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Abstract. The growing use of large-eddy simulations for the modelling of wind farms
makes the need for efficient numerical frameworks more essential than ever. GPU-accelerated
implementations of the Lattice Boltzmann Method (LBM) have shown to provide significant
performance gains over classical Navier-Stokes-based computational fluid dynamics. Yet, their
use in the field of wind energy remains limited to date. In this fundamental study the cumulant
LBM is scrutinised for actuator line simulations of wind turbines. The numerical sensitivity
of the method in a simple uniform inflow is investigated with respect to spatial and temporal
resolution as well as the width of the actuator line’s regularisation kernel. Comparable accuracy
and slightly better stability properties are shown in relation to a standard Navier-Stokes
implementation. The results indicate the overall suitability of the cumulant LBM for wind
turbine wake simulations. The potential of the LBM for future wind energy applications is
clarified by means of a brief comparison of computational performance.

1. Introduction
The aerodynamic interaction of wind turbines has attained growing interest due to the increasing
significance of wind power for today’s power systems. A wide range of model fidelities is
being developed and used in the field today [1]. The highest model fidelity refers to Large-
Eddy Simulations (LES) fully resolving the large energy-containing scales of the transient flow
field of wind turbine wakes. However, their use comes at an immense computational cost
when compared to low-fidelity models and even RANS [2]. Still, an increasing availability
of computational resources has made LES a feasible approach for the study of wind energy
related flow problems, even including simulations of entire wind farms [3]. Naturally, earlier
LES studies focused on the understanding of the method itself, for instance in conjunction with
actuator models [4, 5]. In recent years, though, LES are also used in more applied contexts, such
as the investigation of fatigue loads [6, 7], turbine curtailment [3, 8] or farm-wide optimisation
control strategies [9]. Despite the growing capacities of modern High-Performance Computing
(HPC) clusters, computational demand remains the biggest bottleneck. One way to increase
computational performace, is the use of a different numerical approach, namely the Lattice
Boltzmann Method (LBM). Orignially evolving from lattice gas cellular automata [10], the LBM
today states a powerful alternative to classical CFD approaches. Besides the method’s excellent
parallelisability, its numerical simplicity, suitability for complex geometries and multiphase flows
have led to a wide adoption in both academia and industry [11, 12]. Moreover, the strict
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locality of the computationally intense steps of the scheme render the LBM perfectly suitable
for implementations on graphics processing units (GPUs). Speed-up factors when compared to
single-node LBM-CPU implementations are commonly found as 100 and more [13, 14] and multi-
GPU implementations can be considered as the state-of-the-art in lattice Boltzmann computing
[15, 14]. Yet, to date, only a few studies have shown applications of the LBM in the field
of atmospheric boundary layer (ABL) flows and wind energy. Such is, for instance, the work
of Deiterding and Wood [16], who presented promising results of geometrically resolved wind
turbines. Others presented investigations of large-scale urban flows as shown in [17, 18].

As a first step to scrutinise the LBM for LES of wind farms, this study shall provide
an investigation of the actuator line model (ALM) in lattice Boltzmann frameworks. Again,
investigations of actuator models in general and specifically the ALM in the LBM are still
limited. To our best knowledge, the 2D-ALM for vertical axis turbines by Rullaud et al. [19]
currently states the only example. Thorough numerical analyses of the ALM as found in classical
Navier-Stokes (NS) frameworks [20, 5, 21, 22] are thus inevitable for the future use of the LBM
in this field. In this paper we provide an initial numerical sensitivity analysis of the ALM in a
lattice Boltzmann framework. Using the cumulant LBM, the interplay of spatial and temporal
resolution with the smearing width is investigated in terms of resulting blade forces along the
Actuator Line (AL) as well as near-wake properties. Also, an exemplary performance comparison
to a state-of-the-art AL implementation in a NS framework is presented further motivating the
use of GPU-accelerated LB frameworks in the field of wind energy.

2. The Lattice Boltzmann Method
The governing equation of the LBM is the kinetic Boltzmann equation describing the time
evolution of particle distribution functions (PDF) f . More specifically, f states the probability
to encounter a particle (mass) density of velocity ξ at time t at location x. Discretising the
Boltzmann equation in physical and velocity space we obtain the lattice Boltzmann equation
(LBE) without external forces

fα(t+ ∆t,x+ ∆t eα)− fα(t,x) = Ωα , (1)

with eα denoting the particle velocity in a discrete lattice direction α while the collision operator
Ωα on the RHS models the redistribution of f through particle collisions within the control
volume. The crucial aspect of the LBM is the discretisation of the velocity space by means
of a velocity lattice. Common lattices for three-dimensional problems are the D3Q19 and the
D3Q27 with 19 and 27 lattice directions, respectively. Also note that, here, the lattice velocity
c is chosen such that c = ∆x/∆t. PDFs are hereby inherently advected to the next lattice node
during one time step, explaining the simplicity of eq. (1). Furthermore, dimensional analysis
yields the macroscopic mass density and momentum as the zeroth- and first-order raw velocity
moment of f , respectively, i.e.

ρ(t,x) =
m∑
α=1

fα(t,x) , ρu(t,x) =
m∑
α=1

eα fα(t,x) (2)

As the LBE states a compressible formulation, incompressibility requires simulations at the low
Mach number limit Ma � 1. With the lattice speed of sound cs = c/

√
3 the pressure is then

given as p = ρ/3. Further selected aspects of the LBM will be given in the following. For more
fundamentals the interested reader is referred to the comprehensive work by Krüger et al. [12].

2.1. Scaling and Accuracy of the LBM
In order to fulfil with the aforementioned requirements of the LBE physical units need to be
rescaled to non-dimensional lattice units (hereafter indexed (·)LB), i.e. c = ∆xLB/∆tLB = 1.
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Hence, scaling factors C for all relevant physical units can be derived via non-dimensional
quantities namely Re and Ma. Within this study we shall define the Reynolds number as
ReD = u0D/ν, where u0 is the inflow velocity and D the turbine diameter. The Mach number
is consequently given by u0 and the speed of sound: Ma = u0/cs. Starting from the spatial
scaling factor we obtain Cx = ∆x/∆xLB = Li/ni, where Li is the length of the (sub-)domain
and ni the number of grid points in the referring spatial dimension. With cLBs = c/

√
3, the

reference velocity on the lattice is given by uLB0 = Ma/
√

3, yielding the velocity scaling factor
Cu =

√
3u0/Ma. It follows that the temporal scaling factor is given by Ct = Cx/Cu, which

implies a physical time step ∆t = Ct ∆tLB that is inherently proportional to the grid spacing
and Mach number.

A formal error analysis of the LBM is arguably cumbersome, especially for highly non-
linear problems where truncation terms beyond leading order need to be considered [12]. As a
reminder, to leading order the spatial and temporal discretisation error scales with ∆x2 and ∆t2,
respectively. Additionally, the Chapman-Enskog analysis yields the so called compressibility
error occurring as an additional term O((uLB)3) in the macroscopic stress tensor and therefore
scaling with Ma2. The LBM thus only recovers the NS solution with second order in space under
so called diffusive scaling, i.e. ∆t ∝ ∆x2. Following from the above, Ma should thus be refined
proportionally to ∆x. When only reducing ∆x the increasing compressibility error can even
become dominant and deteriorate spatial convergence. Mind that this again implies a formal
reduction to first-order in time.

2.2. The Cumulant Collision Model
Until today, various collision models of different complexity have been suggested. The most
widely adopted, yet also the most simple, is the single relaxation time model (SRT), commonly
referred to as lattice Bhatnagar-Gross-Kroog (LBGK) model [23]. In the SRT model, all PDFs
are relaxed towards an equilibrium state using a single constant relaxation time τ . The collision
operator then reads

Ωα = −∆t

τ
(fα − feqα ) = −∆t

τ
fneqα , (3)

where feqα is obtained from the second-order Taylor expansion of the Maxwellian equilibrium.
Via Chapman-Enskog expansion of the LBE it can be shown that

τ =
1

ω
= 3ν/c2 + ∆t/2 , (4)

with ν being the shear viscosity [24].
Poor numerical stability of the SRT model led to the development of multiple-relaxation-time

models (MRT), see for instance [25, 26]. In MRT models pre-collision PDFs are transformed
into a velocity moment space. Each individual moment is then relaxed towards a referring
equilibrium with an individual relaxation time and subsequently transformed back into particle
distribution space. An increased stability when compared to the SRT can thus be achieved by
calibrating the relaxation times of non-hydrodynamic moments [26, 27]. Still, several aspects
of the MRT render the model unsuitable for the use at high Reynolds numbers as required for
studies of wind turbines. Such are, among others, the lack of a universal formulation for optimal
collisions rates and deficiencies stemming from the rather arbitrary choice of moment space,
lacking Galiliean invariance and the introduction of hyper-viscosities [28]. Preliminary tests of
this study confirmed the insufficiency of the MRT for such high Reynolds numbers. The flow
field appeared highly degenerated by reflections of spurious oscillations originating in regions of
high velocity gradients. Only higher spatial resolutions could remedy this issue. This, however,
can be considered impractical for future wind farm applications. The MRT is thus not further
investigated as part of this paper.



Wake Conference 2019

IOP Conf. Series: Journal of Physics: Conf. Series 1256 (2019) 012022

IOP Publishing

doi:10.1088/1742-6596/1256/1/012022

4

To overcome the issues of the MRT, Geier et al. [28] suggested a more universal formulation
based on independent observable quantities of the PDFs, i.e., cumulants. First, PDFs are
transformed into frequency space using the two-sided Laplace-transform

F (Ξ) = L (f(ξ)) =

∫ ∞
−∞

f(ξ) e−Ξ·ξdξ , (5)

with Ξ = {Ξ,Υ, Z} denoting the wave number space of the particle velocity ξ = {ξ, υ, ζ}.
Countable cumulants cαβγ can then be written as

cαβγ = c−α−β−γ
∂α∂β∂γ

∂Ξα∂Υβ∂Zγ
ln (F (Ξ,Υ, Z)) . (6)

After the transformation, the cumulants are again relaxed towards the referring equilibrium in
cumulant space. Throughout this study all relaxation rates of higher-order cumulants are set
to one, commonly reffered to as AllOne cumulant. The higher-order cumulants are hereby
instantly relaxed towards the equilibrium providing an inherently stable solution. Yet, note,
that a parametrisation of the relaxation rates might be preferable in terms of accuracy [29, 30].
An investigation thereof in this context is left for future reference. Also note, that cumulants
as defined in eq. (6) can be efficiently computed via central velocity moments of f [28, 31]. As
opposed to raw moments as given in eq. (2) and used in many MRT models, the moment space
then refers to a moving frame of reference with velocity u. Hence, body forces F , can simply
be incorporated by shifting the frame of reference by

u = u+
∆t

2 ρ
F , (7)

2.3. Large-eddy Simulations in Lattice Boltzmann Frameworks
With growing maturity of the LBM, LES approaches have attained increasing attention over
the last decade. Commonly, eddy-viscosity approaches like the standard Smagorinsky [32] as
well as dynamic approaches [33] are adopted and incorporated using eq. (4). In this study no
explicit SGS model is applied. The inherently stable AllOne-cumulant LBM is thereby applied
as an underresolved DNS or implicit LES, respectively. Despite lacking theoretical evidence of
implicit SGS characteristics of the collision operator, such use is in line with various preceding
promising studies [34, 35, 14]. Moreover, the influence of the SGS model on the ALM itself (in
uniform inflow) is generally small, as found by Sarlak et al. [36] using similar spatial resolutions.
For future investigations on the far-wake of the turbine though, it will obviously be of specific
interest.

3. Numerical Framework
The investigation of the ALM will be based on simulations of the NREL 5MW reference turbine
[37] in uniform inflow of u0 = 8m s−1, similar to preceding studies, see [50, 22]. The turbine is
set to operate at a tip-speed-ratio λ = 7.55 referring to the point of optimal power production.
With the viscosity of air ν = 1.78 · 10−5m2 s−1 the Reynolds number of the case amounts to
ReD = 5.7 · 107. Details regarding the utilised solvers and numerical set-up are given in the
following.

3.1. The Lattice Boltzmann Solver elbe
The lattice Boltzmann computations are performed using the GPU-based efficient lattice
Boltzmann environment elbe1 [38] mainly developed at Hamburg University of Technology
(TUHH). The implementation of the cumulant LBM in elbe was recently validated in a
comprehensive study by Gehrke et al. [35].

1 https://www.tuhh.de/elbe

https://www.tuhh.de/elbe
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3.2. EllipSys3D
As a finite-volume (FV) NS reference we consult the well-established multi-purpose solver
EllipSys3D developed at the Technical University of Denmark (DTU) by Michelsen [39, 40]
and Sørensen [41]. The code has been applied to numerous wind power related flow problems
and served for several fundamental investigations of the ALM [20, 42, 5, 36].

3.3. The Actuator Line Model
The investigated ALM follows the well-documented standard procedures as given in [20, 5, 43]
and others. Rotor forces are determined using the relative velocity urel of the referring blade
elements along the AL. These are computed from the locally sampled velocity components using

urel =
√
u2
n + (Ω r − uθ)2 , (8)

where un is the velocity in blade-normal (streamwise) direction, uθ is the tangential velocity
component, Ω the rotational velocity of the turbine and r the radial position of the blade
element. The local blade forces per unit length read

F = 0.5 ρ u2
rel c (CLeL + CDeD) . (9)

Here, ρ is the fluid density and c the chord length. The lift and drag coefficients CL and CD,
respectively are obtained from tabulated airfoil data as functions of the local angle of attack
and Reynolds number. The resulting forces are subsequently distributed in space in a three-
dimensional Gaussian manner by taking the convolution integral of F with a regularisation
kernel ηε, given by

ηε =
1

π3/2 ε2
e−(d/ε)2 , (10)

where ε adjusts the width of the regularisation and d is the distance to the centre of the referring
blade element. For the sake of simplicity, a constant smearing width ε(r) is applied throughout
this entire study. Herewith, we aim for a general understanding of of the LB-ALM that can
serve as a guideline for future applications using more sophisticated approaches, see e.g. [44].

3.4. Case Set-up
The numerical set-up of the LBM and the FV-NS reference (referred to as LB-ALM and NS-
ALM, respectively) are kept as similar as possible in order to ensure the best comparability
possible. Certain differences though remain inavoidable due to the inherently different
underlying numerical concepts. The overall rectangular domain measures 15 rotor diameters
D in the streamwise direction x and 10D in the lateral directions y and z. The rotor is laterally
centred 5D downstream of the inlet. In both set-ups the finest grid level with uniform grid
spacing ∆xf extends from 1D upstream of the turbine to 7D downstream and comprises 3D in
both lateral directions. In the LB-ALM a nested grid-refinement approach following Filippova
and Hänel [45] is applied. The innermost grid region is nested in a coarser region with 2∆xf
which again is nested in the outermost grid region with 4∆xf . In the NS-ALM the grid is
uniformly stretched from the inner equidistant region towards the outer domain boundary. Note
that normal and tangential blade forces showed negligible changes when increasing the extent
of the inner grid region. Differences in the area of interest (the innermost grid region) arising
from the different refinement approaches are therefore ruled out. At the lateral boundaries a slip
boundary condition is applied. A simple anti-reflecting extrapolation boundary condition [28] is
used at the outlet in the LBM set-up. Statistics are gathered over a period of two domain flow-
through times after an initial run-up of the same length. Results obtained from a stand-alone
BEM method (see [46] for a detailed description) will be used as a reference for the resulting
blade forces along the AL.
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4. Numerical Sensitivity Analysis and Verification
The accuracy of blade forces obtained from an ALM is a close interplay of the solution of the
flow field and the width of the regularization kernel ε. On the one hand, it was shown that a
small ε is generally desirable for the correct reproduction of tip vortices [4] as well as optimal
induction properties in terms of the resulting body forces [47]. On the other hand, the lower
limit of ε is usually set by the stability of the numerical scheme [5, 48, 21]. Another requirement
of the ALM is a temporal resolution that is fine enough for the blade tip not to skip a cell
during one time step. As for NS approaches, this usually implies a CFL number small enough
for the NS solution to become independent of ∆t, see Troldborg et al. [5]. As for the LBM, the
scaling laws outlined in section 2.1 suggest that the ALM time step requirement is inherently
met since low Mach numbers usually dictate a ∆t far below the critical value. Still, it would
be naive to assume time independence of the overall solution, chiefly due to the compressibility
error. As opposed to most NS studies, the numerical sensitivity of the LB-ALM thus needs to
be scrutinised in terms of smearing width, spatial and temporal discretisation, where the latter
is commonly used interchangeably with the choice of Mach number since ∆t ∝ Ma.

4.1. Interaction of Mach Number and Smearing Width
As a starting point three different smearing widths at four Mach numbers are investigated
using a spatial resolution of ∆x = 1/64D. Resulting mean normalised body forces are given
in fig. 1. At ε = 3∆x, both the NS- and the LB-ALM show acceptable agreement with the
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0.08

0.10

F
t
/(
ρ
u

2 0
R

)

ε = 1∆x ε = 2∆x ε = 3∆x
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r/R
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0.6
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F
n
/(
ρ
u
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R

)
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Figure 1: Mean blade forces in the tangential (Ft) and normal (Fn) direction along the AL using
different smearing widths ε. LB-ALM at Ma = 0.1 ( ), Ma = 0.05 ( ), Ma = 0.025 ( ),
Ma = 0.0125 ( ), NS-ALM ( ), BEM ref. ( ).

BEM reference. The largest discrepancies are found near the tip as well as the root for the
tangential force. These discrepencies can be expected, largely because of the three-dimensional
regularisation kernel. This leads to forces being smeared beyond the blade tip and root. Also, the
force projection of individual blade elements eventually overlaps with neighbouring projections
[44]. Furthermore, the sampled velocity is affected by the velocity induction of the trailing
vortices as recently shown by Meyer-Forsting et al. [49]. The LB-ALM also shows a small Mach
number dependency, yet differences towards the NS-ALM decrease with Ma. As expected, the
fit with the BEM reference improves using ε = 2∆x. The Mach number dependency of the
LB-ALM is found significantly higher which mostly shows in the tangential force component.
Note, referring to preceding studies ε = 2∆x states the lower limit for colocated FV approaches
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before instabilities start to deteriorate the solution [5, 48, 21]. The NS-ALM results at ε = 1∆x
can therefore be expected. The mean body forces deviate severely from the BEM reference.
Likewise, the scatter in the time signal of the resulting forces increases by about one order of
magnitude, measured in terms of the standard deviation of the signal. As for the LB-ALM,
severe deviations from the reference are found for Ma=0.1 but again converge towards the BEM
reference when decreasing its value. Even though deteriorations of the flow field could not be
observed, the scatter in the forces was also increased when compared to larger ε. Further tests
in more realistic inflows including turbulence will have to show if the severity of this scatter is
acceptable for future applications.

Above all, this initial test series shows the general suitability of the cumulant LBM for
AL simulations. At sufficiently low Mach numbers and common choices for the smearing width
(ε ≥ 2∆x) the method behaves similarly to the standard FV-NS approach. Moreover, it is shown
that the use of smaller values for ε is generally possible, yet requiring lower Mach numbers. As
this increases computational cost, larger ε might remain preferable for future applications if
one is not specifically interested in features of the tip vortices. Fundamentally, the described
behaviour illustrates the effects of high-magnitude locally-applied body forces on the accuracy
of the LBM. For each respective ε in this test series, differences in the resulting blade forces
must be dominated by a decreasing compressibility error as we only decrease the Mach number.
Then again lowering ε, the magnitude of the locally applied body forces and hence momentum
increases. The compressibility error thereby becomes higher than at larger values of ε as it
scales with O((uLB)3). This again can explain the increasing Mach number dependency with
decreasing ε.

4.2. Spatial resolution
Next, the effect of spatial resolution on the LB-ALM is investigated. We therefore compare
three spatial resolutions using the smearing widths ε = {1/16, 1/8}D. The LB simulations are
scaled diffusively which according to section 2.1 implies Ma ∝ ∆x. Also, two starting points
are considered (Ma0 = {0.1, 0.05}), meaning that we alter the Mach number at the coarsest
spatial resolution. For the sake of conciseness, all results are presented in terms of mean thrust
and power coefficient, CT and CP , see fig. 2. At ε = 1/16D the LB-ALM shows significantly

1/161/321/64

∆x/D
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1.00
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1.10
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C
T
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,
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P
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e
f

ec

ec + e∆x

ε = 1/16D

1/161/321/64

∆x/D

ε = 1/8D

Figure 2: Mean thrust and power coefficients normalised by BEM reference values ( CT,ref =
0.86, CP,ref = 0.55). LB-ALM starting from with Ma0 = 0.1, CT : • , CP : . LB-ALM with
Ma0 = 0.05, CT : • , CP : . NS-ALM, CT : • , CP : .

higher errors for low spatial resolutions than the NS reference. This again does appear almost
grid-independent for all considered resolutions. The discrepancy between LB and NS does,
however, decrease if the initial Mach number is reduced. While this overall trend can similarly
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be observed for ε = 1/8D it is far less pronounced. By means of the exemplary annotation in
fig. 2 we can relate these findings to section 4.1. Under diffusive scaling both the compressibility
error ec and the discretisation error e∆x decrease simultaneously. Only decreasing Ma though,
purely reduces ec whereas e∆x remains unaffected. The comparison of the two thus reveals the
dominant role of the former. Based thereupon, we can conclude that the smaller differences
between low and high resolutions for ε = 1/8D primarily relate to a generally lower ec. From
a more practical point of view it should be stressed that under diffusive scaling differences in
CP and CT change less than 1% for ∆x < ε/4 as similarly found for this NS-ALM and others
[21]. Grid independence in that sense is thus found at similar scales as in NS frameworks. A
similar dependency on the grid resolution can be seen for the velocity deficit in the near-wake
as shown in fig. 3. In both frameworks, differences between ∆x = 1/32D and ∆x = 1/64D as

0.6

0.4

0.2

0.0

x = 0D x = 1D x = 2D x = 4D x = 6D

−0.6 −0.3 0.0

0.6

0.4

0.2

r/
D

−0.6 −0.3 0.0 −0.6 −0.3 0.0

(u/u0 − 1)

−0.6 −0.3 0.0 −0.6 −0.3 0.0

Figure 3: Wake velocity deficit at different cross-sections downstream with ε = 1/8D. LB-ALM
with ∆x = 1/16D, Ma = 0.1 ( ), ∆x = 1/32D, Ma = 0.05 ( ), ∆x = 1/64D, Ma = 0.025
( ). NS-ALM with ∆x = 1/16D ( ), ∆x = 1/32D ( ), ∆x = 1/64D ( ).

well as between the two approaches are very small. The largest deviation is found in the center
of the wake. This, however, rather seems to relate to small differences in the computation of
the near-root blade forces (not shown here) than the solution of the bulk flow. To sum up, the
overall agreement of all compared parameters lies well within the scope of uncertainties of similar
code-to-code comparisons [50, 36]. Further studies of the far-wake including a comparison of
turbulence statistics are obviously inevitable to complement the fundamental analysis of the
LB-ALM. Yet, these will be published elsewhere, due to the brevity of this paper.

5. Computational Performance
A number of comprehensive performance analyses of GPU-LB implementations can be found in
the literature, see, e.g. [13, 15, 14]. Here, we refrain from such and rather provide a practical
comparison for wind energy applications using the cases presented in this work. After all, with
the utilized domain sizes and use of an ALM these cases can be seen as representative for many
similar applications. For instance, the simple (structured) grid including a local refinement
would similarly be found in typical ABL simulations. Generally, we shall consider the NS-ALM
as the baseline for this comparison. The smaller time step and slightly larger grid employed in
the LBM are therefore seen as an inherent overhead that has to be accepted. The process time
per flow-through time (referring to 236s of physical time) therefore states the most significant
performance measure. Additionally, the performance in MNUPS (million node updates per
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second) is provided, which is more common for LB applications. Obviously though, the latter
can not explicitly depict the aforementioned overhead.

Table 1: Performance measures of both ALM implementations at ∆x = 1/64D (as dicussed in
section 4.2) using EllipSys3D and elbe, respectively. Wall time and process time given per
flow-through time.

EllipSys3D elbe

Processing unit 1024 CPU cores 1 GPU
(Intel Xeon Gold 6130) (Nvidia GTX 1080 Ti)

Grid nodes 33.5 · 106 35 · 106

CFL number 0.102 0.014
Mach number - 0.025

Wall time [h] 2.74 0.86
Process time [CPUh,GPUh] 2804.30 0.86
Performance in MNUPS 32.14 560.82

As seen in table 1, the LBM case ran in about a third of the wall time when compared to the
NS reference. Or, in other words, despite a significantly lower time step, a higher computational
performance was achieved a single GPU (on a desktop PC) than on a large allocation on an
HPC cluster. Evidently, in both frameworks the wall time could be further reduced by increasing
paralellisation. In that regard, the difference in process time which is of O(103) appears more
meaningful. It gives an idea of the hardware required to achieve a similar performance in a
classical NS CPU-based framework when compared to a GPU-based LB implementation. In
line with other studies in the field, this brief comparison again highlights the high potential
of GPU-accelerated LB simulations. Also note, that latest works on this matter even report
real-time computations of ABL flows on domains with O(109) grid points [52]. Regardless of
performance, for future wind energy applications the use of multiple GPUs might generally
be inevitable. This relates to the fact that the maximal amount of computable grid nodes is
inherently bound by the internal memory of the utilised cards, a general bottleneck of GPU-
implementations. The 12 GB of this GPU are apparently fully occupied by a case of this grid
size.

6. Conclusion
In this paper we demonstrated the general feasibility of wind turbine simulations using the
ALM in LB frameworks. It is shown that the cumulant LBM, in contrast to other collision
operators, provides a suitable bulk scheme for the simulation of wind turbines using the ALM
at full-scale Reynolds numbers. As expected from theory [28], the method showed no sign of
numerical instability in the turbulent wake despite the high Reynolds number and rather low
spatial resolutions. It thereby fulfils a crucial requirement for future wind farm simulations.
Higher spatial resolutions than tested in this study would imply unacceptably large numbers of
grid points for such applications. Also, high-magnitude local body forces and associated sharp
velocity gradients of the ALM do not cause stability issues and provide comparable results to
the Navier-Stokes-based ALM. Generally, good agreement was found in terms of blade forces
and the near-wake velocity deficit between the LB-ALM and a NS reference solution. In that
sense the model can be seen as successfully verified. Future analyses will have to determine its
capabilities to model the turbulent far-wake. Prior applications of the cumulant LBM to highly-
turbulent flows are in any way promising, see [34, 29]. Moreover, the computational performance
of the method was illustrated using an exemplary test case. A fixed interval of physical time
was simulated in a comparable wall time on one off-the-shelf consumer graphics card using the
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LBM as on 1024 CPU cores on an HPC cluster using a state-of-the-art finite volume Navier-
Stokes approach. Based on this and other studies we can conclude that the cumulant LBM is a
promising approach to facilitate LES of wind turbines at a fraction of the usual computational
demand.
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