Measurement of the Cross Section for $e^+e^- \rightarrow \Xi^-\bar{\Xi}^+$ and Observation of an Excited Ξ Baryon

(BESIII Collaboration)

1Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2Beihang University, Beijing 100191, People’s Republic of China
3Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4Bochum Ruhr-University, D-44780 Bochum, Germany
5Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6Central China Normal University, Wuhan 430079, People’s Republic of China
7China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9Fudan University, Shanghai 200443, People’s Republic of China
10G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11GSI Helmholtzzentrum for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12Guangxi Normal University, Guilin 541004, People’s Republic of China
13Guangxi University, Nanning 530004, People’s Republic of China
14Hbangzhou Normal University, Hangzhou 310036, People’s Republic of China
15Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
16Henan Normal University, Xinxiang 453007, People’s Republic of China
17Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
18Huangshan College, Huangshan 245000, People’s Republic of China
19Hunan Normal University, Changsha 410081, People’s Republic of China
20Hunan University, Changsha 410082, People’s Republic of China
21Indian Institute of Technology Madras, Chennai 600036, India
22Indiana University, Bloomington, Indiana 47405, USA
23INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy
24INFN and University of Perugia, I-06100, Perugia, Italy
25INFN Sezione di Ferrara, I-44122, Ferrara, Italy
26University of Ferrara, I-44122, Ferrara, Italy
27Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
28Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29KVI-CART, University of Groningen, NL-9747 AA Groningen, Netherlands
30Lanzhou University, Lanzhou 730000, People’s Republic of China
31Liaoqing University, Shenyang 110036, People’s Republic of China
32Liaoning University, Shenyang 110036, People’s Republic of China
33Nanjing Normal University, Nanjing 210023, People’s Republic of China
34Nanjing University, Nanjing 210093, People’s Republic of China
35Nanjing University, Nanjing 210093, People’s Republic of China
36Nankai University, Tianjin 300071, People’s Republic of China
37Peking University, Beijing 100871, People’s Republic of China
38Shandong Normal University, Jinan 250014, People’s Republic of China
39Shandong University, Jinan 250014, People’s Republic of China
40Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
41Shanxi University, Taiyuan 030006, People’s Republic of China
42Sichuan University, Chengdu 610064, People’s Republic of China
43Southeast University, Nanjing 211100, People’s Republic of China
44Soochow University, Suzhou 215006, People’s Republic of China
45State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China

(BESIII Collaboration)
In the last decade, a series of charmonium-like states have been observed at e^+e^- colliders. The study of the production of charmonium-like states with the quantum number $J^{PC}=1^{−−}$ above the open charm threshold in $e^+e^−$ annihilations and their subsequent two-body hadronic decays provides a test for QCD calculations [1,2]. According to potential models, there are five vector charmonium states between the $1D$ state [$\psi(3770)$] and 4.7 GeV/c^2, namely, the $3S$, $2D$, $4S$, $3D$, and $5S$ states [1]. From experimental studies, besides the three well-established structures observed in the inclusive hadronic cross section [3], i.e., $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$, five new states, i.e., $\psi(4230)$, $\psi(4260)$, $\psi(4360)$, $\psi(4634)$, and $\psi(4660)$ have been reported in initial state radiation (ISR) processes, i.e., $e^+e^-\rightarrow\gamma_{\text{ISR}}\pi^+\pi^-J/\psi$ or $e^+e^-\rightarrow\gamma_{\text{ISR}}\rho^-\pi^+J/\psi$ (3686) at the BABAR [4] and Belle [5], or in direct production processes at the CLEO [6] and BESIII experiments [7]. Surprisingly, up to now, no evidence for baryon antibaryon pairs above open charm production associated with these states has been found except for the $\psi(4634)$ resonance observed in $\Lambda^+_c\bar{\Lambda}^+_c$ [8]. Although the BESIII Collaboration previously performed a search for baryonic decays of $\psi(4040)$ [9], including $\Xi^-\Xi^+_c$ final states based on a full reconstruction method, no candidates were observed. The overpopulation of structures in this mass region and the mismatch of the properties between the potential model predictions and experimental measurements make them good candidates for exotic states. Various
scenarios, which interpret one or some of them as hybrid states, tetraquark states, or molecular states [10], have been proposed.

The electromagnetic structure of hadrons, parametrized in terms of electromagnetic form factors (EMFFs) [11], provides a key to understanding QCD effects in bound states. While the nucleon has been studied rigorously for more than sixty years, new techniques and the availability of data with larger statistics from modern facilities have given rise to a renewed interest in the field, i.e., the proton radius puzzle [16]. The access to hyperon structure by EMFFs provides an extra dimension that inspires measurements of exclusive cross sections and EMFFs for baryon antibaryon pairs above open charm threshold.

The constituent quark model has been very successful in describing the ground state of the flavor SU(3) octet and decuplet baryons [3,17]. However, some observed excited states do not agree well with the theoretical prediction. It is thus important to study such unusual states, both to probe the limitation of the quark models and to spot unrevealed aspects of the QCD description of the structure of hadron resonances. Intriguingly, the Ξ resonances with strangeness $S = -2$ may provide important information on the latter aspect. Although there has been significant progress in the experimental studies of charmed baryons by the BABAR [18], LHCb [19], and Belle [20,21] Collaborations, doubly charm baryons by the LHCb Collaboration [22], doubly strange baryons by the Belle Collaboration [23], the studies of excited Ξ states are still sparse [3]. Neither the first radial excitation with spin parity of $J^P = \frac{3}{2}^+$ nor a first orbital excitation with $J^P = \frac{1}{2}^+$ have been identified. Determination of the resonance parameters of the first excited state is a vital test of our understanding of the structure of Ξ resonances, where one of candidates for the first excited state is Ξ(1690) with a three-star rating on a four-star scale [3], the second one is Ξ(1620) with one-star rating, and another excited state is Ξ(1820) with a three-star rating [3], for which the spin was previously determined to be $J = \frac{3}{2}$ [24], and subsequently the parity was determined to be negative and the spin parity confirmed to be $J^P = \frac{3}{2}^-$ by another experiment [25].

In this Letter, we present a measurement of the Born cross section and the effective form factors (EFF) [11] for the process $e^+e^- \rightarrow \Xi^- \Xi^+$, an estimation of the upper limit on $\Gamma_{ee}[\psi(4230)/\psi(4260) \rightarrow \Xi^- \Xi^+]$ at the 90% confidence level (C.L.), and the observation of an excited Ξ baryon at 1820 MeV/c^2. The dataset used in this analysis corresponds to a total of 11.0 fb$^{-1}$ of e^+e^- collision data [11] collected at center-of-mass (c.m.) energies from 4.009 to 4.6 GeV with the BESIII detector [26] at BEPCII [27].

The selection of $e^+e^- \rightarrow \Xi^- \Xi^+$ events with a full reconstruction method has low-reconstruction efficiency. Here, to achieve higher efficiency, a single baryon Ξ$^-$ tag technique is employed, i.e., only one Ξ$^-$ baryon is reconstructed by the $\pi^-\Lambda$ decay mode with $\Lambda \rightarrow p\pi^-$, and the antibaryon Ξ^+ is extracted from the recoil side (unless otherwise noted, the charge-conjugate state of the Ξ^- mode is included by default below). To determine the detection efficiency for the decay $e^+e^- \rightarrow \Xi^-\Xi^+$, 100 k simulated events are generated for each of 15 energy points in the range of 4.009 to 4.6 GeV according to phase space using the KKMC generator [28], which includes the ISR effect. The Ξ^- is simulated in its decay to the $\pi^-\Lambda$ mode with the subsequent decay $\Lambda \rightarrow p\pi^-$ via EvtGen [29], and the antibaryons are allowed to decay inclusively. The response of the BESIII detector is modeled with Monte Carlo (MC) simulations using a framework based on GEANT4 [30].

Large simulated samples of generic $e^+e^- \rightarrow$ hadrons events ("inclusive MC") are used to estimate background conditions.

Charged tracks are required to be reconstructed in the main drift chamber (MDC) with good helical fits and within the angular coverage of the MDC: $|\cos \theta| < 0.93$, where θ is the polar angle with respect to the e^+ beam direction. Information from the specific energy deposition (dE/dx) measured in the MDC combined with the time of flight (TOF) is used to form particle identification (PID) confidence levels for the hypotheses of a pion, kaon, and proton. Each track is assigned to the particle type with the highest C.L. Events with at least two negatively charged mesons and one proton are kept for further analysis.

To reconstruct Λ candidates, a secondary vertex fit is applied to all $p\pi^-$ combinations; the ones characterized by $\chi^2 < 500$ with 3 degrees of freedom are kept for further analysis. The $p\pi^-$ invariant mass is required to be within 5 MeV/c^2 of the nominal Λ mass, determined by optimizing the figure of merit $S/\sqrt{S + B}$ based on the MC simulation, where S is the number of signal MC events and B is the number of the background events expected from simulation. To further suppress background from non-Λ events, the Λ decay length is required to be greater than zero, where negative decay lengths are caused by the limited detector resolution.

The Ξ^- candidates are reconstructed with a similar strategy using a secondary vertex fit, and the candidate with the minimum value of $|M_{\Xi^-\Lambda} - m_{\Xi^-}|$ from all $\pi^-\Lambda$ combinations is selected, where $M_{\Xi^-\Lambda}$ is the invariant mass of the $\pi^-\Lambda$ pair, and m_{Ξ^-} is the nominal mass of Ξ^- from the PDG [3]. Further $M_{\Xi^-\Lambda}$ is required to be within 10 MeV/c^2 of the nominal Ξ^- mass, and the Ξ^- decay length L_{Ξ^-} (cm) is required to be greater than zero.

To obtain the antibaryon candidates Ξ^+, we use the distribution of mass recoiling against the selected $\pi^-\Lambda$ system,

$$M_{\pi^-\Lambda}^{\text{recoil}} = \sqrt{(s - E_{\pi^-\Lambda})^2 - |\mathbf{p}_{\pi^-\Lambda}|^2},$$

where $E_{\pi^-\Lambda}$ and $\mathbf{p}_{\pi^-\Lambda}$ are the energy and momentum of the selected $\pi^-\Lambda$ candidate in the c.m. system, and \sqrt{s} is the
measured in this analysis parametrized after two iterations as Ref. [33] and taking the formula used to fit the cross section factor is obtained using the QED calculation as described in cross section and EFF calculations.

The signal yields for the decay $e^+e^- \rightarrow \Xi^-\Xi^+$ at each energy point are determined by performing an extended maximum likelihood fit to the $M^{\text{recoll}}_{\pi^-\Lambda}$ spectrum in the range from 1.2 to 1.5 GeV/c^2. In the fit, the signal shape for the decay $e^+e^- \rightarrow \Xi^-\Xi^+$ at each energy point is represented by the simulated MC shape. After applying the same event selection as the data on the inclusive MC samples at each c.m. energy, it is found that few background events remain at each energy point coming from $e^+e^- \rightarrow \pi^+\pi^- J/\psi, J/\gamma \rightarrow \Lambda\Lambda$ events, and they are distributed smoothly in the region of interest and can be described by a second-order polynomial function. Figure 2 shows the $M^{\text{recoll}}_{\pi^-\Lambda}$ distributions for the decay $e^+e^- \rightarrow \Xi^-\Xi^+$ at each energy point.

The Born cross section for $e^+e^- \rightarrow \Xi^-\Xi^+$ is calculated by

$$\sigma^B(s) = \frac{N_{\text{obs}}}{2\mathcal{L}(1 + \delta)(1 - |\Pi|^2)c\mathcal{B}(\Xi^- \rightarrow \pi^-\Lambda)\mathcal{B}(\Lambda \rightarrow p\pi^-)}.$$ (2)

where N_{obs} is the number of the observed signal events, \mathcal{L} is the integrated luminosity related to the c.m. energy, $(1 + \delta)$ is the ISR correction factor [31], $1/(1 - |\Pi|^2)$ is the vacuum polarization correction factor [32], ϵ is the detection efficiency, and $\mathcal{B}(\Xi^- \rightarrow \pi^-\Lambda)$ and $\mathcal{B}(\Lambda \rightarrow p\pi^-)$ are the branching fractions taken from the PDG [3]. The ISR correction factor is obtained using the QED calculation as described in Ref. [33] and taking the formula used to fit the cross section measured in this analysis parametrized after two iterations as input. The measured cross sections and EFFs are shown in Fig. 3 and summarized in the Supplemental Material [11]. The Supplemental Material also contains the details of the cross section and EFF calculations.

A maximum likelihood method is used to fit the dressed cross section $\sigma^{\text{dressed}} = \sigma^B/[1 - \Pi]^2$, for the process $e^+e^- \rightarrow \Xi^-\Xi^+$ parametrized as the coherent sum of a power-law function plus a Breit-Wigner (BW) function for $\psi(4230)$ or $\psi(4260)$,

$$\sigma^{\text{dressed}}(\sqrt{s}) = \left| c_0 + e^{i\phi}\text{BW}(\sqrt{s}) \right|^2 \frac{P(\sqrt{s})}{P(M)}.$$ (3)
where the mass M and total width Γ are fixed to the $\psi(4230)/\psi(4260)$ resonance with PDG values [3], ϕ is the relative phase between the BW function,

$$BW(\sqrt{s}) = \frac{\sqrt{12\pi \Gamma e_e B}}{s - M^2 + iM\Gamma},$$ \hspace{1cm} (4)

and power function, n is a free fit parameter, and $P(\sqrt{s})$ is the two-body phase space factor. The $\psi(4230)$ and $\psi(4260) \to \Xi^-\Xi^+$ processes are found to be not significant. Therefore, upper limits on the products of the two-electron partial width and the branching fractions of $\psi(4230)$ and $\psi(4260) \to \Xi^-\Xi^+$ ($\Gamma e_e B$) at the 90% credible level are estimated using a Bayesian approach [34] to be $\Gamma e_e B_{\psi(4230)} < 0.33 \times 10^{-3}$ eV and $\Gamma e_e B_{\psi(4260)} < 0.27 \times 10^{-3}$ eV taking into account the systematic uncertainty described later. Here the masses and widths of $\psi(4230)$ and $\psi(4260)$ are changed by all combinations of $\pm 1\sigma$, and the estimation of the upper limits repeated. The largest ones are taken as the final results. Figure 3 shows the fit to the dressed cross section assuming the $\psi(4230)$ or the $\psi(4260)$ resonance and without resonance assumption. Including systematic uncertainties, the significance for both resonances is calculated to be $\sim 2.7\sigma$.

The EFF for $e^+e^- \to \Xi^-\Xi^+$ is calculated by the formula [11]

$$|G_{\text{eff}}(s)| = \frac{3\sigma B}{4\pi\alpha^2 C\beta \left(1 + \frac{2m_{\Xi}^2}{s}\right)^{3/2}},$$ \hspace{1cm} (5)

where α is the fine structure constant, m_{Ξ} is the mass of Ξ^-, the variable $\beta = \sqrt{1 - (1/\tau)}$ is the velocity, $\tau = s/4m_{\Xi}^2$, and the Coulomb correction factor C [14] parametrizes the electromagnetic interaction between the outgoing baryon and antibaryon. For neutral baryons, the Coulomb factor is unity, while for pointlike charged fermions $C = (\pi\alpha/\beta) \cdot (\sqrt{1 - \beta^2}/1 - e^{-\pi\alpha/\beta})$ [35–37]. Figure 3 shows the measured EFFs of $e^+e^- \to \Xi^-\Xi^+$.

Based on the selected data for the sum of 15 energy points, an excited Ξ baryon is observed in the $M_{\Xi^-\Lambda}$ range from 1.6 to 2.1 GeV/c^2. Figure 4 shows a fit to the recoil mass spectrum of $\Xi^-\Lambda$, where the signal is described by a BW function convolved with a double Gaussian function, and the background is described by a 2nd order Chebyshev polynomial, where the resolution width of Gaussian function is fixed according to the MC simulation. The number of signal events is 288^{+125}_{-85}, and the mass and width are measured to be $M = (1825.5 \pm 4.7)$ MeV/c^2 and $\Gamma = (17.0 \pm 15.0)$ MeV, where the uncertainties are statistical only. The statistical significance of the 1820 MeV/c^2 resonance is estimated to be 6.2–6.5σ with including the systematic uncertainty.
alternative fits with a third- or a first-order polynomial function. The mass resolution is studied by varying the nominal signal shape convolved with a Gaussian function, and the yield difference is taken as a systematic uncertainty, which is 4.0%. The effect due to the signal shape is studied by varying the resolution in the convolution of the Breit-Wigner with a Gaussian function. This gives an uncertainty of 3.2%. The effect of the MC statistics on the used signal shape is studied by using a MC sample with only 10% of the events compared to the nominal fit, and the uncertainty is 0.5%. Assuming all sources to be independent, the total systematic uncertainty on the cross section measurement for \(e^+e^- \to \Xi^-\bar{\Xi}^+ \) is determined to be 12.7% by the quadratic sum of these sources.

Systematic uncertainties on the measurements of the mass and width for the excited \(\Xi \) state mainly originate from the fit range, the background shape, the mass resolution, and the signal shape. The fit range, the background, and signal shapes are studied with the same method as above with mass uncertainties of 1.5, 1.3, and 1.9 MeV/c^2, and width uncertainties of 5.6, 3.4, and 4.5 MeV, respectively. The mass uncertainty due to the mass resolution is determined to be 3.8 MeV/c^2 by calibrating the resolution difference in the \(\Xi^- \) mass region with the full data sample. The total systematic uncertainties of mass and width are calculated to be 4.7 MeV/c^2 and 7.9 MeV, respectively, by summing independent systematic sources in quadrature.

In summary, using a total of 11.0 fb^{-1} of \(e^+e^- \) collision data above the open-charm threshold collected with the BESIII detector at the BEPCII collider, we have studied the process \(e^+e^- \to \Xi^-\bar{\Xi}^+ \) based on a single baryon tag technique. We have measured fifteen exclusive Born cross sections and EFFs in the range from 4.009 to 4.6 GeV/c^2, where the form factors for the process \(e^+e^- \to \Xi^-\bar{\Xi}^+ \) have not been previously measured due to limited statistics. A fit to the dressed cross section for \(e^+e^- \to \Xi^-\bar{\Xi}^+ \) with the assumptions of a power-law dependence for continuum plus a \(\psi(4230) \) or \(\psi(4260) \) resonance is performed, and no significant signal for the processes \(\psi(4230) \) or \(\psi(4260) \to \Xi^-\bar{\Xi}^+ \) is observed. The upper limits on the products of the electronic partial width and the branching fractions of \(\psi(4230) \) and \(\psi(4260) \to \Xi^-\bar{\Xi}^+ \) are measured to be \(\Gamma_{ee}B_{\psi(4230)} < 0.33 \times 10^{-3} \text{ eV} \) and \(\Gamma_{ee}B_{\psi(4260)} < 0.27 \times 10^{-3} \text{ eV} \) at 90% C.L., which may help to understand the nature of \(\psi(4260) \) [40,41]. In particular, charmless decays of the \(\psi(4260) \) are expected by the hybrid model [41]. In addition, an excited \(\Xi \) baryon at \(1820 \text{ MeV/c}^2 \) is observed with a statistical significance of 6.2–6.5σ by including the systematic uncertainty, and the mass and width are measured to be \(M = (1825.5 \pm 4.7 \pm 4.7) \text{ MeV/c}^2 \) and \(\Gamma = (17.0 \pm 15.0 \pm 7.9) \text{ MeV} \), which are consistent with the mass and width of \(\Xi(1820)^- \) obtained from the PDG [3] within 1σ uncertainty. The results shed light on the structure of hyperon resonances with strangeness \(S = -2 \).