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Abstract: The Vestgötabreen Complex exposed in the Southwestern Caledonian Basement Province of
Svalbard comprises two Caledonian high-pressure units. In situ white mica 40Ar/39Ar and monazite
Th-U-total Pb geochronology has resolved the timing of the tectonic evolution of the complex.
Cooling of the Upper Unit during exhumation occurred at 476 ± 2 Ma, shortly after eclogite-facies
metamorphism. The two units were juxtaposed at 454 ± 6 Ma. This was followed by subaerial
exposure and deposition of Bullbreen Group sediments. A 430–400 Ma late Caledonian phase of
thrusting associated with major sinistral shearing throughout Svalbard deformed both the complex
and the overlying sediments. This phase of thrusting is prominently recorded in the Lower Unit, and is
associated with a pervasive greenschist-facies metamorphic overprint of high-pressure lithologies.
A c. 365–344 Ma geochronological record may represent an Ellesmerian tectonothermal overprint.
Altogether, the geochronological evolution of the Vestgötabreen Complex, with previous petrological
and structural studies, suggests that it may be a correlative to the high-pressure Tsäkkok Lens in the
Scandinavian Caledonides. It is suggested that the Vestgötabreen Complex escaped to the periphery of
the orogen along the sinistral strike-slip shear zones prior to, or during the initial stages of continental
collision between Baltica and Laurentia.

Keywords: Caledonian Orogeny; Vestgötabreen Complex; in situ white mica 40Ar/39Ar geochronology;
monazite Th-U-total Pb geochronology; exhumation of high-pressure rocks; high-Arctic plate tectonics

1. Introduction

The northwestern sub-aerial exposure of the Barents Shelf, the Svalbard archipelago, provides
an intricate record of tectonism from the Proterozoic to the Neogene [1–4] and is a vital locality for
high-Arctic plate tectonic reconstructions. Two prominent Paleozoic tectonic events were recorded on
Svalbard, the Caledonian Orogeny and the Ellesmerian Orogeny [4]. The most prominent of the two
Paleozoic events is the Caledonian Orogeny, which encompasses subduction of oceanic lithosphere as
early as the late Cambrian to the final collision stages of the orogeny from the early Silurian through
Early-to-Middle Devonian [5,6]. This orogen is regarded to be responsible for the assembly of three
crystalline Caledonian Basement Provinces that now collectively comprise Svalbard (Figure 1) [2,7,8].
Some of the most well-studied rocks pertaining to the subduction history of the Caledonian Orogeny
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belong to the Upper and Lower units of the Vestgötabreen Complex. This complex is exposed
along the length of Oscar II Land in the Southwestern Caledonian Basement Province (SCBP) and
is considered exotic in relation to the surrounding rocks [7]. Detailed petrological and structural
studies have been conducted to decipher the evolution of the high-pressure (HP) lithologies, yet the
geochronological record is severely lacking. In particular, no geochronological studies have targeted
HP rocks of the Lower Unit. Such geochronological data is required to place the pressure–temperature
and structural history of the HP rocks into a greater geodynamic context for the Caledonian Orogeny
and to establish tectonic correlations. The subordinate event, the Late Devonian to early Carboniferous
Ellesmerian Orogeny, is only well-documented in a few localities in Svalbard [9–12]. However, recent
work is beginning to expand the coverage of Ellesmerian tectonism across more of Svalbard [13,14].
The identification of the Ellesmerian record of tectonism in new regions of Svalbard is crucial for
Paleozoic plate tectonic reconstructions.

This study presents geochronological datasets from the Vestgötabreen Complex exposure at
the Motalafjella nunatak (Figure 1). In situ white mica 40Ar/39Ar geochronology was applied to HP
lithologies from both Upper and Lower units. In addition, the results of monazite Th-U-total Pb
geochronology from greenschist-overprinted blueschist-facies rocks of the Lower Unit is presented.
Collectively, these geochronological data, interpreted in the context of previous petrological and
structural studies, presents a detailed history of tectonism for the HP Vestgötabreen Complex from
exhumation in the Early Ordovician to continental collision in the Silurian, as well as possible Late
Devonian to early Carboniferous overprint of the Ellesmerian Orogeny.

Figure 1. (A) Simplified map of Svalbard showing the exposures of the Caledonian Basement Terranes
and the major strike-slip bounding faults, after Gee and Teben’kov [2]. (B) Geological bedrock map
of the Vestgötabreen Complex and overlying Bullbreen Group sedimentary cover from Motalafjella
nunatak towards the northwest in Oscar II Land, after Ohta et al. [15]. Representative orientations
of the foliation planes and the location of the syncline axis are displayed after Labrousse et al. [16].
The areas in which samples were obtained are enlarged for clarity. Abbreviations: BFZ, Billefjorden
Fault Zone; LFZ, Lomfjorden Fault Zone, OIIL, Oscar II Land; PKF, Prins Karls Forland.

2. Geological Background

The crystalline rocks on Svalbard record a multi-phase deformational history that was recorded
in three Caledonian Basement Provinces that were amalgamated along major strike-slip boundaries
during the Caledonian Orogeny (Figure 1) [1,2,7,8,17–19]. Within these provinces, two prominent
Paleozoic tectonic events were recorded: (1) the late Cambrian to Early Devonian Caledonian Orogeny,
and (2) the Late Devonian to early Carboniferous Ellesmerian Orogeny. The structures related to these
events are commonly overprinted by Eocene Eurekan tectonism [4,20,21]. In the SCBP, a suite of HP
Caledonian rocks, collectively known as the Vestgötabreen Complex [22], are exposed in Oscar II Land
and possibly continue southwards through Nordenskiöld Land [23]. This complex is best exposed
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within the Motalafjella nunatak [15,22,24–26] where it is divided into two structural units separated by
a SW-dipping thrust [15]. The two units are termed the “Upper Unit” and the “Lower Unit”. Both units
bear HP assemblages [24]. The Upper Unit consists of garnet-bearing blueschist and eclogite lenses
within schists of various composition, whereas the Lower Unit comprises of lenses of blueschists,
metapelites, calc-schists, and green and black phyllites [24,25,27,28]. Eclogite is notably absent within
the Lower Unit.

A detailed structural investigation of the Vestgötabreen Complex at Motalafjella was conducted by
Labrousse et al. [16]. In both of the Upper and Lower units, the schistosity is parallel to the bounding
thrust. In the Upper Unit, very localized top-to-S shear sense is observed and most of the stretching
markers are symmetrical. In contrast, more pervasive, top-to-S sense of shear are recorded in the Lower
Unit. Proximal to the bounding thrust in both units, the shear sense becomes top-to-N. Lineations in
both units are oriented approximately in the NNE-SSW direction. An unconformable contact between
the underlying Lower Unit and the overlying Bullbreen Group has been identified in the field [29],
which is of late Ordovician to early Silurian age [30–32]. However, the contacts between the Upper
Unit and the Bullbreen Group are all observed to be thrusts. Both Upper and Lower units are folded
together with the Bullbreen Group around an approximate NE–SW axis into a recumbent syncline [16].
The bounding thrust of the units and the syncline exhibit the same vergence.

Pressure-temperature (P-T) estimates for the Upper Unit, derived from eclogites, have been
estimated at 18–24 kbar and 575–645 ◦C [33] by the Fe/Mg distribution between garnet and clinopyroxene
that is in equilibrium with jadeite and quartz. In contrast to the Upper Unit, the carpholite-bearing
rocks of the Lower Unit have yielded lower temperature and pressure conditions of 15–16 kbar and
380–400 ◦C [34] using a combination of thermobarometers. The Nordenskiöld Land locality provided
similar estimates of 14–18 kbar and 470–490 ◦C obtained from conventional thermobarometry based
on garnet, phengite and ferroglaucophane compositions [23].

Geochronological studies that were previously conducted on the Vestgötabreen Complex have
all targeted the Upper Unit at Motalafjella. The timing of HP metamorphism for the Upper
Unit has been resolved to 476 ± 30 Ma determined by a Pb-loss event of zircon in eclogite [35].
Horsfield [24] pioneered the first geochronological investigations. Their study provided whole-rock
K-Ar dates of 402 ± 14 Ma and 428 ± 24 Ma from a garnet-glaucophane-muscovite schist and a
quartz-muscovite-garnet schist, respectively [24]. The c. 402 and 428 Ma dates were interpreted as
a late Caledonian tectonothermal overprint. Dallmeyer et al. [36] conducted white mica 40Ar/39Ar
step-heating analyses, producing variably discordant 40Ar/39Ar date spectra. They interpreted plateau
dates that varied from 452.9 ± 2.3 Ma to 475.1± 1.7 Ma as cooling ages, and also inferred a c. 425–400 Ma
low-grade thermal (≤425 ◦C) overprint recorded in the white mica [36]. In the broader region of
northern and central Oscar II Land, Michalski et al. [14] reported in situ white mica and biotite 40Ar/39Ar
dates of c. 426–380 Ma, interpreted to record Caledonian metamorphism [14].

The evidence for deformation pertaining to the Ellesmerian Orogeny has historically been
recognized within and along the margins of the Devonian Old Red Sandstone basin of central-northern
Svalbard (Figure 1) [4,9–12]. However, recent investigations of the Pinkie Unit on Prins Karls Forland
have established it as a relic of the Ellesmerian Orogeny (Figure 1) [13]. The Pinkie Unit comprises
an amphibolite-facies metasedimentary succession. Conventional thermobarometry, coupled with
Quartz-in-garnet barometry and trace element thermometry, yielded P-T conditions of c. 7–10 kbar
and ~550–650 ◦C [13] for the unit. The timing of metamorphism has been resolved with monazite
Th-U-total Pb geochronology, yielding a prograde-to-peak evolution from c. 373 Ma to c. 355 Ma [13]
with an upper boundary shear zone of Ellesmerian age [37]. Discovery of this locality has extended the
evidence for Ellesmerian tectonism across Svalbard. More recently, Michalski et al. [14] also reported
40Ar/39Ar dates of c. 377–326 Ma from Oscar II Land and interpreted these to represent an Ellesmerian
thermal overprint [14].
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3. Vestgötabreen Complex Samples

A total of eleven samples targeted geochronological investigations using either in situ white
mica 40Ar/39Ar geochronology, monazite Th-U-total Pb geochronological analysis, or both (Figure 1,
Table 1). Five of the samples were obtained from the Upper Unit and the remaining six were from
the Lower Unit of the Vestgötabreen Complex exposed at Motalafjella. The five samples from the
Upper Unit constituted high-pressure lithologies with rock fabrics that clearly developed during
HP (i.e., blueschist facies) metamorphism (Figure 2). Of these five rocks, one could be classified
as a garnet-white mica schist (MIK18-01). This rock preserves a strong foliation that is defined by
alternating layers of white mica and chlorite (Figure 2A). Garnet within this rock were up to 500 µm
in diameter and were partially retrogressed to chlorite. The garnet-white mica schists constituted
the host rocks for the blueschists in the Upper Unit [25]. Three blueschists hosted in the mica schists
were sampled. The blueschists could be described as quartz-bearing, well-foliated with sparse white
mica grains that were parallel to the main foliation defined by glaucophane (MIK18-02; Figure 2B),
quartz-absent well-foliated with abundant, large white mica grains that were also parallel to the
foliation (MIK18-06A; Figure 2C), or massive blueschists with large clusters of seemingly randomly
oriented white mica grains (MIK18-07A). In all three samples, chloritoid porphyroblasts were abundant
but were often partially replaced by chlorite. A minor amount of calcite was also recognized. In the
well-foliated blueschists, the garnet was up to 1 mm in diameter and was only partially replaced
by chlorite along their margins. Garnet was absent in the massive blueschist. Chlorite could also
be observed in association with white mica in all of the samples. Relic lawsonite was preserved
in MIK18-06A (Figure 2B), whereas very fine-grained polymineralic pseudomorphs after lawsonite
could be observed in MIK18-07A. The lawsonite pseudomorphs in the latter were randomly oriented
(Figure 2C). The final sample of the Upper Unit was a well-foliated schistose marble (SN18-14) obtained
close to the thrust bounding the two units (Figure 1). The foliation in the marble was easily recognized
by the elongation of white mica grains that were sometimes slightly bent and kinked (Figure 2D).
Bands of very fine-grained calcite were parallel to the elongation of the white mica, and separate lenses
of coarse-grained calcite (Figure 2D).

In the Lower Unit, the majority of the samples were obtained from the phyllite lithologies that
dominated the exposure (SN18-05A, -06, -11B, -12). These rocks have strong foliations that were
defined by fine-grained white mica and chlorite, as well as recrystallized quartz ribbons (Figure 2E,F).
These rocks were altogether devoid of garnet, chloritoid, glaucophane and lawsonite. A sample of
a retrogressed blueschist was obtained from the Lower Unit (SN18-09B). This rock had a moderate
foliation predominantly defined by white mica, quartz ribbons and sparse chlorite. Remnants of
glaucophane were somewhat aligned with the foliation, but some orientations were observed to be at
low-to-moderate angles with respect to the foliation (Figure 2G). Small, rare chloritoid grains were also
present but were pervasively retrogressed to chlorite. Very fine-grained polymineralic pseudomorphs
after lawsonite were present throughout the sample. The final sample was obtained proximal to the
contact of the Lower and Upper Units (MIK18-03A; Figure 1), near to the unconformably overlying
Bullbreen Group. This sample had a strongly brecciated fabric with a heterogenous size distribution
of angular clasts within a fine-grained matrix. The clasts had predominantly massive fabrics and
were composed of coarse-grained quartz and calcite. However, some of the clasts were composed of
white mica and chlorite that defined a strong foliation and were sometimes crenulated (Figure 2H).
These clasts strongly resembled the lithologies of the Lower Unit phyllites.
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Figure 2. Microphotographs of both the Upper Unit (A–D) and Lower Unit (E–H) lithologies. (A) The
foliation of the garnet-white mica schist that is defined by white mica and chlorite interlayers. (B)
Representation of the high-pressure mineral assemblage. Isolated white mica grains are parallel to
the foliation that is defined by the alignment of glaucophane. Chloritoid is partially decomposed to
chlorite and lawsonite is partially decomposed to fine-grained polymineralic aggregates. (C) Mineral
assemblage of the massive blueschists. Glaucophane, chloritoid and lawsonite pseudomorphs are
randomly oriented. White mica is typically found as large clusters of randomly oriented grains,
sometimes slightly bent or kinked. (D) Coarse (lower left) and fine-grained calcite textures of the
Upper Unit schistose marbles. The foliation is easily identified by the orientations of white mica,
which are slightly kinked and bent. White mica can be found in both coarse and fine-grained domains.
The fine-grained layers are oriented parallel to the dominant orientation of white mica. (E,F) Phyllitic
foliation of the Lower Unit consisting of very finely interlayered white mica and chlorite. Quartz
bands are also oriented parallel to the main foliation. Monazite spatially associated with chlorite in
the phyllitic foliation. (G) Retrogressed blueschist with a foliation defined by white mica and quartz
with sparse chlorite grains. Remnants of glaucophane are present and moderately aligned with the
foliation. Pseudomorphs after lawsonite are distinguished based on their shape. (H) Breccia obtained
from the Lower Unit. The angular clasts are composed of quartz-dominated compositions (i.e., left side
of photo), calcite-dominated (not depicted) and well-foliated white mica-chlorite interlayers (i.e., right
side of photo) that are internally deformed and strongly resemble phyllitic lithologies of the Lower Unit
(e.g., microphotograph F). Abbreviations: Cal, calcite; Chl, chlorite; Ctd, chloritoid; Gln, glaucophane;
Grt, garnet; Lws, lawsonite; Wm, white mica; Qz, quartz.
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Table 1. Summary of geochronological results for all samples.

Sample
Name Rock Type Coordinates 1

Number
of Wm 2

Analyses

40Ar/39Ar
Date Range

40Ar/39Ar
Date

Populations 3

Number
of Mnz 4

Analyses

Th-U-Total Pb
Date Range

Th-U-Total Pb
Date

Populations 3

Upper Unit

MIK18-01 Garnet-white
mica schist

78◦26′23.09”N;
12◦53′06.03”E 9 c. 498 Ma and

c. 481–473 Ma

493 ± 7 Ma;
476 ± 2 Ma;
440 ± 6 Ma

N/A N/A N/A

MIK18-02 Well-foliated
Blueschist

78◦26′28.08”N;
12◦53′06.03”E 9 c. 490–471 Ma N/A N/A N/A

MIK18-06A Well-foliated
Lws-blueschist

78◦26′28.00”N;
12◦52′55.06”E 8 c. 483–474 Ma N/A N/A N/A

MIK18-07A Massive
Lws-blueschist

78◦26′27.05”N;
12◦53′10.08”E 8

c. 498–491 Ma
and

c. 478–468 Ma
N/A N/A N/A

SN18-14 Schistose marble 78◦25′33.38”N;
12◦52′51.39”E 7 c. 447–431 Ma N/A N/A N/A

Lower Unit

SN18-06 Phyllite 78◦25′13.59"N;
12◦53′35.31"E N/A N/A N/A 28 c. 294–607 Ma

585 ± 44 Ma;
495 ± 27 Ma;
410 ± 10 Ma;
344 ± 15 Ma

MIK18-03B Brecciated white
mica schist

78◦26′28.06"N;
12◦53′14.04"E 7 c. 458–445 Ma

and c. 395 Ma

454 ± 6 Ma;
426 ± 4 Ma;
398 ± 6 Ma;
365 ± 11 Ma

N/A N/A N/A

SN18-05A Phyllite 78◦25′14.33"N;
12◦53′26.66"E 10 c. 463–363 Ma 55 c. 303–607 Ma

595 ± 30 Ma;
523 ± 22 Ma;
434 ± 14 Ma;
394 ± 7 Ma;
344 ± 24 Ma

SN18-09B Retrogressed
blueschist

78◦25′17.79"N;
12◦54′16.84"E 9 c. 466–423 Ma N/A N/A N/A

SN18-11B Phyllite 78◦25′20.93"N;
12◦54′31.55"E 9 c. 429–364 Ma N/A N/A N/A

SN18-12 Phyllite 78◦25′31.10"N;
12◦53′46.48"E 8 c. 487 Ma and

c. 433–406 Ma 28 c. 319–529 Ma
485 ± 23 Ma;
409 ± 11 Ma;
345 ± 32 Ma

1 Using WGS 84 geographic coordinate system; 2 Abbreviation: white mica; 3 Age populations calculated using the
Gaussian deconvolution method; 4 Abbreviation: monazite.

4. In situ White Mica 40Ar/39Ar Geochronology

4.1. Methods

A total of ten samples were dated from the Vestgötabreen Complex at Motalafjella: five from
the Upper Unit, and five from the Lower Unit. These samples were mainly chosen according to the
presence and quality of white mica, lithology, and their structural positions with regard to the main
bounding thrust. Thick sections (~500 µm thick) were made from the samples and glued to glass plates
using Superglue™. The areas of interest for in situ white mica 40Ar/39Ar geochronology were selected
and photographed using back-scattered electron (BSE) imaging and mapped for major elements (Si, Al,
Mg, Fe, K) using wavelength-dispersive spectrometry (WDS) with an electron microprobe (Figure 3).
The WDS geochemical mapping was conducted using the JEOL JXA8530F field-emission electron
microprobe (EMP) at Uppsala University (Uppsala, Sweden). The analytical conditions for the maps
were 15 KeV and 200 nA.

The thick sections were re-polished after geochemical mapping to remove the carbon coating.
The target areas of interest were cut from the thick sections into squares of 1 cm2 and subsequently
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removed from the glass plate using acetone to dissolve the adhesive. The samples were placed in
2 mm deep wells in 18 mm diameter aluminium disks, with reference material placed surrounding the
unknowns to evaluate the lateral neutron flux gradients across the disk and unknowns. The reference
materials were Fish Canyon sanidine (28.2 Ma) [38] and GA1550 biotite (98.5 Ma) [39]. All specimens
were irradiated for 24 h in the cadmium-lined, in-core CLICIT facility of the Oregon State University
TRIGA reactor. Planar regressions were fit to the reference data, and the 40Ar/39Ar neutron fluence
parameter, J, was interpolated for the unknowns.

Figure 3. Electron microprobe (WDS) chemical maps of Si for samples of the upper (A–D) and Lower
Unit rocks (E–H). (A,B) White mica grains from the foliated blueschists. (C) A bundle of white mica
from the massive blueschist. (D) White mica from the schistose marble. (E) White mica that defines
the foliation of the phyllite proximal to the bounding thrust of the two units. (F,G) White mica grains
that define the foliations of phyllitic rocks distal from the bounding thrust. (H) White mica within
well-foliated micaceous clasts in the breccia from the Lower Unit. All maps are presented according to
the lower scale of Si counts. Abbreviations: Wm, white mica.

In situ intragrain fusion 40Ar/39Ar analytical work was performed at the University of Manitoba
(Winnipeg, MB, Canada) using a multi-collector Thermo Fisher Scientific ARGUS VI mass spectrometer,
linked to a stainless steel Thermo Fisher Scientific extraction/purification line, and Photon Machines
(Analyte Excite) 193 nm laser. Argon isotopes (from mass 40 to 37) were measured using Faraday
detectors with low noise 1 × 1012 Ω resistors and mass 36 was measured using a compact discrete
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dynode (CDD) detector. The sensitivity for argon measurements was ~6.312 × 1017 moles/fA as
determined from measured aliquots of Fish Canyon Sanidine [38,40]. The standards were placed in a
Cu sample tray, with a KBr cover slip, in a stainless steel chamber with a differentially pumped ZnS
viewport attached to a Thermo Fisher Scientific extraction/purification line and baked with an infrared
lamp for 24 h.

The Vestgötabreen Complex samples were mounted using a ceramic adhesive (PELCO®) on a
quartz slide placed in a stainless steel chamber with a sapphire viewport attached to a stainless steel
high vacuum extraction system and baked with an infrared lamp for 48 h. For this study, a raster size
of about 100 × 100 µm or 50 × 200 µm was used, depending on the shape of the white mica grain.
Both BSE images and the geochemical maps were used for designation of the analytical placements.
Analytical targets were placed according to both EMPA mapped locations, and also locations that were
not mapped, but for which BSE images were acquired. In accordance with the WDS analyses, the
locations for the in situ 40Ar/39Ar analyses were also in the central domains. This was done to avoid
possible zoning of the white mica due to localized biotite or chlorite replacement of the white mica.
Reactive gases were removed for both the reference standards and Tsäkkok Lens samples, after 3 min,
by three NP-10 SAES getters (two at room temperature and one at 450 ◦C) prior to being admitted
to the mass spectrometer by expansion. Five argon isotopes were measured simultaneously over a
period of 6 min. Measured isotope abundances were corrected for extraction-line blanks, which were
determined before every sample analysis. Mass discriminations were monitored by online analysis
of air pipettes. A value of 295.5 was used for the atmospheric 40Ar/36Ar ratio [41] for the purposes
of routine measurement of mass spectrometer discrimination using air aliquots, and correction for
atmospheric argon in the 40Ar/39Ar age calculation. Corrections were made for neutron-induced 40Ar
from potassium, 39Ar and 36Ar from calcium, and 36Ar from chlorine [42–44]. Data collection was
performed using Pychron [45] and data reduction, error propagation, age calculation and plotting
were performed using MassSpec software (Version 8.091) [46]. The decay constants used were those
recommended by Steiger and Jäger [41].

4.2. Results

The WDS major element maps revealed that the white mica grains of the Upper Unit had a fairly
homogenous mineral chemistry and the major element components were relatively similar amongst all
samples with the exception of sample MIK18-06, which showed lower Si content (Figure 3). In contrast,
the white mica of the Lower Unit was observed to be chemically heterogeneous (Figure 3).

A total of 84 analyses were obtained from the ten samples (Table 1). All analyses had >92% 40Ar*
and did not show elevated Ca/K nor Cl/K ratios (Table S1). Forty-one analyses were conducted on the
chemically homogeneous white mica of the Upper Unit. The collective results ranged from 499 ± 3 Ma
to 431 ± 2 Ma (Figure 4). The majority of the dates clustered between c. 483–468 Ma. There were no
observed correlations between the dates yielded and respective mineral chemistry (e.g., Si). The four
samples that recorded the cluster comprised blueschists and garnet-white mica schists, whereas the
younger dates (i.e., below c. 468 Ma) were obtained from the schistose marble (SN18-14). To resolve
the populations from the dispersion in data, we utilized the Gaussian deconvolution statistical method.
For this method, numerous iterations were conducted to calculate populations. For every iteration, the
number of components was increased by one, relative to the previous iteration. The final populations
were obtained either when the relative misfit failed to decrease significantly or until two population
components were nearly the same [47]. Uncertainties calculated for the populations by Gaussian
deconvolution were derived by the internal uncertainties of the dataset and did not account for the
scatter in the data. In order to avoid underestimating the uncertainties, and thus overinterpreting
the dataset, we developed an uncertainty equation to increase each uncertainty. The equation was
exponential and weighted according to the amount of data points represented by each population
(i.e., the population fraction multiplied by total number of points for the Gaussian deconvolution).
Therefore, the uncertainties reported here were influenced by the fraction of analyses for a given
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population and also accounted for the scatter in the data. A full description of the equation and
comparison to the datasets can be found in Appendix A (Table A1). Consequently, the populations were
as follows, with the fraction of each population reported in brackets: 493 ± 7 Ma (0.14), 476 ± 2 Ma
(0.69), 440 ± 6 Ma (0.17). The single outlier analysis from sample MIK18-03A, yielding 395 ± 2 Ma, was
not included in the calculations of the populations.

Figure 4. Results of in situ white mica 40Ar/39Ar geochronology from the Upper Unit (top) and the
Lower Unit (bottom). The left diagrams show the individual dates (±1σ uncertainty) organized from
oldest to youngest. The right side depicts histograms of the samples with corresponding relative
frequency curves. The populations were derived by Gaussian deconvolution of each entire sample
dataset. The grey bars represent the uncertainty of each population that has been attributed geological
significance. Interpretations of each population are presented within the grey bars.

The chemically heterogeneous white mica from the five samples of the Lower Unit showed a
much larger dispersion in 40Ar/39Ar dates from 466 ± 3 Ma to 363 ± 2 Ma (Figure 4) with one outlier
of 487 ± 2 Ma (Table S1). Due to the very large scatter in the collective dataset, we also applied
the Gaussian deconvolution method to the results of the Lower Unit, with uncertainties applied as
described in Appendix A (Table A1). The populations (with population fraction) were: 454 ± 6 Ma
(0.36), 426 ± 4 Ma (0.36), 398 ± 6 Ma (0.21), and 365 ± 11 Ma (0.07). The single date of 487 ± 2 Ma from
sample SN18-12 was not included in the calculation of the populations.

5. Monazite Th-U-Total Pb Geochronology

5.1. Methods

Three samples from the Lower Unit were chosen for monazite Th-U-total Pb geochronology
(SN18-05A, -06, -12). These samples were all phyllitic with a dominant mineral assemblage of white
mica and chlorite (Figure 2E,F). Monazite grains were identified using BSE imaging with the JEOL
JXA8530F electron microprobe at Uppsala University (Uppsala, Sweden). Monazite in all three samples
was almost always enclosed in or spatially associated with chlorite grains and bundles (Figure 5).
In SN18-05A and SN18-12, an REE-bearing precursor to the monazite was not recognized, however,
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in SN18-06 the monazite is often nucleated on coarse florencite grains. Monazite in all three samples
showed irregular shapes, often with numerous small grains in proximity, resembling archipelagos
(Figure 5A). The internal domains of the monazite exhibited a porous-texture in all samples (Figure 5).
In SN18-12, textural zoning was observed with non-porous overgrowths around porous cores in some
of the monazite grains. Minor volumes of thorite were also identified in close spatial association with
monazite (Figure 5).

Figure 5. Back-scattered electron images of monazite showing representative textures and relations
with other minerals. (A–C) Depictions of monazite for sample SN18-05A. Monazite is typically found
as ‘archipelagos’ of irregularly shaped monazite in close spatial association with chlorite that is aligned
with the foliation. Internally, the monazite exhibits a very porous texture. (D–F) Monazite of sample
SN18-06 nucleating on grains of florencite. These grains are also associated with chlorite and show
porous internal textures. (G–I) Monazite from sample SN18-12. These monazite grains are closely
linked with chlorite in the main foliation and sometimes show textural zoning with porous cores
surrounded by non-porous rims. No distinction in dates were obtained between the textural cores and
rims. Abbreviations: Chl, chlorite; Fc, florencite; Mnz, monazite; Qz, quartz; Wm, white mica.

Standard 30µm thin sections were prepared and carbon-coated for geochronological analysis using
a JEOL JXA-8230 electron microprobe at the Institut des Sciences de la Terre (ISTerre) in Grenoble, France.
The analyses followed a protocol similar to that described in Grand’Homme et al. [48]. The probe
current was set to 15 KeV and 200 nA and a thick carbon coating of 55–60 nm was used. Counting
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times for U, Th and Pb of 160, 300 and 480 s were used for monazite. Standard of Madagascar [48]
was run as an unknown (three points) regularly during the analyses. The uncertainties (2σ) of the
microprobe measurements of monazite were 60–170 ppm, 140–230 ppm, 60–170 ppm for U, Th and Pb,
respectively. The uncertainties for every date were propagated from these values by a Monte-Carlo
simulation using NiLeDAM software (Version 0.1) [49,50]. If the analytical uncertainty provided for
each individual date was <2%, then an uncertainty of 2% was applied [51].

5.2. Results

A collective total of 111 analyses conducted on monazite from three Lower Unit samples are
presented (Table 1). These analyses have a total oxide wt % of 98–102, P2O5 wt % < 27, and SiO2 wt %
< 1.8 (Figure 6, Table S2). The results for all three samples showed a very large dispersion in dates from
c. 607 to c. 294 Ma (Figure 7). No chemical trends between dates and mineral chemistry were observed
for SN18-05A (Figure 6). For samples SN18-06 and SN18-12, a mild correlation between decreasing
Y2O3 and decreasing dates were observed (Figure 6). The latter sample also showed the same trend
with ThO2, whereas the former did not show a clear trend with ThO2 vs. dates. The textural zoning of
sample SN18-12 did not yield discernable date populations. Overall, the monazite chemistry vs. date
plots did not show distinct chemical nor date groups for any of the samples (Figure 6). As a result,
monazite chemistry was not regarded as a reliable parameter for defining the date populations within
this dataset. Instead, date populations were investigated through statistical means. Weighted averages
of each of the three datasets resulted in high mean square weighted deviation (i.e., SN18-05A, MSWD:
148; SN18-06, MSWD: 220; SN18-12, MSWD: 52), which suggested that more than one population
was present in each sample. As a result, the Gaussian deconvolution method (as described above)
was utilized to derive statistical populations from the samples (Figure 7). For sample SN18-05A,
the calculated populations (with population fraction) were: 344 ± 24 Ma (0.14), 394 ± 7 Ma (0.39),
434 ± 14 Ma (0.19), 523 ± 22 Ma (0.16), and 595 ± 30 Ma (0.11). Sample SN18-06 produced populations
of: 344 ± 15 Ma (0.25), 410 ± 10 Ma (0.43), 495 ± 27 Ma (0.18), and 585 ± 44 Ma (0.14); Finally, sample
SN18-12 yielded: 345 ± 32 Ma (0.26), 409 ± 11 Ma (0.52), and 485 ± 23 Ma (0.21). Calculation of the
uncertainties for the calculated populations can be found in Appendix A (Table A1).

Figure 6. Cont.
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Figure 6. Monazite chemistry plots vs. Th-U-total Pb dates for ThO2 (left side) and Y2O3 (right side)
for all three samples. No trends were observed for SN18-05A or ThO2 vs. dates of sample SN18-06A.
A slight decrease of Y2O3 was observed with decreasing dates for sample SN18-06. The same trends
were noted for both ThO2 and Y2O3 vs. dates for SN18-12.

Figure 7. Results of monazite Th-U-total Pb geochronology of samples SN18-05A (top), SN18-06
(middle) and SN18-12 (bottom). The left diagrams show the individual dates (±2σ uncertainty)
organized from oldest to youngest. The right side depicts histograms of the samples with corresponding
relative frequency curves. The populations were derived by Gaussian deconvolution of each entire
sample dataset. The grey bars represent the uncertainty of each population that has been attributed
geological significance. Interpretations of each population are presented within the grey bars.

6. Discussion

6.1. Extraneous 40Ar and Cooling Recorded in the Upper Unit White Mica

The oldest 40Ar/39Ar populations from the Upper Unit (493 ± 7 Ma, 476 ± 2 Ma) both overlapped
with the imprecise age for eclogite-facies metamorphism of 476 ± 30 Ma (Figure 4) [35]. Petrographic
and geochemical investigations of the white mica showed that there were no correlations between
40Ar/39Ar dates and white mica chemistry, grain size nor strain intensities (Figures 2 and 3). It was also
clear from petrographical analyses that white mica represented part of the HP paragenesis.
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The conditions for HP metamorphism (18–24 kbar, 575–645 ◦C), and the subsequent retrogressive
pathway [33], are predicted to have proceeded within P-T conditions conducive for thermally-activated
40Ar diffusion [52]. However, depending on the residence time at peak conditions, grain size, cooling
rates etc., partial retention of 40Ar is still possible within these P-T conditions [53]. Redistribution
of 40Ar in a closed system may also be a factor for the oldest 40Ar/39Ar dates, either during or after
white mica crystallization [54–57]. In contrast, the well-defined nature of the c. 476 Ma age population
does not suggest disturbance due to extraneous 40Ar [56]. This is supported by the similarities of
the 40Ar/39Ar of the less-porous mafic rocks (e.g., MIK18-02, -06A, -07) compared to the more felsic
lithology (MIK18-01) [55].

The c. 476 Ma population either records HP crystallization of the white mica with localized
inheritance of 40Ar, or cooling of the rocks with localized domains of higher 40Ar retentivity within
the white micas. This population isn’t likely to record deformation because the mica grains exhibit
a low-strain, indicated by their large grain size, tabular shape and homogeneous distribution of the
major elements (Figure 3). Based on the P-T conditions of the Upper Unit, the complete retention of the
HP crystallization signature was not predicted [53]. Therefore, crystallization of the white mica should
not be reflected in such a well-defined 40Ar/39Ar population at c. 476 Ma. This record is likely more
favored to reflect cooling of the Upper Unit lithologies after crystallization in HP conditions (Figure 8).
This interpretation supports a previous interpretation of similar white mica 40Ar/39Ar dates from the
Vestgötabreen Complex [36].

Figure 8. Schematic structural reconstructions, after Labrousse et al. [16], annotated with the
geochronological ages of events constrained by this study. (A) The state of the Vestgötabreen Complex
at Motalafjella in the late Ordovician to early Silurian, after (or during) deposition of the Bullbreen
Group sediments, but prior to late Caledonian thrusting. Cooling of the Upper Unit occurred at
476 ± 2 Ma, followed by assembly of the units at 454 ± 6 Ma and then surface exposure and deposition
of the Bullbreen Group in the Late Ordovician to early Silurian. (B) Geometry of the exposure in the
present-day. Late Caledonian thrusting (c. 430–400 Ma) is depicted in association with emplacement of
the Upper Unit onto the Lower Unit and deformation of the Bullbreen Group. Representative sample
locations are plotted.
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6.2. Extraneous Pb in Monazite

The monazite from all three samples targeted for Th-U-total Pb geochronology yielded date
populations that also overlapped with the HP metamorphism of the Vestgötabreen Complex, or were
significantly older (Figure 7). The oldest dates partially overlapped with the timing of c. 640 Ma Torellian
metamorphism in the more southern regions of the SCBP [58]. The monazite dates may therefore record
a partially reset signature of Torellian tectonism, followed by early Caledonian HP metamorphism.
The textural characteristics of monazite and the common spatial association of the monazite cluster
with chlorite and minor thorite indicate that monazite formed in response to a low-temperature
(greenschist-facies) fluid-driven metamorphism [48,59,60]. In samples SN18-05A and SN18-12,
the lack of distinct REE precursor for monazite allows the possibility of dissolution-reprecipitation
driven by these greenschist-facies fluids. However, this process has been documented to result in
disequilibrium Pb distribution, producing anomalously old ages within reprecipitated monazite
domains [61,62], or inheriting relic domains of the starting monazite material within reprecipitated
monazite [61]. The lack of distinct chemical populations amongst the analyzed monazite certainly
suggests chemical disequilibrium and perhaps mixed monazite chemistry (Figure 6). Furthermore,
the precursor for monazite in sample SN18-06 is florencite, which may have been stable through
peak metamorphism [63,64]. This would suggest that monazite should not record dates prior to the
retrograde pathway. As a result, we do not interpret the oldest monazite dates to be geologically
meaningful ages. For these populations to be considered meaningful, they must reproduce by more
robust geochronological methods.

6.3. Juxtaposition of the Upper and Lower Units Recorded by White Mica

The oldest 40Ar/39Ar age population obtained from the Lower Units rocks of 454 ± 6 Ma
were defined by analyses from the interiors of the brecciated Lower Unit phyllites (MIK18-03A),
the retrogressed blueschist (SN18-09B) and a phyllite (SN18-05A). The P–T conditions 15–16 kbar
and 380–400 ◦C that were determined for the Lower Unit [34] suggested that these rocks should
not have reached (or barely reached) conditions that permitted thermal diffusion of 40Ar from
white mica [52,53]. The white mica of the Lower Unit should thus provide some record of their
prograde-to-peak metamorphic history. Instead, this population may rather reflect diffusion of 40Ar
due to recrystallization during deformation of the white mica in the Lower Unit [37,65–70]. Indeed,
the top-to-S shearing that is associated with assembly of the Vestgötabreen Complex is more penetrative
in the Lower Unit than the Upper Unit [16]. The pervasive deformation of the Lower Unit provides a
means to eradicate the older history that would have been preserved in the white mica, and caused
the smaller grain size and more heterogeneous mineral chemistry (Figures 2 and 3). We therefore
interpret the 454 ± 6 Ma to represent the timing for juxtaposition of the units (Figure 8). This timing
for juxtaposition of the units is in agreement with late Ordovician to early Silurian deposition of the
Bullbreen Group sediments [30,32], as the units must have been assembled prior to surface exposure
and deposition [16].

6.4. Silurian to Devonian Caledonian Thrusting Recorded by White Mica and Monazite

The deposition of the Bullbreen Group in the late Ordovician to early Silurian provides a key datum
for interpretation of the younger geochronological data as post-depositional deformation is considered
to be late Caledonian [16]. In the silicic rocks of the Lower Unit, a c. 430–426 Ma signature is defined
by 40Ar/39Ar dates and supported by the Th-U-total Pb geochronology. In particular, one sample
just below the bounding thrust (SN18-12; Figure 8) showed a well-defined 40Ar/39Ar age cluster at
c. 430 Ma (Figure 4). This likely reflects the onset of late Caledonian thrusting, responsible for the
top-to-N displacement along the bounding fault and emplacement of the Upper Unit over the Lower
Unit (Figure 8) [16]. The sample of the schistose marble from the Upper Unit (SN18-14) in proximity
to this thrust (Figure 8) yields an 40Ar/39Ar age population of 440 ± 6 Ma. This population overlaps
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with the depositional age of the Bullbreen Group and therefore conflicts with the interpretation that
the Vestgötabreen Complex was at near surface conditions at this time. However, previous studies
of carbonate- and silicate-rich lithologies have demonstrated that the weaker rheology of a calcite
matrix shields the white mica from deformation and fully resetting, compared to the stronger silicate
matrix [66]. Therefore, the c. 440 Ma age likely reflects partial resetting of the 40Ar/39Ar record during
the c. 430–426 Ma thrust initiation.

Younger age populations of c. 410-395 Ma were quite prominent for both 40Ar/39Ar and Th-U-total
Pb results (Figures 4 and 7, Tables S1 and S2). In the former, the age was mainly defined by one
sample (SN18-11B), whereas all three samples of monazite provided a strong record of these dates.
Provided the scatter in both 40Ar/39Ar and Th-U-total Pb dates, and corresponding uncertainties of the
populations (up to ±10 Ma) it is difficult to discern if this second grouping of populations represents a
later, distinct event or if late Caledonian thrusting occurred continuously from c. 430 to c. 395 Ma.
Nonetheless, the record of late Caledonian thrusting of the Vestgötabreen Complex was well recorded
in the rocks of the Lower Unit (Figure 8).

These white mica and monazite geochronological results corroborate previous geochronological
studies that have interpreted a c. 425–400 Ma Caledonian tectonothermal event that affected the Upper
Unit [24,36] and Oscar II Land in general [14]. The strong c. 410–395 Ma record within the monazite
suggests that the lower temperature greenschist-facies metamorphic overprint responsible for (partial)
resetting of monazite occurred at this stage. Color alteration indexes of conondonts obtained from
the Bullbreen Group indicate the overlying Bullbreen Group was subject to temperatures of ~300 ◦C,
presumably during folding and thrusting of the sediments [30].

6.5. Possible Ellesmerian Tectonothermal Overprint

Both in situ white mica 40Ar/39Ar geochronology and monazite Th-U-total Pb geochronology
yield dates from the Lower Unit that overlap within uncertainty with the timing of Ellesmerian
metamorphism and deformation on Svalbard [9–14]. While these dates obtained from Motalafjella are
not as statistically robust as the previously discussed populations, they do suggest the possibility of an
Ellesmerian tectonothermal overprint of the Lower Unit.

Instances of Ellesmerian metamorphism and deformation have been recognized across Svalbard.
These areas include the amphibolite-facies metamorphism and shearing on Prins Karls Forland [13,37],
deformation of the Northwestern Caledonian Basement Province [4], and folding with thrusting of
the Devonian Old Red Sandstone [10,12]. An Upper Devonian unconformity is also interpreted to
be a record of the same event [11]. According to palinspatic reconstructions of the high-Arctic [16],
Motalafjella would be placed between the Ellesmerian structures present on Northern Greenland
with Prins Karls Forland, and the deformation affecting the Old Red Sandstone. Therefore,
although the geochronological data of this study provides only a subtle indication of Ellesmerian
tectonism at Motalafjella, the location of Motalafjella bracketed by instances of Ellesmerian
metamorphism and deformation support the possibility of Ellesmerian tectonism having affected the
Vestgötabreen Complex.

7. Tectonic Correlations within the Caledonian Orogeny

The evolution of tectonism that is recorded by our geochronological results provides key
information for the correlation and reconstruction of Caledonian HP localities. Exhumation of
the Vestgötabreen Complex Upper Unit follows a very similar pattern to the exhumation of HP
localities in the Seve Nappe Complex (SNC) of the Scandinavian Caledonides, specifically the HP
Tsäkkok Lens (Figure 9). The lens experienced eclogite-facies metamorphism at 482 ± 1 Ma [71] and
was then quickly exhumed [72]. Another striking similarity with the Vestgötabreen Complex is that
the Tsäkkok Lens records prograde metamorphism along a cold subduction regime through blueschist
facies conditions [73]. Both the Tsäkkok Lens and Vestgötabreen Complex reached broadly similar
P-T conditions of >15 kbar and 520–700 ◦C [73], and 18–24 kbar and 575–654 ◦C [33], respectively.
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The similarities of the HP lithologies, their cold prograde evolution, timing of peak metamorphism
and the subsequent timing of exhumation for both the Vestgötabreen Complex in Svalbard and the
Tsäkkok Lens in the SNC suggests that these localities represent vestiges of the same Caledonian
subduction system.

Figure 9. Schematic reconstruction of the positions of the Arctic islands of Canada and Greenland
(i.e., Laurentia), Scandinavia (Baltica) and Svalbard in post-Ellesmerian time. The overlays of Caledonian
and Ellesmerian tectonism are after Gee and Teben’kov [2] and Piepjohn et al. [17]. The deformation
corresponding to Eurekan tectonism across the Arctic has been removed to highlight the distribution
of Caledonian and Ellesmerian tectonism. A detailed illustration of all three tectonic events can be
found in Piepjohn et al. [17]. The strike-slip faults through Svalbard and along the Pearya Terrane
are Caledonian in age. Locations of the Vestgötabreen Complex in Svalbard, Tsäkkok Lens in the
Scandinavian Caledonides and the Pearya Terrane in the Canadian Arctic are highlighted.

The N-vergent (present-day coordinates) thrusting of the Vestgötabreen Complex in the Silurian
to Early Devonian was likely a consequence of the more dominant sinistral strike-slip shear zones
that assembled the Caledonian basement provinces of Svalbard at this time (Figure 9) [1,2,7,8,17,74].
The strike-slip systems may extend to the Pearya Terrane that has been correlated with the Vestgötabreen
Complex through tectonostratigraphic, structural, geochronological methods [2,18,75–79]. Specifically,
the ophiolitic and arc-related rocks preserved with the terrane are thought to represent the upper plate
counterpart to the relic subduction zone preserved as the Vestgötabreen Complex [23]. In Silurian
to Early Devonian time in the Scandinavian Caledonides, Scandian thrusting during continental
collision is well-documented [5,6,80–84]. Therefore, two different styles of tectonic transport were
active as strike-slip shear zones in Svalbard/Pearya and predominant thrusting in the Scandinavian
Caledonides during the Silurian to Early Devonian. These mechanics strongly resemble the idea
of escape tectonics, which has been previously discussed for the Vestgötabreen Complex and the
Svalbard basement provinces [2,19,31,85]. Although this hypothesis has been previously discussed,
the correlative unit(s) within the Scandinavian Caledonides have not. The identification of the Tsäkkok
Lens being a correlative HP locality to the Vestgötabreen Complex a key link to the validation of
this hypothesis. The escape of the Vestgötabreen Complex and Pearya would therefore have to have
occurred prior to, or coeval with, the incipient phase of Scandian thrusting.

The record of Ellesmerian overprint affects a large portion of Svalbard from Prins Karls
Forland [13,37], Oscar II Land [14], and into the Devonian Old Red Sandstone of north central
Svalbard [9–12]. Therefore, identification of an Ellesmerian tectonic overprint in the Vestgötabreen
Complex would support the interpretation that the basement terranes were already assembled in the
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Devonian, and that the SCBP of Svalbard was located in close spatial proximity to the Pearya Terrane
(Figure 9).

8. Conclusions

The exotic Vestgötabreen Complex of the Southwestern Caledonian Basement Province of
Svalbard has experienced an intricate tectonic history from the earliest Ordovician to possibly the
earliest Carboniferous. The exposure of the complex at Motalafjella comprises two HP units, the Upper
and Lower units. Results of in situ white mica 40Ar/39Ar geochronology of HP lithologies in the
Upper Unit revealed that cooling during exhumation occurred at 476 ± 2 Ma. This was followed by
juxtaposition of the Lower Unit over the Upper Unit at 454 ± 6 Ma. The timing of assembly was
recorded by 40Ar/39Ar geochronology of the Lower Unit and was not recognized in the Upper Unit.
This corresponds to the higher degree of top-to-S shearing in the Lower Unit during the assembly.
After the assembly of the units, they were exposed to surface conditions and erosion, followed by
deposition of the Bullbreen Group. A subsequent and prominent phase of tectonism and associated
greenschist-facies metamorphism from c. 430–400 Ma was recorded throughout the Lower Unit by both
white mica 40Ar/39Ar and monazite Th-U-total Pb geochronology. The period of tectonism resulted in
the top-to-N emplacement of the Upper Unit onto the Lower Unit, likely reactivating the shear zone
previously responsible for the unit assembly at c. 454 Ma. The Bullbreen Group was also thrusted
and folded during this episode. A subsequent c. 365–344 Ma resetting event of both was recognized.
This event may relate to a tectonothermal overprint related to the Ellesmerian Orogeny.

Altogether, the geochronological data for the Vestgötabreen Complex, with previously reported
petrological and structural data, suggests that this complex has a shared late Cambrian to Early
Ordovician tectonic evolution as HP localities in the Seve Nappe Complex of the Northern Scandinavian
Caledonides (i.e., the Tsäkkok Lens). The late Ordovician to Silurian history of the complex also show
striking similarities in timing and structural style with the Pearya Terrane of the Canadian Arctic. It is
therefore suggested that the Vestgötabreen Complex represents an artefact of a subduction system
active during Iapetus Ocean closure within the main region of the Caledonian Orogeny, but escaped to
the periphery along major sinistral strike-slip faults prior to or during the incipient stages of continental
collision between Baltica and Laurentia. Assembly of the Caledonian Basement Provinces occurred
before the Ellesmerian Orogeny when Svalbard was situated in close proximity to Northern Greenland
and the Pearya Terrane.
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Appendix A

The Gaussian deconvolution method of defining statistical populations from both the 40Ar/39Ar
and Th-U-total Pb datasets produces uncertainties that are only propagated from the assigned
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uncertainties of the individual data points. Additional uncertainty from the spread of the data points is
not incorporated into the Gaussian deconvolution uncertainties. As a result, the statistical uncertainties
produced by this method may be a significant underestimation of the “true” uncertainty. Therefore,
we developed a method to calculate an uncertainty for each population that takes into account (1) the
internal uncertainty, (2) the number of data points that define each population, and (3) the spread in
the data.

Uncertainties are calculated using Equation (A1):

Un = 0.5
(
6Xn
)

(A1)

An exponential equation was chosen to accentuate the uncertainty produced from the number of
data points that define a population. For example, the difference in uncertainty between a population
defined by four data points and a population defined by eight data points will be greater than the
difference in uncertainty between the latter population and a third population defined by twelve data
points, etc. The unknown “Un” is the contribution factor of uncertainty from the number of data points.
The variable “Xn” is the weight for the contribution factor that is based on the number of data points
“n”, as described by Equation (A2):

Xn =
(
1 +
(1

n

))
(A2)

The contribution factor of uncertainty from the number of data points is then multiplied by
reported uncertainty of the Gaussian deconvolution method that is based on the internal uncertainty
of the population, shown by Equation (A3):

UP = (Ui)(Un) (A3)

where “Ui” is the reported uncertainty from the Gaussian deconvolution method for a given population
and “UP” is the calculated uncertainty for the same populations that incorporates (1) the internal
uncertainty and (2) the number of data points that define each population.

To account for (3) the spread in the data, each population from a dataset was investigated
individually. A cluster of dates was manually selected, based on the amount of dates defining the
given population, and a weighted average was obtained. The weighted average and the 2σ internal
uncertainty compared the population average and the 2σ internal uncertainty that was computed
from Gaussian deconvolution to check that the manually selected cluster of dates is an appropriate
representation of data points that define the population in question. The uncertainty of the weighted
average that accounts for the mean square weighted deviation MSWD (i.e., the scatter in the data)
as well as the internal uncertainty was checked against the uncertainty produced by our method
described above. If our calculated uncertainty is greater than the uncertainty output by the weighted
average, then it was determined our uncertainty satisfies (3) the spread in the data in incorporated
into the weighted average. If not, we report the uncertainty calculated from the MSWD and internal
uncertainty of the weighted average.

For Equation (A1), a base of six was chosen to keep the contribution of uncertainty from the
number of data points on the order of 1–4 Ma. The additional factor of 0.5 was introduced to translate
the function downwards along the y-axis values so that the uncertainties calculated by our method for
the most robust statistical populations (e.g., in our study the c. 476 Ma age population of the Upper
Unit) closely matched with the uncertainty computed by the weighted average that incorporated both
internal uncertainty and the spread in the data.
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Table A1. Summary of population uncertainties.

In-Situ White Mica 40Ar/39Ar Populations.

Population ±2σ 1 Fraction of
Dataset

Number of Analyses
for the Population

Weighted
Average 2 ±2σ 3 MSWD ±2σ 4 UP

5

Upper Unit (n = 41)
493.3 1.5 0.14 5.74 493.1 1.7 4.2 4.5 7.3
476.3 0.7 0.69 28.29 476.2 0.71 4.1 1.5 2.3
439.8 1.5 0.17 6.97 439.8 1.5 7 5 7.4

Lower Unit (n = 42)
454.4 0.8 0.36 15.12 454.4 0.8 15 3.3 6.1
426.4 0.92 0.36 15.12 426.3 0.92 15 3.8 3.8
398.1 1.2 0.21 8.82 398.1 1.1 22 6.1 6.1
364.7 1.9 0.07 2.94 364.7 1.9 1.8 5.4 10.5

Monazite Th-U-total Pb Populations

SN18-05A (n = 55)
595.3 7.5 0.11 6.1 596.2 5.9 0.9 5.9 30.3
522.7 6.0 0.16 8.8 523.3 5.0 6.0 14.0 22.1
433.5 3.9 0.19 10.5 433.7 3.8 4.2 8.6 13.9
393.7 2.2 0.39 21.5 393.7 2.2 5.1 5.2 7.2
343.9 6.3 0.14 7.7 344.0 6.3 2.2 11.0 23.9

SN18-06 (n = 28)
584.9 9.2 0.14 3.9 584.8 9.2 2.9 25.0 43.6
494.8 6.2 0.18 5.0 494.8 6.2 7.9 24.0 26.5
410.3 2.8 0.43 12.0 410.3 2.8 10.9 10.0 9.7
344.0 3.8 0.25 7.0 344.0 3.8 4.1 9.6 14.7

SN18-12 (n = 28)
485.4 8.4 0.21 5.9 485.4 5.6 8.5 21.0 22.8
408.6 3.2 0.52 14.6 408.5 3.2 12.0 12.0 10.9
345.2 5.6 0.26 7.3 344.7 8.3 1.3 11.0 32.2
1 Uncertainties are calculated from the Gaussian deconvolution method and are derived only from assigned
uncertainties of each data point; 2 Obtained from the manually selected groups based on the number of data
points for each population; 3 Uncertainties propogated only from the assigned uncertainties of each data point;
4 Uncertainties accounting for the assigned uncertanties of the data points as well as the spread in the data (i.e.,
MSWD); 5 Uncertainty that is provided for each population based on our method.
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26. Ohta, Y.; Krasil’čšikov, A.A.; Lepvrier, C.; Teben’kov, A.M. Northern continuation of Caledonian high-pressure
metamorphic rocks in central-western Spitsbergen. Polar Res. 1995, 14, 303–315. [CrossRef]

27. Hirajima, T.; Hiroi, Y.; Ohta, Y. Lawsonite and pumpellyite from the Vestgotabreen formation in Spitsbergen.
Nor. Geol. Tidsskr. 1984, 64, 267–273.

28. Kanat, L.H. Jadeite from southern Oscar II Land, Svalbard. Mineral Mag. 1984, 48, 301–303. [CrossRef]
29. Ohta, Y.; Hiroi, Y.; Hirajima, T. Additional evidence of pre-Silurian high-pressure metamorphic rocks in

Spitsbergen. Polar Res. 1983, 1, 215–218. [CrossRef]
30. Armstrong, H.A.; Nakrem, H.A.; Ohta, Y. Ordovician conodonts from the Bulltinden Formation, Motalafjella,

central-western Spitsbergen. Polar Res. 1986, 4, 17–23. [CrossRef]
31. Gasser, D.; Andresen, A. Caledonian terrane amalgamation of Svalbard: detrital zircon provenance of

Mesoproterozoic to Carboniferous strata from Oscar II Land, western Spitsbergen. Geol. Mag. 2013, 150,
1103–1126. [CrossRef]

http://dx.doi.org/10.1144/jgs2016-037
http://dx.doi.org/10.1029/2007TC002249
http://dx.doi.org/10.1144/0016-76492008-106
http://dx.doi.org/10.1111/ter.12422
http://dx.doi.org/10.1016/0040-1951(85)90013-7
http://dx.doi.org/10.1111/ter.12110
http://dx.doi.org/10.1017/S0016756800042242
http://dx.doi.org/10.1111/j.1751-8369.1995.tb00717.x
http://dx.doi.org/10.1180/minmag.1984.048.347.20
http://dx.doi.org/10.1111/j.1751-8369.1983.tb00705.x
http://dx.doi.org/10.1111/j.1751-8369.1986.tb00514.x
http://dx.doi.org/10.1017/S0016756813000174


Minerals 2020, 10, 125 21 of 23

32. Scrutton, C.T.; Horsfield, W.T.; Harland, W.B. Silurian fossils from western Spitsbergen. Geol. Mag. 1976, 113,
519–523. [CrossRef]

33. Hirajima, T.; Banno, S.; Hiroi, Y.; Ohta, Y. Phase petrology of eclogites and related rocks from the Motalafjella
high-pressure metamorphic complex in Spitsbergen (Arctic Ocean) and its significance. Lithos 1988, 22, 75–97.
[CrossRef]

34. Agard, P.; Labrousse, L.; Elvevold, S.; Lepvrier, C. Discovery of Paleozoic Fe-Mg carpholite in Motalafjella,
Svalbard Caledonides: A milestone for subduction-zone gradients. Geology 2005, 33, 761–764. [CrossRef]

35. Bernard-Griffiths, J.; Peucat, J.J.; Ohta, Y. Age and nature of protoliths in the Caledonian blueschist-eclogite
complex of western Spitsbergen: A combined approach using U–Pb, Sm–Nd and REE whole-rock systems.
Lithos 1993, 30, 81–90. [CrossRef]

36. Dallmeyer, R.D.; Peucat, J.J.; Hirajima, T.; Ohta, Y. Tectonothermal chronology within a blueschist-eclogite
complex, west-central Spitsbergen, Svalbard: Evidence from 40Ar/39Ar and Rb–Sr mineral ages. Lithos 1990,
24, 291–304. [CrossRef]

37. Schneider, D.A.; Faehnrich, K.; Majka, J.; Manecki, M. 40Ar/39Ar geochronologic evidence of Eurekan
deformation within the West Spitsbergen Fold and Thrust Belt. In Circum-Arctic Structural Events: Tectonic
Evolution of the Arctic Margins and Trans-Arctic Links with Adjacent Orogens; Piepjohn, K., Strauss, J.V.,
Reinhardt, L., McClelland, W.C., Eds.; Geological Society of America: Boulder, CO, USA, 2019; Volume 541,
pp. 1–16.

38. Kuiper, K.F.; Deino, A.; Hilgen, F.J.; Krijgsman, W.; Renne, P.R.; Wijbrans, J.R. Synchronizing Rock Clocks of
Earth History. Geophys. Res. Lett. 2008, 320, 500–504. [CrossRef]

39. Spell, T.L.; McDougall, I. Characterization and calibration of 40Ar/39Ar dating standards. Chem. Geol. 2003,
198, 189–211. [CrossRef]

40. Dazé, A.; Lee, J.K.W.; Villeneuve, M. An intercalibration study of the Fish Canyon sanidine and biotite
40Ar/39Ar standards and some comments on the age of the Fish Canyon Tuff. Chem. Geol. 2003, 199, 111–127.
[CrossRef]

41. Steiger, R.H.; Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo-
and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [CrossRef]

42. Renne, P.R.; Norman, E.B. Determination of the half-life of 37Ar by mass spectrometry. Phys. Rev. C Nucl.
Phys. 2001, 63, 473021–473023. [CrossRef]

43. Renne, P.R.; Swisher, C.C.; Deino, A.L.; Karner, D.B.; Owens, T.L.; DePaolo, D.J. Intercalibration of standards,
absolute ages and uncertainties in 40Ar/39Ar dating. Chem. Geol. 1998, 145, 117–152. [CrossRef]

44. Roddick, J.C. High precision intercalibration of 40Ar-39Ar standards. Geochim. Cosmochim. Acta 1983, 47,
887–898. [CrossRef]

45. Ross, J. Pychron v2.0.4-beta. 2017. Available online: https://github.com/NMGRL/pychron (accessed on 15
May 2014).

46. Deino, A.L. Users Manual for Mass Spec. Version 7.961; Berkeley Geochronology Cente: Berkeley, CA, USA,
2013; Volume 1a, pp. 1–132.

47. Sambridge, M.S.; Compston, W. Mixture modeling of multi-component data sets with application to ion-probe
zircon ages. Earth Planet. Sci. Lett. 1994, 128, 373–390. [CrossRef]

48. Grand’Homme, A.; Janots, E.; Seydoux-Guillaume, A.M.; Guillaume, D.; Magnin, V.; Hövelmann, J.;
Höschen, C.; Boiron, M.C. Mass transport and fractionation during monazite alteration by anisotropic
replacement. Chem. Geol. 2018, 484, 51–68. [CrossRef]

49. Seydoux-Guillaume, A.-M.; Fougerouse, D.; Laurent, A.T.; Gardeś, E.; Reddy, S.M.; Saxey, D.W. Nanoscale
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