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Abstract. Monitoring stations have been used for decades
to properly measure hydrological variables and better pre-
dict floods. To this end, methods to incorporate these obser-
vations into mathematical water models have also been de-
veloped. Besides, in recent years, the continued technologi-
cal advances, in combination with the growing inclusion of
citizens in participatory processes related to water resources
management, have encouraged the increase of citizen sci-
ence projects around the globe. In turn, this has stimulated
the spread of low-cost sensors to allow citizens to participate
in the collection of hydrological data in a more distributed
way than the classic static physical sensors do. However, two
main disadvantages of such crowdsourced data are the irreg-
ular availability and variable accuracy from sensor to sensor,
which makes them challenging to use in hydrological mod-
elling. This study aims to demonstrate that streamflow data,
derived from crowdsourced water level observations, can im-
prove flood prediction if integrated in hydrological models.
Two different hydrological models, applied to four case stud-
ies, are considered. Realistic (albeit synthetic) time series are
used to represent crowdsourced data in all case studies. In
this study, it is found that the data accuracies have much more
influence on the model results than the irregular frequencies
of data availability at which the streamflow data are assim-
ilated. This study demonstrates that data collected by citi-
zens, characterized by being asynchronous and inaccurate,
can still complement traditional networks formed by few ac-
curate, static sensors and improve the accuracy of flood fore-
casts.

1 Introduction

Observations of hydrological variables measured by physical
sensors have been increasingly integrated into mathematical
models by means of model updating methods. The use of
these techniques allows for the reduction of intrinsic model
uncertainty and improves the flood forecasting accuracy (To-
dini et al., 2005). The main idea behind model updating tech-
niques is to either update model input, states, parameters, or
outputs as new observations become available (Refsgaard,
1997; WMO, 1992). Input update is the classical method
used in operational forecasting, and uncertainties of the in-
put data can be considered as the main source of uncertainty
of the model (Bergström, 1991; Canizares et al., 1998; Todini
et al., 2005). Regarding the state updating, filtering methods
such as the Kalman filter (Kalman, 1960), extended Kalman
filter (Aubert et al., 2003; Madsen and Cañizares, 1999; Ver-
laan, 1998), ensemble Kalman filter (Evensen, 2006), and
particle filter (Weerts and El Serafy, 2006) are the most used
approaches to update a model when new observations are
available.

Due to the complex nature of the hydrological pro-
cesses, spatially and temporally distributed measurements
are needed in the model updating procedures to ensure a
proper flood prediction (Clark et al., 2008; Mazzoleni et al.,
2015; Rakovec et al., 2012). However, traditional physical
sensors require proper maintenance and personnel, which can
be cost prohibitive for a vast network. For this reason, im-
provements to monitoring technology have led to the spread
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of low-cost sensors to measure hydrological variables, such
as water level or precipitation, in a more distributed way.
The main advantage of using this type of sensors, defined
in the paper as “social sensors”, is that they can be used not
only by technicians but also by regular citizens and that due
to their reduced cost and voluntary labour by citizens, they
result in a more spatially distributed coverage. The idea of
designing these alternative networks of low-cost social sen-
sors and using the obtained crowdsourced observations is the
base of the European project WeSenseIt (2012–2016) and
various other projects that proposed to assess the usefulness
of crowdsourced observations inferred by low-cost sensors
owned by citizens. For instance, in the project CrowdHydrol-
ogy (Lowry and Fienen, 2013), a method to monitor stream
stage at designated gauging staffs using crowdsource-based
text messages of water levels is developed using untrained
observers. Cifelli et al. (2005) described a community-based
network of volunteers (CoCoRaHS), engaged in collecting
precipitation measurements of rain, hail, and snow. An ex-
ample of hydrological monitoring, established in 2009, of
rainfall and streamflow values within the Andean ecosystems
of Piura, Peru, based on citizen observations, is reported in
Célleri et al. (2009). Degrossi et al. (2013) used a network
of wireless sensors in order to map the water level in two
rivers passing by Sao Carlos, Brazil. Recently, the iSPUW
project was initiated to integrate data from advanced weather
radar systems, innovative wireless sensors, and crowdsourc-
ing of data via mobile applications in order to better predict
flood events for the Dallas–Fort Worth Metroplex urban wa-
ter systems (ISPUW, 2015; Seo et al., 2014). Other exam-
ples of crowdsourced water-related information include the
so-called Crowdmap platform for collecting and communi-
cating the information about the floods in Australia in 2011
(ABC, 2011) and informing citizens about the proper time for
water supply in an intermittent water system (Alfonso, 2006;
Au et al., 2000; Roy et al., 2012). Wehn et al. (2015) stressed
the importance and need of public participation in water re-
sources management to ensure citizens’ involvement in the
flood management cycle. Buytaert et al. (2014) provide a de-
tailed and interesting review of the examples of citizen sci-
ence applications in hydrology and water resources science.
In this review paper, the potential of citizen science, based
on robust, cheap, and low-maintenance sensing equipment,
to complement more traditional ways of scientific data col-
lection for hydrological sciences and water resources man-
agement is explored.

The traditional hydrological observations from physical
sensors have a well-defined structure in terms of frequency
and accuracy. On the other hand, crowdsourced observations
are provided by citizens with varying experience of measur-
ing environmental data and little connections between each
other, and the consequence is that the low correlation be-
tween the measurements might be observed. So far, in oper-
ational hydrology practice, the added value of crowdsourced
data is not integrated into the forecasting models but only

used to compare the model results with the observations in a
post-event analysis. This can be related to the intrinsic vari-
able accuracy, due to the lack of confidence in the data qual-
ity from these heterogeneous sensors, and the variable life-
span of the crowdsourced observations.

Regarding data quality, Bordogna et al. (2014) and Tul-
loch and Szabo (2012) stated that quality control mechanisms
should consider contextual conditions to deduce indicators
about reliability (the expertise level of the crowd), credibility
(the volunteer group), and performance of volunteers as they
relate to accuracy, completeness, and precision level. Bird et
al. (2014) addressed the issue of data quality in conservation
ecology by means of new statistical tools to assess random er-
ror and bias. Cortes Arevalo et al. (2014) evaluated data qual-
ity by distinguishing the in situ data collected between volun-
teers and technicians and comparing the most frequent value
reported at a given location. With in situ exercises, it might
be possible to have an indication of the reliability of data
collected. However, this approach is not enough at an opera-
tional level to define accuracy in data quality. For this reason,
to estimate observation accuracy in real time, one possible
approach could be to filter out the measurements following
a geographic approach which defines semantic rules govern-
ing what can occur at a given location (e.g. Vandecasteele
and Devillers, 2013). Another approach could be to compare
measurements collected within a predefined time window in
order to calculate the most frequent value, the mean, and the
standard deviation.

Crowdsourced observations can be defined as asyn-
chronous because they do not have predefined rules about the
arrival frequency (the observation might be taken once, occa-
sionally, or at irregular time steps, which can be smaller than
the model time step) and accuracy of the measurement. In a
recent paper, Mazzoleni et al. (2015) presented results of the
study of the effects of distributed synthetic streamflow obser-
vations having synchronous intermittent temporal behaviour
and variable accuracies in a semi-distributed hydrological
model. It was shown that the integration of distributed un-
certain intermittent observations with single measurements
coming from physical sensors would allow for the further im-
provements in model accuracy. However, it did not consider
the possibility that the asynchronous observations might be
coming at the moments not coordinated with the model time
steps. A possible solution to handle asynchronous observa-
tions in time with the ensemble Kalman filter (EnKF) is to as-
similate them at the moments coinciding with the model time
steps (Sakov et al., 2010). However, as these authors men-
tion, this approach requires the disruption of the ensemble
integration, the ensemble update, and a restart, which may
not be feasible for large-scale forecasting applications. Con-
tinuous assimilation approaches, such as three-dimensional
and four-dimensional variational methods (3D-Var and 4D-
Var), are usually implemented in oceanographic modelling
in order to integrate asynchronous observations at their corre-
sponding arrival moments (Derber and Rosati, 1989; Huang
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et al., 2002; Macpherson, 1991; Ragnoli et al., 2012). In fact,
oceanographic observations are commonly collected at asyn-
chronous times. For this reason, in variational data assim-
ilation, the past asynchronous observations are simultane-
ously used to minimize the cost function that measures the
weighted difference between background states and observa-
tions over the time interval, and identify the best estimate of
the initial state condition (Drecourt, 2004; Ide et al., 1997;
Li and Navon, 2001). In addition to the 3D-Var and 4D-
Var methods, Hunt et al. (2004) proposed a four-dimensional
ensemble Kalman filter (4DEnKF) which adapts EnKF to
handle observations that have occurred at non-assimilation
times. Furthermore, for linear dynamics, 4DEnKF is equiv-
alent to the instantaneous assimilation of the measured data
(Hunt et al., 2004). Similarly to 4DEnKF, Sakov et al. (2010)
proposed a modification of the EnKF, the asynchronous en-
semble Kalman filter (AEnKF), to assimilate asynchronous
observations (Rakovec et al., 2015). Contrary to the EnKF,
in the AEnKF, current and past observations are simultane-
ously assimilated at a single analysis step without the use of
an adjoint model. Yet another approach to assimilate asyn-
chronous observations in models is the so-called first-guess
at the appropriate time (FGAT) method. Like in 4D-Var, the
FGAT compares the observations with the model at the ob-
servation time. However, in FGAT, the innovations are as-
sumed constant in time and remain the same within the as-
similation window (Massart et al., 2010). In light of reviewed
approaches, this study uses a pragmatic method, due in part
to the linearity of the hydrological models implemented in
this study, to assimilate the asynchronous crowdsourced ob-
servations.

The main objective of this study is to assess the poten-
tial use of crowdsourced data within hydrological modelling.
In particular, the specific objectives of this study are (a) to
assess the influence of different arrival frequencies and ac-
curacies of crowdsourced data from a single social sensor
on the assimilation performance and (b) to integrate dis-
tributed low-cost social sensors with a single physical sensor
to assess the improvement in the streamflow prediction in
an early warning system. The methodology is applied in the
Brue (UK), Sieve (Italy), Alzette (Luxembourg), and Bac-
chiglione (Italy) catchments, considering lumped and semi-
distributed hydrological models, respectively. Synthetic time
series, asynchronous in time and with random accuracies,
that imitate the crowdsourced data, are generated and used.

The study is organized as follows. Firstly, the case studies,
the crowdsourced data and the datasets used are presented.
Secondly, the hydrological models, the procedure used to in-
tegrate the crowdsourced data, and the set of experiments are
reported. Finally, the results, discussion, and conclusions are
presented.

2 Sites locations and data

2.1 Case studies

Four different case studies are used to validate the obtained
results for areas having diverse topographical and hydrom-
eteorological features and represented by two different hy-
drological models. The Brue, Sieve, and Alzette catchments
are considered because of the availability of precipitation and
streamflow data, while the Bacchiglione catchment is one of
the official case studies of the WeSenseIt Project (Huwald et
al., 2013).

2.1.1 Brue catchment

The first case study is located in the Brue catchment (Fig. 1),
in Somerset, with a drainage area of about 135 km2 at the
catchment outlet in Lovington. The Shuttle Radar Topogra-
phy Mission digital elevation model (SRTM DEM) of 90 m
resolution is used to derive the topographical characteristics,
streamflow network, and the consequent time of concentra-
tion, by means of the Giandotti equations (Giandotti, 1933),
which is about 10 h. The hourly precipitation (49 rainfall sta-
tions) and streamflow data used in this study are supplied by
the British Atmospheric Data Centre from the HYREX (Hy-
drological Radar Experiment) project (Moore et al., 2000;
Wood et al., 2000). The average precipitation value in the
catchment is estimated using ordinary kriging (Matheron,
1963).

2.1.2 Sieve catchment

The second case study is the Sieve catchment (Fig. 1), a trib-
utary of the Arno River, located in the central Italian Apen-
nines in Italy. The catchment has a drainage area of about
822 km2 with the length of 56 km and it covers mostly hills
and mountainous areas with an average elevation of 470 m
above sea level. The time of concentration of the Sieve catch-
ment is about 12 h. Hourly streamflow data are provided by
the Centro Funzionale di Monitoraggio Meteo Idrologico-
Idralico of the Tuscany Region at the outlet section of the
catchment at Fornacina. The mean areal precipitation is cal-
culated by the Thiessen polygon method using 11 rainfall
stations (Solomatine and Dulal, 2003).

2.1.3 Alzette catchment

The Alzette catchment is located in the large part of the grand
duchy of Luxembourg. The drainage area of the catchment
is about 288 km2 and the river has a length of 73 km along
France and Luxembourg. The catchment covers cultivated
land, grassland, forest land, and urbanized land (Fenicia et
al., 2007). The Thiessen polygon method is used for averag-
ing the series at the individual stations and calculating hourly
rainfall series (Fenicia et al., 2007), while streamflow data
are available measured at the Hesperange gauging station.
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Figure 1. Representation of the four case studies considered in this study; clockwise: Brue catchment; Sieve catchment; Alzette catchment;
Bacchiglione catchment.

2.1.4 Bacchiglione catchment

The last case study is the upstream part of the Bacchiglione
River basin, located in the north-east of Italy, and tributary
of the Brenta River which flows into the Adriatic Sea at the
south of the Venetian Lagoon and at the north of the Po River
delta. The study area has an overall extent and river length of
about 400 km2 and 50 km (Ferri et al., 2012). The main urban
area located in the downstream part of the study area is Vi-
cenza. The analysed part of the Bacchiglione River has three
main tributaries. On the western side are the confluences with
the Bacchiglione of the Leogra and the Orolo rivers, while
on the eastern side is the Timonchio River (see Fig. 2). The
Alto Adriatico Water Authority (AAWA) has implemented
an early warning system to forecast the possible future flood
events.

2.2 Crowdsourced data

Social sensors can be used by citizens to provide crowd-
sourced distributed hydrological observations such as precip-
itation and water level. An example of these sensors can be
a staff gauge, connected to a quick response code, on which
citizens can read water level indication and send observations

via a mobile phone application. Another example is the col-
lection of rainfall data via lab-generated videos (Alfonso et
al., 2015). Recently, within the activities of the WeSenseIt
Project (Huwald et al., 2013), one physical sensor and three
staff gauges complemented by a QR code were installed in
the Bacchiglione River to measure the water level. In partic-
ular, the physical sensor is located at the outlet of the Leogra
catchment while the three social sensors are located at the Ti-
monchio, Leogra, and Orolo catchments outlet, respectively
(see Fig. 2).

It is worth noting that, in most of the cases, it is difficult to
directly assimilate water level observations within hydrolog-
ical models. However, it is highly unrealistic to assume that
citizens might observe streamflow directly. For this reason,
crowdsourced observations of water level are used to calcu-
late crowdsourced data (CSD) of streamflow by means of rat-
ing curves assessed for the specific river location, which can
be easily assimilated into hydrological models. It is because
of both the uncertainty in rating curve estimation at the social
sensor location and the error in the water level measurements
that CSD have such low and variable accuracies when com-
pared to streamflow data estimated from classic physical sen-
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Figure 2. Structure of the hydrological model and location of the physical (green dots), social (red dots), and Ponte degli Angeli (PA, blue
dots) sensors implemented in the Bacchiglione catchment by the Alto Adriatico Water Authority.

Figure 3. Graphical representation of the methodology proposed to
estimate streamflow from crowdsourced observations of water level:
(a) crowdsourced observations of water level are turned into stream-
flow crowdsourced data (CSD) by means of rating curves assessed
for the specific river location; (b) the streamflow CSD within the
hydrological model are assimilated.

sors. CSD are then assimilated within mathematical models
as described in Fig. 3 (“overall information flow”).

In most hydrological applications, streamflow data from
physical sensors are derived (and integrated into hydrologi-
cal models) at regular, synchronous time steps. In contrast,
crowdsourced water level observations are obtained by di-

verse types of citizens at random moments (when a citizen
decides to send data). Thus, from the modelling viewpoint,
CSD have three main characteristics: (a) irregular arrival fre-
quency (asynchronicity), (b) random accuracy, and (c) ran-
dom number of CSD received within two model time steps.
Because streamflow CSD are not available in the case stud-
ies at the moment of this study, realistic synthetic CSD with
these characteristics are generated (“considered information
flow” in Fig. 3).

For the Brue, Sieve, and Alzette catchments, observed
hourly streamflow data at the catchments’ outlets are in-
terpolated to represent CSD coming at arrival frequencies
higher than hourly. For the Bacchiglione catchment, syn-
thetic hourly CSD of streamflow are calculated using mea-
sured precipitation recorded during the considered flood
events (post-event simulation) as input in the hydrologi-
cal model of the Bacchiglione catchment. A similar ap-
proach, termed “observing system simulation experiment”
(OSSE), is commonly used in meteorology to estimate syn-
thetic “true” states and measurements by introducing ran-
dom errors in the state and measurement equations (Arnold
and Dey, 1986; Errico et al., 2013; Errico and Privé, 2014).
OSSEs have the advantage of making it possible to compare
estimates to true states and they are often used for validating
the data assimilation algorithms.

Further details and assumptions regarding the characteris-
tics of CSD and related uncertainty are provided in the next
sections.

www.hydrol-earth-syst-sci.net/21/839/2017/ Hydrol. Earth Syst. Sci., 21, 839–861, 2017



844 M. Mazzoleni et al.: Can assimilation of crowdsourced data improve flood prediction?

2.3 Datasets

Three flood events for each one of the four described catch-
ments are considered to assess the assimilation of CSD in
hydrological modelling.

For the Brue catchment, a 2-year time series (June 1994
to May 1996) of observed streamflow and precipitation data
are available for model calibration and validation. On the
other hand, for the Sieve catchment, only 3 months of
hourly runoff, streamflow, and precipitation data (Decem-
ber 1959 to February 1960) are available (Solomatine and
Shrestha, 2003). For the Alzette catchment, 2-year hourly
data (July 2000 to June 2002) are used for the model cali-
bration and validation (Fenicia et al., 2007). For these catch-
ments, the observed precipitation values are treated as the
“perfect forecasts” and are fed into the hydrological model.

For the Bacchiglione catchment, three flood events that oc-
curred in 2013, 2014, and 2016 are considered. In particular,
the one of 2013 had high intensity and resulted in several
traffic disruptions at various locations upstream Vicenza. The
forecasted time series of precipitation (3-day weather fore-
cast) is used as input to the hydrological model. In all the case
studies, the observed values of streamflow at the catchment
outlet (Ponte degli Angeli for the Bacchiglione) are used to
assess the performance of the hydrological model.

3 Methodology

3.1 Hydrological modelling

3.1.1 Lumped model

A lumped conceptual hydrological model is implemented to
estimate the streamflow hydrograph at the outlet section of
the Brue, Sieve, and Alzette catchments. The choice of the
model is based on previous studies performed in the Brue
catchment (Mazzoleni et al., 2015). Direct runoff is the in-
put in the conceptual model and it is assessed by means of
the soil conservation service curve number method (Maz-
zoleni et al., 2015). The average curve number value within
the catchment is calibrated by minimizing the difference be-
tween the simulated volume and observed quick flow, using
the method proposed by Eckhardt (2005), at the outlet sec-
tion.

The main module of the hydrological model is based on
the Kalinin–Milyukov–Nash (KMN; Szilagyi and Szollosi-
Nagy, 2010) equation:

Qt =
1
k
·

1
(n− 1)!

t∫
t0

(τ
k

)n−1
· e−τ/k · I (t − τ) · dτ, (1)

where I is the model forcing (in this case direct runoff), n
(number of storage elements) and k (storage capacity ex-
pressed in hours) are the two model parameters, and Q is

the model output (streamflow in m3 s−1). In this study, the
parameter k is assumed as a linear function between the
time of concentration and a coefficient ck . The discrete state-
space system of Eq. (1) derived by Szilagyi and Szollosi-
Nagy (2010) is used in this study to apply the data assimila-
tion approach (Mazzoleni et al., 2015, 2016).

The model calibration is performed maximizing the Nash–
Sutcliffe efficiency (NSE) and the correlation between the
simulated and observed value of streamflow, at the outlet
points of the Brue, Sieve, and Alzette catchments, using his-
torical time series. The results of the calibration provided a
value of the parameters n and ck equal to 4 and 0.026, 1 and
0.0055, and 1 and 0.00064 for the Brue, Sieve, and Alzette
catchments, respectively.

3.1.2 Semi-distributed model

The hydrological and routing models used in this study
are based on the early warning system implemented by the
AAWA and described in Ferri et al. (2012). One of the goals
of this study, in the framework of the WeSenseIt Project, is
to test our methodology using synthetic CSD in the existing
early warning system of the Bacchiglione catchment.

In the schematization of the Bacchiglione catchment, the
location of physical and social sensors corresponds to the
outlet section of three main sub-catchments, Timonchio,
Leogra, and Orolo, while the remaining sub-catchments are
considered as inter-catchments. For both sub-catchments
and inter-catchments, a conceptual hydrological model, de-
scribed below, is used to estimate the outflow (streamflow)
hydrograph. The streamflow hydrograph of the three main
sub-catchments is considered as the upstream boundary con-
ditions of a routing model used to propagate the flow up to
the catchment outlet (see Fig. 2), while the outflow from the
inter-catchment is considered as an internal boundary condi-
tion to account for their corresponding drained area. In the
following, a brief description of the main components of the
hydrological and routing models is provided.

The input for the hydrological model consists of precipita-
tion only. The hydrological response of the catchment is esti-
mated using a hydrological model that considers the routines
for runoff generation and a simple routing procedure. The
processes related to runoff generation (surface, sub-surface,
and deep flow) are modelled mathematically by applying the
water balance to a control volume representative of the active
soil at the sub-catchment scale. The water content Sw in the
soil is updated at each calculation step dt using the following
balance equation:

Sw,t+dt = Sw,t +Pt −Rsur,t −Rsub,t −Lt −ET ,t , (2)

where P and ET are the components of precipitation and
evapotranspiration, while Rsur, Rsub, and L are the surface
runoff, sub-surface runoff, and deep percolation model states,
respectively (see Fig. 2). The surface runoff Rsur is expressed
by the equation based on specifying the critical threshold be-
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yond which the mechanism of Dunnian flow (saturation ex-
cess mechanism) prevails:

Rsur,t =

 C ·

(
Sw,t

Sw,max

)
·Pt ⇒ Pt ≤ f =

Sw,max ·
(
Sw,max− Sw,t

)(
Sw,max−C · Sw,t

)
Pt −

(
Sw,max− Sw,t

)
⇒ Pt > f

, (3)

where C is a coefficient of soil saturation obtained by cali-
bration, and Sw,max is the content of water at saturation point
which depends on the nature of the soil and on its use.

The sub-surface flow is considered proportional to the dif-
ference between the water content Sw,t at time t and that at
soil capacity Sc

Rsub,t = c ·
(
Sw,t − Sc

)
, (4)

while the estimated deep flow is evaluated according to the
expression proposed by Laio et al. (2001):

Lt =
KS

e
β·
(

1− Sc
Sw,max

)
− 1
·

(
e
β·
(
Sw,t−Sc
Sw,max

)
− 1

)
, (5)

where KS is the hydraulic conductivity of the soil in satura-
tion conditions and β is a dimensionless exponent character-
istic of the size and distribution of pores in the soil. The eval-
uation of the real evapotranspiration is performed assuming
it as a function of the water content in the soil and potential
evapotranspiration, calculated using the formulation of Har-
greaves and Samani (1982).

Knowing the values of Rsur, Rsub, and L, it is possible to
model the surface Qsur, sub-surface Qsub, and deep flow Qg

routed contributions according to the conceptual framework
of the linear reservoir at the closing section of the single sub-
catchment. In particular, in the case of Qsur, the value of the
parameter k, which is a function of the residence time in the
catchment slopes, is estimated by relating the velocity to the
average slope length. However, one of the challenges is to
properly estimate such velocity, which should be calculated
for each flood event (Rinaldo and Rodriguez-Iturbe, 1996).
According to Rodríguez-Iturbe et al. (1982), this velocity is
a function of the effective rainfall intensity and the event du-
ration. In this study, the estimation of the surface velocity is
performed using the relation between velocity and intensity
of rainfall excess proposed in Kumar et al. (2002) to estimate
the average travel time and the consequent parameter k. How-
ever, this formulation is applied in a lumped way for a given
sub-catchment. As reported in McDonnell and Beven (2014),
more reliable and distributed models should be used to repro-
duce the spatial variability of the residence times over time
within the catchment. That is why, in the advanced version
of the model implemented by AAWA, in each sub-catchment
the runoff propagation is carried out according to the geo-
morphological theory of the hydrologic response. The overall
catchment travel time distributions are considered as nested
convolutions of statistically independent travel time distri-
butions along sequentially connected, and objectively iden-
tified, smaller sub-catchments. The correct estimation of the

residence time should be derived considering the latest find-
ings reported in McDonnell and Beven (2014). Regarding
Qsub and Qg , the value of k is calibrated comparing the ob-
served and simulated streamflow at Vicenza.

In the early warning system implemented by AAWA in
the Bacchiglione catchment, the flood propagation along the
main river channel is represented by a one-dimensional hy-
drodynamic model, MIKE 11 (DHI, 2007). However, in or-
der to reduce the computational time required by the anal-
ysis performed in this study, MIKE11 is replaced by a
Muskingum–Cunge model (see, e.g. Todini, 2007) consider-
ing rectangular river cross-sections for the estimation of hy-
draulic radios, wave celerities, and other hydraulic variables.

Calibration of the hydrological model parameters is per-
formed by AAWA, and described in Ferri et al. (2012), con-
sidering the time series of precipitation from 2000 to 2010
in order to minimize the root mean square error between ob-
served and simulated values of water level at the Ponte degli
Angeli gauged station. In order to stay as close as possible to
the early warning system implemented by AAWA, we used
the same calibrated model parameters proposed by Ferri et
al. (2012).

3.2 Data assimilation procedure

3.2.1 Kalman filter

In data assimilation, it is typically assumed that the dynamic
system can be represented in the state space as follows:

xt =M(xt−1,ϑ,It )+wt wt ∼N (0,St ) (6)
zt =H (xt ,ϑ)+ vt vt ∼N (0,Rt ) , (7)

where xt and xt−1 are state vectors at time t and t − 1, M is
the model operator that propagates the state x from its pre-
vious condition to the new one as a response to the inputs
It , while H is the operator which maps the model states into
output zt . The system and measurement errors wt and vt are
assumed normally distributed with zero mean and covariance
S and R. In a hydrological modelling system, these states can
represent the water stored in the soil (soil moisture, ground-
water) or on the earth’s surface (snow pack). These states are
one of the governing factors that determine the hydrograph
response to the inputs into the catchment.

For the linear systems used in this study, the discrete state-
space system of Eq. (1) can be represented as follows (Szi-
lagyi and Szollosi-Nagy, 2010):

xt =8xt−1+0It +wt (8)
Qt =Hxt + vt , (9)

where t is the time step, x is the vector of the model states
(stored water volume in m3), 8 is the state-transition ma-
trix (function of the model parameters n and k), 0 is the
input-transition matrix, and H is the output matrix. For ex-
ample, for n= 3, the matrix H is expressed as H= [0 0 k].
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Expressions for matrices 8 and 0 can be found in Szilagyi
and Szollosi-Nagy (2010).

For the Bacchiglione model (semi-distributed model), a
preliminary sensitivity analysis on the model states (soil con-
tent Sw and the storage water xsur, xsub, and xL related to
Qsur,Qsub, andQg) is performed in order to decide on which
of the states to update. The results of this analysis (shown in
the next section) pointed out that the stored water volume xsur
(estimated using Eq. 8 with n= 1, H = k, and It replaced by
Rsur) is the most sensitive state, and for this reason we de-
cided to update only this state.

The Kalman filter (KF; Kalman, 1960) is a mathematical
tool which allows estimating, in an efficient computational
(recursive) way, the state of a process which is governed by a
linear stochastic difference equation. The KF is optimal un-
der the assumption that the error in the process is Gaussian;
in this case, the KF is derived by minimizing the variance
of the system error assuming that the model state estimate is
unbiased.

The Kalman filter procedure can be divided into two steps,
namely forecast equations, (Eqs. 10 and 11) and update (or
analysis) equations (Eqs. 12, 13, and 14):

x−t =8x+t−1+0It (10)

P−t =8P+t−18
T
+S (11)

Kt = P−t HT(HP−t HT
+R

)−1
(12)

x+t = x−t +Kt

(
Qo
t −Hx−t

)
(13)

P+t = (I−KtH)P−t , (14)

where Kt is the Kalman gain matrix, P is the error covari-
ance matrix, and Qo is a new observation. In this study, the
observed value of streamflow Qo is equal to the synthetic
CSD estimated as described above. The prior model states x

at time t are updated, as the response to the new available
observation, using the analysis equations Eqs. (12) to (14).
This allows for estimation of the values of the updated state
(with superscript +) and then assessing the background es-
timates (with superscript −) for the next time step using the
time update equations, Eqs. (10) and (11). The proper charac-
terization of the model covariance matrix S is a fundamental
issue in the Kalman filter. In this study, in order to evalu-
ate the effect of assimilating CSD, small values of the model
error S are considered for each case study. In fact, a covari-
ance matrix S with diagonal values of 1, 25, and 1 m6 s−2 are
considered for the Brue, Sieve, and Alzette catchments. The
bigger value of S in the Sieve catchment is due to the higher
flow magnitude in this catchment if compared to the other
two. A sensitivity analysis of model performance depending
on the value of S is reported in the Results section. For the
Bacchiglione catchment, S is estimated, for each given flood
event, as the variance between observed and simulated flow
values.

Figure 4. Graphical representation of the data assimilation of the
crowdsourced observations (DACO) method used in this study to
assimilate asynchronous streamflow crowdsourced data.

3.2.2 Assimilation of crowdsourced data

As described in the previous section, a main characteris-
tic of CSD is to be highly uncertain and asynchronous in
time. Various methods have been proposed to include asyn-
chronous observations in models. Having reviewed them, in
this study, we are proposing a somewhat simpler approach
of data assimilation of crowdsourced observations (DACO).
This method is based on the assumption that the change in
the model states and in the error covariance matrices within
the two consecutive model time steps t0 and t (observation
window) is linear, while the inputs are assumed constant. All
CSD received during the observation window are individu-
ally assimilated in order to update the model states and out-
put at time t . Therefore, assuming that one CSD is available
at time t∗0 , the first step of DACO (A in Fig. 4) is the defi-
nition of the model states and error covariance matrix at t∗0
as

x−
t∗0
= x+t0 +

(
x−t − x+t0

)
·
t∗0 − t0

t − t0
(15)

P−
t∗0
= P+t0 +

(
P−t −P+t0

)
·
t∗0 − t0

t − t0
. (16)

The second step (B in Fig. 4) is the estimation of the updated
model states and error covariance matrix as the response to
the streamflow CSDQo

t∗0
. The estimation of the posterior val-

ues of x−
t∗0

and P−
t∗0

is performed by Eqs. (13) and (14), respec-
tively. The Kalman gain is estimated by Eq. (12), where the
prior values of model states and error covariance matrix at
t∗0 are used. Knowing the posterior values x+

t∗0
and P+

t∗0
, it is

possible to predict the value of states and covariance matrix
at one model step ahead, t∗ (C in Fig. 4), using the model
forecast equations, Eqs. (10) and (11).

The last step (D in Fig. 4) is the estimation of the interpo-
lated value of x and P at time step t . This is performed by
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means of a linear interpolation between the current values of
x and P at t∗0 and t∗:

x̃−t = x−
t∗0
+

(
x−t∗ − x+

t∗0

)
·
t − t∗0
t∗− t∗0

(17)

P̃−t = P−
t∗0
+

(
P−t∗ −P+

t∗0

)
·
t − t∗0
t∗− t∗0

. (18)

The symbol ∼ is added on the new matrices x and P in order
to differentiate them from the original forecasted values in t .
Assuming that new streamflow CSD are available at an inter-
mediate time t∗1 (between t∗0 and t), the procedure is repeated
considering the values at t∗0 and t for the linear interpolation.
Then, when no more CSD are available, the updated value
of x̃−t is used to predict the model states and output at t+ 1
(Eqs. 10 and 11). Finally, in order to account for the inter-
mittent behaviour of these CSD, the approach proposed by
Mazzoleni et al. (2015) is applied. In this method, the model
states matrix x is updated and forecasted when CSD are avail-
able, while without CSD the model is run using Eq. (10) and
covariance matrix P propagated at the next time step using
Eq. (11).

3.2.3 Crowdsourced data accuracy

In this section, the uncertainty related to CSD is character-
ized. The observational error is assumed to be normally dis-
tributed noise with zero mean and given standard deviation

σ
Q
t = αt ·Q

o
t , (19)

where the coefficient α is related to the degree of uncertainty
of the measurement (Weerts and El Serafy, 2006).

One of the main and obvious issues in citizen-based ob-
servations is to maintain the quality control of the water ob-
servations (Cortes Arevalo et al., 2014; Engel and Voshell
Jr., 2002). In the Introduction section, a number of methods
to estimate the model of observational uncertainty have been
referred to. In this study, coefficient α is assumed to be a
random variable uniformly distributed between 0.1 and 0.3,
so we leave more thorough investigation of the uncertainty
level of CSD for future studies. We assumed that the maxi-
mum value of α is 3 times higher than the uncertainty coming
from the physical sensors due to the uncertainty estimation of
the rating curve at the social sensor location.

3.3 Experimental setup

In this section, two sets of experiments are performed in or-
der to test the proposed method and assess the benefit of in-
tegrating CSD, asynchronous in time and with variable accu-
racies, in real-time flood forecasting.

In the first set of experiments, called “Experiment 1”, as-
similation of streamflow CSD at one social sensor location is
carried out in the Brue, Alzette, and Sieve catchments to un-
derstand the sensitivity of the employed hydrological model
– KMN – under various scenarios of these data.

In the second set of experiments, called “Experiment 2”,
the distributed CSD coming from social and physical sen-
sors, at four locations within the Bacchiglione catchment, are
considered, with the aim of assessing the improvement in the
flood forecasting accuracy.

3.3.1 Experiment 1: assimilation of crowdsourced data
from one social sensor

The focus of Experiment 1 is to study the performance of the
hydrological model (KMN) assimilating CSD, having lower
arrival frequencies than the model time step and random ac-
curacies, coming from a social sensor located at the outlet
points of the Brue, Sieve, and Alzette catchments.

To analyse all possible combinations of arrival frequen-
cies, number of CSD within the observation window (1 h),
and accuracies, a set of scenarios are considered (Fig. 5),
changing from regular arrival frequencies of CSD with high
accuracies (scenario 1) to random and chaotic asynchronous
CSD with variable accuracies (scenario 11). In each scenario,
a varying number of CSD from 1 to 100 is considered. It is
worth noting that for one CSD per hour and regular arrival
time, scenario 1 corresponds to the case of physical sensors
with observation arrival frequencies of 1 h.

Scenario 2 corresponds to the case of CSD having fixed ac-
curacies (α equal to 0.1) and irregular arrival moments, but in
which at least one CSD coincides with the model time step.
In particular, scenarios 1 and 2 coincide for one CSD avail-
able within the observation window since it is assumed that
the arrival frequencies of that CSD have to coincide with the
model time step. On the other hand, the arrival frequencies of
CSD in scenario 3 are assumed random and CSD might not
arrive at the model time step.

Scenario 4 considers CSD with regular frequencies but
random accuracies at different moments within the obser-
vation window, whereas in scenario 5 CSD have irregular
arrival frequencies and random accuracies. In all the previ-
ous scenarios, the arrival frequencies, the number, and accu-
racies of CSD are assumed periodic, i.e. repeated between
consecutive observation windows along all the time series.
However, this periodic repetitiveness might not occur in real
life, and for this reason, a non-periodic behaviour is assumed
in scenarios 6, 7, 8, and 9. The non-periodicity assumptions
of the arrival frequencies and accuracies are the only factors
that differentiate scenarios 6, 7, 8, and 9 from scenarios 2, 3,
4, and 5, respectively. In addition, the non-periodicity of the
number of CSD within the observation window is introduced
in scenario 10.

Finally, in scenario 11, CSD, in addition to all the previous
characteristics, might have an intermittent behaviour, i.e. not
being available for one or more observation windows.
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Figure 5. Experimental scenarios representing different configurations of arrival frequencies, number, and accuracies of streamflow crowd-
sourced data.

3.3.2 Experiment 2: spatially distributed physical and
social sensors

Synthetic CSD with the characteristics reported in scenar-
ios 10 and 11 of Experiment 1 are generated due to the un-
availability of streamflow CSD during this study. In order
to evaluate the model performance, observed and simulated
streamflows are compared for different lead times.

Streamflow data from physical sensors are assimilated in
the hydrological model of the AMICO (Alto Adriatico Mod-
ello Idrologico e idrauliCO) system at an hourly frequency,
while CSD from social sensors are assimilated using the
DACO method previously described. The updated hydro-
graph estimated by the hydrological model is used as the in-
put into the Muskingum–Cunge model used to propagate the
streamflow downstream to the gauged station at Ponte degli
Angeli, Vicenza.

The main goal of Experiment 2 is to understand the con-
tribution of distributed CSD to the improvement of the flood
prediction at a specific point of the catchment, in this case
at Ponte degli Angeli. For this reason, five different settings
are introduced, and represented in Fig. 6, corresponding to
different types of employed sensors.

Firstly, only streamflow data from one physical sensor at
the Leogra sub-catchment are assimilated to update the hy-
drological model of sub-catchment B (Fig. 2) of setting A
(Fig. 6). On the other hand, in setting B, CSD from the social
sensor located at the Leogra sub-catchment are assimilated.
In setting C, CSD from three distributed social sensors are in-
tegrated into the hydrological model. Setting D accounts for
the integration of CSD from two social sensors and physical
data from the physical sensor in the Leogra sub-catchment.
Finally, setting E considers the complete integration between
physical and social sensors in Leogra and the two social sen-
sors in the Timonchio and Orolo sub-catchments.

4 Results

4.1 Experiment 1: influence of crowdsourced data on
flood forecasting

The observed and simulated streamflow hydrographs at the
outlet section of the Brue, Sieve, and Alzette catchments with
and without the model update (considering hourly stream-
flow data) are reported in Fig. 7 for nine different flood events
for 1 h lead time. As expected, it can be seen that the up-
dated model tends to better represent the flood events than
the model without updating in all the case studies. However,
this improvement is closely related to the value of the ma-
trix S. The higher the S value (uncertainty model), the closer
the model output gets to the observation. For this reason, a
sensitivity analysis on the influence of the matrix S on the
assimilation of CSD for scenario 1, i.e. coming and assimi-
lated at regular time steps within the observation windows, is
reported in Fig. 8. The results of Fig. 8 are related to the first
flood events of the Brue, Sieve, and Alzette catchments. In-
creasing the number of CSD within the observation window
results in an improvement of the NSE for different values of
model error. However, this improvement becomes negligible
for a given threshold value of CSD, which is a function of the
considered flood event. This means that the additional CSD
do not add information useful for improving the model per-
formance. Overall, increasing the value of the model error S
tends to increase NSE values as mentioned before. For this
reason, to better evaluate the effect of assimilating CSD, a
small value of S, i.e. a model more accurate than CSD, is
assumed.

In scenario 1, the arrival frequencies are set as regular
for different model runs, so the moments and accuracies in
which CSD became available are always the same for any
model run. However, for the other scenarios, the irregular
moments in which CSD become available within the obser-
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Figure 6. Experiment 2: characteristics of the five experimental settings (A to E) implemented within the Bacchiglione catchment: location
of the social and physical sensors (dots), hydrological model update based on different sensors (coloured areas).

Figure 7. Observed (black line) and simulated hydrographs, with (red line) and without (blue line) assimilation, for the flood events which
occurred in the three catchments: Brue (upper row), Sieve (middle row), and Alzette (bottom row).
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Figure 8. Model improvement in terms of Nash–Sutcliffe efficiency (NSE), during flood event 1 for each case study, for different values of
the model error matrix S and 24 h lead time, assimilating streamflow CSD according to scenario 1.

vation window and their accuracies are randomly selected
and change according to the different model runs. This re-
flects in a random model performance and consequent NSE
values. In order to remove such random behaviour, different
model runs (100 in this case) are carried out, assuming dif-
ferent random values of arrivals and accuracies (coefficient
α) during each model run, for a given number of CSD and
lead time. The NSE value is estimated for each model run, so
µNSE and σNSE represent the mean and standard deviation of
the different values of NSE.

For scenarios 2 and 3 (represented using warm red and or-
ange colours in Figs. 9 and 10 for lead times equal to 24 h),
the µNSE values are smaller but comparable to the ones ob-
tained for scenario 1 for all the considered flood events and
case studies. In particular, scenario 3 has lower µNSE than
scenario 2. This can relate to the fact that both scenarios have
random arrival frequencies; however, in scenario 3, CSD are
not provided at model time steps, as opposed to scenario 2.
From Fig. 10, higher values of σNSE can be observed for sce-
nario 3. Scenario 2 has the lowest standard deviation for low
values of CSD because the arrival frequencies have to co-
incide with the model time step and this stabilizes the NSE.
In particular, for an increasing number of CSD, σNSE tends
to decrease. However, a constant trend of σNSE can be ob-
served, due to particular characteristics of the flood events, in
the case of flood event 1 of the Sieve and flood events 2 and
3 of the Alzette. It is worth nothing that scenario 1 has null
standard deviation because CSD are assumed to come at the
same moments with the same accuracies for all 100 model
runs.

In scenario 4, represented using blue colour, CSD are con-
sidered to come at regular time steps but have random accura-
cies. Figure 9 shows thatµNSE values are lower for scenario 4
than for scenarios 2 and 3. This is related to the higher influ-
ence of CSD accuracies if compared to arrival frequencies.
High variability in the model performance, especially for low
values of CSD, can be observed in scenario 4 (Fig. 10).

The combined effects of random arrival frequencies and
CSD accuracies are represented in scenario 5 using a ma-
genta colour (i.e. the combination of warm and cold colours
used for scenarios 2, 3, and 4) in Figs. 9 and 10. As expected,
this scenario has the lowestµNSE and the highest σNSE values,
compared to those reported above.

The remaining scenarios (6 to 9) are equivalent to sce-
narios 2 to 5 with the only difference being that they are
non-periodic in time. For this reason, in Figs. 9 and 10,
scenarios from 6 to 9 have the same colour as scenarios 2
to 5 but indicated with a dashed line in order to underline
their non-periodic behaviour. Overall, it can be observed that
non-periodic scenarios have similar µNSE values to their cor-
responding periodic scenario. However, the smoother µNSE

trends can be explained because of the lower σNSE values,
which means that model performance is less dependent on
the non-periodic nature of CSD than their period behaviour.
Table 1 shows the NSE values and model improvement ob-
tained for the different experimental scenarios during the dif-
ferent flood events. Small improvements are obtained when
NSE is already high for one CSD as for the Sieve catchment
during flood event 2 or the Alzette catchment during flood
event 2. Moreover, it can be seen that a lower improvement is
achieved for scenarios (2, 3, 6, and 7) where arrival frequen-
cies are random and accuracies fixed if compared to those
scenarios (4, 5, 8, and 9) where arrival frequencies are regu-
lar and accuracies random.

In the previous analysis, model improvements are ex-
pressed only in terms of NSE. However, statistics such as
NSE only explain the overall model accuracy and not the real
increases/decreases in prediction error. Therefore, increases
in model accuracy due to the assimilation of CSD have to
be presented in different ways as increased accuracy of flood
peak magnitudes and timing. For this reason, additional anal-
yses are carried out to assess the change in flood peak predic-
tion considering three peaks occurred during flood event 2 in
the Brue catchment (see Fig. 7). Errors in the flood peak tim-
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Figure 9. Dependency of the mean of the Nash–Sutcliffe efficiency sample, µNSE , on the number of streamflow crowdsourced data in the
experimental scenarios 1 to 9 for the considered flood events in the three catchments: Brue (upper row), Sieve (middle row), and Alzette
(bottom row).

Table 1. NSE improvements (%), from 1 to 50 CSD, for different experimental scenarios during the nine flood events that occurred in the
Brue, Sieve, and Alzette catchments.

Scenario 1 2 3 4 5 6 7 8 9

Brue – event 1 0.126 0.125 0.140 0.243 0.253 0.125 0.144 0.237 0.248
Brue – event 2 0.416 0.413 0.445 0.920 0.902 0.413 0.463 0.841 0.870
Brue – event 3 0.443 0.438 0.472 0.890 0.842 0.440 0.471 0.809 0.822
Sieve – event 1 0.250 0.246 0.228 0.271 0.221 0.247 0.225 0.263 0.237
Sieve – event 2 0.066 0.064 0.067 0.057 0.056 0.064 0.068 0.057 0.060
Sieve – event 3 0.629 0.623 0.632 1.085 1.045 0.625 0.634 1.019 0.995
Alzette – event 1 0.884 0.881 0.883 1.274 1.265 0.882 0.890 1.251 1.342
Alzette – event 2 0.137 0.135 0.135 0.120 0.121 0.134 0.147 0.119 0.135
Alzette – event 3 0.314 0.309 0.305 0.297 0.283 0.310 0.315 0.297 0.281
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Figure 10. Dependency of the standard deviation of the Nash–Sutcliffe efficiency sample, σNSE , on the number of streamflow crowdsourced
data in the experimental scenarios 1 to 9 for the considered flood events in the three catchments: Brue (upper row), Sieve (middle row), and
Alzette (bottom row).

ing, ERRT, and intensity, ERRI, are estimated as

ERRT = t
o
P − t

S
P (20)

ERRI =
Qo

P−Q
S
P

Qo
P

, (21)

where toP and t sP are the observed and simulated peak time
(h), while Qo

P and Qs
P are the observed and simulated peak

streamflow (m3 s−1). From the results reported in Fig. 11,
considering 12 h lead time, it can be observed that, overall,
error reduction in peak prediction is achieved for an increas-
ing number of CSD. In particular, assimilation of CSD has
more influence in the reduction of the peak intensity rather
than peak timing. In fact, a small reduction of ERRT of about
1 h is obtained even increasing the number of CSD. In both
ERRI and ERRT, the higher error reduction is obtained con-

sidering fixed CSD accuracies and random arrival frequen-
cies (e.g. scenarios 1, 2, 3, 6, and 7). In fact, smaller ERRI er-
ror values are obtained for scenario 1, while scenarios 5 and
9 are the ones that show the lowest improvement in terms
of peak prediction. These conclusions are very similar to the
previous ones obtained analysing only NSE as model perfor-
mance measures.

The combination of all the previous scenarios is repre-
sented by scenario 10, where a changing number of CSD
in each observation window is considered. In scenario 11,
the intermittent nature of CSD is accounted for as well. The
µNSE and σNSE values of these scenarios obtained for the con-
sidered flood events are shown in Fig. 12. It can be observed
that scenario 10 tends to provide higher µNSE and lower σNSE

values, for a given flood event, if compared to scenario 11.
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Figure 11. Representation of the errors in flood peak timing, ERRT, and intensity, ERRI, (as described in Eqs. 20 and 21), as function of the
number of streamflow crowdsourced data and experimental scenarios (1 to 9), for three different flood peaks occurred during flood event 2
in the Brue catchment.

In fact, intermittency in CSD tends to reduce model perfor-
mance and increase the variability of NSE values for random
configuration of arrival frequencies and CSD accuracies. In
particular, σNSE tends to be constant for an increasing number
of CSD.

4.2 Experiment 2: influence of distributed physical and
social sensors

Three different flood events that occurred in the Bacchiglione
catchment are used for Experiment 2. Figure 13 shows the
observed and simulated streamflow value at the outlet sec-
tion of Vicenza. In particular, two simulated time series of
streamflow are calculated using the measured and forecasted
time series of precipitation as input for the hydrological
model. Overall, an underestimation of the observed stream-
flow can be observed using forecasted input, while the results
achieved used measured precipitation tend to properly repre-
sent the observations. In order to find out what model states
lead to a maximum increase of the model performance, a pre-
liminary sensitivity analysis is performed. The four model
states, xS, xsur, xsub, and xL, related to Sw, Qsur, Qsub, and
Qg , are uniformly perturbed by ±20 % around the true state
value for every time step up to the perturbation time (PT).
No correlation between time steps is considered. After PT,
the model realizations are run without perturbation in order
to assess the effect on the system memory. No assimilation

and no state update are performed at this step. From the re-
sults reported in Fig. 14 related to flood event 1, it can be
observed that the model state xsur is the most sensitive state
if compared to the other ones. In addition, the perturbations
of all the states seem to affect the model output even after
the PT (high system memory). For this reason, in this exper-
iment, only the model state xsur is updated by means of the
DACO method.

Scenarios 10 and 11, described in the previous sections,
are used to represent the irregular and random behaviour of
CSD assimilated in the Bacchiglione catchment.

Figures 15 and 16 show the results obtained from the ex-
periment settings represented in Fig. 6 during three different
flood events. Three different lead time values are considered.
Different model runs (100) are performed to account for the
effect induced by the random arrival frequencies and accu-
racies of CSD within the observation window as described
above. Figure 15 shows that the assimilation of streamflow
from the physical sensor in the Leogra sub-catchment (set-
ting A) provides a better streamflow prediction at Ponte degli
Angeli if compared to the assimilation of a small number of
CSD provided by a social sensor in the same location (set-
ting B). In particular, Fig. 15 shows that, depending on the
flood event, the same NSE values achieved with the assimi-
lation of physical data (hourly frequency and high accuracy)
can be obtained by assimilating between 10 and 20 CSD per
hour for a 4 h lead time. This number of CSD tends to in-
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Figure 12. Dependency of the mean µNSE and standard deviation σNSE of the Nash–Sutcliffe efficiency sample (first row and second row,
respectively) on the number of streamflow crowdsourced data in scenarios 10 (solid lines) and 11 (dashed lines) for the considered flood
events (black, blue, red lines) in the three catchments: Brue (left panel), Sieve (central panels), and Alzette (right panels).

Figure 13. Observed and simulated hydrographs, without updates, using measured input (MI) and forecasted input (FI), for the three consid-
ered flood events which occurred in 2013 (event 1), 2014 (event 2), and 2016 (event 3) in the Bacchiglione catchment.

crease for increasing values of lead times. In the event of
intermittent CSD (Fig. 16), the overall reduction of NSE is
such that even with a high number of CSD (even higher than
50 per hour) the NSE is always lower than the one obtained
assimilating physical streamflow data for any lead time.

For setting C, it can be observed for all three flood events
that distributed social sensors in Timonchio, Leogra, and
Orolo sub-catchments allow for obtaining higher model per-
formance than the one achieved with only one physical sen-
sor (see Fig. 15). However, for flood event 3, this is valid only

Hydrol. Earth Syst. Sci., 21, 839–861, 2017 www.hydrol-earth-syst-sci.net/21/839/2017/



M. Mazzoleni et al.: Can assimilation of crowdsourced data improve flood prediction? 855

Figure 14. Effect of model state perturbation on the model output for the Bacchiglione catchment: PT indicates perturbation time; xs indicates
model state related to Sw; xsur indicates model state related to Qsur; xsub indicates model state related to Qsub; xL indicates model state
related to Qg .

for small lead time values. In fact, for 8 and 12 h lead time
values, the contribution of CSD tends to decrease in favour of
physical data from the Leogra sub-catchment. This effect is
predominant for intermittent CSD, scenario 11. In this case,
setting C has higher µNSE values than setting A only during
flood event 1 and for lead time values equal to 4 and 8 h (see
Fig. 16).

It is interesting to note that for setting D, during flood
event 1, the µNSE is higher than setting C for the low number
of CSD. However, with a higher number of CSD, setting C is
the one providing the best model improvement for low lead
time values. In the event of intermittent CSD, it can be no-
ticed that the setting D always provides higher improvement
than setting C. For flood event 1, the best model improvement
is achieved for setting E, i.e. fully integrating physical sen-
sor with distributed social sensors. On the other hand, during
flood events 2 and 3, setting D shows higher improvements
than setting E. For intermittent CSD, the difference between
settings D and E tends to reduce for all the flood events. Over-
all, settings D and E are the ones providing the highest µNSE

in both scenarios 10 and 11. This demonstrates the impor-
tance of integrating an existing network of physical sensors
(setting A) with social sensors to improve flood predictions.

Figure 17 shows the standard deviation of the NSE, σNSE ,
obtained for the different settings for 4 h lead time. Similar

results are obtained for the three flood events. In the case of
setting A, σNSE is equal to zero since CSD are coming from
the physical sensor at regular time steps. Higher σNSE values
are obtained for setting B, while including distributed CSD
(setting C) tend to decrease the value of σNSE . It can be ob-
served that σNSE decreases for high values of CSD. As ex-
pected, the lowest values of σNSE are achieved including the
physical sensor in the data assimilation procedure (settings D
and E). Similar considerations can be drawn for intermittent
CSD, where higher and more perturbed σNSE values are ob-
tained.

5 Discussion

The assimilation of CSD is performed in four different case
studies considering only one social sensor location in the
Brue, Sieve, and Alzette catchments, and distributed social
and physical sensors within the Bacchiglione catchment.

In the first three catchments, different characteristics of
CSD are represented by means of 11 scenarios. Nine differ-
ent flood events are used to assess the beneficial use in as-
similating CSD in the hydrological model to improve flood
forecasting.

Overall, assimilation of CSD improves model perfor-
mance in all the considered case studies. In particular, there
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Figure 15. Model performance expressed as the mean of the Nash–Sutcliffe efficiency µNSE , assimilating a different number of streamflow
crowdsourced data during the three considered flood events for the three lead time values (left panels: 4 h; central panels: 8 h; right panels:
12 h) of scenario 10, for the five experimental settings (A to E) in the Bacchiglione catchment.

is a limit in the number of CSD for which satisfactory model
improvements can be achieved and for which additional CSD
become redundant. This asymptotic behaviour, when extra
information is added, has also been observed using other
metrics by Krstanovic and Singh (1992), Ridolfi et al. (2014),
Alfonso et al. (2013), among others. From Fig. 9 it can be
seen that, in all the considered catchments, increasing the
number of model error induces an increase of this asymp-
totic value with a consequent reduction of CSD needed to
improve model performance. For this reason, a small value of
the model error is assumed in this study. In addition, it is not
possible to define a priori the number of CSD needed to im-
prove a model because of its different behaviour for a given
flood event in the event of no update. In fact, as reported in
Table 1 and Fig. 8, flood events with high NSE values even
without updates tend to achieve the asymptotic values ofNSE
for a small number of CSD (e.g. flood event 1 in the Brue and
flood event 2 in the Sieve), while more CSD are needed for
flood events having low NSE without updates. However, for
these case studies and during these nine flood events, an in-
dicative value of 10 CSD can be considered to achieve a good
model improvement.

Figures 9 and 10 show the µNSE and σNSE values for sce-
narios 2 to 9. Figure 9 demonstrates that for irregular arrival
frequencies and constant accuracies (e.g. scenarios 2, 3, 6,
and 7) the NSE is higher than for scenarios in which accu-
racies are variable and arrival frequencies fixed (e.g. scenar-
ios 4, 5, 8, and 9). These results point out that the model
performance is more sensitive to the accuracies of CSD than
to the moments in time at which the streamflow CSD become
available. Overall, σNSE tends to decrease for high number of
CSD. The combined effects of irregular frequencies and un-
certainties are reflected in scenario 5, which has lower mean
and higher standard deviation of NSE if compared to the first
four scenarios.

An interesting fact is that, passing from periodic to non-
periodic scenarios, the standard deviation σNSE is signifi-
cantly reduced, while µNSE remains the same but with a
smoother trend. A non-periodic behaviour of CSD, common
in real life, helps to reduce the fluctuation of the NSE gen-
erated by the random behaviour of streamflow CSD. Finally,
the results obtained for scenarios 10 and 11 are shown in
Fig. 12. The assimilation of the irregular number of CSD
in scenario 10, in each observation window, seems to pro-
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Figure 16. Model performance expressed as the mean of the Nash–Sutcliffe efficiency µNSE , assimilating different number of streamflow
crowdsourced data during the three considered flood events for the three lead time values (left panels: 4 h; central panels: 8 h; right panels:
12 h) of scenario 11, for the five experimental settings (A to E) in the Bacchiglione catchment.

vide similar µNSE as the values obtained with scenario 9. One
of the main outcomes is that the intermittent nature of CSD
(scenario 11) induces a drastic reduction of the NSE and an
increase in its noise in both considered flood events. All these
previous results are consistent across the considered catch-
ments.

In the case of the Bacchiglione catchment, the data from
physical and social sensors are assimilated within a hydro-
logical model to improve the poor flow prediction in Vicenza
for the three considered flood events. In fact, these predic-
tions are affected by an underestimation of the 3-day rain-
fall forecast used as input in flood forecasting practice in this
area.

One of the main outcomes of these analyses is that the re-
placement of a physical sensor (setting A) for a social sensor
at only one location (setting B) does not improve the model
performance in terms of NSE for a small number of CSD.
Figures 15 and 16 show that distributed locations of social
sensors (setting C) can provide higher values of NSE than a
single physical sensor, even for a low number of CSD, in the
event of CSD having the characteristic of scenario 10. For
flood event 1, setting C provides better model improvement

than setting D for low lead time values and a high number
of CSD. This can be because the physical sensor at Leogra
provides constant improvement, for a given lead time, while
the social sensor tends to achieve better results with a higher
number of CSD. This dominant effect of the social sensor, for
a high number of CSD, tends to increase for the higher lead
times. On the other hand, for intermittent CSD (scenario 11)
this effect decreases in particular for flood events 2 and 3.

Integrating physical and social sensors (settings D and E)
induces the highest model improvements for all the three
flood events. For flood event 1, assimilation from setting E
appears to provide better results than assimilation from set-
ting D. Opposite results are obtained for flood events 2 and
3. In fact, the high µNSE values of setting D can be because
flood events 2 and 3 are characterized by one main peak and
similar shape while flood event 1 has two main peaks. Assim-
ilation of CSD from distributed social sensors tends to reduce
the variability of theNSE coefficient in both scenarios 10 and
11.
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Figure 17. Variability of model performance expressed as σNSE , assimilating streamflow crowdsourced data within settings A, B, C, and D,
assuming a lead time of 4 h, for experimental scenarios 10 (upper row) and 11 (bottom row), during the three considered flood events in the
Bacchiglione catchment.

6 Conclusions

This study assesses the potential use of crowdsourced data
in hydrological modelling, which are characterized by irreg-
ular availability and variable accuracy. We demonstrate that
even data with these characteristics can improve flood predic-
tion if integrated into hydrological models. This opens new
opportunities in terms of exploiting data being collected in
current citizen science projects for the modelling exercise.
Our results do not support the idea that social sensors should
partially or totally replace the existing network of physical
sensors; instead, these new data should be used to compen-
sate the lack of traditional observations. In fact, in the event
of a dense network of physical sensors, the additional infor-
mation from social sensors might not be necessary because
of the high accuracy of the hydrological observations derived
by physical sensors.

Four different case studies, the Brue (UK), Sieve (Italy),
Alzette (Luxembourg) and Bacchiglione (Italy) catchments,
are considered, and two types of hydrological models are
used. In Experiment 1 (Brue, Sieve, and Alzette catchments),
the sensitivity of the model results to the assimilation of
crowdsourced data, having different frequencies and accu-
racies, derived from a hypothetical social sensor at the catch-
ments outlet is assessed. On the other hand, in Experiment 2

(Bacchiglione catchment), the influence of the combined as-
similation of crowdsourced data, from a distributed network
of social sensors, and existing streamflow data from physi-
cal sensors, are evaluated. Because crowdsourced streamflow
data are not yet available in all case studies, realistic syn-
thetic data with various characteristics of arrival frequencies
and accuracies are introduced.

Overall, we demonstrated that results are very similar in
terms of model behaviour assimilating asynchronous data in
all case studies.

In Experiment 1, it is found that increasing the number of
crowdsourced data within the observation window increases
the model performance even if these data have irregular ar-
rival frequencies and accuracies. Moreover, data accuracy
affects the average value of NSE more than the moment in
which these data are assimilated. The noise in the NSE is re-
duced when the assimilated data are considered to have non-
periodic behaviour. In addition, the intermittent nature of the
data tends to drastically reduce the NSE of the model for dif-
ferent values of lead times. In fact, if the intervals between
the data are too large, then the abundance of crowdsourced
data at other times and places is no longer able to compen-
sate their intermittency.

Experiment 2 showed that, in the Bacchiglione catchment,
the integration of data from social sensors and a single phys-
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ical sensor could improve the flood prediction even for a
small number of intermittent crowdsourced data. In the event
that both physical and social sensors are located at the same
place, the assimilation of physical data gives the same model
improvement as the assimilation of the high number and
non-intermittent behaviour of crowdsourced data. Overall,
the integration of existing physical sensors with a new net-
work of social sensors can improve the model predictions.
Although the cases and models are different, the presented
study demonstrated that the results obtained are very similar
in terms of model behaviour assimilating asynchronous data.

Although we have obtained interesting results, this work
has some limitations. Firstly, the proposed method used to
assimilate crowdsourced data is applied to the linear parts of
hydrological models. This means that the proposed method-
ology has to be tested on models with non-linear dynamics.
Secondly, while realistic synthetic streamflow data are used
in this study, the developed methodology is not tested with
data coming from actual social sensors. Therefore, the con-
clusions need to be confirmed using real crowdsourced ob-
servations of water level. Finally, advancing methods for a
more accurate assessment of the data quality and accuracy of
data derived from social sensors need to be considered (e.g.
developing a pre-filtering module aimed at selecting only
data that have good accuracy while discarding those with low
accuracy).

Future work will be aimed at addressing the limitations
formulated above, which will allow for a better characteriza-
tion of the crowdsourced data, making them a reliable data
source for model-based forecasting.

7 Data availability
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