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Abstract
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Current evolutionary theories postulate that eukaryotes emerged from the symbiosis of an
archaeal host with, at least, one bacterial symbiont. However, our limited grasp of microbial
diversity hampers insights into the features of the prokaryotic ancestors of eukaryotes. This
thesis focuses on the study of a group of uncultured archaea to better understand both existing
archaeal diversity and the origin of eukaryotes.

In a first study, we used short-read metagenomic approaches to obtain eight genomes
of Lokiarchaeum relatives. Using these data we described the Asgard superphylum,
comprised of at least four different phyla: Lokiarchaeota, Odinarchaeota, Thorarchaeota and
Heimdallarchaoeta. Phylogenetic analyses suggested that eukaryotes affiliate with the Asgard
group, albeit the exact position of eukaryotes with respect to Asgard archaea members remained
inconclusive. Comparative genomics showed that Asgard archaea genomes encoded homologs
of numerous eukaryotic signature proteins (ESPs), which had never been observed in Archaea
before. Among these, there were several components of proteins involved in vesicle formation
and membrane remodelling.

In a second study, we used similar approaches to uncover additional members of the
Asgard superphylum. Based on genome-centric metagenomics we recovered 69 new genomes
from which we identified five additional candidate phyla: Freyarchaeota, Baldrarchaeota,
Gefionarchaeota, Friggarchaeota and Idunnarchaeota. In this expanded dataset we could detect
additional homologs for unreported ESPs. Updated phylogenies showed support for a scenario
in which eukaryotes emerged from within Asgard archaea.

We further took advantage of the increased Asgard diversity to delimit the gene content of
the last common archaeal ancestor of eukaryotes using ancestral reconstruction analyses. The
results suggest that the archaeal host cell who gave rise to eukaryotes already contained many of
the genes associated with eukaryotic cellular complexity. Based on these analyses, we discussed
the metabolic capabilities of the archaeal ancestor of eukaryotes.

Finally, we reconstructed several nearly complete Lokiarchaeota genomes, one of them in
only three contigs, using both short- and long-read metagenomics. These analyses indicate that
long-read metagenomics is a promising approach to obtain highly complete and contiguous
genomes directly from environmental samples, even from complex populations in the presence
of microdiversity and low abundant members. This study further supports that the presence of
ESPs in Asgard genomes is not the result of assembly and binning artefacts.

In conclusion, this thesis highlights the value of using culture-independent approaches
together with phylogenomics and comparative genomics to improve our understanding of
microbial diversity and to shed light into relevant evolutionary questions.

Keywords: archaea, Asgard, eukaryogenesis, metagenomics, genome binning, phylogenetics,
phylogenomics, comparative genomics, gene tree-species tree reconciliation, ancestral
reconstruction, long-read metagenomics

Eva F. Caceres, Department of Cell and Molecular Biology, Box 596, Uppsala University,
SE-75124 Uppsala, Sweden.

© Eva F. Caceres 2019

ISSN 1651-6214
ISBN 978-91-513-0761-9
urn:nbn:se:uu:diva-393710 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-393710)



To my high school teachers
Rufino and Charo who sparked 

my interest in science



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 

List of Papers 

This thesis is based on the following papers, which are referred to in the text 
by their Roman numerals. 

I Zaremba-Niedzwiedzka, K.*, Caceres, EF.*, Saw, JH.*, Bäckström, D., 
Juzokaite, L., Vancaester, E., Seitz, KW., Anantharaman, K., 
Starnawski, P., Kjeldsen , KU., Stott, MB., Nunoura, T., Banfield, JF., 
Schramm, A., Baker, BJ., Spang, A., Ettema, TJG. (2017) Asgard 
archaea illuminate the origin of eukaryotic cellular complexity. Nature, 
541:353–358 

II Eme, LE.*, Caceres, EF.*, Tamarit, D., Seitz, KW., Dombrowski, N., 
Homa, F., Saw, JH., Lombard, J., Li, W., Hua, Z., Chen, L., Banfield, 
JF., Reysenbach, A., Nunoura, T., Stott, MB., Schramm,. A., Kjeldsen, 
KU., Baker, BJ., Ettema, TJG. (2019) Expanded diversity of Asgard 
archaea points to Idunnarchaeota as closest relatives of eukaryotes. 
Manuscript 

III Caceres, EF.*, Eme, LE.*, De Anda, V., Baker, BJ., Ettema, TJG. 
(2019) Ancestral reconstruction of Asgard archaea provides insight into 
the gene content of the archaeal ancestor of eukaryotes. Manuscript 

IV Caceres, EF., Lewis, WH., Homa, F., Martin, T., Schramm,. A., 
Kjeldsen, KU., Ettema, TJG. (2019) Reconstruction of a near-complete 
Lokiarchaeota genome using long- and short-read metagenomics of 
complex sediment samples. Manuscript 

 

 

 

(*) Equal contribution 

Reprints were made with permission from the respective publishers. 



 

Papers by the author not included in this thesis 

1. Spang, A., Stairs, CW., Dombrowski, N., Eme, L., Lombard, J., 
Caceres, EF., Greening, C., Baker, BJ., Ettema, TJG. (2019) Proposal 
of the reverse flow model for the origin of the eukaryotic cell based on 
comparative analyses of Asgard archaeal metabolism. Nature 
Microbiology 10(1):1822. 

 
2. Narrowe, AB., Spang, A., Stairs, CW., Caceres, EF., Baker, BJ., Miller, 

CS., Ettema, TJG. (2018) Complex Evolutionary History of Translation 
Elongation Factor 2 and Diphthamide Biosynthesis in Archaea and 
Parabasalids. Genome Biology and Evolution, 10(9):2380-2393 

 
3. Spang, A., Eme, L., Saw, JH., Caceres, EF., Zaremba-Niedzwiedzka, 

K., Lombard, J., Guy, L., Ettema, TJG. (2018) Asgard archaea are the 
closest prokaryotic relatives of eukaryotes. PLoS Genetics, 
14(3):e1007080  

 
4. Hennell James, R., Caceres, EF., Escasinas, A., Alhasan, H., Howard, 

JA., Deery, MJ., Ettema, TJG., Robinson, NP. (2017) Functional 
reconstruction of a eukaryotic-like E1/E2(RING) E3 ubiquitylation 
cascade from an uncultured archaeon. Nature Communications, 8:1120 
 

5. Gomez-Velazquez, M., Badia-Careaga, C., Lechuga-Vieco, AV., Nieto-
Arellano, R., Tena, JJ., Rollan, I., Alvarez, A., Torroja, C., Caceres, 
EF., Roy, AR., Galjart, N., Delgado-Olguin, P., Sanchez-Cabo, F., 
Enriquez, JA., Gomez-Skarmeta, JL., Manzanares, M. (2017) CTCF 
counter-regulates cardiomyocyte development and maturation programs 
in the embryonic heart. PLoS Genetics, 13(8):e1006985 

 
6. Spang, A., Caceres, EF., and Ettema, TJG. (2017) Genomic exploration 

of the diversity, ecology and evolution of the archaeal domain of life. 
Science, 357:6351 

 
7. Marshall, IPG., Starnawski, P., Cupit, C., Caceres, EF., Ettema, TJG., 

Schramm, A., Kjeldsen, KU. (2017) The novel bacterial phylum 
Calditrichaeota is diverse, widespread and abundant in marine sediments 



 

and has the capacity to degrade detrital proteins. Environmental 
Microbiology Reports, 9(4):397-403 

 
8. Caceres, EF., Hurst, LD. (2013) The evolution, impact and properties of 

exonic splice enhancers. Genome Biology, 14(12):R143 
 
9. Wu, X., Tronholm, A., Caceres, EF., Tovar-Corona, JM., Chen, L., 

Urrutia, AO., Hurst, LD. (2013) Evidence for deep phylogenetic 
conservation of exonic splice-related constraints: splice-related skews at 
exonic ends in the brown alga Ectocarpus are common and resemble 
those seen in humans. Genome Biology and Evolution, 5(9):1731-1745  
 

  



 

 



 

Contents 

Introduction .................................................................................................. 13

Archaea ......................................................................................................... 14
The discovery of the Third Domain ........................................................ 14
Archaeal diversity .................................................................................... 16

Archaea and the origin of the eukaryotes ..................................................... 18
The eukaryotic cell .................................................................................. 18
The origin of eukaryotes .......................................................................... 19
The identity and nature of the archaeal ancestor ..................................... 24

Genomic exploration of archaea .................................................................. 26
Traditional methods ................................................................................. 26
Culture-independent approaches ............................................................. 26
Genome-centric metagenomics ............................................................... 28
Sample selection ...................................................................................... 29
DNA extraction ........................................................................................ 30
Metagenome sequencing ......................................................................... 30
Sequence assembly .................................................................................. 32

Overlap, Layout, Consensus ............................................................... 33
De Bruijn Graph .................................................................................. 33

Assembling metagenomes ....................................................................... 35
Scaffolding ............................................................................................... 36
Assembly validation ................................................................................ 37
Genome binning ...................................................................................... 38
MAG validation ....................................................................................... 40

Inferring evolution ........................................................................................ 42
Evolutionary history of species ............................................................... 42

Supermatrix-based approaches ........................................................... 44
Errors and artefacts in phylogenetic reconstructions .......................... 45
Violations of the orthology assumption .............................................. 46
Violations of the substitution model ................................................... 49

Gene content of ancestral lineages .......................................................... 54
Ancestral reconstruction using ALE undated ..................................... 56

Aims ............................................................................................................. 58



 

Results .......................................................................................................... 59
Paper I. The Asgard superphylum ........................................................... 59
Paper II. New Asgard lineages and updated evolutionary scenarios ....... 60
Paper III. The nature of the Asgard ancestor of eukaryotes .................... 61
Paper IV. A near-complete Lokiarchaeota genome ................................. 62

Perspectives .................................................................................................. 64

Svensk sammanfattning ................................................................................ 65

Resumen en español ..................................................................................... 67

Acknowledgements ...................................................................................... 69

References .................................................................................................... 70

 



 

Abbreviations 

AAG  
ANME 
ARP 
DBG 
DNA 
DPANN 
 
DSAG 
ESCRT 
ESP 
GTR 
HGT 
HMW 
LACAE 
LBA 
LECA 
LG 
MAG 
MCMC 
MHVG 
MRO 
MSA 
OLC 
PCR 
PVC 
RNA 
SR 
SSU rRNA 
TACK 
 
TRAPP 
WAG 
 
 

Ancient archaeal group 
ANaerobic MEthane-oxidizing archaea 
Actin-related protein 
De Bruijn graph 
Deoxyribonucleic acid 
Diapherotrites, Parvarchaeota, Aenigmarchaeota, 
Nanoarchaeota and Nanohaloarchaeota  
Deep sea archaeal group 
Endosomal sorting complex required for transport 
Eukaryotic signature protein 
General time reversible 
Horizontal gene transfer 
High molecular weight 
Last archaeal common ancestor of eukaryotes 
Long-branch attraction 
Last eukaryotic common ancestor 
Le and Gascuel 
Metagenome-assembled genome 
Markov chain Monte Carlo 
Marine hydrothermal vent group 
Mitochondria-related organelle 
Multiple sequence alignment 
Overlap, layout, consensus 
Polymerase chain reaction 
Planctomycetes, Verrucomicrobia and Chlamydiae 
Ribonucleic acid 
Short reads  
Small subunit ribosomal RNA 
Thaumarchaeota, Aigarchaeota, Crenarchaeota and 
Korarchaeota 
Transport protein particle 
Whelan and Goldman  
 
 

  



 

 



  13 

Introduction 

Over the last decades, thanks to the development of sequencing technologies 
and culture-independent approaches, we have started to unravel the genomic 
diversity of the microorganisms that inhabit our planet. With the current 
methods, we now have the possibility to study numerous microbial groups 
that, for so long, have remained out of our reach.  

In this thesis work, I will describe our efforts to understand one of these 
understudied groups of microorganisms, now known as the Asgard archaea 
superphylum. We used metagenomic approaches to obtain genome 
sequences of Asgard lineages for which no genomic information was 
available before. By studying their genomes within a comparative genomics 
and evolutionary framework, we have learnt not only about the cellular 
capabilities of this group but also about their role in the early evolution of 
eukaryotes. 

In the forthcoming sections, I will introduce the topic and the methods 
around which this thesis is centred, and summarize the main results of the 
analyses carried out as part of my doctoral work. This introduction is 
followed by the four articles that comprise my main research projects. Given 
the format constraints, the supplementary material is only attached when the 
size of the figures and tables allowed. Alternatively, electronic links are 
provided, with the exception of Paper I, for which the supplementary 
material can be found on the publisher’s website. 

Finally, I would like to mention that the research presented here is the 
result of collaborative efforts and that it would not have been possible 
without the concerted work of many people. The contribution of each person 
involved is fundamental, from taking samples and preparing sequencing 
libraries to providing guidance and supervision. I firmly believe in the 
strength of collaborative science, in which researchers with different skill 
sets can all work together to make more compelling and comprehensive 
studies. To recognize the efforts of all the people involved, I will refrain 
from using “I” and “my” for the most part of the text.  
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Archaea 

The discovery of the Third Domain 
Archaea were recognized as a group of prokaryotes fundamentally different 
from bacteria in 1977 by Woese and Fox (Woese and Fox, 1977). At that 
time, all organisms were divided into two categories, eukaryotes and 
prokaryotes, with the latter group composed solely of bacteria. While 
eukaryotes had cells with a nucleus and internal organelles, prokaryotes 
lacked such structures (McLaughlin and Dayhoff, 1970). This eukaryote-
prokaryote dichotomy was considered the most basic evolutionary division 
of life. Woese and Fox showed that, in spite of their apparent morphological 
similarities, Archaea formed a domain of life different from Bacteria and, 
based on these results, they proposed a tripartite view of life, with Eukarya, 
Bacteria and Archaea being the most basal divisions (Woese and Fox, 1977). 

At that time, taxonomical systems were primarily reliant on phenotypical 
and morphological traits. Prokaryotes were classified based on the absence 
of eukaryotic traits such as the nucleus and certain intracellular organelles 
(Stanier and Van Niel, 1962). One of the problems of classifying organisms 
based on the absence of a certain feature is that there are no degrees of 
variation of such trait between different organisms – the feature is not 
present – and, therefore, it cannot be used to generate phylogenies. As a 
consequence, the taxonomical system at the time largely excluded microbes.  

On the other hand, the construction of phylogenies was still at its infancy 
and mostly based on protein sequences (Fitch and Margoliash, 1967; 
Zuckerkandl and Pauling, 1965). Woese realized that the ribosomal RNA 
could be a good molecular marker to generate continuous classifications 
between all organisms as it was conserved and present in all life forms 
(Woese, 1987). Woese and Fox created oligonucleotides catalogues of the 
small subunit of the ribosomal RNA (SSU rRNA) of several prokaryotes and 
eukaryotes and compared them to produce an evolutionarily-coherent 
taxonomy that was solely based on molecular data allowing the 
identification of the so-called Third Domain of life (Woese and Fox, 1977). 

The only Archaea included in this study were methanogens, a group of 
microorganisms that produce methane in anaerobic conditions. That strange 
metabolism was believed to reflect the primitive atmospheric conditions of 
the planet and, thus, it was considered an ancient phenotype (Woese, 1977). 
The original term “Archaebacteria” (from the Greek “ancient” “rod”) made 



  15 

reference to that idea; although this assumption is today is disregarded, as we 
know that other metabolisms exist in Archaea. By 1990, Woese and others 
recommended abandoning the original term “Archaebacteria” in favour of 
the shorter version “Archaea”, since it incorrectly suggested that Archaea 
and Bacteria were related to one another (Woese et al., 1990a). 
Notwithstanding, the word Archaebacteria is still in use in the scientific 
literature, propagating misleading connections to Bacteria. 

As many dogma-challenging theories, Woese and Fox’ work was 
criticized by many scientists who strongly rejected their methodology and 
did not accept Archaea as an independent domain of life.  The paradigm shift 
required some time and the work of many other scientists. During the 
following years, data supporting the distinctiveness of Archaea started to 
pile-up. Even though in terms of size and morphology Archaea resembled 
Bacteria, there were important differences between them. For example, the 
cell walls in Archaea lacked peptidoglycan (Kandler and Hippe, 1977) and 
their lipids were crosslinked via ether bonds instead of the ester bonds found 
in Bacteria (Langworthy et al., 1972). Furthermore, it was soon realized that 
in many other aspects archaea were more similar to eukaryotes than to 
bacteria. Certain proteins were more closely related to their eukaryotic 
homologs – such as the DNA-dependent RNA polymerase (Zillig et al., 
1979) – and some were only found in Archaea and Eukarya to the exclusion 
of Bacteria. The publication of the first archaeal genome, almost 20 years 
later, marked the end of a period of the denial of the Archaea as a separate 
domain of life (Bult et al., 1996). 

During the first years after their discovery, archaea were mainly found in 
environments with extreme conditions (e.g., high temperatures or high 
salinity) where they can be abundant players of the microbial communities. 
By that time, the study of microbes was carried out by isolating and 
culturing strains, an approach with important limitations (see “Traditional 
methods”). Initially, archaea that successfully grew in laboratory conditions 
showed similar lifestyles (e.g., methanogenesis, halophilism and 
thermophilic sulfur metabolism) giving the false impression that most 
archaeal phenotypes/diversity were already discovered by 1987 (Woese, 
1987). The lack of adequate technologies and approaches needed for their 
study together with their relatively low interest in human and human-
associated research made Archaea go unnoticed and remain understudied for 
many years.  

In the mid-1980s, Norman Pace and co-workers established a method that 
allowed the exploration of the microbial diversity bypassing the culturing 
step (Pace et al., 1986). Their approach consisted of recovering rRNA gene 
sequences from all organisms present in a sample to estimate the relative 
abundances and identities of the community members living in an 
environment. These rRNA gene sequence surveys revealed that, contrary to 
what it was thought, archaea were ubiquitous and diverse, ultimately 
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falsifying the assumption that all archaea are extremophiles. Over time, this 
approach became a standard procedure and phylogenies of SSU rRNA gene 
sequences showed an increasing number of existing archaeal lineages. 
However, in-depth analyses and available complete genomes were still 
restricted to a small number of cultivated representatives (Pace, 2009).  

During the past decade, the rise of independent-culture approaches such 
as metagenomics and single-cell genomics has made possible genomic 
reconstructions of uncultivated archaea, advancing our understanding of the 
archaeal biology and evolution (see “Genomic exploration of archaea”). The 
more recent use of long-read sequencing technologies in metagenomics will 
prove invaluable for generating high-quality genomes of uncultivated 
microorganisms (see “Paper IV”) (Nicholls et al., 2018). Indeed, with 
innovative technology and software, it will soon become common practice to 
recover complete genomes from an environment, allowing for continued 
studies of these fascinating organisms. 

Archaeal diversity 
Molecular investigations of diverse environments have revealed that archaea 
can live in a wide range of environments, including sediments and soils, 
aquatic habitats, hot springs, hydrothermal vents, the rumen and gut of 
certain animals, etc. (Chaban et al., 2006). The estimated average abundance 
of archaea is around 20% in oceanic waters (Karner et al., 2001), 2% in 
surface soil layers (Bates et al., 2011) and 37% in subseafloor sediments 
(Hoshino and Inagaki, 2019), although these percentages can show important 
deviations depending on the specific location. In humans, archaea have been 
found living in the gastrointestinal tract, the oral cavity, the skin, and the 
vagina (Bang and Schmitz, 2015), where some species can amount to 14% 
of the microbiome according to some estimates (Tyakht et al., 2013). 

The ubiquity of archaea in diverse environments is mirrored in the 
disparate lifestyles that different lineages display. A wide variety of 
metabolisms have been reported in Archaea including methanogenesis, 
methane oxidation, ammonia oxidation, denitrification and sulfate reduction 
among others (Kletzin, 2007). Through these biochemical reactions, archaea 
can significantly change the chemical composition in these environments, 
impacting availability and form of the elements and molecules present. This 
makes some archaea major contributors to the nutrient cycles (Offre et al., 
2013).  

In addition, archaea can be free-living or depend on one or several 
organisms to survive. Archaea can establish close associations with other 
archaea, bacteria or eukaryotes (Moissl-Eichinger and Huber, 2011). 
Examples of this are the archaeal symbiont Nanoarchaeum equitans (Huber 
et al., 2002), the archaeal-bacterial consortium formed by anaerobic 
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methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (Boetius 
et al., 2000); and the eukaryotic endosymbiont Methanobrevibacter (Gijzen 
et al., 1991; Lind et al., 2018), respectively. Strikingly, no archaeal parasite 
of animals has been found until now (Abedon, 2013). Even though there are 
several studies indicating potential correlations between some archaea and 
human diseases, no evidence for direct pathogenic effects of any archaeal 
species has been reported up to date (Mahnert et al., 2018). 

The archaeal tree has undergone a dramatic transformation since 1977 
(Adam et al., 2017; Spang et al., 2017). Originally, the archaeal taxonomy 
consisted uniquely in two phyla (originally considered kingdoms): 
Euryarchaeota and Crenarchaeota. To date, there are four high-level archaeal 
ranks recognized: Euryarchaeota, TACK or Proteoarchaeota (the group that 
includes the original Crenarchaeota), DPANN and Asgard archaea (see 
“Paper I and II”). However, the position of various clades and members is 
still unresolved. Understudied clades for which only few representatives are 
sequenced or fast-evolving taxa are especially difficult to place (see 
“Inferring evolution”), such as Korarchaeota and DPANN. Additionally, 
inferring the archaeal root has also turned out to be challenging, with studies 
suggesting conflicting placements (Petitjean et al., 2014; Raymann et al., 
2015; Williams et al., 2017a).  

Unfortunately, the current archaeal classification is inconsistent and 
paradoxical. During years, clades of uncultured lineages have been assigned 
to different taxonomic levels without following any systematic criteria. 
Therefore, some taxonomical decisions might seem arbitrary, as illustrated 
by the case of the Euryarchaeota and the Proteoarchaeota. While the first is 
considered a phylum the latter has received a superphylum rank. The need of 
a congruent archaeal classification with updated taxonomical criteria and 
nomenclature has already been stressed (Gribaldo and Brochier-Armanet, 
2012; Hugenholtz et al., 2016; Konstantinidis et al., 2017; Yarza et al., 
2014). Reaching a consensus on the archaeal classification that is congruent 
with the evolutionary relationships between archaea will inevitably require 
the use of reliable phylogenetic reconstructions and the study of diverse 
lineages that can fill the gaps existing in the archaeal tree.  
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Archaea and the origin of the eukaryotes 

The eukaryotic cell 
Independently of their evolutionary histories, cells can be divided into 
eukaryotic and prokaryotic according to their cellular organization. A typical 
eukaryotic cell has a higher grade of intracellular compartmentalization than 
the average prokaryotic cell. This is typified by the presence of membrane-
bound organelles – such as mitochondria – and a developed endomembrane 
system that includes the nuclear membrane and the continuous endoplasmic 
reticulum, the Golgi apparatus, lysosomes, endosomes and vesicles among 
others. Such intricate internal compartmentalization is absent in prokaryotes. 
Nevertheless, intracellular structures have been observed in both Bacteria 
and Archaea. Some examples are the magnetosomes used by some bacteria 
to align themselves to geomagnetic field lines; the anammoxosomes in 
which anaerobic ammonia oxidation occurs; or other intracellular membrane 
structures observed in members of the Planctomycetes, Verrucomicrobiae, 
and Chlamydiae (PVC) bacterial superphylum and the thermophilic 
archaeon Ignococcus hospitalis (Grant et al., 2018; Shively, 2006).  

Generally speaking, eukaryotes have larger cells than prokaryotes. A 
typical bacterium such as Escherichia coli or Bacillus subtilis has average 
cell volumes between ~1-2 µm3 (Heim et al., 2017; Lynch and Marinov, 
2017) while human cells can range between ~30-4000000 µm3 (Gilmore et 
al., 1995; Goyanes et al., 1990). However, this is by no means a delimiting 
trait and cases of very large prokaryotes and tiny eukaryotes do exist. For 
example, the bacteria Thiomargarita namibiensis is visible by the human 
eye, reaching cell volumes of 2.2 × 108 µm3 (Levin and Angert, 2015; 
Schulz et al., 1999). On the opposite side of the spectrum, the green algae 
Ostreoccocus tauri is considered the smallest eukaryote identified until now 
with a cellular volume of 0.91µm3 (Courties et al., 1994; Henderson et al., 
2007).  

Similarly, the eukaryotic genomes are usually bigger than the prokaryotic 
ones, albeit overlap in sizes exists between them. The haploid nuclear 
genome size of eukaryotes ranges between 2.3 Megabase pairs (Mbp) and 
150 000 Mbp; whereas the prokaryotic genome sizes are between 140 
kilobase pairs (kbp) and 15 Mbp (Elliott and Ryan Gregory, 2015). 
Commonly, these large eukaryotic genomes display low gene densities that 
contrast with prokaryotes, in which non-coding regions represent a small 
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fraction of their genome. Exceptions are seen in non-free-living eukaryotes 
whose chromosomes have been independently reduced and/or compacted 
(Keeling and Slamovits, 2005). Another feature characteristic of eukaryotic 
genomes is the presence of telomeres, centromeres and complex regulatory 
elements that are absent in prokaryotes. 

Furthermore, eukaryotic genes consist of coding sequences (exons) 
disrupted by non-coding fragments (introns) that need to be removed before 
translation to generate functional proteins. By keeping or removing introns, 
eukaryotes can generate slightly different versions of the same gene, also 
referred to as isoforms, increasing the complexity of their proteomes. The 
machinery responsible for the removal of the introns is the spliceosome, an 
intricate eukaryotic complex absent in Bacteria and Archaea. Nevertheless, 
introns that are independent of this complex are found in prokaryotes 
(Lambowitz and Zimmerly, 2004; Nawrocki et al., 2018). In eukaryotes, 
splicing takes place inside the nucleus and is coupled with the export of 
mature transcripts to the cytoplasm, where translation takes place. This is in 
contrast to Bacteria and Archaea, where transcription and translation are 
coupled and occur simultaneously. 

In general, the eukaryotic cell is associated with a high degree of 
complexity that can be observed at many levels. Eukaryotes have molecular 
machineries that are generally more elaborate than the archaeal and bacterial 
versions, with some protein complexes being completely absent in 
prokaryotes. Numerous gene duplications, functionalization and de novo 
originations observed in their genomes have probably allowed such high 
level of specialization and sophistication (Conant and Wolfe, 2008; 
Makarova et al., 2005; McLysaght and Guerzoni, 2015) and the support of 
eukaryotic specific functions such as the ability to perform meiotic sex and 
phagocytosis. Nonetheless, although previously many features have been 
considered eukaryotic hallmarks, we know now that prokaryotic versions 
exist for many of them (Koonin, 2010) and their presence in eukaryotes is 
less unique than previously thought (Booth and Doolittle, 2015).  

The origin of eukaryotes 
The origin of the eukaryotic cell represents one of the major evolutionary 
transitions in the history of life. How did the cellular complexity observed in 
eukaryotes arise from simpler prokaryotic cells? Through the years, 
numerous hypotheses have attempted to provide an explanation to this 
question (Embley and Martin, 2006; Martin et al., 2001). These theories 
differ in the timing, the underlying mechanisms and the identity and nature 
of the ancestors involved. Yet, some key aspects are largely accepted. 

First, it is widely recognized that mitochondria and mitochondria-related 
organelles (MROs) – such as hydrogenosomes and mitosomes – are the 
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descendants of a bacterial lineage whose closest living relatives belong to the 
Alphaproteobacteria (Roger et al., 2017; Sagan, 1967; Yang et al., 1985), 
albeit the exact lineage is still unclear (Martijn et al., 2018). The ancestor of 
mitochondria established an endosymbiotic relationship with a host cell and 
ultimately became an organelle. It is broadly accepted that mitochondria 
were already present in the last eukaryotic common ancestor (LECA) (Adl et 
al., 2012; Heiss et al., 2018; Pittis and Gabaldón, 2016) and that any loss of 
mitochondria occurred later in evolution (Karnkowska et al., 2016; Martijn 
et al., 2018; McInerney et al., 2014). 

Second, eukaryotes genomes are chimeric and, in addition to eukaryotic 
specific genes, they harbour genes derived both from Archaea and Bacteria 
(Rivera et al., 1998). Many eukaryotic genes of archaeal origin are part of 
the systems that process and store genetic information in the cell (referred to 
as informational genes) (Yutin et al., 2008). In contrast, numerous metabolic 
genes are thought to be of bacterial origin (referred to as operational genes). 
Yet, just a fraction of the bacterial genes trace back to the 
Alphaproteobacteria and the origin of these other bacterial genes is still 
unclear with several possible explanations being proposed, including 
horizontal gene transfers (HGT), additional symbiotic events and 
phylogenetic noise (Ku et al., 2015; Pittis and Gabaldón, 2016; Thiergart et 
al., 2012). If the transfer of these bacterial genes happened before or after the 
acquisition of mitochondria is likewise debated (Eme et al., 2018). 

Finally, eukaryotes harbour genes absent in both Archaea and Bacteria. 
Proteins present in all main eukaryotic groups that lack homologs in 
prokaryotes have been initially referred to as eukaryotic signature proteins 
(ESPs) and are often involved in key functions of the eukaryotic cell 
(Hartman and Fedorov, 2002). However, a fraction of ESPs might not be 
bona fide eukaryotic innovations and are likely to be present in prokaryotes 
or viruses, but remain unidentified. Since the definition of ESPs is based on 
homology criteria (or the absence thereof), with the development of more 
sensitive methods for homology detection and access to more comprehensive 
genomic databases, the number of ESPs is expected to change. In fact, many 
of the proteins originally defined as ESPs have now been identified in 
prokaryotes. However, referring to them as ESPs is still useful in such cases 
as the term highlights the prevalence of these proteins in eukaryotes and the 
fact that they are rarely found in prokaryotes. 

Regarding the evolutionary relationship between Archaea and Eukarya, 
two opposing scenarios have coexisted in the literature for many years 
(Figure 1) (reviewed in Gribaldo et al. (2010)). The first one, known as the 
three domains (3D), suggests that Archaea and Eukarya are sisters lineages 
derived from a common ancestor that was neither an archaeon nor a 
eukaryote (Cavalier-Smith, 1987; Woese et al., 1990a). Interestingly, this 
theory implies that the homologs genes shared between Archaea and 
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Eukarya were transmitted from their common ancestor and are, therefore, 
ancestral to the diversification of any of these domains.  

 
Figure 1. Schematic representation of the relationship between Archaea and Eukarya 
according to the “three domains” and “two domains” scenarios. In the three domains 
hypothesis, Bacteria, Eukarya and Archaea are seen as primary domains of life. In 
the two domains scenario, Eukarya is considered a secondary domain that originated 
from within Archaea.   

The rival scenario, the two domains (2D) view, suggests that eukaryotes 
emerged from within the Archaea (Lake et al., 1984; Williams et al., 2013). 
According to this view, there were only two primary domains of life – Bac-
teria and Archaea – and Eukarya is seen as a secondary domain that evolved 
later from the Archaea. In this scenario, the term Archaea only refers to the 
cellular domain and lacks any phylogenetic connotation since it is viewed as 
a paraphyletic group. In contrast to the 3D view, it implies that the features 
shared between Archaea and eukaryotes arose after the diversification of 
Archaea. 

Although these competing scenarios have been the subject of intense 
debates, the most recent data strongly favour the 2D topology (reviewed in 
Williams et al. (2013)). Phylogenetic analyses of concatenated protein-
alignments using more complex evolutionary models and including a 
broader archaeal representation show convincingly that eukaryotes evolved 
from within Archaea and, thus, the host-cell was of archaeal nature (Cox et 
al., 2008; Foster et al., 2009b; Guy and Ettema, 2011; Guy et al., 2014; 
Lasek-Nesselquist and Gogarten, 2013; Spang et al., 2015; Williams and 
Embley, 2014; Williams et al., 2013; Williams et al., 2012). These results 
are further supported by the discovery of many ESPs in specific archaeal 
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groups, first within TACK (Guy and Ettema, 2011) and later within 
Lokiarchaeum (Spang et al., 2015) and Asgard (see “Paper I, II and IV” ) 

Coupled with the 3D/2D debate is the controversy about the timing and 
mechanisms of the mitochondrial endosymbiosis (Eme et al., 2018; Lopez-
Garcia and Moreira, 2015; Poole and Gribaldo, 2014). There are two main 
scenarios with regard of the relative timing and contribution of mitochondria 
acquisition: the mito-late and the mito-early. Different mechanistic models 
that explain the origin of eukaryotes have been proposed that are compatible 
with both scenarios. Mito-late favouring models suggest that most 
eukaryotic features associated with cellular complexity – such as developed 
endomembrane system, nucleus and cytoskeleton – arose before the 
symbiosis event. Having such features made possible the engulfment of the 
mitochondrial ancestor, with phagocytosis been proposed as a possible 
mechanism (Cavalier-Smith, 1983). On the other hand, mito-early models 
postulate that the mitochondrial endosymbiosis was the major event that led 
to the cellular complexity observed in eukaryotes. In this context, it is often 
argued that mitochondria provided an energy surplus that allowed the 
increase in complexity (Martin and Müller, 1998). Through the years, 
numerous variations of these and other models have been suggested 
(reviewed in Zachar and Szathmáry (2017)), including mito-intermediate 
models that assume a certain degree of cellular complexity in the host before 
the mitochondrial acquisition (Baum and Baum, 2014; Martijn and Ettema, 
2013). 

Nevertheless, none of the proposed models is exempt from criticism 
(Booth and Doolittle, 2015; Lynch and Marinov, 2017; Zachar and 
Szathmáry, 2017). The mito-late models are theoretically compatible with 
the existence of amitochondriate eukaryotes and, the fact that up to date no 
truly amitochondriate eukaryote has been found (Clark and Roger, 1995; 
Tovar et al., 1999; Tovar et al., 2003; Williams et al., 2002) is used as an 
argument against these models. Similarly, mito-early models were originally 
criticized because they provided no explanation about how phagocytosis – 
that was thought to be required to engulf the alphaproteobacterium – could 
have occurred without cellular complexity. Finding bacterial endosymbionts 
living within non-phagocytic bacteria weakened this argument (von Dohlen 
et al., 2001). Likewise, the reasoning behind theories claiming that the 
energy boost provided by the establishment of mitochondria was the trigger 
of cellular complexity has been challenged (Hampl et al., 2019; Lynch and 
Marinov, 2017; Zachar and Szathmáry, 2017).  

Independently of the timing of the mitochondrial acquisition, current 
models provide different explanations for the lifestyle of the partners 
involved, the nature of their relationship, the selective advantage of their 
association and the mechanism of inclusion of the alphaproteobacterium. 
Various models suggest syntrophic interactions in which one species live off 
the products of another – with several types of metabolism being proposed 
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for the partners – (Martin and Müller, 1998; Moreira and Lopez-Garcia, 
1998) or predation as the nature of the relationship (Cavalier-Smith, 2007). 
Apart from phagocytosis (Martijn and Ettema, 2013), other mechanisms to 
explain the acquisition of the mitochondrial ancestor have been 
hypothesized, such as an increasing contact surface followed by eventual 
membrane fusion (Baum and Baum, 2014).  

The limited amount of information that can be obtained about a process 
that happened at least 1.9 billion years ago (Betts et al., 2018; Chernikova et 
al., 2011; Eme et al., 2014; Parfrey et al., 2011) has made difficult to judge 
which model is more accurate. Since evolution is a continuous process that 
never ceases, there is no living lineage reflecting the intermediate state of 
“prokaryote evolving into an eukaryote” as they went extinct or changed 
since then (Eme et al., 2018). The only way that we, nowadays, could find 
some “direct” evidence of these intermediate stages would be through 
microfossils or ancient DNA of such lineage. Nevertheless, the probabilities 
of finding such microfossils or DNA are extremely low and, even if we 
could detect them, they would add little information confidently. Other 
microbial fossil records are scarce and, by itself, not very helpful to answer 
questions about the features of the prokaryotic ancestors, and the 
mechanisms and order of the evolutionary events that happened during the 
eukaryogenesis. Hence, our knowledge about the origin of the eukaryotes 
mostly comes from comparative and phylogenetic analyses based on 
information of extant organisms. By studying their features and molecular 
sequences we can have a glimpse to their evolutionary past. Thus, the more 
we know about living microorganisms, the more accurate the evolutionary 
reconstructions are and the more realistic the proposed hypotheses become.  

Phylogenetic methods based on molecular data can provide information 
about the pattern of diversification of species (see “Evolutionary history of 
species”). This information, together with molecular clocks and geological 
age estimates, can additionally be used to date such events (dos Reis et al., 
2016; Ho and Duchêne, 2014). However, the information that geological 
records can provide for microbial evolution is minimal and not existent for 
the majority of the known clades. This has motivated the development of 
methods that make use of the information provided by horizontal gene 
transfer events between microorganisms to time speciation events. Albeit 
these approaches are promising, they still require further development and 
testing (Chauve et al., 2017a; Davin et al., 2018). A recent study based on 
genomic and fossil data has inferred a timescale of the early evolution of life 
on Earth. Their results show a long branch preceding the last eukaryotic 
common ancestor and suggest a late acquisition – in absolute times – of the 
mitochondria followed by a rapid diversification of eukaryotes. However, 
their analyses cannot discriminate between mito-early or -late hypotheses 
which are relative to the origination of other eukaryotic features (e.g., 
endomembrane system) (Betts et al., 2018).  
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In addition, comparative genomics can provide insights about which 
genes were present in the archaeal ancestor of eukaryotes and the LECA. 
However, these approaches often lack an evolutionary framework, which 
could result in parsimonious but inaccurate inferences. Ancestral 
reconstructions methods, which take into account the pattern of 
diversification of species and the evolutionary dynamics of genomes (or 
genes inside them), have the potential of generating accurate results if the 
evolutionary models used are realistic (see “Gene content of ancestral 
lineages” and “Paper III”). Yet, the information that existing methods can 
provide about the intermediate states between the archaeal ancestor of 
eukaryotes and LECA is very limited and therefore, little is known about 
what happened during that period. In this respect, a recent study has 
attempted to shed some light into the relative timing of the mitochondria and 
the nature of the host cell. Their results suggest that the acquisition of 
mitochondria occurred relatively late during eukaryogenesis by a host that 
already contained many genes of bacterial and archaeal descent (Pittis and 
Gabaldón, 2016). However, the methodology used by the authors is currently 
debated (Martin et al., 2017; Pittis and Gabaldon, 2016) and new analyses 
are needed to confirm or deny such results.  

The identity and nature of the archaeal ancestor 
Defining the identity and capabilities of the prokaryotic ancestors of 
eukaryotes can help to refine the hypotheses on eukaryogenesis by setting 
realistic assumptions. Our understanding of the identity of the archaeal host 
has been changing as we uncover more archaeal groups. Initially, it was 
suggested that members of the TACK superphylum were the closest living 
descendants of the archaeal host (Cox et al., 2008; Foster et al., 2009b; Guy 
and Ettema, 2011; Guy et al., 2014; Kelly et al., 2011; Lasek-Nesselquist 
and Gogarten, 2013; Raymann et al., 2015; Williams and Embley, 2014; 
Williams et al., 2012). Nevertheless, the exact placement within this 
superphylum was unclear. While most analyses could not confidentially 
pinpoint an exact placement within this superphylum, various pointed to an 
archaeal ancestor affiliated with Korarchaeota (Guy and Ettema, 2011; Guy 
et al., 2014; Kelly et al., 2011; Williams and Embley, 2014; Williams et al., 
2012). However, these analyses could not exclude the possibility that the 
observed Eukaryota-Korarchaeota affiliation was an artefact arising from the 
presence of a single and deeply branching Korarchaeota representative (Guy 
et al., 2014). Another explanation for such placement was that eukaryotes 
were affiliated to other groups distantly related to Korarchaeota that lacked 
sequenced relatives, such as the Deep Sea Archaeal Group (DSAG), Marine 
Hydrothermal Vent Group (MHVG), and Ancient Archaeal Group (AAG) 
(Guy and Ettema, 2011; Guy et al., 2014).  
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The discovery of the first genome belonging to the DSAG group 
(renamed as Lokiarchaeota after the sampling location from which this 
lineage was retrieved, Loki’s Castle) has provided additional clues about the 
identity of the archaeal ancestor (Spang et al., 2015). Phylogenetic analyses 
including Lokiarchaeota – originally considered a deeply branching clade of 
the TACK superphylum – show a monophyletic relationship between 
eukaryotes and Lokiarchaeota. This affiliation is further supported by the 
presence of a large number ESPs in its genome, some of which have been 
previously identified in various archaea albeit with patchy taxonomical 
distributions. Interestingly, the Lokiarchaeum genome also encodes for 
homologous of ESPs that had never been observed in prokaryotes before. 
Although a recent study has questioned the quality of this genome due to its 
metagenomic origin and argued against the Eukaryota-Lokiarchaeota 
affiliation (Cunha et al., 2017), such re-analyses and interpretations have 
been themselves criticized and rebutted (Spang et al., 2018). 

The genomic capabilities of Lokiarchaeum, whose genome encodes for 
several homologs of genes that are required for key cellular processes in 
eukaryotes, support a scenario in which the archaeal ancestor of eukaryotes 
was relatively complex. The archaeal host is thought to harbour homologs of 
eukaryotic components involved in replication, transcription and translation 
machineries, as well as the proteasome, exosome, and ubiquitin modifier 
systems (Gribaldo and Brochier-Armanet, 2006; Koonin, 2015; Koonin and 
Yutin, 2014). Furthermore, the additional ESPs identified in Lokiarchaeota 
suggest that the ancestor also contained homologs of genes comprising the 
eukaryotic cytoskeleton (e.g., actin and actin regulators, such as gelsolin and 
profilin), as well as, and various genes involved in eukaryotic membrane 
remodeling and trafficking (e.g., components of the endosomal sorting 
complexes required for transport (ESCRT) and numerous small GTPases) 
(Klinger et al., 2016; Spang et al., 2015). Although the biological function of 
such proteins in Lokiarchaeum remains unknown, it is likely that at least 
some of them perform functions equivalent or related to their eukaryotic 
counterparts (Akil and Robinson, 2018). Yet, culturing and experimental 
efforts are required to be able to understand the role of these proteins in vivo 
and the general cell biology and metabolism of uncultured microorganisms 
such as Lokiarchaeum. This information will be crucial for refining our 
understanding of the eukaryotic evolution.  
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Genomic exploration of archaea 

Traditional methods 
Traditionally, the study of archaea and other microbes required their 
isolation and cultivation in a laboratory. Once in culture, these microbes 
were often characterized through growth studies, biochemical profiling and 
microscopy. With current technologies, it is now possible to also study their 
genomes, transcriptomes, proteomes and metabolites. Altogether, we can 
obtain detailed information about both the genotypes and phenotypes of 
organisms growing in culture. Nevertheless, it is important to keep in mind 
that functional characterizations performed under artificial laboratory 
conditions do not necessarily reflect the behaviours of microbes in their 
natural environment. Our current understanding of cultured microorganisms 
is thus somewhat biased, and interesting physiologies and characteristics 
have probably been overlooked.  

Unfortunately, most microbial groups lack cultured representatives that 
we can investigate using these culture-dependent techniques. A recent study 
estimates that 81-98% of microbial cells on Earth belong to genera or higher 
taxonomic ranks without cultured representatives (Lloyd et al., 2018). These 
high numbers reflect the intrinsic difficulty of isolating and growing 
microorganisms in culture. Since growth conditions and nutritional 
requirements are unknown at first, culturing new isolates becomes an 
iterative and time-consuming process, which is usually carried out manually. 
Complicating culturing efforts further, some microbes are obligate 
syntrophs, extreme oligotrophs, slow growers or require conditions that are 
difficult to maintain in the laboratory, preventing them from being grown in 
pure culture (Lloyd et al., 2018). Hence, to understand the diversity and 
physiologies of most microbial life, culture-independent approaches are 
required.  

Culture-independent approaches 
Since the development of environmental SSU rRNA gene sequencing 
approaches, SSU rRNA surveys have been widely used for taxonomic 
identification and abundance estimation of microbes (Doolittle, 1999; Hou et 
al., 2013; Jorgensen et al., 2012; Pace et al., 1986; Sogin et al., 2006; 
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Turnbaugh et al., 2007). The mainstream version of this approach takes 
advantage of the architecture of the SSU rRNA gene – which contains 
alternating conserved and variable regions – to generate PCR amplified 
products that are sequenced in a high-throughput manner. Although the reads 
recovered are usually short, representing just a small part of the gene, this is 
generally sufficient to get an overall idea of the identity and abundance of 
the microorganisms living in an environment.  

However, SSU rRNA gene surveys have several limitations (Bonk et al., 
2018; von Wintzingerode et al., 1997). Most importantly, the PCR step 
introduces amplification bias towards studied microorganisms (von 
Wintzingerode et al., 1997). Since primers are designed based on sequences 
of known genes, they can fail to hybridize and amplify atypical sequences 
and, thus, organisms encoding such divergent genes can go undetected 
(Eloe-Fadrosh et al., 2016). Secondly, chimeric molecules can be generated 
during PCR amplification, resulting in sequences that do not belong to any 
existing organism (von Wintzingerode et al., 1997). Furthermore, given that 
SSU rRNA genes can be present in a variable copy number, abundance 
estimates of community members are often biased (Farrelly et al., 1995). 
Lastly, the phylogenetic signal contained in the short sequenced fragments is 
insufficient to resolve the phylogenetic placement for many of these 
organisms.  

To overcome some of these disadvantages, variants of this technique have 
been developed. They include the use of different phylogenetic markers 
(such as the long subunit ribosomal RNA), sequencing full SSU rRNA genes 
or several genes simultaneously (Karst et al., 2018; Martijn et al., 2019) and 
versions without primer biases (Karst et al., 2018) among others. 

Although convenient for getting an idea of the microbial community in an 
environmental sample, SSU rRNA gene approaches are not suitable for 
understanding the genomic potential of uncultured microorganisms. Instead, 
single-cell genomics (Lasken, 2013; Stepanauskas, 2012) and metagenomics 
(Tyson et al., 2004; Venter et al., 2004) can be used to study the genomes of 
organisms without the need for culturing. Both techniques are based on the 
same idea: sequencing DNA extracted directly from an environmental 
sample. However, while single-cell approaches rely on capturing and 
isolating individual cells before sequencing, metagenomic techniques 
sequence the DNA of all microorganisms at once. When the aim of a 
metagenomic study is reconstructing the genomes of microorganisms present 
in a sample, the term genome-centric metagenomics is used. Alternatively, 
we refer to gene-centric metagenomics if the objective is to analyse the 
genes and functions of a community as a whole. Both single-cell genomic 
and genome-centric metagenomic techniques can produce genomes of 
comparable accuracy (Alneberg et al., 2018). In addition, other meta-omics 
approaches can be used to study gene expression (metatranscriptomics), 
protein content (metaproteomics) and, to a lesser extent, metabolites (meta-
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metabolomics) of microbial communities (Simon and Daniel, 2011; Tang, 
2011).  

Genome-centric metagenomics 
The first steps in every metagenomic workflow are: 1) obtaining a sample 
from an environment of interest, 2) extracting DNA from it, and 3) 
sequencing (Figure 2). Depending on the sequencing platform, short and 
accurate or long and error-prone reads will be obtained. Former 
metagenomics approaches required the construction of plasmid or fosmid 
libraries, followed by Sanger or another type of shotgun sequencing (Daniel, 
2005; Kunin et al., 2008). However, such approaches are rarely in use today, 
and will not be covered here.  

In genome-centric metagenomics, reads are subsequently assembled into 
longer contiguous sequences (contigs) that represent genomic fragments of 
the microbes present in the sample. These contigs are then classified 
according to the organism they were originated from in a process referred to 
as ‘binning’, which is commonly followed by a refinement step to ensure the 
accuracy of the classification. The end of this process will result in complete 
or, more commonly, partial genomes: the so-called (genome) bins or 
metagenome-assembled genomes (MAGs).  
 

 
Figure 2. Overview of the standard workflow used in genome-centric meta-
genomics.  

In the last years, the field of genome-centric metagenomics has changed 
substantially. Numerous tools have been developed and improved within a 
short period of time, and standards are now established for short-read based 
metagenomics. Furthermore, third generation sequencing technologies have 
recently erupted in this field and quick progress is expected to happen in the 
coming few years.  

In the next sections, I will give explain in more details the different steps 
of the metagenomic workflow with considerations for both short- and long-
read metagenomics. In particular, I will highlight the relevant steps needed 
to reconstruct the genome of specific target organisms from environmental 
samples comprised of complex communities, such as sediments. 
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Sample selection 
Ideally, an assessment of the complexity of the microbial community in a 
sample should be performed prior to metagenome sequencing. The 
complexity of the sample depends on the number of species in it and their 
relative abundances. Samples with more species that are present in similar 
proportions are more complex than those with fewer species in uneven 
abundances (Kunin et al., 2008). Some trends in sample types can be 
observed in which sediments and soils are usually among the most complex 
communities (Torsvik et al., 2002). In general, downstream bioinformatics 
analyses of low complexity samples will be more straightforward and result 
in more contiguous and complete genomes.  

Due to their relatively low price, SSU rRNA gene surveys are commonly 
used to assess the community composition of samples, and to identify those 
most suitable for further metagenome sequencing. When the aim is studying 
certain species rather than the whole population, the ideal sample would be a 
simple community in which the microorganism of interest is present in high 
abundance but in which closely related organisms are absent. Such 
characteristics give the best prognosis for the recovery of high-quality 
genomes in subsequent assembly and binning steps (see sections below).  

The community composition of samples can be modified through 
additional experimental procedures. For example, size filtering (Castelle et 
al., 2015) or culture-based enrichment (Park et al., 2014) can reduce the 
sample complexity and increase the relative abundance of the target 
microorganisms. Restricting the sample collection to a homogenous and 
precise location might limit the presence of related strains within the 
population (Kunin et al., 2008). However, if the species of interest are rare, 
the biomass of the sample is insufficient, or if enrichment and filtering 
procedures are not successful, suboptimal samples become the best available 
option. To ensure the recovery of low abundant microorganisms in such 
cases, high sequencing depth is often required.  

Furthermore, sequencing several related samples in which organisms co-
occur at different abundances might be advantageous in genome-centric 
metagenomics projects, as they aid the classification of contigs into genome 
bins (see “Genome binning”). Such samples can be obtained by, for 
example, using different DNA extraction methods or by sampling either at 
different time-points or neighbouring locations (Albertsen et al., 2013; 
Alneberg et al., 2014). 
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DNA extraction 
Once the presence of the target organism in a sample has been verified, it is 
equally important to ensure that the cells are lysed and the DNA accessible. 
Not all microbial cells are equally easy to lyse. Lysis susceptibility can vary 
among microorganisms depending on the composition of their cell wall and 
the extracellular matrix of biofilms. Failure to lyse certain cells will result in 
variations in DNA extraction efficiencies between microorganisms, 
introducing a bias in the relative DNA abundances of community members 
(Frostegård et al., 1999; Jiang et al., 2011). 

There is no DNA extraction method that is suitable for all organisms and 
all environments. Protocols, therefore, need to be optimized to the sample or 
microbe of interest by selecting appropriate lysis methods, which could 
include mechanical force, temperature, sonication, chemicals or enzymatic 
digestion. Subtle variations in protocols can lead to important differences 
when it comes to the observed microbial composition (Albertsen et al., 
2015). For example, methods that use physical force such as bead beating 
can help to extract DNA from hard-to-lyse microbes, and have been shown 
to increase the extraction efficiency of archaea and some bacteria (Albertsen 
et al., 2015; Salonen et al., 2010). 

The issue with aggressive DNA extraction methods (such as bead 
beating) is that they also cause DNA shearing and can be problematic in 
recovering high-molecular weight (HMW) genomic DNA necessary for 
long-reads sequencing. For instance, the distribution of read lengths obtained 
with long-read Nanopore sequencing seems to be dependant on the quality of 
DNA after library preparation rather than on the sequencing chemistry itself 
(Branton and Deamer, 2019). Since long reads can span repetitive regions 
aiding in the assembly of sequences that would otherwise be problematic 
reconstruct, being able to extract high quality HMW DNA can be crucial to 
obtain complete genomes (Branton and Deamer, 2019). Therefore, it 
becomes essential to optimize protocols for long-read metagenomics that 
allow the lysis of most microorganisms present in a sample while, at the 
same time, maximize the quality of the HMW DNA. However, given that the 
field of long-read metagenomics is still in its infancy, the conditions required 
for ensuring good results for different types of environmental samples are 
still under evaluation.  

Metagenome sequencing 
High throughput DNA sequencing can be done using different technologies, 
with the Illumina sequencing platform currently being the most used for 
genome-centric metagenomics. This technology allows for the generation of 
hundreds of millions of short DNA sequencing reads that have a very low 



  31 

error rate (lower than 0.1%) (Liu et al., 2012). The high quality of the 
generated reads together with the low cost per sequenced base is what has 
made this sequencing technology a very attractive choice for metagenomic 
studies. In this respect, the reasonable price makes deep sequencing 
affordable, and thus allows for the identification of low abundant members 
of microbial communities. On the other side, the short length associated with 
Illumina reads – ranging from 50 to 300bp long – is considered the main 
disadvantage of this sequencing platform. This is particularly problematic 
for genomic and metagenomic studies in which the short read length 
complicates the assembly process hampering the reconstruction of complete 
genomes (see sections below).  

Alternatively, third-generation sequencing platforms, such as Pacific 
Biosciences (PacBio) and Oxford Nanopore, can produce long DNA 
sequencing reads. These platforms have been widely used in sequencing 
projects, allowing for the completion of numerous genomes (Loman et al., 
2015; Rhoads and Au, 2015). However, the relatively low throughput and 
high cost of these technologies have limited their use in the metagenomic 
field. The development of the Oxford Nanopore PromethION sequencer, 
which can produce up to several hundreds gigabases of long reads in real-
time, has supposed an inflexion point for the use of long reads in other 
applications. Albeit still limited, the field of long-read metagenomics is 
rapidly growing and early results already show the benefit of having long 
reads to obtain complete genomes directly from metagenomic samples 
(Bertrand et al., 2019; Nicholls et al., 2019; Somerville et al., 2019; 
Warwick-Dugdale et al., 2019). Nevertheless, third-generation sequencing 
technologies still have important disadvantages, particularly concerning their 
high error rates. Despite being continuously improving, long-read error rates 
are still around 14% for PacBio and 15-20% for Nanopore (Jain et al., 2015; 
Weirather et al., 2017). To increase their accuracy, both PacBio and 
Nanopore technologies have protocols that can sequence the same read 
multiple times to generate consensus reads with decreased error rates, 
although at the expense of read length and throughput (Ip et al., 2015; 
Travers et al., 2010). Nevertheless, additional Illumina sequencing is often 
required to correct sequencing errors in order to produce high-quality 
genomes, thus increasing the costs per sample.  

Other promising options are the reads produced by companies such as 
10X Genomics, which allow for the reconstruction of artificially generated 
long reads with an error rate comparable to that of Illumina sequencing. 
Such reads can be extremely valuable for the reconstruction of complex 
eukaryotic genomes that contain many repeats and structural variants. 
Although their use is in metagenomics still limited (Bishara et al., 2018), 
such reads could also be promising for assembling genomes from complex 
metagenomic samples, especially for samples with high strain diversity. 
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Sequence assembly 
Assembly is the process of creating contiguous stretches of sequences 
(contigs) by combining multiple sequencing reads (Kunin et al., 2008). From 
a theoretical perspective, having long reads lacking errors would allow for a 
relatively straightforward reconstruction of a genome. In practice, we rarely 
have access to such reads, at least not in a high-throughput manner. 
Currently available short reads contain few – but still some – errors, whereas 
long reads have high error rates that create additional challenges in the 
assembly process. From such a starting point, assembling one single genome 
can be an arduous problem to solve, which is compounded when assembling 
multiple genomes simultaneously, as is the case for metagenomes.  

Overlap layout consensus (OLC) and de Bruijn graph (DBG) are two of 
the main strategies used by assemblers, for which numerous variants and 
implementations exist (Figure 3). Both methods are based on translating the 
problem of genome-sequence reconstruction into mathematical graph theory 
and implementing solutions for graph theory problems. In a graph, nodes 
represent the basic elements and connections between them are the edges. 
Usually, the basic elements (nodes) of an assembly graph represent reads or 
read fragments and the edges indicate overlaps between them. From such 
representation, contigs can be generated by traversing (walking) the 
assembly graph.  

 
 

 
 

Figure 3. Schematic representation of two different assembly strategies: Overlap, 
Layout, Consensus (a) and de Bruijn graph (b). Polymorphisms or sequencing errors 
(red) form branching structures in DBG-based assembly graphs. Original figure by 
Ayling et al. (2019).  
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Overlap, Layout, Consensus 
As its name indicates, OLC methods are based on three steps: overlap, 
layout and consensus (Miller et al., 2010). In the overlap stage, which is by 
far the most computationally demanding, every read is compared to every 
other read to identify overlaps between them. The assembly graph is then 
built using read sequences as nodes and overlaps between them as edges. 
The second phase, the layout, groups the overlaps previously generated to 
form contigs. Finally, a consensus sequence is determined by choosing the 
most represented nucleotide at each position in the layout.  

Repeats contained within reads can be resolved by OLC approaches if the 
ends of the reads can be unambiguously overlapped and positioned during 
the layout step. Any repeat longer than the read will be unresolved. Thus, 
ultra-long reads are the most useful to solve repeats and have a huge impact 
on the contiguity and quality of the assembly.  

OLC approaches were popular with Sanger reads and their use has re-
emerged with long reads from PacBio and Nanopore sequencing 
technologies. In their new implementations, many of which combine 
elements from other assembly strategies (e.g., string graphs), overlap-based 
methods use heuristics to address the higher throughput of the current 
technologies. Furthermore, most overlap-based assemblers designed for third 
generation sequencing tackle the high error rates of the reads by including an 
initial pre-correction stage, in which reads are aligned to each other to 
generate more accurate consensus reads (Chin et al., 2013; Koren et al., 
2017). However, the inclusion of an additional alignment step is 
computationally costly. This has motivated the development of alternative 
assembly tools that can use uncorrected reads directly to produce unrefined 
contigs that retain numerous errors (Li, 2016).  

De Bruijn Graph 
In DBG approaches, reads are split into overlapping subsequences of length 
k, called k-mers. Each different k-mer becomes a node in the assembly graph 
that can be connected to other k-mers if they overlap without mismatches in 
all but one of their bases (Miller et al., 2010). In other words, edges in the 
graph are formed by perfect overlaps of length k-1. Note that other variations 
of the assembly graph definition exist, although they are not mentioned here 
for simplicity. Once created, the graph is traversed guided by heuristics to 
generate contigs. 

Although the graph construction is done very efficiently, navigating the 
graph in the correct order to reconstruct sequences corresponding to actual 
genomes can be daunting. This can be particularly challenging when 
sequencing errors, repetitive regions, heterozygosity, strain variation and 
structural variants are present in the sample, as they create complicated 



  34 

branching structures that increase the complexity of the graph (Ayling et al., 
2019; Olson et al., 2017). Discerning which of the many possible graph 
traversals is correct can be an impossible task without any further 
information. Therefore, assemblers usually incorporate additional data to 
create constraints that aid in the reconstruction of contigs, such as the 
alignment of reads back onto the graph, coverage information or graph 
connectivity. If such information is not enough to resolve ambiguities, the 
graph traversal breaks at such points, generating fragmented assemblies 
(Olson et al., 2017; Vollmers et al., 2017).  

Unlike OLC approaches, sequencing errors heavily affect the graph 
construction by creating false k-mers and overlaps that increase memory 
requirements (i.e., more k-mers need to be stored) and add branches to the 
graph. Each sequencing error can affect up to k different k-mers and thus, 
their impact increases with the length of k. Therefore, most DBG assemblers 
include a step previous to the graph construction to detect and correct such 
errors. In single-genome assembly, with relatively even coverage, errors can 
be identified by detecting rare k-mers that have low multiplicity values (i.e., 
the number of times that a given k-mer appears). Erroneous k-mers are 
subsequently corrected by applying the minimum number of changes that 
can lead to a correct k-mer sequence. Nonetheless, such approaches are 
suboptimal for metagenomics datasets – which contain organisms present at 
various abundances – since they remove k-mers from low-abundant species. 
Hence, revised methods have been developed for metagenomic datasets that 
avoid the assumption of uniform coverage, for example, by removing rare k-
mers only from reads with high coverage (Olson et al., 2017; Vollmers et al., 
2017). 

In addition to sequencing errors, repetitive regions also impact the 
structure of the graph by adding additional edges between nodes that 
increase the number of possible traversals (Olson et al., 2017). In this regard, 
the k-mer length plays an important role. The longer the k-mer, the lower the 
probability of finding overlaps of length k-1. Hence, longer k-mers increase 
the specificity and create fewer edges, leading to a better resolution of 
repeats. However, they also require higher sequencing depth to allow 
sufficient overlaps between nodes, and thus avoid unconnected graphs. On 
the contrary, short k-mers result in the creation of more edges and are 
therefore more suitable for shallow sequencing depths, albeit while having a 
limited power to resolve complicated repetitive structures (Vollmers et al., 
2017). In order to obtain better assembly results, most currently used 
assemblers are able to incorporate the information from several k-mer 
lengths (Bankevich et al., 2012; Li et al., 2015; Nurk et al., 2017; Peng et al., 
2012). 

In single-genome assembly with even coverage, k-mers originating from 
repetitive regions can be identified as having higher multiplicity values. 
Those values can, at the same time, be used to navigate the graph and 
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resolve repetitive structures. Yet, in metagenomic datasets – with species 
present at different abundances – such coverage assumptions are violated, 
and additional information or specific algorithms are required to resolve 
repeats (Breitwieser et al., 2017; Ghurye et al., 2016; Vollmers et al., 2017).  

DBG approaches became popular with the introduction of high 
throughput and low error sequencing technologies, as their efficiency and 
computational requirements do not scale with the depth of coverage and 
number of sequencing reads. Currently, new tools that combine overlap-
based with approximate DBG approaches have been implemented that can 
make use of third generation sequencing reads (Kamath et al., 2017; Lin et 
al., 2016).  

Assembling metagenomes 
The uneven abundances of different members of a microbial community 
create additional challenges for metagenomic assembly. First, as mentioned 
above, simplistic graph constraints based on coverage cannot be used to 
identify errors and to resolve repeats. Second, without deep sequencing, low 
abundant members may be barely sequenced, and thus give rise to highly 
fragmented and incomplete genomes. On the contrary, high abundant species 
may exhibit an excessive depth of coverage dramatically increasing the 
computational costs in overlap-based assembly methods. Furthermore, such 
excessive coverage amplifies the effect of sequencing errors, leading to 
complex assembly graphs that ultimately produce fragmented assemblies in 
DBG approaches. An optimal depth of coverage of 50x has been shown to 
produce longer contigs in DBG assemblies based on short reads (Desai et al., 
2013). Yet, in metagenomic samples, no single tradeoff value is achievable 
for all members of the community simultaneously.  

Unlike microorganisms isolated in culture, microbial populations in 
nature are non-clonal, which increases the genomic diversity of 
metagenomics samples. Multiple closely related lineages and strains are 
often found co-inhabiting the same niche. The presence of closely related 
lineages (i.e., microdiversity) or other organisms that share similar genomic 
regions (e.g., horizontally transferred sequences, highly conserved regions) 
can hamper the assembly process (Awad et al., 2017). Similar regions shared 
between different genomes behave like repeats in the assembly process, 
generating complex branching structures in the graph that often cannot be 
resolved, and thus result in fragmented assemblies (Olson et al., 2017). More 
importantly, if such graph-structures are incorrectly traversed, co-assembly 
of different genomes can occur producing chimeric contigs. Co-assembly is 
more likely to happen in the presence of multiple highly similar strains. 
However, depending on the application, obtaining longer consensus 
sequences for a species, possibly mixing related strains, might be desired 
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over reconstructing microvariation within highly similar strains in 
fragmented assemblies.  

Finally, the assembly of complex communities is a computationally costly 
process. The large number of lineages and strains in such samples requires 
the storage and processing of massive amounts of data. Although new 
assembly implementations have considerably reduced the computational 
resources needed, the extensive amount of sequencing data required to 
assemble genomes from complex environmental samples is still a limiting 
factor for both overlap- and DBG-based approaches. Therefore, to avoid 
practical limitations, planning for bioinformatics resources and costs 
becomes as important as having the experimental data.  

Given these additional difficulties, the quality of metagenome assembly is 
generally inferior to the assembly of clonal isolates. Typically, this is 
translated in the generation of shorter contigs and the failure to obtain 
complete genomes. Furthermore, as any other sequence assembly process, 
errors (i.e., misassemblies) could be present in genome sequence 
reconstructions and should be kept into consideration. Yet, current tools for 
short-read metagenomics use algorithms optimized for the metagenomic 
nature of the data to limit such errors and improve the assembly quality (Li 
et al., 2015; Nurk et al., 2017). While several assemblers have shown to be 
accurate for single-genome assembly of long reads, it is currently unclear 
how such methods perform with metagenomic data. Tools specialized for 
long-read metagenomics are currently in active development, and, while 
promising, their accuracy still needs to be evaluated.  

Scaffolding 
Contigs generated during the assembly process can be subsequently ordered 
and oriented to form longer genomic fragments called scaffolds. In contrast 
to contigs, scaffolds are non-contiguous and contain unknown regions 
between contigs formed by gaps (represented by stretches of Ns). 
Commonly, the scaffolding process makes use of the information given from 
pairs of reads generated from the two ends of the same DNA fragment (i.e., 
paired-end reads) to infer which contigs are consecutive (Ghurye and Pop, 
2019). Paired reads that align to two different contig-ends suggest a link 
between those contigs. If the number of paired-reads connections between 
two contigs is high enough, contigs can be combined into scaffolds, in which 
the inter-contig gap size can be estimated from the insert size of the 
sequencing library (i.e., the size of the DNA fragment excluding the size of 
the sequencing library adapters). Libraries with long insert sizes can thus 
improve the scaffolding step considerably (Kunin et al., 2008). Other 
methods for scaffolding based on optical maps (generated by using 
restriction enzymes), long sequencing reads or Hi-C data (based on 
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chromosome conformation capture) also exist, although their application to 
metagenomics is still limited (Ghurye and Pop, 2019). However, scaffolding 
is a difficult process that is subject to errors (i.e., combining contigs 
erroneously), especially when assembling large and complex metagenomes. 
Consequently, even though many assembly tools can also perform the 
scaffolding step based on paired-end reads, when short reads are the only 
available data, the use of contigs over scaffolds in metagenomic analyses 
might be preferred to minimize potential artefacts at the expense of having 
shorter sequences.  

Assembly validation 
Assessing the accuracy of genomic reconstructions can be relatively 
straightforward when the expected output is known. Metagenomic 
assemblers are generally evaluated by using mock communities or synthetic 
datasets in which the number of lineages and their abundances is pre-defined 
(Nicholls et al., 2018; Sczyrba et al., 2017). However, such data can fail to 
reflect the complexity of real environmental samples and other biases related 
to the sample preparation or sequencing process. Since the performance of 
assemblers heavily depends on the complexity of the underlying data, the 
predicted accuracy for a given tool can show large variations from sample to 
sample and among genomes within a given sample.  

In the absence of reference genomes, assembly validation is less simple. 
Yet, the simultaneous use of several statistics can give an idea of the 
accuracy of the resulting genome reconstruction (Vollmers et al., 2017). 
Some of these measurements aim to assess the contiguity (i.e., the length and 
fragmentation) of the assembly. The most popular is the N50 value, that 
represents the minimum contig length of the set of contigs that comprises 
over half of the total assembly size. To be a useful measure, the compared 
assemblies should have the same minimum contig length cut-off (note that 
different assemblers use different cut-off values). Additionally, the N50 
value should be inspected together with the total assembly size to avoid 
misinterpretations. Checking the number of contigs and the contig length 
distribution (maximum, mean, median and quartiles) can also provide some 
insights about fragmentation in the assembly. However, such statistics do not 
inform about the accuracy of the (meta)genome reconstruction itself and can 
be misleading when used in isolation (Ayling et al., 2019). For example, 
assemblies could show low fragmentation and high contiguity but still 
contain numerous misassemblies (e.g., chimeras). 

Measuring accuracy is generally more complicated. In single-genome 
assembly, potential misassemblies can be detected by aligning the 
sequencing reads to the reconstructed contigs and inspecting both the depth 
of coverage and the alignment pattern of reads (or read-pairs) within contigs. 
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Sudden drops in coverage are typically found at breakpoints flanking 
inversions, deletions and insertions, and regions with unexpected high 
coverage could indicate collapsed repeats. Other indications of potential 
misassemblies could be given by single reads mapping to two non-
contiguous regions in the middle of a contig or by read-pairs that align with 
exceedingly large distances between them or in the wrong orientation (Olson 
et al., 2017). However, in metagenomic assemblies, such arrangements are 
not always easy to interpret, especially when closely related lineages are 
present in a sample. Reads originating from different lineages can behave as 
repeats and align to multiple regions producing variations in the coverage 
pattern. Discerning whether such variations are the result of assembly 
artefacts or biological differences between organisms can be difficult. Still, 
some errors can be identified by detecting bases that are not supported by 
any reads (i.e., regions of zero coverage). Nonetheless, even such cases can 
be complicated to assess when assembling low abundant community 
members in which the read depth is often minimal. The evaluation of such 
regions can be further complicated by, again, highly similar lineages that are 
prone to co-assemble, as well as, the presence of sequencing errors.  

Genome binning 
Once contigs (or scaffolds) have been reconstructed, the next step is to 
identify which of them originated from the same organisms and to group 
them together to produce MAGs. The simplest binning methods consist of 
similarity or k-mer based searches of contig sequences against databases of 
reference genomes (supervised binning). However, since representative 
genomes are generally lacking for most microorganisms, supervised 
approaches are often ineffective. Alternatively, two properties of contig 
sequences are mainly used to classify them into MAGs: nucleotide 
composition and read coverage.  

Composition-based binning is centred on the observation that 
oligonucleotide frequencies are species-specific and conserved across 
genomes within species (Dick et al., 2009). This compositional signature of 
genomes is observed for oligonucleotides of length two or higher (Abe et al., 
2003; Nakashima et al., 1998; Noble et al., 1998; Pride et al., 2003; 
Sandberg et al., 2003) and its specificity increases with the oligonucleotide 
length (Bohlin et al., 2008). While longer oligomers could potentially allow 
for a higher binning resolution, the fact that the number of possible 
oligonucleotide sequences grows exponentially with their length creates 
computational constraints that limit their use. A good trade-off between 
specificity and computational feasibility is the use of oligomers of length 
four (i.e., tetranucleotides), for which 256 (44) different oligomers exist. 
Although tetranucleotides frequencies work generally well for classifying 
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contig sequences from different species, they have little power to separate 
closely related organisms that exhibit similar compositional signatures. 

Furthermore, there are regions within genomes that deviate from the 
overall oligonucleotide composition of a given organism. Ribosomal RNAs, 
sequences of different origin (i.e., viral or horizontally acquired), and 
plasmids often display biases in compositional signatures (Noble et al., 
1998; Pride et al., 2003). If such regions are present in long contigs, the 
oligonucleotide pattern is overpowered by the unbiased part of the sequence, 
and they thus have a minor impact on the classification. Conversely, short 
contigs containing biased regions are often misclassified by composition-
based binning methods. In fact, current binning tools often group contigs 
encoding rRNA gene sequences from several organisms together into a 
single artefactual bin. As a rule of thumb, the longer the contig, the more 
robust the compositional signatures, and the more reliable the classification. 

Coverage-based binning is based on the premise that contigs generated 
from the same genome should exhibit similar depth of coverage values on 
average. However, since organisms can display similar abundances in a 
population, coverage information alone is usually not enough to classify 
contig sequences. Instead, coverage information is used in conjunction with 
nucleotide composition data. Binning accuracy can be further improved by 
the use of read coverage information across several related samples. The 
idea behind this approach – referred to as differential coverage binning – is 
that organisms present in similar abundances in a sample can show uneven 
abundances in another, thus allowing for a higher accuracy in the 
classification (Albertsen et al., 2013; Alneberg et al., 2014). Therefore, the 
larger the number of related samples, the higher the probabilities of 
distinguishing contigs originated from different organisms. Ideally, the 
samples included should originate from microbial communities that largely 
overlap in terms of the identity of the microorganisms present but that 
exhibit considerable variation in their abundances. Samples collected at 
different time points, neighbouring locations, or that have been generated 
using different DNA extraction methods that lyse some species preferentially 
over others, can be used for differential coverage binning.  

Over the last few years, numerous binning tools have been developed 
(Alneberg et al., 2014; Kang et al., 2019; Lin and Liao, 2016; Wu et al., 
2016). The most recent ones use both composition and coverage information 
to generate MAGs. Some of them also include additional information to 
improve their classification; such as linkage information of contigs given by 
pair-end reads (Lu et al., 2017). Current binning tools mostly differ in the 
distance metrics and clustering methods they use, which lead to variations in 
their results. The performance of these tools depends on the structure and 
complexity of the sample with no single binning method outperforming the 
others in all scenarios (Sieber et al., 2018). To overcome such situation and 
improve the accuracy of binning, methods to combine the results from 
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various binning tools have been developed (Sieber et al., 2018; Song and 
Thomas, 2017; Uritskiy et al., 2018). Yet, such approaches rely on the 
accuracy of existing binning methods and cannot guarantee the generation of 
error-free MAGs.  

MAG validation 
Metagenomic binning requires careful validation and verification to ensure 
high quality. MAGs generated from binning tools should be inspected to 
identify misclassified contig sequences and other binning artefacts (e.g., co-
binning of several lineages, partial MAGs). During the last years, the use of 
tools to estimate the completeness and contamination percentages of MAGs 
has become popular for evaluating their quality (Bowers et al., 2017). Such 
estimations are based on the percentage of universal single-copy genes found 
in each MAG. For example, if 80 of 100 marker genes are found in a 
genome, completeness is estimated to be roughly 80% (note that a correction 
for the co-occurrence of neighbouring markers is commonly included). 
Single copy markers found in several copies may indicate that contigs 
originating from different genomes were clustered together (i.e., 
contamination or redundancy). As mentioned above, closely related strains 
can be difficult to separate and often co-occur together in the same genome 
bin. In these cases, the estimated contamination values will be high, in spite 
of such values not indicating contamination from unrelated species. To 
distinguish between actual contamination and the presence of related strains, 
some tools, such as CheckM, use an additional measurement, known as 
strain heterogeneity. Strain heterogeneity is estimated by comparing the 
sequence similarity between markers found in more than one copy. If their 
amino acid identity is over a certain threshold (90% by default), CheckM 
considers that those markers belong to related strains. The heterogeneity 
value is based on the percentage of duplicated markers that pass this identity 
threshold. 

However, these estimates can easily deviate from the actual completeness 
and contamination values of MAGs. First, a given set of marker genes might 
not be suitable for certain lineages that could lack some of the marker genes 
considered universal, or could, conversely, have duplicated copies of others. 
If this were the case, even a complete genome would have suboptimal 
contamination and completeness values. Second, these estimations are 
restricted to the presence of contigs encoding a limited number of genes. 
This is particularly important to consider in fragmented assemblies where 
contigs without any marker gene can be the majority. 

Hence, it is important to not blindly rely on such tools and to use them in 
combination with other approaches that are based on the characteristics of 
the contig sequences. The distribution of GC content, tetranucleotide 
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frequencies or coverage values of contig sequences can be used to detect 
outliers that might represent misclassified contigs (Karst et al., 2018; Parks 
et al., 2015; Parks et al., 2017). Another source of information can be 
provided by the taxonomical classification of genes within contigs. A 
limitation of this approach comes from the microbial representation in 
sequence databases, where novel organisms lack relevant representatives. 
The information provided by read pairs connecting contigs and the presence 
of rRNAs and tRNAs is also useful in quality validation of MAGs, together 
with other statistics typically used for assembly assessment (Bowers et al., 
2017; Karst et al., 2016). It is important to notice that for individual contigs, 
the amount of supporting evidence for their presence in a given MAG will 
vary. 
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Inferring evolution 

Evolutionary history of species 
One aspect of studying microorganisms is the determination of the 
evolutionary relationships between them to understand how they came to be. 
In this context, however, it is important to distinguish between organismal 
and genome evolution. On the one side, we can consider prokaryotes as 
populations of cellular entities that propagate through cell division and are 
related by a series of bifurcations in a tree-like manner. On the other side, we 
can think in terms of genomes evolving within species. Before cell division, 
DNA replicates to ensure that each daughter cell receives a copy of the 
genome. Throughout the cell cycle, different types of mutational events can 
occur generating variation in the genome. Parts of the genome can be 
modified (i.e., nucleotide substitutions), rearranged, duplicated or lost. More 
importantly, foreign DNA can also be incorporated into the genome by a 
variety of mechanisms such as transformation, transduction and conjugation 
(Lerat et al., 2005; Soucy et al., 2015; Wagner et al., 2017). In Archaea and 
Bacteria, HGT is considered one of the main evolutionary forces to generate 
genetic variation (Lerat et al., 2005; Wagner et al., 2017). The integration of 
new genetic material, which can originate from closely or distantly related 
species, allows the acquisition of new functions that might be instrumental to 
adapt to new or changing niches. Therefore, the evolution of genomes cannot 
only be considered in terms of vertical inheritance, but it also involves 
horizontal transfers that are better described in a network-like fashion 
(Soucy et al., 2015). Genome evolution is often regarded as the evolution of 
the entirety of genes encoded into them. Although genomes are not only 
composed by genes, such simplification bypasses many computational 
challenges (Boussau and Daubin, 2010) and it is more suitable for the study 
of distantly related sequences by using protein sequences instead of DNA.  

And yet, although they are not one and the same, solving the evolutionary 
history of prokaryotes is not possible without studying the evolutionary 
history of (part of) their genomes. Molecular phylogenetic approaches have 
been developed to model the evolutionary processes and infer patterns of 
gene and species diversification. During the early days of molecular 
phylogenetics, it was common to interpret the evolutionary history of certain 
universal gene families as if they fully represented the phylogeny of their 
respective species (e.g., SSU rRNA) (Woese et al., 1990b). Nowadays we 
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know that gene histories do not always mirror species evolution. In 
prokaryotes, discord between gene and species phylogenies can arise not 
only from methodological errors and artefacts but also, as mentioned above, 
due to gene-specific events (e.g., gene duplications, losses, transfers) 
(Boussau and Daubin, 2010; Som, 2015). Because of that, the evolutionary 
history of a single gene cannot be directly considered as the organismal 
phylogeny.  

To overcome this problem, current methods – such as supermatrices or 
supertrees – combine the information of several orthologous gene families 
(i.e. genes that evolved by speciation) to infer the vertical component of 
evolution. Similar to the early approaches, these methods rely on the 
identification of a limited amount of genes that evolved through speciation 
and are unlikely to have experienced horizontal gene transfer or duplication 
events. In contrast to single-gene phylogenies, such approaches average the 
phylogenetic – and often conflicting – signal of a set of genes, thus buffering 
the effect that the inclusion of undetected non-orthologous sequences might 
have in the phylogenetic reconstructions. Albeit numerous studies suggest 
that such approaches are able to capture true species diversification patterns 
(Abby et al., 2012; Galtier, 2007; Galtier and Daubin, 2008; Szöllosi et al., 
2012), the fact that variations in the datasets or phylogenetic reconstruction 
methods used can result in different topologies has made them somewhat 
controversial. Hence, a great effort is often put into understanding the source 
of conflicting topologies and to minimize errors that could affect the 
reconstructions (Philippe et al., 2011; Rodríguez-Ezpeleta et al., 2007a). 

Other approaches that model the evolution of gene trees along a species 
trees have the potential of providing a direct explanation of the phylogenetic 
discord between genes and species histories. Such methods attempt to fit the 
gene phylogeny inside the species tree by invoking a series of events 
(duplications, horizontal transfers, etc.) that explain the conflict between the 
topologies. Approaches that reconcile gene trees and species trees are 
promising not only because of their intuitive interpretation but also because 
they can make use of additional sources of information that have been 
previously overlooked. First, all homologous gene families, independently of 
whether they have evolved solely through speciation or not, can be used. By 
including gene families containing paralogs (i.e. genes that evolved by 
duplication) and xenologs (i.e. homologs acquired from horizontal gene 
transfer events), the repertoire of genes and, hence, the amount of 
phylogenetic information, increases considerably compared to supermatrices 
and other methods that require a small set of orthologous genes with clear 
vertical inheritance patterns. Such broader set of homologous families, even 
if they contain non-orthologous sequences, harbours a strong signal for 
vertical inheritance that can be exploited if modelled properly (Boussau et 
al., 2013). Moreover, if we assume that HGT only occurs between 
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contemporary organisms, transfer events can aid to establish the relative 
order of speciation events (Davín et al., 2018).  

Unfortunately, no realistic method for co-estimating gene and species 
trees that also considers the modelling of Duplication, Transfer and Loss 
(DTL) events is currently available, although simplified (e.g., only 
considering DT) and related methods (e.g., coalescent approaches developed 
for eukaryotic evolution) do exist (Akerborg et al., 2009; Boussau et al., 
2013; Wen and Nakhleh, 2018). Instead, most of these approaches are used 
to improve the topology of gene trees (Szöllősi et al., 2015b), evaluate 
alternative hypothesis for the evolution of species (Abby et al., 2012), infer 
gene histories and the gene-content in ancestral lineages (Williams et al., 
2017b) or date a given species tree (Chauve et al., 2017b; Davín et al., 
2018). In addition to limitations specific to these methods, most 
reconciliation approaches require pre-computed gene and species 
phylogenies to distinguish between vertical and horizontal evolution. 
Therefore, reconciliation methods are themselves subject to the same 
reconstruction errors and artefacts as other phylogenetic approaches, 
becoming a circular problem.  

Currently, there is no phylogenetic method that can accommodate all 
processes driving the evolution of organisms at different levels (sequence, 
genomes and populations). This is partially due to computational and model 
limitations but also due to the fact that such processes are complex and not 
fully understood yet. Further development of phylogenetic approaches may 
result in more realistic methods and models that are able to reconstruct 
accurate and robust phylogenetic histories. For the time being, additional 
measures have to be taken to ensure that the phylogenetic inferences 
obtained are reliable and not the result of systematic biases and other types 
of errors.  

In the next sections, I will assume that the reader has a basic 
understanding of phylogenetic reconstruction methods and evolutionary 
models and only explain some of the key aspects that are relevant to this 
thesis work. For an in-depth explanation of phylogenetic methods, see for 
example (Felsenstein, 2004; Yang, 2014).  

Supermatrix-based approaches 
Molecular phylogenetic approaches make use of mathematical methods to 
infer the evolutionary past from the information stored in the DNA of extant 
species. The reconstruction of molecular phylogenies, independently of the 
type of data and analysis, requires the identification and alignment of 
homologous characters from different species and the estimation of a 
phylogenetic tree using specific models and methods. The accuracy of the 
reconstructions depends on the quality of the dataset (e.g., the accuracy of 
the alignment) and the realism of the model used to infer the past. 
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In supermatrix-based analyses, the general approach remains the same, 
with two particularities. First, the characters used in the dataset (nucleotides 
or amino acids) originate from the concatenation of various genes. Second, 
gene sequences included should only be orthologous. The general workflow 
to infer species diversification patterns based on supermatrices of 
concatenated genes goes as follows (Roger et al., 2013): 

 
1. A set of representative lineages, relevant to the question posed, is 

selected. 
2. A set of single-copy orthologous genes (or proteins) present in all or 

most selected taxa is identified to represent the vertical inheritance of 
organisms. These genes are commonly referred to as marker genes. 

3. Each orthologous gene family is aligned separately to identify 
homologous sites between the sequences, and filtered to minimize errors 
originated from automatic aligning tools.  

4. Alignments for each marker gene are concatenated to create a 
supermatrix.  

5. A model of sequence evolution that captures the dynamics of the 
substitution process of the given dataset is selected.  

6. A phylogeny is inferred based on the data provided in the supermatrix 
under the selected model of sequence evolution. The most reliable 
phylogenetic methods currently available are based on maximum 
likelihood (ML) or Bayesian inference frameworks (not covered here, 
but for a general introduction see, for example, Holder and Lewis 
(2003); Roger et al. (2013)).  

7. Finally, the validity of the results is assessed (statistical significance, 
model fit, etc.) 

 
The use of phylogenetic reconstruction tools will always result in at least one 
phylogenetic tree. However, the obtained phylogeny does not necessarily 
represent the true evolutionary history of organisms, as errors can be 
introduced at various points of the workflow, leading to incorrect 
reconstructions (Philippe et al., 2017).  

Errors and artefacts in phylogenetic reconstructions  
There are three main types of errors that can affect the accuracy of 
phylogenetic reconstructions: 1) sampling or stochastic errors caused by 
insufficient number of phylogenetically informative positions; 2) errors 
arising from the violation of the orthology assumption and 3) systematic 
errors stemming from the inability of the substitution model to capture the 
underlying evolutionary process of the data (Philippe et al., 2011; 
Rodríguez-Ezpeleta et al., 2007b).  



  46 

The first type of error is associated with having insufficient phylogenetic 
signal and is most problematic for evolutionary inferences of individual gene 
families in which the length of the gene is the limiting factor. The addition of 
more positions reduces the magnitude of sampling errors and, therefore, they 
generally do not represent an issue for supermatrix-based approaches that 
combine the information of several genes.  

Failure to identify orthologous sequences and sites causes the second type 
of error, which can lead to unpredictable effects in tree inferences. In 
concatenations, this effect is averaged across sites from different genes 
reducing the magnitude of the error. Nevertheless, systematic failures in 
orthology detection can produce incorrect placements that are highly 
supported (Beiko et al., 2008).  

Lastly, model misspecifications can lead to the consistent and systematic 
recovery of incorrect topologies that become statistically supported. The 
most common misspecifications stem from variations in the composition or 
rate of evolution of sequences that are generally not well captured by current 
substitution models. Such systematic errors may result in the artifactual 
grouping of sequences with similar characteristics regardless of their true 
evolutionary histories. Moreover, this effect is exacerbated when sites that 
have experienced multiple substitutions (mutational saturation) are present. 
In saturated sites, phylogenetic signal is overwritten by more recent 
substitutions. Similarities between saturated homologous sites are the result 
of convergent (homoplastic) mutations and do not carry any phylogenetic 
information. If substitution models were accurate, saturation would lead to 
random noise that would simply decrease the statistical support of the tree. 
However, in the presence of model violations, sequences that accumulate a 
higher number of substitutions – as the result of accelerated evolution or 
ancient divergence – are the most affected by systematic errors and can be 
incorrectly grouped together. Since these sequences are represented by long 
branches in the tree, this artefact is known as long-branch attraction (LBA) 
(Felsenstein, 1978).  

Violations of the orthology assumption 
Identification of orthologous genes 
One of the most important assumptions made in supermatrix-based 
approaches is that the genes included in the analyses are universal (or nearly 
universal) for the taxa included, and have only evolved through speciation 
and therefore reflect the vertical evolution of the species. However, the 
identification of orthologous sequences is not always evident (Tekaia, 2016). 
Orthology is frequently inferred from sequence similarity searches that aim 
to identify single-copy genes. The hypothetical orthologous sequences are 
often subsequently scrutinised by inspecting the topology of the individual 
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gene phylogenies prior to concatenation of the final set of sequences. By 
doing so, it might be possible to detect and exclude sequences that are clear 
cases of horizontal gene transfer, paralogs or potential contamination in the 
dataset.  

However, manual inspection of gene phylogenies cannot always 
guarantee that the remaining genes have only evolved through speciation 
(Boussau and Daubin, 2010). There are several reasons that can prevent the 
correct identification of non-orthologous genes. First, gene trees have limited 
phylogenetic signal that is often insufficient to accurately estimate the 
history of the gene family, especially at the deepest nodes. Second, the lack 
of duplicated sequences cannot be considered as absence of paralogy. Traces 
of duplications can be masked by incomplete datasets that exclude one of the 
copies or reciprocal losses in which organisms have retained different copies 
of an ancestrally duplicated gene (Doolittle, 1999). Although the frequency 
of this phenomenon – known as “hidden paralogy” – is unknown in 
prokaryotes, it has been shown that it can strongly affect phylogenies 
causing discord between them. Third, genes that have been horizontally 
acquired might not have a detectable pattern in gene phylogenies, especially 
in cases of ancient transfers mostly impacting the topology at the deepest 
nodes – the most difficult ones to reconstruct. Given the extent of HGT 
throughout the evolution of organisms, it is unrealistic to assume that certain 
gene families have never experienced it, independently of their function 
(Boussau and Daubin, 2010). In fact, a recent study suggests that all gene 
families present in the last archaeal common ancestor have experienced at 
least one horizontal transfer event during the evolution of this domain 
(Williams et al., 2017b).  

Although simulation studies suggest that supermatrix-based approaches 
can reflect true species histories even in cases of substantial horizontal gene 
transfer events occurring randomly between organisms, they fail when HGT 
occurs preferentially between certain organisms (Beiko et al., 2008). This 
seems to take place in natural communities, where co-occurrence in the same 
habitat is an important facilitating factor (Smillie et al., 2011). In such cases, 
supermatrix-based approaches might produce well-supported topologies that 
do not reflect the true vertical history but instead show scenarios influenced 
by both vertical and horizontal signals that are difficult to interpret (Beiko et 
al., 2008). Failure to exclude such sequences in the dataset can thus result in 
inaccurate reconstructions.  

Although obtaining a dataset that fully depicts the evolution of species 
might not be possible, reducing the number of non-orthologous sequences 
included in the analyses is critical to obtain meaningful results. Inclusion of 
a wider taxon sampling and genes from recently sequenced genomes 
increases the chances of detecting cases of paralogy and HGT by manual 
inspection of gene tree topologies. Additionally, the use of more than one set 
of orthologous genes (e.g. genes encoding ribosomal proteins vs. other 
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single-copy marker genes) to reconstruct phylogenies can help to either 
confirm that the resulting topologies are robust and indeed reflect the species 
history or to identify potential problems in the reconstructions. 

Identification of homologous sites 
Once orthologous genes are detected, homologous sites are inferred via 
multiple sequence alignment (MSA). An alignment represents a hypothesis 
of character homology, in which aligned characters are assumed to be 
derived from a common ancestor. Hence, non-homologous characters that 
are incorrectly aligned are treated as genuine historic signal in downstream 
analyses affecting phylogenetic reconstructions. The effect of errors in 
phylogenies can be minor when the phylogenetic signal in the data surpasses 
the noise created by misalignments and other sources of non-phylogenetic 
signal (explained below). However, alignment errors at high proportions 
and, especially, in cases in which there is no strong phylogenetic signal, can 
have bigger effects. In fact, it has been shown that different alignments of 
the same dataset can lead to tree estimates with different support values, 
branch lengths or even topologies, and have been associated to LBA 
artefacts (Blackburne and Whelan, 2013; Hossain et al., 2015; Ogden et al., 
2006; Wong et al., 2008).  

In spite of the efforts put into improving MSAs, there is no alignment 
software exempt of issues that can guarantee that the resulting alignment is 
the true one (Chatzou et al., 2016; Redeling and Suchard, 2009). Through 
heuristic implementations, alignment tools aim to obtain an alignment that is 
satisfactory according to a predetermined score that penalizes substitutions 
and gaps. Such a scoring system might be suboptimal for the data in 
question, resulting in the erroneous alignment of non-homologous 
characters. Not only can different tools result in alternative alignments: the 
order of the sequences in the input file (both left-right and up-down) may 
also generate variations in the MSA even when analysed with the same 
software (Boyce et al., 2015). 

Given the importance of the accuracy of the alignment in the subsequent 
phylogenetic analyses, a common practice is to modify the MSA produced 
by tools to correct or filter unreliable sites. This step used to be performed 
manually. However, the increasing amount of data and the need for 
reproducible analyses have led to the development of specialized tools (Ali 
et al., 2019; Capella-Gutiérrez et al., 2009; Criscuolo and Gribaldo, 2010). 
Yet, detecting such erroneous sites is not trivial. Different tools make 
different assumptions about what an “erroneous alignment” should look like 
based on measures such as the conservation of characters across sites, the 
number of gaps or the stability of the alignment. Consequently, the sites 
identified as erroneous differ between tools. Filtering methods may fail to 
detect some non-homologous characters that are left in the data, creating 
noise. Additionally, they can remove true homologous sites, reducing the 
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phylogenetic signal. To which extent the reduction of noise is beneficial over 
the data removal is still debated, with some studies suggesting that filtering 
tools improve phylogenetic inferences (Jordan and Goldman, 2012; Karin et 
al., 2014; Privman et al., 2012; Talavera and Castresana, 2007) and others 
pointing toward detrimental effects (Spielman et al., 2014; Tan et al., 2015). 
To evaluate the impact of inaccurate alignments in phylogenetic 
reconstructions, it is advisable to compare the results from various 
alignments when sufficient computational resources are available.  

Violations of the substitution model 
Phylogenetic reconstruction methods are able to estimate evolutionary 
histories from sequence information found in extant organisms. By 
modelling the process of sequence substitution, these methods can estimate 
the evolutionary history that eventually resulted in the observed data. The 
accuracy of a substitution model resides in its ability to distinguish between 
similarities in homologous sites caused by homoplasy and conservation 
(phylogenetic signal) (Philippe et al., 2017). Homologous sites that have 
experienced few changes through time can appropriately reflect ancient 
similarities and are reliable to use in phylogenetic inferences. Sites that, on 
the contrary, have undergone multiple changes can erase the ancestral 
similarities and, hence, the phylogenetic signal. In these cases, similarities 
can be caused by reverse mutations (two or more substitutions in the same 
sequence character can revert it to an ancestral state) or convergence (two or 
more homologous characters can independently change to the same state). 
These similarities, if treated as ancestral, can bias phylogenetic estimations. 
Both ancestral similarities and homoplasies are found in datasets, together 
with incorrectly aligned non-homologous sites. As a result, the relative 
proportion of each type and the realism of the chosen substitution model are 
decisive factors to obtain accurate inferences (Gribaldo and Philippe, 2002). 
Simplistic models of evolution that underestimate the probability of 
convergence often result in artefactual reconstructions. 

Substitution models 
A model of sequence evolution (or substitution model) is a mathematical 
formalization that attempts to describe how characters change over time 
(Yang, 2014). They aim to capture the substitutions process and the 
subsequent natural selection that occurs in sequences during evolution. 
Substitution models are described as Markov processes in which the possible 
character types (i.e., the 20 amino acids or 4 nucleotides) are the states of a 
so-called Markov chain (Yang, 2014). The main property of Markov chains 
is that they have no memory, meaning that the change from one state to the 
next one only depends on the present state, independently of how the current 
state was reached (i.e., older states). Another main assumption made by 
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substitution models is that sites evolve independently. Different substitution 
models differ in which additional simplifications and constraints they set. 

The core element of a substitution model is the rate matrix (Q matrix), 
which specifies the equilibrium frequencies of character states (i.e., 
nucleotides or amino acids) and the relative rates of replacement between 
each other (exchangeabilities) (Figure 4) (Whelan and Goldman, 2001; 
Yang, 2014). The number of possible character states determines the number 
of parameters and the dimensions of the Q matrix, being 4x4 for nucleotides 
and 20x20 for amino acids. Since most models assume time-reversibility – a 
property that defines the replacement rate between two amino-acids (or 
nucleotides) is the same regardless of the direction of the substitution – the 
number of parameters in the Q-matrix can be substantially reduced. For 
instance, if the rate of change from A to B is the same as the rate from B to 
A, only one rate is needed to explain both processes, thus decreasing the 
number of exchangeability rates by half. Under such assumption, and 
considering that the equilibrium frequencies and rates stay constant over 
time (stationary) and across all sites (homogeneity), the number of 
parameters of the amino acid rate matrix is 208: 189 exchangeability rates 
(20x19/2-1) and 19 equilibrium frequencies (Yang, 2014). For nucleotides 
this number is only 8: 5 rates (4x3/2-1) and 3 frequencies. 

 

 
Figure 4. Representation of the rate matrix for nucleotide characters, highlighting 
the exchangeabilities (blue) and the equilibrium frequencies (pink). 

The parameters of the substitution model can be either estimated from the 
data or pre-calculated from large empirical datasets (Yang, 2014). Estimat-
ing the parameters from the data has the benefit of improving the fit of the 
model at the expense of being more computationally demanding. A com-
monly used model where all 208 parameters are estimated under the assump-
tions of stationarity, homogeneity and time-reversibility is the so-called 
General Time Reversible (GTR) model (Yang, 1994a). Given the stationarity 
assumption, the 19 equilibrium frequencies can be set as the observed fre-
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quencies and be easily obtained, but the remaining 189 are more difficult to 
estimate. Inferring such a large amount of parameters is computationally 
demanding and requires large datasets to accurately determine their values 
avoiding overfitting of the model, which is often not a problem for superma-
trix analyses but can be inadequate for single protein phylogenies. Alterna-
tively, one can use empirical models, in which the parameters have been pre-
calculated from large protein matrices. These models receive different names 
depending on the protein matrix in which they are based, such as LG (Le and 
Gascuel, 2008) and WAG (Whelan and Goldman, 2001). A variation of em-
pirical models is to use pre-calculated exchangeability values but replacing 
the equilibrium frequencies with the frequencies observed in the data (indi-
cated by adding the suffix “+F”, such as in LG+F). This alternative is gener-
ally a good balance between the fit of the model and the number of parame-
ters to estimate (Yang, 2014). 

The examples described above typify relatively simple substitution 
models that assume homogeneity and stationarity. For example, LG or GTR 
models used in isolation assume that the same Q matrix applies to all sites 
without accounting for compositional or rate variations across sites or taxa. 
Nonetheless, these assumptions, although mathematically practical, are not 
necessarily realistic. Sites often have different functional and structural 
constraints that make them evolve under different rates and selective 
pressures. Sites, restricted by their role and position in a protein, generally 
only accept certain amino acids, with the rest being selected against 
(Miyamoto and Fitch, 1996). Therefore, assuming that all amino acids are 
likely to be present in all sites with the same equilibrium frequencies is 
unreasonable. Similarly, organisms tend to differ in their evolutionary rates 
and sequence compositions (at nucleotides and amino acids level) (Collins et 
al., 1994; Foster and Hickey, 1999). The use of more complex models of 
sequence evolution can relax some of these assumptions.  

Differences in rates of evolution across sites can be taken into account by 
assuming that substitution rates are not fixed but instead vary according to 
certain distribution, with the most common being the Gamma distribution 
(often specified by adding the suffix “+G”, or “+Γ”) (Yang, 1994b). Other 
corrections, such as the FreeRate heterogeneity distribution (suffix “+R”), do 
not conform to any pre-specified distribution (Soubrier et al., 2012; Yang, 
1995) but instead estimate the differences between rates directly from the 
data. Using the gamma distribution has the advantage of only requiring one 
additional parameter to the model, while the number of parameters to be 
estimated increases in the FreeRate model. However, the latter approach has 
shown to better capture rate variations among sites (Soubrier et al., 2012).  

Differential amino acid preferences across sites can be modelled by 
considering the presence of different classes of sites that can evolve under 
different Markov chains. In these models – known as mixture models –, sites 
belonging to the same class are described based on the same Q matrix. For 
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each class, a set of different equilibrium frequencies is estimated and 
combined with exchangeability rates that are globally defined. The 
equilibrium frequencies of the mixture model, as well as the number of 
classes to be used, can be either estimated from the data – as in the CAT 
model (Lartillot and Philippe, 2004) – or predefined (e.g. the C60 model 
uses 60 classes of fixed amino acid frequencies) (Quang et al., 2008).  

By combining the models described above it is possible to account for 
rate and compositional heterogeneity across sites (e.g., CAT+GTR+G, 
LG+C60+R). Such complex models can detect more homoplasies due to 
site-specific constraints, and have been shown to fit the data better and 
alleviate LBA artefacts (Lartillot et al., 2007; Wang et al., 2008). However, 
phylogenetic reconstructions using these models are slow and often memory 
consuming. Other models that further relax the assumptions of stationarity 
and heterogeneity exist, albeit their use is limited either because their current 
implementations make their application computationally prohibitive for large 
datasets, or because they oversimplify the rest of the model (Blanquart and 
Lartillot, 2008; Foster et al., 2009a). When the use of more realistic models 
is not possible, model violations can be alleviated by optimizing the taxa 
representation in the dataset, filtering or transforming the data. 

Alleviating model misspecifications 
A diverse and even representation of organisms within the taxonomical 
group of interest can help to distinguish multiple substitutions, aiding the 
discrimination between phylogenetic signal and noise. From a theoretical 
point of view, the number of taxa selected should be high enough to give a 
good representation of the group in question, while keeping it 
computationally feasible (Roger et al., 2013). In practice, the taxa selection 
is limited to the number of organisms for which there are sequences 
available, often excluding or underrepresenting numerous clades. The 
inclusion of lineages that form long branches, either due to the absence of 
sequences from related lineages or to fast-evolving species, is discouraged 
since they are prone to suffer systematic errors that can cause LBA. Fast-
evolving lineages can be substituted by close relatives that evolve slower, 
and other long branching taxa can be completely excluded if their presence 
is not relevant to answer the question posed. When the inclusion of highly 
divergent lineages is necessary, the use of complex models that account for 
compositional and rate variation across sites (e.g. CAT+GTR+G) can 
alleviate some of the systematic errors. Additionally, comparisons of the 
phylogenetic reconstructions obtained by including and excluding long-
branching taxa can help to assess the robustness of the results and the 
identification of potential artefacts.  

A related problem is the inclusion of compositionally biased taxa. As 
mentioned above, there is no efficient implementation of substitution models 
that can simultaneously deal with compositional heterogeneity across sites 
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and taxa for large datasets. Under models that assume that all lineages have 
the same composition, the probability of convergence between organisms 
with similar compositions may be underestimated. Therefore, excluding taxa 
with largely dissimilar amino-acid frequencies can alleviate the model 
violations. When the exclusion of taxa is not possible, the data can be 
filtered or transformed to balance the composition among lineages. Some 
approaches aim to filter out sites in the alignment with the most biased 
amino-acid compositions until the composition of the remaining residues is 
homogeneous. Such filtering can be performed by using, for example, χ2 
filtering (Viklund et al., 2012) or marginal homogeneity based stationary 
filters (Criscuolo and Gribaldo, 2010).  

Another way of reducing compositional biases across taxa can be done by 
grouping residues that often substitute each other into a reduced number of 
possible character-states. Such data manipulation – known as data recoding – 
has shown to be effective in reducing compositional biases (Rodríguez-
Ezpeleta et al., 2007b). The grouping scheme and the optimal number of 
categories can be either pre-calculated empirically according to the 
replacements of amino acids in large matrices (Dayhoff6, SR) or, preferably, 
estimated based on the given data (Hrdy et al., 2004; Susko and Roger, 
2007). A drawback of data recoding is the reduction of the number of 
phylogenetically informative sites, which can be detrimental for the 
reconstruction (Hernandez and Ryan, 2019). This effect is exacerbated in 
lineages that diverged recently, in which recent substitutions can be 
completely masked by the categories hampering the resolution of such 
clades.  

Furthermore, mutational saturation can magnify the effect that systematic 
errors have in evolutionary inferences. Mutational saturation is more 
problematic in deep phylogenies, in which the organisms included are 
distantly related and, therefore, their genomic sequences have been subject 
to numerous changes since they diverged from their common ancestor. 
Mutational saturation can be partially alleviated by using amino acid 
sequences instead of nucleotides. Amino acids substitutions are less frequent 
than nucleotides given the degeneracy of the genetic code. Furthermore, 
there are more amino acids than nucleotides states – 20 over 4 – allowing for 
a better detection of homoplasies. However, protein sequences can also 
become saturated when divergence times or evolutionary rates are very 
large. In such scenarios, the exclusion of sequences or sites that are prone to 
accumulate non-phylogenetic signals, such as fast-evolving sequences or 
sites (Philippe et al., 2011) and species lacking closely-related organisms can 
help to reduce artefacts. If the topology recovered is suspected to be 
influenced by the presence of saturated sites, their impact can be analysed by 
the progressive removal of the fastest-evolving sites in the data. 
Alternatively, data-recoding can also help to mitigate systematic errors in 
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evolutionary reconstructions that are caused by the presence of saturated 
sites. 

Even though data transformation or filtering can help to ameliorate model 
misspecifications, such datasets can still be subject to model violations and 
systematic errors (e.g. changes on the substitution rate of a site through 
time). Hence, comparison of the results obtained from different strategies is 
crucial to assess the accuracy of the topologies and to spot additional biases 
that might be leading to incorrect reconstructions.  

Gene content of ancestral lineages 
The species phylogeny attempts to capture the vertical evolution of 
organisms, but it does not give complete information about how the genomes 
(and genes encoded within them) have evolved. Most genes within an 
organism will not follow the same evolutionary history as the species. 
Instead, each homologous gene family will evolve in a different manner, 
only sharing part of their evolutionary histories among them. Genes can be 
duplicated, lost, transferred from one organism to another or appear from de 
novo gene formation. By studying the evolutionary history of homologous 
gene families present in organisms we can infer how the gene content has 
evolved through time and infer which genes were present in ancestral 
lineages.  

Current methods for ancestral reconstruction can model multiple types of 
evolutionary events acting on different levels, such as substitutions at the 
sequence level, duplications, losses and transfers at the gene level and 
speciation events at the species level. Ancestral reconstruction tools integrate 
this information (or part of it) in parsimony-based or probabilistic 
frameworks to infer gene content evolution (Arvestad et al., 2003; Csűrös 
and Miklós, 2006; Jacox et al., 2016; Szöllõsi et al., 2013). While 
parsimony-based methods are less computationally demanding, they require 
the user to specify a cost for each type of event, which will be a key factor in 
determining the ancestral reconstruction. Since such costs are unknown, it is 
usually a matter of evaluating different values and choosing the ones with 
more sensible outcomes (Boussau et al., 2004; Dagan and Martin, 2007; 
David and Alm, 2011). A better approach is to use probabilistic methods in 
which the rate at which each event occurs are parameters of the model that 
can be estimated from the data. The most popular approaches rely on birth-
death models that consider rates of gene duplication, transfer and loss (DTL) 
(Csűrös and Miklós, 2006; Szöllősi and Daubin, 2012). 

Ancestral reconstruction methods require two types of data: a rooted 
species phylogeny and information about homologous gene families (in 
contrast to orthologous gene families required, for instance, for supermatrix-
based phylogenies) (Szöllősi et al., 2015a). The species tree is indispensable 
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to establish the relationships between organisms and to account for vertical 
inheritance. Information about homologous gene families is used in 
conjunction with the species phylogeny to infer different types of 
transmission events – vertical or horizontal – across the different branches of 
the species tree and to determine the gene content of ancestral nodes. 
Information about homologous gene families has been traditionally provided 
in the form of numerical profiles. A numerical profile consists of a matrix 
indicating how many copies of a given gene family are present in each one 
of the organisms under study. Less informative profiles that only indicate 
presence or absence can also be used but are discouraged.  

More recent methods have been developed to use phylogenies of 
individual gene families instead of profiles (Jacox et al., 2016; Szöllõsi et al., 
2013; Szöllősi et al., 2013). In addition to providing information about the 
number of copies, gene trees also inform about the individual evolutionary 
histories of gene families. Gene tree-aware methods can integrate this 
information by means of phylogenetic reconciliations, which attempt to fit 
the gene tree into the species tree. Inconsistencies between the gene tree and 
species tree are captured by different events such as duplications, losses and 
transfers. This additional layer of information makes these methods more 
sensitive to discern between different types of events than profile-based 
approaches. For example, without any prior information about the topology 
of a gene family, a horizontal transfer into a given lineage could look like as 
a loss, affecting the inferred gene content of the ancestral nodes (Figure 5). 
In fact, it has been suggested that profile-based approaches are inadequate to 
detect transfer events in gene families with a widespread taxonomic 
distribution resulting in overestimations of the ancestral genome sizes due to 
transfers being erroneously classified as different combinations of 
duplications and losses (Szöllősi et al., 2015a).   

 
Figure 5. Two alternative ancestral reconstructions inferred for the same gene. The 
estimated evolutionary history of the gene (blue line) is represented inside the 
species phylogeny (pink). The presence of the gene in the ancestral and terminal 
nodes is shown by a blue dot. The use of gene phylogenies in ancestral 
reconstructions provides an additional source of information that facilitates the 
discrimination between scenarios.  
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Ancestral reconstruction using ALE undated 
ALEml_undated (ALE hereafter) is a probabilistic gene tree-species tree 
reconciliation method to reconstruct gene-content evolution (Szöllősi et al., 
2015a; Szöllõsi et al., 2013). ALE considers that gene families can evolve 
under a DTL model. In a first stage, rates for the different types of events are 
independently estimated for each gene family. Those rates are used in a 
second stage to reconstruct the evolution of the gene families by reconciling 
gene-tree and species trees. Two important considerations are taken into 
account by ALE that make it an attractive choice.  

First, ALE can account for incomplete taxonomic sampling, by 
considering that lineages can be extinct or unsampled and contemplates 
HGT events involving unrepresented lineages. Notwithstanding, incomplete 
taxon sampling will probably lead to some events being incorrectly 
interpreted, especially when entire clades with distinctive characteristics are 
missing. However, the magnitude of such biases has not been properly 
evaluated.   

Second, ALE incorporates the uncertainty associated with gene trees and 
reconciliations. As mentioned in previous sections, phylogenies of individual 
gene families are often not reliable either because their sequences are too 
short to carry enough phylogenetic information or due to methodological 
error mainly associated with model misspecifications. Moreover, for certain 
gene topologies, there can be several ways of reconciling the gene tree with 
the species tree, each implying a different evolutionary history. ALE takes 
into account both of those factors by computing the joint sequence-
reconciliation likelihood of the reconciled tree in a sample – with the 
sequence term accounting for the accuracy of the gene tree and the second 
term for the reconciliation. For each gene family, instead of a single gene 
topology, it considers a distribution of gene trees. By a process known as 
amalgamation, the tree distribution (i.e., a set of bootstrap or MCMC trees) 
is combined to explore an even larger tree space than the one provided 
(David and Alm, 2011). Simply put, the amalgamation process combines 
clades coming from different trees to generate new trees that might or might 
not be found in the original distribution. The probability of a given 
(amalgamated) tree will depend on the number of times that such tree is 
found in the distribution. ALE approximates posterior probabilities for a 
large number of topologies from a reduced tree sample using conditional 
clade probabilities (Höhna and Drummond, 2012). Simultaneously, ALE 
considers all possible reconciliation scenarios for these gene trees. The 
output from ALE will be a distribution of a pre-specified number (a hundred 
by default) of reconciled trees that can give an idea of the uncertainty 
associated with the reconstruction. Strongly supported events will be 
captured in all or most reconciled trees while poorly supported scenarios will 
only be found in a small subset. Nevertheless, systematic errors in the 
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phylogenetic reconstruction of the gene family can generate biased gene tree 
distributions, which can be incorrectly interpreted as high certainty in the 
reconciled genes. 

In this process, several assumptions are made. Possibly the most 
important one is that ALE, similarly to other ancestral reconstruction 
methods, does not account for uncertainty in the species phylogeny. In many 
cases, assuming that a certain species topology is correct is unrealistic given 
the current difficulties to obtain reliable phylogenies (as explained above). 
Incorrect species trees will necessarily affect the prediction of gene-specific 
evolutionary events.  

Moreover, ALE considers that gene families evolve independently. This 
assumption might not be realistic, especially among neighbouring genes that 
often co-evolve (e.g., a single horizontal transfer or duplication involving 
several genes would be considered as different events). Additionally, DTL 
rates are considered constant across all branches of the species tree in a 
given gene family. In reality, different lineages evolve at different rates and, 
hence, models that account for heterogeneous rates at different branches are 
more suitable. The profile-based probabilistic model Count can consider rate 
variations across branches (Csurös, 2010), albeit its current implementation 
is not parallelized and the long running times limits its use to small datasets. 

An additional consideration is that ALEml_undated, as indicated by its 
name, uses undated species trees, which differentiates it from the dated 
version of the same method that requires ultrametric species trees (i.e., trees 
in which nodes are ordered with respect to each other by absolute or relative 
times). This has an important implication: ALE undated generates ancestral 
reconstructions that are time-inconsistent. This means that transfers can 
occur between any lineages, even if they were not contemporary. Hence, 
incompatible scenarios, in which different transfers imply different 
speciation orders, can be present, with the only exception that transfers from 
a lineage to any of its ancestors are forbidden.  

Finally, current ancestral reconstruction methods, including ALE, have 
been developed to be used with data generated from complete genomes. 
However, given that complete genomes are lacking for numerous lineages, 
partial genomes generated from metagenomic and single-cell approaches 
may need to be used to study the evolution of certain groups. The lower 
quality associated with such genomes (i.e., incompleteness and redundancy) 
probably has an impact on the ancestral reconstruction inferences, albeit the 
magnitude of this effect remains unknown.  
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Aims 

The general aim of this thesis work has been to expand our knowledge on a 
specific group of archaea, now known as the Asgard superphylum, by using 
culture-independent approaches within an evolutionary genomic framework. 
Specifically, the main objectives of this work were: 
 

1. To explore the diversity of Asgard archaea present in several 
environmental samples and to reconstruct their genomes. 

2. To infer the evolutionary relationships between Asgard archaea 
and eukaryotes, and to identify eukaryotic signature proteins 
encoded in Asgard archaea genomes. 

3. To estimate the gene content present in the last archaeal common 
ancestor of eukaryotes to infer its cellular and metabolic 
capabilities. 

4. To obtain a complete genome of a Lokiarchaeota lineage to 
corroborate that the presence of ESPs in Asgard members is not 
the result of contamination and assembly artefacts present on 
published MAGs. 
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Results 

Paper I. The Asgard superphylum 
The origin of eukaryotes and their cellular complexity remains one of the 
biggest enigmas in biology. The discovery of Lokiarchaeum represents a 
major step forward in advancing our understanding of the identity and 
biology of the archaeal ancestor of eukaryotes. Phylogenetic inferences 
reveal that Lokiarchaeum affiliates with eukaryotes, further supporting 
scenarios in which Eukarya emerges from within Archaea. Moreover, the 
genome of Lokiarchaeum encodes a large number of proteins previously 
thought to be specific of eukaryotes. 

To further explore the archaeal diversity and to better understand the role 
of Archaea in the evolution of eukaryotes, we used metagenomic approaches 
to reconstruct the genomes of seven lineages related to Lokiarchaeum. 
Collectively, these lineages form the Asgard archaea superphylum, 
comprised of at least four different phyla: Loki-, Odin-, Thor- and 
Heimdallarchaeota. Based on analyses of the SSU rRNA genes we observed 
that Asgard archaea are found worldwide, mostly in aquatic sediments, albeit 
frequently in low abundances. The presence of Odinarchaeota lineages 
seemed to be restricted to environments with high temperatures.  

We performed in-depth phylogenetic analyses to determine the position of 
the Asgard superphylum in the tree of life. Our analyses showed high 
support for the monophyly of eukaryotes and Asgard archaea, with TACK 
archaea branching sister to this clade. In particular, we observed that 
Heimdallarchaeota often appeared as a sister group to eukaryotes, albeit this 
relationship was never statistically supported. In consequence, our analyses 
could not resolve the exact placement of eukaryotes, which could either 
branch as a sister group to Asgard archaea itself or emerge from within this 
superphylum. 

Finally, we assessed the presence of eukaryotic signature proteins in 
Asgard genomes. Comparative genomic analyses revealed that, similarly to 
Lokiarchaeum, all Asgard members encoded for numerous homologs of 
ESPs. The eukaryotic-like proteins identified in Asgard archaea include 
homologs of components of the ubiquitin modifier system, ESCRT, proteins 
that in eukaryotes are required for protein translocation and glycosylation, as 
well as, elements of the cytoskeleton, such as actin, profilin, the subunit 4 of 
the actin-related protein (ARP) 2/3 complex, gelsolin domain-containing 



  60 

proteins and tubulin. Furthermore, all Asgard genomes encoded numerous 
small GTPases. 

Interestingly, our results also indicated the presence of additional 
homologs of eukaryotic proteins involved in vesicle formation and 
membrane trafficking in Thorarchaeota genomes. In particular, homologs of 
the eukaryotic transport protein particle (TRAPP) and the Sec23/Sec24 
family were identified. Independent phylogenetic analyses determined that 
the Thorarchaeota homologs branched sister to their eukaryotic versions, 
suggesting an archaeal origin for these eukaryotic proteins that predates the 
mitochondrial acquisition. In addition, we observed that Thorarchaeota 
genomes encoded for two adjacent proteins with predicted beta-propeller and 
alpha-solenoid folds, respectively. Structural predictions based on the 
concatenation of these two proteins showed that they resembled eukaryotic 
coatomer proteins. The presence of these proteins opens up the possibility 
for an archaeal ancestor of eukaryotes with capabilities to form primordial 
coatomers. 

Paper II. New Asgard lineages and updated evolutionary 
scenarios 
To better understand the diversity within the Asgard superphylum we 
sampled sediments from twelve different geographical locations. Using 
metagenomics, we reconstructed 69 MAGs of novel Asgard members, from 
which we could identify five previously undescribed candidate phyla. We 
referred to these clades as Idunn-, Freya-, Baldr-, Frigg- and 
Gefionarchaeota. Temperature information taken from the sampling sites 
together with optimal growth temperature predictions based on genomic 
features suggested that Loki-, Thor- and most Heimdallarchaeota phyla were 
mesophiles, while the remaining groups were thermophiles, with Idunn-, 
Freya-, and Baldrarchaeota predicted to be hyperthermophiles. 

We further explored the phylogenetic placement of these newly 
discovered lineages with respect to other Asgard archaea and eukaryotes. 
Initial maximum likelihood inferences based on a set of conserved ribosomal 
proteins placed Idunnarchaeota as a sister group to Korarchaeota. However, 
subsequent phylogenetic analyses ultimately indicated that this relationship 
was artefactual and that, in fact, Idunnarchaeota and Heimdallarchaeota were 
sister groups. The latter placement was further supported by the presence of 
numerous ESP homologs encoded in Idunnarchaeota genomes. While the 
results included in this thesis are preliminary and further work is still 
required, our phylogenetic reconstructions pointed to Idunnarchaeota as the 
closest archaeal relatives of eukaryotes. Yet, our analyses could not 
confidently exclude alternative scenarios in which eukaryotes branch sister 
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to the clade formed by Heimdall- and Idunnarchaeota, or, alternatively, from 
within Heimdallarchaeota.  

Based on comparative analyses of these genomes we updated the 
distribution of ESPs present in Asgard archaea. Interestingly, we found 
additional homologs of proteins involved in the eukaryotic N-glycosylation 
encoded in some Asgard lineages. In particular, our results showed that 
components of the three subcomplexes that form the eukaryotic 
oligosaccharyltransferase are found in Asgards, suggesting that they were 
probably present in the archaeal host that ultimately gave rise to eukaryotes. 
Furthermore, we also reported the presence of several other eukaryotic 
components involved in various functions, such as membrane trafficking or 
informational processes. 

Paper III. The nature of the Asgard ancestor of 
eukaryotes 
The discovery of Asgard archaea has led to the proposal of updated hypothe-
ses about the origin of eukaryotes. However, most of these studies have been 
based on the genomic features of one or few Asgard members. In this study, 
we took advantage of the expanded Asgard diversity to shed light into the 
nature of the last common archaeal ancestor of eukaryotes (LACAE).  

We used a probabilistic approach based on gene tree-species tree 
reconciliations on a dataset comprised of members of the Asgard, TACK and 
Euryarchaeota clades, to estimate the evolutionary history of archaeal 
homologous gene families. We inspected the evolutionary dynamics of 
Asgard genomes with respect to other archaeal genomes. The gene content 
estimated for ancestral Asgard nodes is generally higher than for other 
groups. In particular, Lokiarchaeota show the largest genomes, whereas 
Odinarchaeota the most reduced. Additionally, we observed that Asgard 
genomes were more prone to gene duplication and loss events than other 
archaea, while no differences regarding the number of gene gains (i.e., 
horizontal gene transfer and de novo origination) were detected. Additional 
exploration of the inferred evolutionary events suggested that gene 
duplication and loss correlated with the proteome sizes and thus, the pattern 
observed in Asgard could be explained by their larger genomes. 

We investigated the neighbouring nodes of the inferred branching point 
for the eukaryotes as a proxy for the gene content of LACAE (LACAE-
proxy nodes). Based on previous phylogenetic analyses we considered the 
sister relationship between Idunnarchaeota and eukaryotes as our main 
hypothesis. Alternatively, we also considered two additional scenarios in 
which eukaryotes branch either sister to the Heimdall-Idunnarchaota clade or 
to Heimdallarchaeota.  
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Our analyses suggested that LACAE encoded many proteins currently 
classified as bacterial, suggesting numerous cases of ancient horizontal 
transfers between Archaea and Bacteria. The results of the ancestral 
reconstruction also indicated that a majority of the ESPs reported in extant 
Asgard lineages were inferred to be present in LACAE. Nevertheless, extant 
Asgard members showed important differences in the copy number of some 
of these ESPs. In particular, our analyses suggested that Lokiarchaeota 
experienced multiple duplications probably rendering its cytoskeleton 
substantially different from LACAE. Furthermore, preliminary metabolic 
reconstructions showed support for the absence of the Wood-Ljungdahl 
pathway in LACAE according to two of the three scenarios considered.  

Paper IV. A near-complete Lokiarchaeota genome 
Members of the Asgard superphylum have been characterized based on 
culture-independent approaches and, at the time of these analyses, there was 
no complete genome available for any Asgard lineage. Due to the 
metagenomic nature of the data, some researchers have questioned the 
quality and accuracy of previous analyses. It has been argued that the ESPs 
encoded in Asgard MAGs are the result of eukaryotic contamination present 
in their genomes and/or other assembly artefacts. Even though several lines 
of evidence have refuted such criticisms, having access to complete and 
high-quality Asgard archaeal genomes would surely alleviate doubts in the 
field. 

To obtain complete Asgard genomes, we sequenced marine sediment 
samples using a combination of long and short read sequencing platforms. 
This generated a large amount of metagenomic data. To ease the assembly 
process, we reduced size of the dataset by enriching for reads originating 
from Asgard genomes. Hybrid assembly and subsequent binning of the 
subsampled data resulted in six Lokiarchaeota MAGs. We were able to 
assemble one near-complete Lokiarchaeota MAG (L04 hereafter) into only 
three contigs. Other MAGs were still high quality albeit slightly more 
fragmented. Our results showed that it is possible to obtain near-complete 
genomes from complex sediments samples using a combination of long and 
short sequencing reads, even for low abundant lineages in the presence of 
microdiversity.  

Additionally, we performed assembly and binning using only short reads. 
We compared the quality of the hybrid L04 MAG with the corresponding 
MAG generated from short reads (SR-L04). The SR-L04 MAG was highly 
fragmented and more incomplete than the hybrid genome. However, the 
contamination levels were low in spite of being generated without 
performing any additional bin refinement step, indicating that the general 
criticism against the quality of MAGs is unfounded. Based on this data, we 
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emphasised that the accuracy of MAGs needs to be determined 
independently for each case taking into consideration the characteristics of 
the metagenomic data and the binning procedure. 

We further assessed the presence of ESPs in the hybrid L04 MAG. We 
identified a similar number of ESPs as previously described for other 
Lokiarchaeota MAGs. Our results further indicated that the ESPs encoded in 
these genomes were not the result of contamination and/or binning artefacts 
as it has been previously suggested. 
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Perspectives  

The work presented here highlights the value of culture-independent 
approaches to learn about organisms that, for now, cannot be grown in 
culture. Over the past years, the field of genome-centric metagenomics has 
consolidated. Matured tools and standard approaches are currently available 
for short-read metagenome assembly and genome binning. Recently, 
improvements on third-generation sequencing, especially in terms of 
throughput, have opened the door to a new era of long reads-based 
metagenomics. With long reads, it is possible to start thinking about 
recovering complete genomes of most microorganisms from natural 
populations. Insights gained during the development of short-read 
metagenomics and long-read genomics can be now used to develop tools and 
methods adapted to the new requirements of long-read metagenomics. This 
field is expected to grow quickly in the coming years. In consequence, we 
can expect to soon have complete or near-complete representative genomes 
for most Asgard phyla, from which much is yet to be known. These 
complete genomes will no doubt allow for more comprehensive analyses 
and, in turn, for rigorous testing of existing and forthcoming evolutionary 
hypotheses. Simultaneously, further exploration of undiscovered Asgard 
lineages might result in the identification of even closer archaeal relatives of 
eukaryotes and lead to new surprises.   

The use of culture-independent approaches will only be strengthened by 
experimental efforts to culture these fascinating organisms. In the past years, 
culturing attempts have been mostly unsuccessful. However, these 
endeavours are now coming to fruition. In the weeks previous to the 
submission of this thesis work a manuscript was published in bioRxiv 
revealing that a species of Lokiarchaeota had been successfully cultured. 
This Lokiarchaeota co-culture shows cells displaying a bizarre morphology 
that underscores how little we know about uncultured microorganisms and 
archaea in particular. Having additional Asgard representatives in culture 
will help us to understand the capabilities and lifestyles of these organisms. 
The simultaneous combination of comparative genomics and evolutionary 
approaches together with experimental information obtained from the culture 
of Asgard lineages will be fundamental to elucidate the role of Asgard 
archaea in the early evolution of eukaryotes.  
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Svensk sammanfattning 

Allt liv på jorden kan delas in i tre olika grupper, baserat på vilken typ av 
celler de består av: eukaryoter, bakterier och arkéer. Eukaryota celler är 
vanligtvis större och innehåller olika cellstrukturer, vilket gör dem till den 
mest komplexa typen av celler. Två exempel är cellkärnan, som innehåller 
cellens DNA, och mitokondrier, som är cellens energifabriker. Människor, 
djur, växter, svampar samt många typer av mikroorganismer tillhör den här 
gruppen. De andra två typerna av celler – bakterier och arkéer – är relativt 
små, har en enklare cellstruktur och är encelliga. Till skillnad från 
eukaryoterna så saknar bakterier och arkéer en cellkärna, vilket har lett till 
att de ibland kallas för prokaryota celler (från grekiskans pro: “före”, karion: 
“kärna”). 

De morfologiska likheterna mellan de olika prokaryota celltyperna ledde 
till att arkéer ursprungligen antogs vara bakterier. Det var inte förrän 1977 
som Carl Woese upptäckte, baserat på en studie på de olika celltypernas 
DNA, att dessa två grupper var fundamentalt olika. Han föreslog då namnet 
arkéer (ursprungligen arkebakterier) för att skilja de två grupperna åt. Efter 
deras upptäckt så studerades främst arkéer från extrema miljöer, vilket ledde 
till antagandet att arkéer var begränsade till den typen av nischer. Idag vet vi 
däremot att man kan hitta arkéer överallt på jorden. 

Arkéerna är också särskilt intressanta från ett evolutionärt perspektiv. När 
det kommer till ursprunget av den eukaryota cellen så är en av de ledande 
hypoteserna att det var en arké som tog upp en bakterie, vilket ledde till de 
mer komplexa eukaryota cellerna vi kan se idag. För närvarande vet vi 
ganska lite om hur denna process gick till. Vilka typer av arkéer och 
bakterier var inblandade, och vilka egenskaper hade dessa? När det kommer 
till vilka dessa två organismer var så vet vi att bakterien tillhörde en grupp 
av bakterier vi kallar för alfaproteobakterier, samt att det var denna bakterie 
som gav upphov till det vi idag kallar för mitokondrien. När det kommer till 
den arkéella partnern så är det mer av ett mysterium. Detta beror dels på vår 
okunskap om denna typ av organismer. Vi känner exempelvis inte till några 
arkéer som orsakar sjukdomar hos människor. Detta har lett till ett 
medicinskt ointresse för denna typ av organismer, och studier av arkéer har 
främst bedrivits av ekologer. Vidare har studier av arkéer, samt många andra 
mikroorganismer, hindrats av det faktum att många organismer är svåra att 
odla i laborativa miljöer. Det har uppskattats att ungefär 99 % av alla 
mikroorganismer hittills inte gått att odla, då vi saknar information om vilka 
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levnadsförhållanden och näringsämnen som behövs för deras tillväxt. Men 
tack vare tekniska genombrott under de senaste två årtiondena så kan vi idag 
studera arvsmassan hos dessa organismer, utan att först odla dem i renkultur. 
Framför allt så har en teknik som kallas metagenomik lett till att många 
organismer, tidigare okända för vetenskapen, nu kan studeras i detalj. Denna 
teknik bygger på sekvenseringen av allt tillgängligt DNA i ett prov, vilket 
kan komma från vilken miljö som helst, för att sedan rekonstruera 
kromosomer och genom via bioinformatiska metoder. Genom att använda 
oss av informationen från dessa genom kan vi lära oss hur olika organismer 
uppstått, vad de behöver för att överleva samt deras evolutionära historia. 

Denna avhandling fokuserar på studier av en grupp av arkéer, kallade 
Asgårdarkéer, via metagenomiska metoder, ur ett evolutionärt perspektiv. 
Våra analyser har visat att dessa Asgårdarkéer går att hitta över hela jorden, 
och är speciellt vanligt förekommande i sediment. Denna grupp av arkéer 
visar en väldig mångfald och består av minst 10 undergrupper vilka fått 
namnen Loki-, Tor-, Heimdall-, Oden-, Freja-, Hel-, Baldur-, Gefjon-, Frigg- 
och Idunarkéer. Evolutionära studier har visat att dess arkéer är de närmast 
besläktade organismerna till eukaryoter samt att arvsmassan från dessa 
innehåller gener som tidigare endast observerats i eukaryot DNA. Bland 
dessa finns gener som är inblandade i formationen av de cellstrukturer som 
ger de eukaryota cellerna deras komplexa karaktär. Detta antyder att de 
arkéer som gav upphov till de eukaryota cellerna var mer komplexa än vad 
vi tidigare trott. Dessa resultat visar att vi behöver se över de nuvarande 
teorierna angående de eukaryota cellernas ursprung. 
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Resumen en español 

Los seres vivos pueden dividirse en tres dominios según el tipo de célula que 
poseen: eucariotas, bacterias y arqueas. Las células eucariotas son 
normalmente grandes y contienen múltiples compartimentos internos que las 
hacen más complejas. El núcleo y la mitocondria son ejemplos de 
compartimentos que delimitan el ADN y la fábrica energética de la célula 
respectivamente. Los seres humanos y el resto de los animales, las plantas, 
los hongos y otros muchos organismos invisibles a simple vista formamos 
parte de este grupo. Por el contrario, las bacterias y las arqueas son 
organismos unicelulares que tienen células relativamente pequeñas y 
simples. A diferencia de las células eucariotas, las bacterias y las arqueas 
carecen de núcleo, una característica por la que reciben el nombre de células 
procariotas (del griego pro: “antes de”, karion: “núcleo”).   

La similitud en cuanto a la morfología de las células procariotas hizo que 
las arqueas fueran, en un principio, consideradas bacterias. No fue hasta 
1977 cuando Carl Woese, basándose en el estudio del ADN de estos 
microorganismos,  descubrió que estos dos grupos eran fundamentalmente 
diferentes y propuso el nombre de arquea (originalmente arqueobacteria) 
para diferenciarlos. En los años que siguieron a este descubrimiento, las 
arqueas que se estudiaron eran las que habitaban ambientes con condiciones 
extremas, lo cual llevó a que se generalizase la idea de que estos 
microorganismos estaban restringidos a este tipo de entornos. Sin embargo, 
hoy en día sabemos que las arqueas son ubicuas, pudiéndose encontrar casi 
cualquier parte del planeta.  

Las arqueas son también muy interesantes desde un punto de vista 
evolutivo. Las principales hipótesis del origen de la vida defienden que las 
células eucariotas surgieron a partir de un proceso por el cual una arquea 
engulló a una bacteria. De esta combinación de, al menos, dos células 
relativamente simples surgió la complejidad que caracteriza a la célula 
eucariota. Actualmente, poco se sabe de cómo transcurrió este proceso 
evolutivo que tuvo lugar hace más de 1.900 millones de años. Sobre la 
identidad de estos dos organismos, sí que sabemos que fue un miembro de 
un grupo de bacterias llamado alfa proteobacterias el que fue engullido y que 
más tarde dio lugar a la mitocondria. Sin embargo, la identidad de la arquea 
sigue siendo un misterio. En parte esto se debe al gran desconocimiento que 
hay sobre este grupo de organismos. Hasta la fecha, no se ha encontrado 
ninguna arquea que produzca enfermedades en humanos. Por tanto, al 
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carecer de interés médico o de aplicaciones directas para nosotros, se ha 
relegado su estudio a una comunidad de científicos reducida y centrada en su 
ecología. Además, durante años el estudio de las arqueas, así como el de 
otros microorganismos, ha estado muy limitado por la dificultad que 
conlleva el cultivo de estos organismos en las condiciones artificiales 
proporcionadas en un laboratorio. De hecho, se estima que el 99% de los 
microorganismos aún no han podido ser cultivados, ya que se desconocen las 
condiciones de crecimiento que requieren.  Sin embargo, el avance 
tecnológico en las últimas dos décadas ha hecho posible que se pueda 
estudiar el ADN de organismos sin la necesidad de cultivarlos. En particular, 
gracias a una técnica llamada metagenómica, muchos microorganismos 
desconocidos hasta ahora han podido estudiarse con gran detalle. Esta 
técnica se basa en la secuenciación de todo el ADN que se encuentra en una 
muestra, la cual puede proceder de cualquier entorno, y la posterior 
reconstrucción de los genomas de los organismos presentes mediante 
métodos bioinformáticos. Usando la información de estos genomas se puede 
inferir cómo están formadas las células de estos organismos, qué necesitan 
para vivir y su historia evolutiva. 

Esta tesis se ha centrado en el estudio de un grupo de arqueas, ahora 
conocidas con el nombre de Asgard arqueas, a través de técnicas 
metagenómicas y desde un marco evolutivo. Nuestros análisis muestran que 
las Asgard arqueas se encuentran distribuidas a lo largo del planeta, 
principalmente en sedimentos acuáticos. Este grupo de arqueas es muy 
diverso y está compuesto por al menos diez subgrupos que hemos bautizado 
con el nombre de Loki-, Thor-, Heimdall-, Odin-, Freya-, Hel-, Baldur-, 
Gefion-, Frigg- e Idunnarquea. Los estudios evolutivos llevados a cabo 
muestran que estas arqueas son el pariente vivo más cercano de las células 
eucariotas. Nuestros resultados también revelan que los genomas de las 
Asgard arqueas contienen genes que previamente solo se habían encontrado 
en genomas de eucariotas. Entre ellos se encuentran genes involucrados en la 
formación de las estructuras que dan a las células eucariotas su complejidad 
característica.  Esto sugiere que la arquea que dio lugar a los eucariotas no 
era tan simple como se presuponía. Estos resultados evidencian la necesidad 
de replantear las teorías evolutivas que explican el origen de la célula 
eucariota. Asimismo, sientan las bases a la hora de comprender en más 
detalle uno de los eventos más importantes en la historia de la vida en la 
Tierra. 
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