPE artefacts using collapsed UMI-reads. All
nucletoide bases shown are shown aligning to the forward strand, thus reverse reads are
reverse complemented. (1) Using an identified variant-call (here shown in the color red), all
reads aligning to the variant position are extracted from the Binary Alignment Map file (BAM)
(2) All extracted reads are grouped by their UMI (3) The newly grouped reads are further split
based on which strand they are duplicates of (Positive, Negative) (4) The reads are collapsed
into consensus reads representative of all duplicates (5) The consensus nucleotide (red) on the
variant-call position are compared with the consensus nucleotide on the same position on the
opposite strand, and the variant-call is then classified
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Methods

3.1 Programming language and hardware

FUSAC was written in Python 3.7.2, using the additional module Pysam [39] and the library
Pandas [40]. All programming and testing were performed on a laptop with a 4-core 2GHZ i7
processor and 8GB RAM. To generate BAM and Variant Call Format (VCF) files, an 8-node
cluster with 128 cores was used. The output from FUSAC was further analyzed and visualized
using custom R-scripts [41].

3.2 Data

3.2.1 Unfiltered data set

A data set originating from FFPE-stored human tissue data, sequenced with the NGS assay
Illumina TSO-500 protocol was used to generate input for FUSAC. Each read in the data set had
been primed using a 7nt long degenerate sequence (UMI) on each end to ensure identification
of amplified molecules would be possible. The sequenced raw data was used as input for the
pipeline tool bcbio [42] to generate a new BAM-file as well as a corresponding VCF-file. The
toolkit fgbio [43] was then used to modify the query-names found in the newly generated BAM-
file as per the instructions in section 3.5 on page 19. The unfiltered BAM-file was sorted and
indexed using SAMtools [44], generating a corresponding BAI-file. Once this setup had been
completed. For sake of clarity the generated BAM and VCF will from this point onward be
referred to as the unfiltered data set.

3.2.2 UMI-filtered data set

To minimize the impact of PCR sequencing artefacts, another data set was generated based on
reads with unique UMI’s in the unfiltered BAM-file that were observed at least three times. If a
sequencing error is present in a read, it is impossible to know which nucleotide is correct using
only 1 or 2 reads. However, if 3 or more reads are available, a decision can be made based
on majority voting as to which nucleotide is correct. Based on this assumption, the unfiltered
BAM-file was filtered using fgbio based on the condition that any unique UMI must have at
least 3 corresponding reads, followed by the addition of UMI-tags to the query-name to fulfill
the criteria listed in section 3.5 on page 19. Any UMI fitting this criteria then had their reads
collapsed into a consensus read, whereas all UMI’s not eligible were removed from the data set.
The BAM-file was then sorted and indexed using samtools. Finally, the pipeline tool bcbio was
used with the newly generated BAM-file as input to generate a new VCF-file. For sake of clarity
the generated BAM and VCF will from this point onward be referred to as the UMI-filtered data
set.
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3.2.3 Non-FFPE treated data set

To further evaluate the classifying capabilities of FUSAC, a non-FFPE-treated data set originat-
ing from a fresh human bone-marrow sample, sequenced with a library from Twist Biosciences
and with UMI-adapters from IDT was used. Known hematologic variants in the sample mea-
sured to have a variant allele frequency (VAF) of 5-50%. The pipeline tool bcbio was used to
generate another BAM-file as well as a corresponding VCF-file. The toolkit fgbio was then
used to modify the query-names found in the newly generated BAM-file as per the instructions
in section 3.5 on page 19. This data set will from this point onward for sake of clarity be referred
to as the non-FFPE-treated data set.

3.2.4 R-plots and CSV-files

FUSAC was used to generate Comma Separated Value (CSV) files for the output of the unfil-
tered UMI-filtered and non-FFPE-treated data set (see section 8 on page 48 for details). These
files were then used in conjunction with custom R-scripts to generate data-plots. Furthermore,
the output from BCFtools [44] was used for each of the three data sets in combination with
custom R-scripts to generate data-plots.

3.3 FUSAC requirements and input

FUSAC is a novel python-based program for the statistical analysis of FFPE artefacts in UMI-
tagged sequence data. It is largely based on the python module Pysam which is required to
run the program along with the library pandas. FUSAC is written in Python 3.7.2, and thus it
is recommended that it is run in a Python 3.x-environment. The required input-data to run an
analysis is as follows

1. A Binary Alignment Map (BAM) file

2. An indexed BAM-file (BAI)

3. A Variant Call Format file (VCF)

Furthermore, the input BAM-file must be adjusted to fulfill three assumptions made by FUSAC.
Ignoring this will result in erroneous or no output, and it is thus strongly advised to make sure
the input-data fulfills these three conditions.

1. The input sequence data is UMI-tagged

2. The complete UMI is located either in the query-name or the RX (Raw Chromium bar-
code sequence) tag field of a read

3. If the UMI is located in the query-name, it is located as the last entry and separated from
the rest of the query name through a symbol

(a) Example Name With Tag At End UMI ACTACTA+ACTACTA
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The first assumption is necessary due to FUSAC’s algorithm working in a classifying manner.
To identify all reads stemming from a source molecule, a common identifier in the form of the
UMI is vital for collapsing reads into a consensus sequence. The second and third assump-
tion are both necessary to ensure that UMI-tagged data can be properly extracted from each
read.

3.3.1 Singletons

When dealing with paired sequence data, one may encounter sequences occurring only once.
These reads, also known as singletons, lack a mapped mate-strand (ie: only read 1 or read 2),
and often stem from sequencing errors. As such, singletons are often subject to low-frequency
variants caused by read-errors, and as consequence cannot typically be used for analysis. Fur-
thermore, due to the frequency of rare variants in such reads, the removal of singletons have
been shown to improve accuracy [46]. The FUSAC algorithm is able to identify singletons for
every UMI-read aligning to a variant record (data line in a VCF containing information about a
position in the genome) variant position in the input VCF-file, based on the assumption that such
reads will lack a mate. Furthermore, as the inclusion of singletons into the variant-classification
algorithm would likely decrease accuracy, FUSAC instead filters such reads out and stores their
variant position data in the custom FORMAT-field SUMI (section 3.4) for interpretation by the
user. In most cases, this will result in a string of values close to or equal to zero.

3.3.2 Single-strand reads

During the read-extraction process of FUSAC, some UMI’s may only have reads amplified
from one of the strands extracted. These reads, unlike singletons, have a mapped mate-strand
and thus occur more then once in the data set. For sake of clarity, such reads will from this
point onward be referred to as single-strand reads. As FUSAC’s algorithm requires strand-wise
comparison to classify UMI-tagged read-pairs, single-strand reads cannot currently be used for
classification. Instead, FUSAC records and writes the unique molecular counts for the variant
and reference nucleotide to the custom field UMI to enable users to identify strand-bias based on
the assumption that if strand bias were to occur for a given variant record, the unique molecular
counts for either the positive or negative strand would be noticeably higher [47].

3.4 FUSAC output

The output from FUSAC is generated in the form of a modified VCF-file. The modified VCF
is identical to the input VCF with the exception of a custom FILTER tag (FFPE) for classified
FFPE variants, as well as two custom FORMAT fields called UMI (Unique Molecular Identifier
counts) and SUMI (Singleton Unique Molecular Identifier counts). Both these fields contain the
unique counts for the five variant-types (table 2 on the following page), the unique counts for
the reference and variant nucleotides split by strand for read pairs where fragments from both
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strands have been detected, and the unique counts for the reference and variant nucleotides on
single strand reads belonging to the positive and negative strand.

Table 2: Variant-type classifications in the UMI and SUMI fields.

Variant classification Definition
Reference nucleotide Reference nucleotide

True variant Variant nucleotide
FFPE artefact C->T:G->A mismatch

Unknown N
Deletion -

3.4.1 Example Unmodified VCF-record

Example of a unmodified variant record in a VCF-file (table 3). The field INFO have been
cut out for sake of clarity and are marked as ”...”. The FORMAT field values are displayed
separately in table 4 for clarity.

Table 3: Example unmodified variant record.

Field Value
CHROM chr1

POS 4,367,323.00
ID rs1490413

REF G
ALT A

QUAL .
FILTER FFPE
INFO ...

FORMAT GT:AD:AF:DP

Table 4: Example unmodified VCF FORMAT-fields.

FORMAT field Value
GT:AD:AF:DP: 0/1:571,632:0.527:1203:

3.4.2 Example modified VCF-record

Example of the FUSAC output (table 5 on the next page) based on the variant record as shown
in table 3. The field INFO have been cut out for sake of clarity and is marked as .... The
FORMAT, UMI and SUMI fields are displayed in a separate table for clarity (table 6 on the
next page). As can be seen, the FILTER field has been modified to display FFPE instead of
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pass. This tells us that that the algorithm detected at least one read pair with a unique UMI and
a C->T:G->A mismatch at the variant record variant-call position.

Table 5: Example FFPE classed variant record generated by FUSAC.

Field Value
CHROM chr1

POS 4,367,323.00
ID rs1490413

REF G
ALT A

QUAL .
FILTER FFPE
INFO ...

FORMAT GT:AD:AF:DP:UMI:SUMI

Table 6: Example FFPE classed FORMAT-fields, generated by FUSAC.

FORMAT field Value
GT:AD:AF:DP: 0/1:571,632:0.527:1203:

UMI: 235;313;15;0;0;313;328;250;235;272;322;306;256:
SUMI: 0;0;0;0;0;0;0;0;0;0;0;0;0

Further investigation in the FORMAT field, more specifically the two fields UMI (table 7 on the
following page) and SUMI generated by FUSAC, shows us that the unique molecular counts
for reference nucleotide is 235, the counts for a true variant is 313 and the counts for FFPE
artefacts is 15. The counts for a deletion or an unknown is deemed to be 0, the counts for the
reference nucleotide (G) on the positive strand for paired reads as 313, and on the negative
strand 328. Finally, the counts for the variant nucleotide (A) on the positive strand for paired
reads is deemed to be 250, and on the negative strand 235. We can quickly see that this score
is consistent with the 15 FFPE artefact classifications that were found by FUSAC. For single
strand reads, the unique molecular counts for the reference nucleotide is 272 on the positive
strand and 322 on the negative strand. Whereas the counts for the variant nucleotide is 306 on
the positive strand, and 256 on the negative strand. Finally, the field SUMI indicates that no
unique molecular counts for singletons were found at the given variant record.
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Table 7: Example UMI-field values generated by FUSAC.

Value Meaning
235; Unique molecular counts for reference nucleotide
313; Unique molecular counts for true variant
15; Unique molecular counts for FFPE artefact
0; Unique molecular counts for unknown
0; Unique molecular counts for deletion

313;
Unique molecular counts for reference nucleotide

on positive strand for paired reads

328;
Unique molecular counts for reference nucleotide

on negative strand for paired reads

250;
Unique molecular counts for variant nucleotide

on positive strand for paired reads

235;
Unique molecular counts for variant nucleotide

on negative strand for paired reads

272;
Unique molecular counts for reference nucleotide

on positive strand for single strand reads

322;
Unique molecular counts for reference nucleotide

on negative strand for single strand reads

306;
Unique molecular counts for variant nucleotide

on positive strand for single strand reads

256;
Unique molecular counts for variant nucleotide

on negative strand for single strand reads
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3.5 The FUSAC algorithm

The algorithm of FUSAC is based on six fundamental steps which are repeated for every vari-
ant record entry in the input VCF input file. The description provided here will cover the main
points of the FUSAC algorithm. For a visual representation, please see figure 6 on page 21,
or for a more detailed description, please refer to section 8 on page 48 and section 9 on
page 73.

1. Using a VCF, BAM and BAI file as input, FUSAC calls a function which iterates through
the variant records in the input VCF-file. From the variant record, the variant position is
extracted and used to identify all reads in the BAM file aligning to it. FUSAC then copies
the current variant record and proceeds to step 2.

2. In step 2, FUSAC extracts the UMI for every read identified as aligning to the variant
position, and splits it into two half’s (left and right). A function is then called which
determines the string of origin for the read based on the directionality (forward, reverse)
and the mate-type (mate 1, mate 2).

3. All reads are then grouped based on UMI, strand of origin (positive, negative) and read
name. The newly generated list is then used as input for step 4.

4. The algorithm selects all reads belonging to unique UMI’s for the positive and negative
strand, and then iterates through all reads belonging to a UMI where it selects all reads
with identical query-names. A function is then called which identifies the nucleotide on
the variant position in the read. When all reads sharing the same UMI has been iterated
through, the most prominent nucleotide is then chosen to represent the UMI. In other
words collapsing all reads belonging to a UMI to generate a consensus nucleotide. If the
reads were already collapsed before this step, the nucleotide for the variant position will
simply be selected as it is the only entry.

5. Step 5 is carried out differently for fragments that have consensus nucleotides for the
positive and negative strand, and for fragments that only have one (single-strand reads).
For fragments that have been sequenced on both strands, the newly generated consen-
sus nucleotide lists for the positive and negative strand are used as input. The algorithm
then iterates through the positive and negative strand consensus nucleotide lists sepa-
rately, selecting only entries with UMI’s that appear in both. The molecules which such
entries represent, are then classified as one of the five variant-types described in table 2
on page 16, based on comparative analysis of the positive and negative strand consensus
nucleotides (figure 5 on the next page).

(a) The Reference nucleotide classification will be selected if the consensus nucleotide
for both the positive and negative strand is equal to the nucleotide in the reference
genome for the variant position.
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(b) The True variant classification is instead chosen if the consensus nucleotide for both
the positive and negative strand is equal to the called variant in the variant record.

(c) The FFPE artefact classification is chosen, based on user input, as the positive and
negative strand having a T-C or G-A mismatch, or if requested by the user as any
form of mismatch.

(d) The classifications Unknown and Deletion are chosen only if either the consensus
nucleotide of the positive and negative strand are equal to a unknown (N) or a dele-
tion (-) respectively.

Each classification is counted and stored under it’s UMI, complete with the consensus
nucleotides used to make the classification. For single-strand reads, the consensus nu-
cleotide is identified along with its strand of origin (positive, negative).
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Figure 5: Illustration for the variant type classification for unique consensus read-pairs. In
scenario A, the consensus nucleotides for the positive and negative strand are identical, and
equal to that of the reference genome nucleotide. Thus it is classified as Reference
Nucleotide. In scenario B, the consensus nucleotides for the positive and negative strand are
identical, and equal to that of the variant-call nucleotide. Thus it is classified as True Variant.
In scenario C, the consensus nucleotides for the positive and negative strand are not identical.
Furthermore, one of the consensus nucleotides is equal to the variant call nucleotide, and
finally, the mismatch is of either the C-T or G-A type. Thus it is classified as a FFPE artefact.
For the two remaining scenarios D and E, one of the consensus nucleotides is shown to be
unknown or a deletion, and are therefore classified as such

6. A function is called using the generated list and the copied variant record as input, gen-
erating a new modified variant record. All variant records showing counts for FFPE
artefacts are flagged as FFPE in the FILTER field (section 3.4 on page 15). Including
both variant records showing counts for only FFPE artefacts, and variant records showing
counts for true variants and FFPE artefacts. After variant record classification has been
carried out, the UMI and SUMI-fields are added (frefsec:Output). The algorithm then
continues iterating through the VCF until the last variant record has been processed.
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1. Read Extraction

2. UMI Correction

3. UMI Grouping

4. Pos, Neg Strand Consensus 
Nucleotide Creation

5. Consensus Nucleotide 
Comparative Analysis 
And Variant-type
Classification

5. Single-strand read
Consensus Nucleotide
Classification

6. Variant Record Modification
And Classification

Modified VCF
Output File

Input VCF Input BAM +BAI

Figure 6: Simplified flowchart for the six step FUSAC algorithm described in section 3.5 on
page 19. (1) Using a VCF, BAM and BAI-file as input, all reads in the BAM-file aligning to a
variant record variant position in the VCF are extracted (2) All extracted reads have their
UMI’s corrected (3) Reads are then grouped based on UMI, strand of origin and read-name
(4) For both strands belonging to a UMI, all reads are collapsed to generate a consensus
nucleotide for the variant position nucleotide (5) Based on if the UMI contains consensus
nucleotides for both the positive and negative strand. Variant type classification based on
comparative analysis of the consensus nucleotides, or identification of the consensus
nucleotide (single strand reads) is carried out (6) The variant record used to extract the reads
in step 1 is classified as FFPE or Pass based on the total data from step 4, and the fields UMI
and SUMI are added to the Format field of the variant record. Once all variant records have
been processed, the program stops and outputs a modified VCF-file
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Results

4.1 Substitution type and counts

To evaluate the classifying algorithm of FUSAC, the unfiltered, UMI-filtered and non-FFPE-
treated data sets were used as input for FUSAC with the setting all which flags any variant
record with unique molecular counts for a substitution-type change, as well as the total number
or variant records and their listed substitution type change. The output was used to generate bar-
plots showing the counts of variant records for each respective substitution-type. As reference,
bar plots were generated for the three data sets using output from BCFtools (section 3.2 on
page 13) based on the Substitution Type field.

4.1.1 Unfiltered data set

For the unfiltered data set, the plots yielded by the output (figure 7 on the next page) of FUSAC
and BCFtools showing the counts of variant records seen to listed substitution type, are identical
(figure 7 on the following page). In total, 3,077.00 out of the total 3,779.00 variant records were
identified by both FUSAC and BCFtools as having listed substitution-type changes. In both
plots, G->A substitutions are consistently the most prevalent, followed closely by C->T and
then A->G, T->C. The ratio of variant records with listed C->T, G->A substitutions to T->C,
A->G substitutions being equal to 1.492. These results are consistent with previous findings
for the substitution profile of FFPE treated data sets [48], suggesting that the binning process
of FUSAC is accurate. Furthermore, the counts (1,467.00) for variant records showing signs
of variation between the strands (figure 7 on the next page, left figure, blue), indicates that a
majority (1,610.00) of the variant records reported in the VCF file have no variation between
the strands, and are thus not affected by FFPE artefacts (figure 7 on the following page, left
figure, red).
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Figure 7: a: Substitution-type and counts for variant records in the VCF (dark grey). Counts
and substitution type for variant records showing signs of variation between the strands,
suggesting some influence from FFPE artefacts (light grey), generated from the output of
FUSAC b: Substitution-type and counts for variant records in the VCF, generated from the
output of BCFtools
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4.1.2 UMI-filtered data set

For the UMI-filtered data set, the plots yielded by the output of FUSAC (figure 8) and BCFtools
(Appendix C, figure 14 on page 74) showing the counts of variant records seen to listed substi-
tution type, are identical (figure 8). The collapsing process resulted in a small reduction (231)
of the total number of variant records listed with substitution type changes in the unfiltered data
set. As well as a large reduction of counts (544) for variant records showing signs of variation
between the strands. Suggesting that the unfiltered data set had a large number of low-frequency
paired-reads with strand-variation.
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Figure 8: Substitution-type and counts for variant records in the VCF (dark-grey). Counts and
substitution type for variant records showing signs of variation between the strands
(light-grey), generated from the output of FUSAC

4.1.3 Non-FFPE-treated data set

The output from FUSAC (figure 9 on the following page and BCFtools (Appendix C, figure 15
on page 75) was identical, seen to the counts for variant record substitution type in the VCF-file
from the Non-FFPE-treated data set. Transition-type substitutions show consistently higher an
for that of transversion-type substitutions for both data sets, whilst showing similar counts to one
another. The transition to transversion ratio (Ti/Tv) (equation (1) on the following page) for the
data set was equal to 2.15, a ratio consistent with literature [49]. Furthermore, when comparing
the G->A, C->T to A->G, T->C variant record counts ratio of the non-FFPE-treated data set
(1.062), to that of the FFPE treated data sets (1.492 and 1.488 respectively), a clear increase in

24



the ratio of variant records with A->G, T->C substitutions could be observed.

Ti/Tv =
CC−>T + CG−>A + CT−>C + CA−>G

CA−>C + CA−>T + CC−>A + CC−>G + CG−>C + CG−>T + CT−>A + CT−>G

(1)

Out of 1,598.00 variant records, 1,419.00 were identified by BCFtools and FUSAC as having
a listed substitution type change. The counts (1,228.00) for variant records showing signs of
variation between the strands (figure 9, left figure, blue), indicate that only a a small portion
(199) of the variant records in this data set do not contain strand-variation. (figure 9, left figure,
red).
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Figure 9: Substitution-type and counts for variant records in the VCF (dark-grey). Counts and
substitution type for variant records showing signs of variation between the strands, suggesting
some influence from FFPE artefacts (light-grey), generated from the output of FUSAC

25



4.2 Distribution of true variant and FFPE support

To study the classification algorithm of FUSAC, the unfiltered, UMI-filtered and non-FFPE-
treated data sets were used as input for FUSAC with the default setting to only classify FFPE
artefacts of the C->T, G->A type. For sake of clarity, the output generated by FUSAC will
from this point onward be referred to as the FFPE Classified (FC) data sets (FC-unfiltered,
FC-UMI-filtered, FC-non-FFPE-filtered).

To study the distribution of the unique molecular counts for true variants and FFPE artefacts
for FFPE classed variant records, three scatter plots (figure 10 on page 28) were generated from
the FC-unfiltered, FC-UMI-filtered and FC-non-FFPE-treated data sets respectively. For the
FC-unfiltered and FC-UMI-filtered data sets, the plots show similar patterns with the majority
of variant records having comparatively few reads supporting FFPE artefacts or true variants.
The unique molecular counts for true variants were as expected on average significantly higher
than for that of FFPE artefacts. Indicating that for both data sets, true variants are more common
then FFPE artefacts.

For the FC-non-FFPE-treated data set, the unique molecular counts for FFPE artefacts and
for true variants were on average higher then for that of the FFPE treated FC-unfiltered and FC-
UMI-filtered data sets, with the unique molecular counts for FFPE artefacts on average being
higher in the FC-non-FFPE-treated data set.
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Figure 10: Scatter plot for the unfiltered (a), umi-filtered (b) and non-ffpe-treated (c) data sets,
showing unique molecular counts for true variant vs. FFPE artefact classified by
artefact-type. Each dot representing a separate variant record in the VCF-file, the x-axis
representing the unique molecular counts for a true variant, and the y-axis representing the
unique molecular counts for FFPE artefacts
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As the FC-non-FFPE-treated data set originates from fresh tissue, the unique molecular counts
for FFPE artefacts were expected to be lower then for that of the FFPE treated data sets. To
investigate this further, the distribution of UMI occurrences in the non-FFPE-treated data set
were recovered (table 8) and compared with the distribution of UMI occurrences in the un-
filtered data set (table 9 on the next page). The UMI-filtered data set was not included, on the
basis that the lowest number of occurrences for any UMI is 3 or more. For the non-FFPE-treated
data set, 85.88% of UMI’s appear once, 12.22% appear twice, and 1.65% of appear thrice. Be-
cause PCR and sequencing errors can not be corrected in the majority of these reads, they can
not be distinguished from FFPE artefacts. In this scenario FUSAC is expected to classify all
read-pairs with unique UMI’s of C->T, G->A type as FFPE artefacts, which is in line with the
results shown in figure 10 on the preceding page. Furthermore, these results are also in line
with the results shown in figure 9 on page 25, as the high number of low-frequency UMI’s with
read-errors would be flagged as variant records with strand-variation. The unfiltered data set
instead showed a much larger (48.12%) frequency of UMI’s occurring 3 times or more in the
data set, indicating that while there is still the risk of read-errors being classified as FFPE, it is
substantially smaller then for the non-FFPE-treated data set.

Table 8: Fraction of UMI-occurences for the non-FFPE-treated data set.

No. UMI occurences Fraction in the data set
1 0.858794
2 0.122231
3 0.01646

All occurrences below a frequency of 1% are not listed.

As can be seen in table 8, the vast majority of UMI’s in the non-ffpe-treated data set (85.8794%)
occur once, while 12.2231% occur twice. Thus, if one wishes to minimize the influence of
sequencing-errors, only 1.8975 % of the original data set can be used.
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Table 9: Fraction of UMI-occurences for the unfiltered data set.

No. UMI occurences Fraction in the data set
1 0.352784
2 0.165992
3 0.128637
4 0.101995
5 0.078513
6 0.057817
7 0.040762
8 0.027679
9 0.018115

10 0.011441
All occurences below a frequency of 1% not listed.

As can be seen in table 9, 35.2784% of UMI’s in the unfiltered data set occur once, while
16.5992% occur twice. Thus, if one wishes to minimize the influence of sequencing-errors,
48.1224 % of the original data set can be used.

4.3 Classifications

4.3.1 Unfiltered data set

For the unfiltered data set, out of the total 30,828,724.00 reads, a total of 347,063.00 paired
reads with unique UMI’s were found to align to variant positions in the VCF-file. Out of these,
0.83% (2,897.00) were classified by the algorithm as FFPE artefacts (the consensus read pair
containing a C->T:G->A mismatch at the variant position called by the variant record). Out
of a total of 3,779.00 variant records, 12.62% (477) were deemed to have at least one FFPE
classed paired read with a unique UMI align to their position. A total of 0.24% (9) of the
3,779.00 variant records were deemed to be true FFPE artefacts as they had no unique counts
for a true variant, but unique counts for FFPE artefacts.
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Table 10: FUSAC output read and variant record data for the unfiltered data set.

Counts Meaning
30,828,724.00 Total number of reads in the BAM-file

347,063.00
Paired reads with unique UMI’s aligning to

variant positions in the VCF-file

5,376.00 Reads classified as FFPE artefacts
3,779.00 Total number of variant records in the VCF.file
3,302.00 variant records without FFPE artefacts

477 variant records classified with FFPE artefacts

468
variant records with unique
molecular counts for both

FFPE artefacts and true variants

9 Variant records with true FFPE artefacts

4.3.2 UMI-filtered data set

For the UMI-filtered data set, out of 14,565,219.00 reads, a total of 168,074.00 paired reads
with unique UMI’s were found to align to variant record variant positions in the VCF-file. Out
of these, 1.09% (1,840.00) were classified by the algorithm as FFPE artefacts. Furthermore,
out of a total of 3,395.00 variant records, 8.57%. (291) were deemed to have at least one FFPE
classed paired read with a unique UMI align to their position. The collapsing and filtering
process of the unfiltered BAM-file lead to 10.16% (384) of the variant records present in the
VCF generated from the unfiltered data-file being excluded from analysis when compared to
the VCF-file generated from the unfiltered data set. Furthermore, filtering process resulted in
the loss of 52.86% (16,296,672.00) reads when compared to the unfiltered data set, and a loss of
61% (264,972.00) read-pairs with unique UMI’s overlapping with the variant record positions
in the VCF file. A total of 0.29% (10) of the 3,395.00 variant records were deemed to be true
FFPE artefacts as they had no unique molecular counts for a true variant, but unique molecular
counts for FFPE artefacts.
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Table 11: FUSAC output read and and variant record data for the unfiltered data set.

Counts Meaning
14,565,219.00 Total number of reads in the BAM-file

168,074.00
Paired reads with unique UMI’s aligning to

variant positions in the VCF-file

1,840.00 Reads classified as FFPE artefacts
3,395.00 Total number of variant records in the VCF.file
3,104.00 variant records without FFPE artefacts

291 variant records classified with FFPE artefacts

281
variant records with unique
molecular counts for both

FFPE artefacts and true variants

10 Variant records with true FFPE artefacts

4.3.3 Non-FFPE-Treated data set

For the Non-FFPE-treated data set, out of 21,120,584.00 reads, a total of 235,774.00 paired
reads with unique UMI’s were found to align to variant record variant positions in the VCF-
file. Out of these, 11.01% (26,130.00) were classified by the algorithm as FFPE artefacts.
Furthermore, out of a total of 1,597.00 variant records, 19.85%. (317) were deemed to have at
least one FFPE classed paired read with a unique UMI align to their position. No true FFPE
artefacts were found in the data set.

Table 12: FUSAC output read and variant record data for the non-FFPE-treated data set.

Counts Meaning
21,120,584.00 Total number of reads in the BAM-file

235,774.00
Paired reads with unique UMI’s aligning to

variant positions in the VCF-file

26,130.00 Reads classified as FFPE artefacts
1,597.00 Total number of variant records in the VCF.file
1,280.00 variant records without FFPE artefacts

317 variant records classified with FFPE artefacts

317
variant records with unique
molecular counts for both

FFPE artefacts and true variants

0 Variant records with true FFPE artefacts

32



4.4 FFPE support in the UMI-filtered data set

Based on the assumption that true FFPE artefacts would show low support for true somatic
variants, all variant records with higher unique molecular counts for FFPE artefacts then for true
variants were selected in the FC-UMI-filtered data set. A total of 16 variant records were found
with higher counts for an FFPE artefact at the variant record variant position than for a true
variant. Out of these, 10 had no support for a true variant at the variant record variant position
(table 13 on the following page, row 1-10). For a majority of the 10 variant records where the
unique molecular counts for a true variant were shown to be equal to zero, the unique molecular
counts for FFPE artefacts is low as well (table 13 on the next page, row 1-10), indicating poor
coverage at these positions.

4.4.1 Variant allele frequency and coverage in the FC-UMI-filtered data set

To study the overall frequency of FFPE artefacts in the UMI-filtered data set, a line-plot (fig-
ure 11) was generated using the FFPE artefact VAF, calculated according to equation (2) on the
next page for each variant record. The majority of variant records in the data set show a FFPE
VAF in the 1-10% range (table 13 on the following page, consistent with the findings by Wong
et al. (2014). Because positions with low coverage may have an erroneous representation of
alleles, giving rise to misleading results through false VAF-values, I went on to investigate if
some of the higher frequency variants suffered from lower coverage. To investigate the effects
of coverage on VAF, the 16 variant records investigated in section 4.4 were extracted from the
VAF data set (table 13 on the following page).
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Figure 11: Line-plot for the VAF of variant records showing unique molecular counts for
FFPE artefacts in the FC-UMI-filtered data set
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V AF =
CAllele

Ctot

(2)

where:

V AF = Variant Allele Frequency
CAllele = Coverage for allele at position
Ctot = Total coverage at position

One outlier (no. 221) seen in figure 11 on the previous page was shown to be a part of the 16
variant records with higher unique molecular counts for FFPE artefacts than for true variants
(table 13, row 14). All variant records, with the exception of 3 (table 13, row 11, row 14, row
15) show a VAF within the 1-10% range, consistent with figure 11 on the preceding page and
the findings of Wong et al. (2014). Among the variant records with higher counts for FFPE
artefacts then for true variants, all had relatively good (>50) unique UMI coverage, thus their
reported VAF’s are likely to be correct. No clear relationship between VAF and coverage could
be observed, but it is likely that variant records with low coverage would have showed a larger
variance in the VAF for FFPE artefacts.

Table 13: VAF and Coverage for variant records where the unique molecular counts for FFPE
artefacts were bigger then for that of a true variant.

Var. rec. no. FFPE Artefact counts True Variant counts VAF Coverage
49 11 0 9.6491228 114
60 9 0 6.1224490 147

169 8 0 5.4794521 146
152 6 0 4.3165468 139
284 4 0 3.0769231 130
140 4 0 4.1237113 97
55 4 0 1.5748031 254
44 2 0 1.6949153 118

129 2 0 3.5087719 57
56 1 0 0.4854369 206
36 13 1 12.2641509 106

165 27 13 7.8488372 344
205 2 1 1.5151515 132
221 25 14 20.8333333 120
112 47 38 10.5855856 444
166 10 8 4.4247788 226

Variant records ordered with respect to FFPE/True Variant counts ratio.
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Discussion

Precision medicine relies on the ability to identify genetic markers for therapeutic drugs, thus
removal of sequence artifacts is of great importance when designing a treatment plan. Failure
in the removal of sequence artefacts, especially if the amount of starting template is limited,
will result in an increase of the relative frequency of such mutations. The current methodology
at Clinical Genomics in Uppsala for assessment of a variant allele as a biomarker, is to have
experts determine if the position fulfills a set of criteria. Thus, FFPE artefacts introduces a time-
consuming challenge of correctly identifying the false-positive variant calls from true somatic
variants, a process which delays, and in the worst case may lead to erroneous treatment of a
patient.

5.1 Artefact type and support

The FFPE treated data sets in figure 7 on page 23 show a similar distribution in the counts
for variant record substitution types, with G->A and C->T being the most prevalent, followed
by A->G and T->C. These results are consistent with the findings of Kim et al. (2017), and
correlate well with the claim by Wong et al. (2014) that C->T:G->A mismatches make up
an important fraction of variation in FFPE tissue samples. The output generated by FUSAC,
showing the counts and substitution type for variant records with strand-variation, shows poten-
tial for indicating what variant records may be of interest when searching for true variants. In
figure 7 on page 23, as all variant records (red) not covered by FUSAC (blue) have shown no
strand-variation on a molecular level for all paired-reads aligning to their position, they can be
regarded as true variants. The FUSAC output from the non-FFPE-treated data set further show
what applications UMI-based variant-calling can have in a clinical or research based setting.
The high ratio of variant records showing strand variation to total number of variant records for
all substitution types in the data set, indicates that most variant records harbor true strand varia-
tion. However, in conjunction with the generated bar-plot for the frequency of UMI-occurrence
in the data set, one can draw the conclusion that the large number of variant records showing
strand-variation likely is due to a large number of PCR-artefacts or read-errors as the vast ma-
jority of read-pairs in the data set only occurred once. These findings seem to indicate that
FUSAC is able to identify and correctly classify strand-variation in variant records based on
UMI-tagged read-pairs. Furthermore, the output from FUSAC can be of use when attempt-
ing to identify what variant records are of interest when attempting to identify true variants in
sequence data.
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5.2 Classification

The results generated by FUSAC in section 4.3.1 on page 30 and section 4.3.2 on page 31
show that the program correctly identifies genomic variation in UMI-tagged data, producing a
detailed output regarding the characteristics of each variant record supplemented by the input
VCF. It should be noted that the data used to generate the unfiltered and UMI-filtered data set
were not filtered for low coverage before being used as input for FUSAC. Realistically, this will
likely not be the case for practical use, because low coverage variant records seen in section 4.4
on page 33 would have been flagged in the current clinical setup.

Despite the larger size of the unfiltered data set when compared to the UMI-filtered data set,
the UMI-filtered data set was shown to contain more pure (variant records with no unique
molecular counts for a true variant) FFPE artefacts (10 vs. 9). To elaborate on this, one must
take into consideration that the current classification methodology of FUSAC is to classify any
variant record as FFPE if it shows unique molecular counts for even one FFPE artefact. The
filtering and collapsing lead to the loss of 16,552,612.00 reads. Thus, it is likely that many
low-coverage UMI’s were removed from the data set, leading to the increase in frequency of
variant records showing no unique molecular counts for true variants.

When classifying the unfiltered data set through FUSAC, a total of 12.62% of the variant records
listed in the VCF-file were deemed to contain at least one FFPE artefact. Likewise, for the UMI-
filtered data set a total of 8.57% of the variant records were deemed to have support for at least
one FFPE artefact. Inversely, this means that 87.38% and 91.43% of the variant records can
be classified as true variants (containing no unique molecular counts for FFPE artefacts). Fur-
thermore, by studying the output for the remaining FFPE classed variant records in section 4.4
on page 33, true FFPE artefacts (variant records with no coverage for true variants) could be
distinguished alongside detailed information for each individual variant record. Thus, FUSAC
shows promise as a tool for identifying variant records containing true variants that are free
from FFPE artefacts in a data set, allowing clinicians/researchers to safely asses the potential of
variants as molecular targets for therapeutic drugs. Saving time and effort which can instead be
focused on diagnosis and treatment of the patient.
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5.3 Issues and limitations

The algorithm employed by FUSAC, is not without its limitations. The following section aims
to discuss and highlight the issues or limitations encountered when dealing with data sets of
varying quality or size.

5.3.1 UMI occurrence

The approach employed by FUSAC requires comparative analysis between nucleotide pairs
belonging to the positive and negative strand respectively. As such, if each nucleotide call is
based on a single read, or low number of reads, the software will not be able to distinguish
a PCR-artefact from an FFPE artefact. Filtering the data to always have at least three entries
for every UMI is one way of dealing with this issue, as one can utilize majority-voting to select
against such low-frequency variants. However, doing so comes at the price of reduced coverage.
To illustrate this further, in the case described in section 4.3.2 on page 31, for the non-FFPE-
treated data set, over 85% of all UMI’s were found to occur only once, and only 1.65% of all
UMI’s occurred three or more times. As a consequence of this, when collapsing that datset
using at least 3 observations for each UMI, FUSAC would only be able to use 1.65% of the
original non-FFPE-treated data set.

5.3.2 Coverage

Because FUSAC treats each variant record as a separate entity, variant records with poor cover-
age can influence the overall profile presented to a researcher. Poor coverage not only influences
statistics such as VAF, but may also lead to false FFPE classifications by the algorithm due to
the absence of true variants at a position as a consequence of insufficient coverage. One way
of handling this issue is to simply remove records with low coverage. However, this approach
naturally comes at the possible risk of removing low coverage variant records containing true
somatic variants of interest. As a whole, the influence of coverage and UMI-occurrence with re-
spect to classification may present challenges for samples with low amounts of starting-material,
or for samples of poor quality. Inversely, higher sequencing depth will of course improve these
numbers, but the effects of coverage is beyond the scope of the current work.

5.3.3 Performance and classification

The FFPE filter-classification process is currently limited to classifying any variant record
showing unique molecular counts for the prescence of FFPE artefacts at the variant position.
This detailed approach cannot distinguish between variant records with good coverage and a
high FFPE VAF, from variant records with poor coverage or low VAF. It also does not judge
if a variant with few counts supporting an FFPE artefact and many supporting a true variant
is a true variant or not, that is left to the user. A more stringent filtering may lead to the loss
of information and that may possibly have a negative impact on the process of identifying true
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somatic variants.

5.4 Future applications and improvements

During the development of FUSAC, the biggest limiting factor was time. There exists many
interesting and possible extensions for improving the functionality and performance of FUSAC,
which will be discussed in detail in this section.

5.4.1 Utilization of Single-strand read data

In the extraction process of FUSAC, a UMI may sometimes only retrieve reads amplified from
one of the strands of origin (positive or negative). As the algorithm employed by FUSAC is
based on consensus nucleotide comparison between the positive and negative strand of a UMI-
tagged read-pair, such reads cannot currently be used for variant-type classification. One current
approach for handling such single-strand reads (section 3.3.2 on page 15) is to list the single-
strand read support for the variant and reference nucleotide on the positive and negative strand
respectively. Based on the assumption that a region that has experienced strand bias, will likely
have a significant difference in the unique molecular counts for either the positive or negative
strand. An automated process for flagging variant records showing signs of strand bias, could
potentially improve model accuracy. Guo yi et al. (2012) found in their study that regions with
high strand bias also indicate a high false-positive rate for single nucleotide polymorphisms
(SNP’s). The presence of false-positive SNP’s could potentially lead to false-positive FFPE
or true variant-calls by FUSAC. And by extension erroneous diagnosis or treatment due to a
false positive variant-call being identified as a potential molecular target. As such, information
regarding strand-bias could potentially be used to filter out or flag variant records showing
high strand bias. Such a process would increase transparency in the data set, allowing users to
identify and lessen the influence of regions containing false-positive SNP’s.

5.4.2 Classification algorithm improvements

At its core, FUSAC is attempting to perform a binary classification (FFPE or PASS) based on
given input data in the form of the UMI and SUMI fields for the variant record of interest. With
respect to this, the implementation of supervised binary classifiers such as artificial neural net-
works is a topic of great interest for improving the classifying step of FUSAC. As was covered
in section 2.3 on page 8, the quality of FFPE tissue sequence data is influenced by many factors
such as the protocols used for FFPE fixation, period of storage and the environment, as well
as the protocol used for extraction. With respect to this, a learning algorithm such as the one
found in back-propagation artificial neural networks could theoretically be trained on data from
similar origins to improve classification [52]. Coverage and VAF are factors that have previ-
ously been shown to correlate with the presence of FFPE artefacts [5], and could potentially
through training be used to build more accurate models for classification with respect to the
overall quality of the data set.
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To further evaluate the utility of FUSAC and investigate if threshold levels for coverage and
VAF can be set by default for classification. Tests against a wider range of sequence depths and
different NGS chemistries are required. In particular, tests on data sets with a known number
of FFPE artefacts are required to evaluate the performance of FUSAC and determine the fea-
sibility of VAF/Coverage ratio as a metric for classification of FFPE artefacts. Unfortunately,
at the time of the study, I was not able to identify any data sets meeting these criteria. An al-
ternative approach would be to test the performance through the use of UMI-tagged synthetic
reads. As such, further performance evaluation and optimization of the classification algorithm
for FUSAC is likely warranted before routine clinical use.

5.4.3 Applications in clinical settings and research

Despite the issues brought up in section 5.3 on page 37, FUSAC has clear applications in bioin-
formatic pipelines as it outputs detailed information regarding the unique counts for the variant
type as well as the unique counts for the reference-base and called variant for both paired and
single-reads. The comprehensive overview given through FUSAC’s output can thus be used
to gain a better understanding of the distribution and molecular structure of reads aligning to
the variant-call. Furthermore, while FUSAC’s ability to classify variant records is limited to
any variant record showing unique molecular counts for FFPE artefacts in it’s current state, the
program has a clear use as a fast and reliable way to quickly identify variant records without
unique counts for FFPE artefacts. The unfiltered and UMI-filtered data sets had 12.62% and
8.57% of their variant records flagged as affected by FFPE. This effectively means that 87.38%
of the original data set, or 91.43% of the UMI-filtered data set can be identified as true variants.
This information would allow researchers to safely asses the potential of variants within these
variant records as molecular targets without the risk for false-positive classification of FFPE
artefacts.
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Conclusion

FUSAC, as has been presented in this thesis, is a novel computational tool specialized in iden-
tifying FFPE artefacts in UMI-tagged data. The results from FUSAC are promising, though
further tests against a reference or synthetic read reference data set will be needed before it is
used in a clinical setting. FUSAC has a clear use for the purpose of analyzing FFPE tissue
samples, and as a novel software without any real alternatives in regards to it’s approach, it fills
an important role in the still greatly unexplored realm of FFPE artefact classification.
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Appendix A

For those interested in reading about FUSAC’s functionality in detail, appendix A contains a
full software documentation, in the form of a copy of the README file found on FUSAC’s
github page.

8.1 Readme

FUSAC (FFPE tissue UMI based Sequence Artefact Classifier) is a python-based program for
the identification and classification of FFPE artefacts in UMI-tagged sequence data. Using a
VCF and BAM-file as input, FUSAC is able to successfully identify groups and collapse all
reads aligning to a position called by the VCF, generating consensus sequences for each UMI
as well as identifying their string of origin before amplification. These consensus sequences
are then compared with their mate, and thus FUSAC is able to not only identify C->T:G->A
artefacts left by hydrolytic deamination, but also identify true variants, deletions, unknowns and
any other type of mismatch.
FUSAC requires the user to have basic understanding of the data they wish to study, namely the
location of the UMI and how it is structurally stored within the BAM-file. More specifically it
requires the user to define both the location of the tag (query name or the RX-field) as well as
the character the UMI is separated by if such a character exists.

Figure 12: BAM-file read example in which the UMI-tag is located in the query-name, and is
separated by the character +. Output generated by SAMtools

Figure 13: BAM-file read example in which the UMi-tag is located in the query-name and is
not separated by any character. Output generated by SAMtools

From this input, FUSAC generates a modified VCF-file as output. The output VCF is a copy
of the input VCF but has a modified FILTER field where any classified FFPE artefact will
display FFPE. Furthermore, the output VCF will also have a modified FORMAT field where
the unique molecular counts for the variant position variant classification (Reference nucleotide,
True variant, FFPE artefact, Unknown or Deletion) are listed. This field also contains the unique
molecular counts for the reference genome nucleotide as well as the called variant nucleotide
for paired reads on the positive and negative strand, as well as the unique molecular counts on
single strand reads belonging to the positive or negative strand.
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8.2 Prerequisites

FUSAC is based on the python module Pysam 0.15.0, and thus requires this to be installed.
Furthermore, FUSAC requires the library Pandas 0.24.2. These can be obtained for free through
their respective github page, or easily installed through pip.

Table 14: Example on how to install the required python-modules.

Command
sudo pip install pysam=0.15.0
sudo pip install pandas=0.24.2

There are three fundamental assumptions made by FUSAC to yield the desired output:

1. The input sequence data is UMI-tagged

2. The UMI is located either in the query-name or RX-tag fields in the BAM (translated to
SAM) file.

3. If the UMI is located in the query-name, it is located as the last entry and separated from
the rest of the query name through a character.

(a) Example Name With Tag At End UMI ACTACTA+ACTACTA

The first assumption is necessary due to FUSAC’s algorithm working in a classifying manner.
To identify all reads stemming from a source molecule, a common identifier in the form of the
UMI is vital for collapsing reads into a consensus sequence. The second assumption is neces-
sary to properly locate the called variant within each subsequent read belonging to a UMI of
interest. FUSAC uses the reference genome to identify the correct position for each subsequent
read. And thus, if gapped bases are not included, this position will be incorrect, thus yielding
an incorrect comparison. The third and fourth assumption are both necessary to ensure that the
UMI-tagged data can be properly extracted from each read.

8.3 Interpreting FUSAC’s output

The output from FUSAC is generated in the form of a modified VCF-file. The modified VCF
is identical to the input VCF with the exception of a custom FILTER tag (FFPE) for classified
FFPE variants, as well as two custom FORMAT fields called UMI (Unique Molecular Identifier
counts) and SUMI (Singleton Unique Molecular Identifier counts). Both these fields contain
the unique counts for the five variant-types (table 15 on the next page), the unique counts for
the reference and variant nucleotides split by strand for read pairs where fragments from both
strands have been detected, and the unique counts for the reference and variant nucleotides on
single strand reads belonging to the positive and negative strand.
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Table 15: Variant-type classifications in the UMI and SUMI fields.

Variant classification Definition
Reference nucleotide Reference nucleotide

True variant Variant nucleotide
FFPE artefact C->T:G->A mismatch

Unknown N
Deletion -

8.3.1 Example Unmodified VCF-record

Example of a unmodified variant record in a VCF-file (table 16). The field INFO have been cut
out for sake of clarity and are marked as .... The FORMAT field values are displayed separately
in table 17 for clarity.

Table 16: Example unmodified variant record.

Field Value
CHROM chr1

POS 4,367,323.00
ID rs1490413

REF G
ALT A

QUAL .
FILTER FFPE
INFO ...

FORMAT GT:AD:AF:DP

Table 17: Example unmodified VCF FORMAT-fields.

FORMAT field Value
GT:AD:AF:DP: 0/1:571,632:0.527:1203:

8.3.2 Example modified VCF-record

Example of the FUSAC output (table 5 on page 17) based on the variant record as shown in
table 3 on page 16. The field INFO have been cut out for sake of clarity and is marked as ....
The FORMAT, UMI and SUMI fields are displayed in a separate table for clarity (table 19 on
the following page). As can be seen, the FILTER field has been modified to display FFPE
instead of pass. This tells us that that the algorithm detected at least one read pair with a unique
UMI and a C->T:G->A mismatch at the variant record variant-call position.
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Table 18: Example FFPE classed variant record generated by FUSAC.

Field Value
CHROM chr1

POS 4,367,323.00
ID rs1490413

REF G
ALT A

QUAL .
FILTER FFPE
INFO ...

FORMAT GT:AD:AF:DP:UMI:SUMI

Table 19: Example FFPE classed FORMAT-fields, generated by FUSAC.

FORMAT field Value
GT:AD:AF:DP: 0/1:571,632:0.527:1203:

UMI: 235;313;15;0;0;313;328;250;235;272;322;306;256:
SUMI: 0;0;0;0;0;0;0;0;0;0;0;0;0

Further investigation in the FORMAT field, more specifically the two fields UMI (table 20 on
the next page) and SUMI generated by FUSAC, shows us that the unique molecular counts
for reference nucleotide is 235, the counts for a true variant is 313 and the counts for FFPE
artefacts is 15. The counts for a deletion or an unknown is deemed to be 0, the counts for the
reference nucleotide (G) on the positive strand for paired reads as 313, and on the negative
strand 328. Finally, the counts for the variant nucleotide (A) on the positive strand for paired
reads is deemed to be 250, and on the negative strand 235. We can quickly see that this score
is consistent with the 15 FFPE artefact classifications that were found by FUSAC. For single
strand reads, the unique molecular counts for the reference nucleotide is 272 on the positive
strand and 322 on the negative strand. Whereas the counts for the variant nucleotide is 306 on
the positive strand, and 256 on the negative strand. Finally, the field SUMI indicates that no
unique molecular counts for singletons were found at the given variant record.
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Table 20: Example UMI-field values generated by FUSAC.

Value Meaning
235; Unique molecular counts for reference nucleotide
313; Unique molecular counts for true variant
15; Unique molecular counts for FFPE artefact
0; Unique molecular counts for unknown
0; Unique molecular counts for deletion

313;
Unique molecular counts for reference nucleotide

on positive strand for paired reads

328;
Unique molecular counts for reference nucleotide

on negative strand for paired reads

250;
Unique molecular counts for variant nucleotide

on positive strand for paired reads

235;
Unique molecular counts for variant nucleotide

on negative strand for paired reads

272;
Unique molecular counts for reference nucleotide

on positive strand for single strand reads

322;
Unique molecular counts for reference nucleotide

on negative strand for single strand reads

306;
Unique molecular counts for variant nucleotide

on positive strand for single strand reads

256;
Unique molecular counts for variant nucleotide

on negative strand for single strand reads
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8.4 Quickstart

Required input arguments for running FUSAC are -b and -v, which are the respective paths to
the input BAM and VCF file. Furthermore, an indexed BAM (BAI) file is required for extract-
ing desired segments of the BAM-file. The other input flags are not required, but should be
changed if the default value is not representative of the desired output. To minimize run-time
and CPU-load FUSAC can run on multiple threads. Unfortunately, as pickling cannot deal with
open file handles, multiprocessing is not a viable option as this would require the file to be
opened for every read aligning to the variant position. Instead, FUSAC uses the python thread-
ing module with a producer-consumer approach, where the producer generates and populates a
queue, and the consumer thread extracts the inhabitants of this queue for analysis. To control
this threading process, the arguments threads (-t) and queueSize (-qs) determine the number of
threads to be run and the size of the threading queue respectively. The default values for threads
and queueSize respectively are one active thread and an infinite queue, but can be set to any
integer value desired.

The default FFPE classification mode focuses solely on C->T:G->A artefacts, however if de-
sired the program can also identify any mismatching consensus nucleotides using the input flag
ffpeBases (-fb) with the option all. Lastly, FUSAC is entirely dependent on the UMI being
properly extracted to ensure that reads are assigned to the positive strand or the negative strand
as origin. Therefore, the user can specify through the umiPosition (-up) tag if the UMI is lo-
cated in the query-name (qrn) or the RX-tag respectively (rx). Furthermore, the UMI needs to
be split from the query name, and then in half to be rearranged correctly. As the type of char-
acters can vary from data set to data set, the parameters querySplitCharacter (qsc) can be used
to split the UMI-tag from the query name, and the parameter UMISplitCharacter (usc) can be
set to split the UMI-tag. For reads where the UMI is not separated by a tag, an empty string
(””) should be used for -usc to split the tag in half. The csvFile (cf ) input controls whether
or not FUSAC generates an output CSV file based on the FUSAC output. This CSV generates
a separate row for each variant record with columns for the unique molecular counts for the
reference genome nucletoide, the variant-call nucleotide, the number of FFPE calls, the overall
frequency of FFPE artefacts for each variant record, and the type of mismatch for the variant
record. The default setting is to generate the CSV, but if this is not required the function can
be turned off using the input no. Finally, the percentageExclude (pe) input controls whether or
not to filter the results when generating the output CSV-file based on the frequency of detected
FFPE artefacts in a output variant record. The input can be set to any two integer values, 0-100
being default for no filtering. If we were to select 1-99% as an example, all variant records with
FFPE VAF below 1% and above 99% would be excluded from the output CSV-file.
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Table 21: FUSAC input flags and their respective function.

Flag Name Function Req. Def. Alt.
-b inputBAM Input BAM file Yes N/A Any
-v inputVCF Input VCF file Yes N/A Any

-t threads
No. threads to

run the program
No 1 Any

-qs queueSize Threading queue-size No Infinite Any

-fb ffpeBases
Bases used for

FFPE classification
No C->T:G->A All

-up umiPosition
Location of the
UMI in a read

No Query-name RX-tag

-qsc querySplitCharacter
Split character for the
query-name and UMI

No Any

-usc UMISplitCharacter
Split character for

the UMI
No + Any

-cf csvFile
Generate an

output CSV file
No yes no

-pe percentageExclude

Exclude variant records
from output CSV-file
with FFPE frequency

under input value

No yes no

Req. = Required, Def. = Default, Alt. = Alternative.
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8.4.1 Example 1

We wish to classify all mismatches belonging to the file example bam using the example vcf
file. The Reads in the example bam file have their UMI stored in the query-name, which is
separated by the character . The program is being run on a laptop with 4 cores, and we wish to
limit the queue to 9 variant records.

Table 22: FUSAC call-sequence for the case presented in Example 1.

Function call

python fusac.py -b example bam.bam -v example vcf.vcf -t 3 -qs 9 -b all -sc

8.4.2 Example 2

We wish classify only C->T:G->A artefacts belonging to the file example bam using the ex-
ample vcf file. The reads in the example bam file have their UMI stored in the RX-tag, and are
not separated by any character. The program is being run on a cluster with 16 cores. We do not
wish to limit the queue, but rather have it infinite. Furthermore, we do not wish to generate a
CSV file.

Table 23: FUSAC call-sequence for the case presented in Example 2.

Function call

python fusac.py -b example bam.bam -v example vcf.vcf -t 15 -up rx -sc ”” -cf no

55



8.4.3 Reference manual

The reference manual covers all functions belonging to FUSAC, describing their purpose,
methodology and input/output. Use it to get a better understanding of FUSAC or if you have
any questions.

8.4.4 Main

After the user has supplemented their desired input arguments using the flags covered in the
section Quickstart, the main function will use the vcf-file as an input argument to populate a
newly generated double-ended-queue (deque) of size -qs, with the variant-calls found within
the VCF-file. Based on the flag threads, the function will then create -t consumer threads, their
results appended to a result-queue. Once the VCF has been iterated through entirely, the output
will be written to an output vcf-file.

8.4.5 QueueThread

The QueueThread function is a producer which takes the variant-calls found within the VCF-file
and populates a deque (while not full) to be used by the consumer function.

Table 24: Input arguments for the QueueThread function.

Input Function
vcf file VCF filehandle
thr que Deque to be populated
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8.4.6 ResultThread

While the deque is not empty, the ResultThread function calls upon the vcf extract function
using the variant record extracted as input. The subsequent results are then stored in a separate
thread while not None.

Table 25: Input arguments for the ResultThread function.

Input Function
bam path Path to BAM-file
thr que Populated deque to be used as input for vcf extract
res que Queue to be populated with the results from vcf extract

ffpe n
Optional input argument controlling which mismatches to

consider for FFPE classification

ext fun Function for extracting the UMI from a read
spl fun Function used for splitting the UMI in a read

q spl cha Character separating UMI from the query name
u spl cha Character for splitting the UMI-tag
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8.4.7 vcf extract

The vcf extract function uses the supplemented variant record to extract all reads in the BAM-
file overlapping with it’s position. This newly generated list is used for the var extract func-
tion to return molecular data. The output from var extract is then subsequently used in the
inf builder function. Finally, the output from inf builder is added to the copied input record and
returned.

Table 26: Input arguments for the vcf extract function.

Input Function
record variant record of interest

bam file BAM-file file-handle

ffpe n
Optional input argument controlling which mismatches to

consider for FFPE classification

ext fun Function for extracting the UMI from a read
spl fun Function used for splitting the UMI in a read
spl cha Character used for splitting the UMI
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8.4.8 var extract

The var extract function first calls the umi maker function which creates a dict based on the
directionality and UMI’s of the supplemented reads in the bam lst. This dict is then used to call
the pos hits function which will return a dict of consensus nucleotides for each UMI. For paired
reads (ie: exists on both the positive strand and the negative strand for a UMI) the output from
the pos hits function is then used to call the ffpe finder function which returns a dict containing
the variant type for each UMI along with the unique molecular counts for each variant type. The
pos checker function returns a dict with data regarding the unique molecular counts for each
variant type on the variant record position, as well as the nucleotides present for each variant
with respect to their UMI.

Table 27: Input arguments for the var extract function.

Input Function
record variant record of interest
bam lst Input list of BAM-reads aligning to the variant call
rec pos The position of the variant in the reference genome
var nuc The nucleotide called in the variant record
ref nuc The nucleotide found in the reference genome at the variant-call position

ffpe n
Optional input argument controlling which mismatches to

consider for FFPE classification

ext fun Function for extracting the UMI from a read
spl fun Function used for splitting the UMI in a read
spl cha Character used for splitting the UMI

Table 28: Input and output for the var extract function.

Dict Structure

Input Example list: bam lst = [read 1, read 2 ... ]

Output

Example dict:
mpd res[umi key] = {”Single Hits”: Pos Str Hits: {}, Neg Str Hits:{C,T},

”Mate Hits”: True Variant Hits”: {}, ”FFPE Hits”: {”Pos Str”: C, ”Neg Str”: T},
”N Hits”: {}, ”Del Hits”: {}, ”Reference Support”: 0, ”True Variant Support”: 0,

”FFPE Support”: 1, ”N Support”: 0, ”Del Support”: 0}}
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8.4.9 inf builder

The inf builder function uses the output from var extract to generate a list containing strings
representing the data found for each record, more specifically unique molecular counts for each
variant-type, as well as the unique molecular counts for the reference and variant call for the
positive and negative strand.
The inp dict is meant to be the output from the var extract function,and is divided into two dicts
named Single Hits and Mate Hits. The Single-dict contains the unique molecular counts for the
reference genome nucleotide and the variant nucleotide based on all reads without a mate. The
Mate-Hits dicts instead contains data regarding the variant-classification, the unique molecular
counts for each variant type, and the unique molecular counts for the reference genome nu-
cleotide and the variant nucleotide based on reads with a mate.
Returns a list containing the unique molecular counts for each variant-type, as well as the unique
molecular counts for the reference and variant call for the positive and negative strand.

Table 29: Input arguments for the inf builder function.

Input Function
read Read of interest

inp dict

Input dict dict for mapped and unmapped reads. Each of these dicts containing a
single-hits and a mate-hits dict. The mate-hits dict in turn contains data regarding
if the variant is a variant, reference nucleotide, FFPE artfefact deletion or N-call.

Whereas the single-hits dict contains positional data for reads with no mate

ref nuc Nucleotide in reference genome for the variant record variant position
var nuc Variant nucleotide for the variant record variant call

Table 30: Input and output for the inf builder function.

Dict Structure

Input

Example dict for a FFPE artefact:
inp dict = umi key: {”Single Hits”: Pos Str Hits: {}, Neg Str Hits:{C,T},

”Mate Hits”: True Variant Hits”: {},”FFPE Hits”: {”Pos Str”: C, ”Neg Str”: T},
”N Hits”: {}, ”Del Hits”: {}, ”Reference Support”: 0, ”True Variant Support”: 0,

”FFPE Support”: 1, ”N Support”: 0, ”Del Support”: 0}}

Output
Example output list for one FFPE artefact:

[0;0;1;0;0;1;0;1;0;0;0;0;0]
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8.4.10 csv maker

The csv maker function generates an output CSV-file based on the FUSAC output containing
data for each variant record. More specifically regarding the unique molecular counts for the
reference genome nucleotide, the variant-call nucleotide,the number of FFPE calls, the overall
frequency of FFPE artefacts for each variant record, and the type of mismatch for the variant
record. Through extracting this info and calling the csv record maker function, it populates a
series of list that are then written to the new CSV.

Table 31: Input arguments for the csv maker function.

Input Function
read Read of interest

vcf file The output VCF file generated by FUSAC

ref nuc Nucleotide in reference genome for the variant record variant position

ffpe n
Optional input argument controlling which mismatches to

consider for FFPE classification

per exl
Exclude data from variant records

with FFPE frequency under input value
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8.4.11 csv record maker

The csv record maker extracts information from a FFPE tagged variant-record (classified by
FUSAC as showing unique molecular counts for a FFPE artefact at the variant position), more
specifically from the samples field. The function generates data regarding the unique molecu-
lar counts for the nucleotide in the reference genome for the variant-call position, the variant
nucleotide in the variant record, the number of FFPE artefacts found, the number of unknowns
found, the number of deletions found, as well as the percentile ratio of FFPE artefacts in the
variant record. The generated data is then used to populate the lists used as input.

Table 32: Input arguments for the csv record maker function

Input Function
read Read of interest

pos lst List containing the position for records

change lst List containing the mismatch for studied variant records

ref lst
List containing the unique molecular counts for the reference genome nucleotide

for each studied variant call position respectively

var lst
List containing the unique molecular counts for the variant record

variant-call position for each studied variant call position respectively

ffpe lst

List containing the unique
molecular counts for
FFPE artefacts on the

variant record variant-call
position for each studied

variant call position respectively

perc lst
List containing the percentual ratio of unique molecular counts for FFPE artefacts

to the total number of molecules studied for each studied
variant call position respectively

record The variant record of interest

per exl
Exclude data from variant records

with FFPE frequency under input value
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8.4.12 qrn ext

The qrn ext function extracts a UMI from a read, based on the key being present as the last item
in the query-name. Returns the UMI.

Table 33: Input arguments for the qrn ext function

Input Function
read Read from which the UMI is to be extracted from

8.4.13 rx ext

The rx ext function extracts a UMI from a read, based on the key present in the RX-tag. Returns
the UMI.

Table 34: Input arguments for the rx ext function.

Input Function
read Read from which the UMI is to be extracted from
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8.4.14 cha splt

The cha splt function splits the umi string based on the split-character argument. Returns a list
containing the UMI split into two components.

Table 35: Input arguments for the cha splt function.

Input Function
umi str A string representing the UMI to be split

char Character to split the umi-string by

8.4.15 hlf splt

The hlf splt function splits the umi string in half based on it’s length. Returns a list containing
the UMI split into two components.

Table 36: Input arguments for the rx splt function.

Input Function
umi str A string representing the UMI to be split

char Character to split the umi-string by (not used but required by the function call)
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8.4.16 umi maker

The umi maker function rearranges the UMI belonging to a read, based on if the read is read 1
or read 2 in combination with its directionality. To extract the UMI from the read the ext fun
function is used, which calls either the qrn ext or rx ext function based on user input. The
UMI is then transformed from a variant record entry into a string, and used as input for the
spl fun function. Returns the query-name of the read, the strand it belongs to, and the adjusted
UMI-sequence

Table 37: Input arguments for the umi maker function.

Input Function
read Read of interest

splt umi UMI for the read split into two strings
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8.4.17 pos hits

The pos hits function selects the most prominent base for a UMI of interest. The function works
by iterating through all query-names in the input list and determines if the query-name has a
mate or not. The function then calls the base check function to retrieve the base matching the
variant record position for each read. In the next step the retrieved base is matched against a
dict, and depending on the outcome adds to a counter representative of the base. This process
is repeated for each query name and it’s subsequent read, and the resulting dict is then used to
determine the most prominent nucleotide for the UMI, effectively collapsing all reads belonging
to a UMI. Returns the consensus nucleotide

Table 38: Input arguments for the pos hits function

Input Function
inp dict Input list of reads categorized by their query-name
rec pos The position of the called variant in the reference genome

Table 39: Input and output for the pos hits function

Dict Structure

Input
Example dict:

input dict = {example name UMI ACTGCA+ACTGCA: {read1, read2},
example 2 name UMI TGACGT+TGACGT: {read2}}

Output Example list: cons lst = [UMI tag 1: C, UMI tag 2: T ]

8.4.18 base check

The base check function checks the variant record position against the supplemented read, and
then extracts the nucleotide belonging to this position in the read. Returns the nucleotide in the
read mapping against the variant record position.

Table 40: Input arguments for the base check function.

Input Function
read Read of interest

rec pos The position of the called variant in the reference genome
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8.4.19 ffpe finder

The ffpe finder function is made to classify the variant type for paired UMI-reads. All-together
the UMI and it’s variant record position can be classified as:

1. Reference nucleotide

2. True Variant

3. FFPE artefact

4. Unknown

5. Deletion

The function uses a dict of paired reads containing their consensus nucleotides categorized
through their UMI, which is then iterated through for every UMI. It then uses the consensus
nucleotide originating from the positive and negative strand to classify the UMI through com-
paring these to one another. If the two consensus nucleotides are equal to one another and
furthermore equal to the base in the reference genome, the UMI is determined to be Reference
nucleotide. If the two consensus nucleotides are equal to one another and furthermore equal to
the variant in the variant record, they are instead deemed to be a True variant. In default mode,
a FFPE classification only occurs if there is a mismatch between the two consensus nucleotides,
if one of the consensus nucleotides is equal to the variant in the variant record and finally if the
mismatch is of a C->T or G->A type. Alternatively, if the flag ffpe b has been called with the
input all, the function instead classifies any mismatch between the consensus nucleotides for the
positive strand and the negative strand as a FFPE artefact. If any of the consensus nucleotides
are equal to N or - the UMI is instead deemed to be Unknown or Deletion respectively.
After a UMI is classified, a counter is added too, and the UMI is stored within a dict named
after the variant type. Once the algorithm has iterated through every UMI within the cons dict,
it creates a new dict containing all variant-type dicts as well as their unique molecular counts,
which is then returned.

Table 41: Input arguments for the ffpe finder function.

Input Function

cons dict
Dict containing the consensus nucleotides for the positive strand and the negative strand

classified through their UMI.

var nuc The nucleotide called in the variant record
ref nuc The nucleotide found in the reference genome at the variant-call position

ffpe b
Optional input argument controlling which mismatches to

consider for FFPE classification
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Table 42: Input and output for the ffpe finder function.

Dict Structure

Input Example dict for a FFPE artefact: cons dict = {Pos Str Hits: C, Neg Str Hits: T}

Output

Example dict for a FFPE artefact:
var dict = {”Single Hits”: Pos Str Hits: {}, Neg Str Hits:{C,T},

”Mate Hits”: True Variant Hits”: {},”FFPE Hits”: {”Pos Str”: C, ”Neg Str”: T},
”N Hits”: {}, ”Del Hits”: {}, ”Reference Support”: 0, ”True Variant Support”: 0,

”FFPE Support”: 1, ”N Support”: 0, ”Del Support”: 0}}
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8.4.20 mol count

The mol count function uses the output generated by the var extract function, more specifically
the unique molecular counts for each variant classification type as well as the counts for the
reference and variant call for the positive and negative strand. Returns a list consisting of the
unique molecular counts for each variant type

Table 43: Input arguments for the mol count function.

Input Function

inp dict The output dict from the var extract function

Table 44: Input and output for the mol count function.

Dict Structure

Input

Example dict for a FFPE artefact:
inp dict = umi key: {”Single Hits”: Pos Str Hits: {}, Neg Str Hits:{C,T},

”Mate Hits”: True Variant Hits”: {},”FFPE Hits”: {”Pos Str”: C, ”Neg Str”: T},
”N Hits”: {}, ”Del Hits”: {}, ”Reference Support”: 0, ”True Variant Support”: 0,

”FFPE Support”: 1, ”N Support”: 0, ”Del Support”: 0}}

Output Example list for a FFPE artefact: [0,0,1,0,0 ]

8.4.21 nuc count

The nuc count function uses the output generated by the var extract function, more specifically
the unique molecular counts for a given nucleotide of interest. Returns a dict containing subse-
quent dicts with the unique molecular counts for the nucleotide for paired reads on the positive
and negative strand, as well as the unique molecular counts for the nucleotide on single reads
belonging to the positive and negative strand.

Table 45: Input arguments for the mol count function.

Input Function

inp dict The output dict from the var extract function

nuc The nucleotide of interest
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Table 46: Input and output for the nuc count function.

Dict Structure

Input

Example dict for a FFPE artefact:
inp dict = umi key: {”Single Hits”: Pos Str Hits: {}, Neg Str Hits:{C,T},

”Mate Hits”: True Variant Hits”: {},”FFPE Hits”: {”Pos Str”: C, ”Neg Str”: T},
”N Hits”: {}, ”Del Hits”: {}, ”Reference Support”: 0, ”True Variant Support”: 0,

”FFPE Support”: 1, ”N Support”: 0, ”Del Support”: 0}}

Output
Example dict for the nucleotide C for a imaginary input dict:

n sup = {”Paired”: {”Pos Str”: {C: {12}}, ”Neg Str”: C: {11},
”Pos Str Single”: C: {5}, ”Neg Str Single”: C: {2}}
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8.4.22 FAQ

The FAQ aims to answer questions the reader may have regarding FUSAC and it’s use.

Why do i need a VCF-file to use FUSAC?:
The VCF is required to identify and target known variant calls. Based on the assumption that
any FFPE artefact will initially be classified as a variant in the VCF. All variant-records present
in the VCF are then classified by FUSAC to evaluate if they are FFPE artefacts or not. When
creating FUSAC, I felt no need to construct a custom variant-caller due to the abundance of
adequate variant-calling software already existing.

Why is there a need for a BAI file, is the BAM not enough?:
A BAM file is stored in binary format, and thus has no internal structure to use for purposes
of fetching. The BAI file provides an indexed form of the BAM, allowing us to fetch specific
reads, the FUSAC algorithm requires this functionality.

The unique molecular counts for the variant-call variants in my output seems compar-
atively low to the read-depth, why is this?:
FUSAC can only classify variant types if the UMI it is studying has both a positive and negative
strand consensus sequence. Thus, if the studied data has many singletons or if only one of the
strings align to the variant-call position, there will be a limited amount of classifications that can
be made. The single paired reads and the singletons instead provide unique molecular counts
for the variant call nucleotide as well as the reference genome nucleotide for the variant-call
position.

What are the recommended number of threads to run FUSAC on?:
The optimal number of threads depends entirely on the system FUSAC is to be run on. Ideally,
one should use n-1 threads, where n is the total number of available processors on the system.

How do i know where the UMI is stored, and how do i know what character is sepa-
rating it (if there is any)?:
Due to the high variability of sequence data, this is not an automated process by FUSAC, but
instead requires the user to manually inspect one of their reads. We recommend the user to
utilize the free software SAMtools [44] for this purpose.

Where can i dowload FUSAC, and is FUSAC free?:
FUSAC is a publically available software, and can be downloaded free of charge from it’s github
repository: https://github.com/clinical-genomics-uppsala/FUSAC

I have identified a bug or have suggestions for improving the program, where can i contact
you regarding this?:
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All suggestions related to modifying the program should be submitted through it’s github repos-
itory: https://github.com/clinical-genomics-uppsala/FUSAC

I have a question not covered by the FAQ, where can i contact you regarding this?:
All questions regarding the program should be submitted through it’s github repository:
https://github.com/clinical-genomics-uppsala/FUSAC
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Appendix B

Flowchart of FUSAC for a run without export to CSV. Red arrows represent the input from a
function to another function. Orange arrows represent in-function relations. Blue arrows marks
in-function returned values. Green arrows represent the output of a function
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Appendix C

Barplots for the output generated by BCFtools in section 4 on page 22
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Figure 14: Substitution-type and counts for variant records in the in the UMI-filtered data set,
generated from the output of BCFtools
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Figure 15: Substitution-type and counts for variant records in the in the non-FFPE-treated data
set, generated from the output of BCFtools

75


	Glossary
	Introduction
	Motivation

	Background
	Somatic variants
	Formalin Fixation
	FFPE Artefacts
	Unique Molecular Identifiers
	Using UMI-tagged reads to identify FFPE artefacts

	Methods
	Programming language and hardware
	Data
	Unfiltered data set
	UMI-filtered data set
	Non-FFPE treated data set
	R-plots and CSV-files

	FUSAC requirements and input
	Singletons
	Single-strand reads

	FUSAC output
	Example Unmodified VCF-record
	Example modified VCF-record

	The FUSAC algorithm

	Results
	Substitution type and counts
	Unfiltered data set
	UMI-filtered data set
	Non-FFPE-treated data set

	Distribution of true variant and FFPE support
	Classifications
	Unfiltered data set
	UMI-filtered data set
	Non-FFPE-Treated data set

	FFPE support in the UMI-filtered data set
	Variant allele frequency and coverage in the FC-UMI-filtered data set


	Discussion
	Artefact type and support
	Classification
	Issues and limitations
	UMI occurrence
	Coverage
	Performance and classification

	Future applications and improvements
	Utilization of Single-strand read data
	Classification algorithm improvements
	Applications in clinical settings and research


	Conclusion
	Special thanks and credits
	Bibliography
	Appendix A
	Readme
	Prerequisites
	Interpreting FUSAC's output
	Example Unmodified VCF-record
	Example modified VCF-record

	Quickstart
	Example 1
	Example 2
	Reference manual
	Main
	QueueThread
	ResultThread
	vcf_extract
	var_extract
	inf_builder
	csv_maker
	csv_record_maker
	qrn_ext
	rx_ext
	cha_splt
	hlf_splt
	umi_maker
	pos_hits
	base_check
	ffpe_finder
	mol_count
	nuc_count
	FAQ


	Appendix B
	Appendix C



