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ABSTRACT 
 
 
This study is a comparison of forecasting methods for predicting the daily maximum 

air temperatures in Uppsala using real data from the Swedish Meteorological and 

Hydrological Institute. The methods for comparison are univariate time series 

approaches suitable for the data and represent both standard and more recently 

developed methods. Specifically, three methods are included in the thesis: neural 

network, ARIMA, and naïve. The dataset is split into a training set and a pseudo out 

of sample test set. The assessment of which method best forecast the daily 

temperature in Uppsala is done by comparing the accuracy of the models when doing 

walk forward validation on the test set. Results show that the neural network is most 

accurate for the used dataset for both one-step and all multi-step forecasts. Further, 

the only same-step forecasts from different models that have a statically significant 

difference are from the neural network and naïve for one- and two-step forecasts, in 

favor of the neural network. 
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1. Introduction  

The weather affects the lives of people every day in smaller and larger scales. The 

temperature, in particular, is often of great interest and we can on an everyday basis 

see forecasts on TV and in the newspapers about the upcoming temperatures where 

we live. Daily decisions about how to get to work or what to do on a vacation day are 

often based on these forecasts. The forecasted temperature lays the ground for 

many non-trivial decisions as well e.g. the upcoming temperature is used by 

companies to predict the demand for electricity and regulate the electric power 

transmission (Taylor and Buizza, 2003). Further, several aspects of the upcoming 

temperature are important in agriculture e.g. warmth and drought are needed for 

drying hay and low temperatures can ruin crops (“Weather forecasting,” 2020). The 

forecasts for temperature affect daily decisions, hence the improvement of 

forecasting accuracy is of most importance.  

Forecasting weather using classical time series methods has been done in many 

cases before. For improving forecasting using time series, an important approach has 

been to compare different forecasting methods for different fields. In a study by Naz 

(2015) the daily temperature in Umeå was forecasted using some of the most used 

univariate and multivariate forecasting methods. The study concluded that it was a 

univariate forecasting method, an ARIMA, performing the best for the used sample. 

Further, the ARIMA model did even in many cases outperform forecasts made by 

meteorologists at SMHI. Time series analysis is constantly evolving and can be a 

good and efficient approach for forecasting the daily temperature for many parties. 

To continue refining the forecasting of temperature, newer methods need to be 

evaluated. Machine learning techniques are rapidly impacting many fields today and 

are new methods in time series and forecasting. Hyndman (2019) describes and 

summarizes in his article The history of forecasting competitions the findings from 

some of the most extensive projects regarding forecasting comparison. In the article, 

Hyndman (2019) brings up the fairly unexplored use of machine learning techniques 

like neural networks in forecasting competitions and points out that they only been 

evaluated for short time series. Even though they need many observations for 

training.  
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This study aims to explore and compare both standard and more recent univariate 

forecasting approaches to see which statistical method best can predict future 

maximum air temperatures in Uppsala, Sweden. The methods for comparison are the 

classical ARIMA, the neural network NNAR, and the simple naïve. In this study, it is 

of interest to do one-step forecasts as well as multi-step forecasts on a pseudo out of 

sample validation set to evaluate the performance of the different methods. This 

leads to the following research question. 

 

Which of the univariate forecasting methods ARIMA, NNAR, and naïve is best at 

forecasting the daily maximum air temperature in Uppsala? 

 

The result of the study showed that the NNAR has the highest accuracy followed by 

ARIMA and last naïve for all forecast horizons. The remaining of the thesis is 

structured as follows: In Section 2, the forecasting methods NNAR, ARIMA, and 

naïve are explained together with the estimation procedure of the models. Further, 

the section is continued by presenting the forecasting methodology and evaluation. In 

Section 3, the dataset for this thesis is presented together with the software and 

packages used. The results for one-step forecasts and multi-step forecasts are 

presented and compared in Section 4. In Section 5, the empirical findings of the 

forecasting accuracy of the methods are discussed and summarized into a 

conclusion finalizing the paper.   
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2. Method 

2.1 ARIMA 

The abbreviation ARIMA model stands for integrated autoregressive moving 

average model and is one of the most commonly used forecasting methods for time 

series. The model is fitted to capture the autocorrelations with earlier observations in 

the data (Hyndman and Athanasopoulos, 2018). The autoregressive part of an 

ARIMA model is the process where data points being linear regressions on past 

values, together with an error term that captures what cannot be explained by the 

past values (Cryer & Chan 2008). We assume that the error term is independent of 

the past values of 𝑌 throughout the entire time series as well as σ𝑒
2 > 0. The process 

is expressed generally as an AR(𝑝) i.e. an autoregressive model of order 𝑝,   

𝑌𝑡 = ϕ𝑌𝑡−1 + ϕ𝑌𝑡−2 + … + ϕ𝑌𝑡−𝑝 + 𝑒𝑡 . 

 

The moving average part of an ARIMA model is in comparison to the autoregressive 

part not using past values of the variable but instead uses past error terms to forecast 

future values (Cryer & Chan 2008). The current value can be expressed by applying 

weights to the past error terms. A moving average process can generally be 

expressed as MA(𝑞) a moving average of order 𝑞,   

 

𝑌𝑡 = θ𝑒𝑡−1 + θ𝑒𝑡−2 + … + θ𝑒𝑡−𝑞  . 

 

The ARIMA model is a general form for both stationary and nonstationary time series 

where the d:th difference is a stationary ARMA process. Stationarity in time series 

can generally be described as the condition where the properties of a time series are 

constant over time (Cryer & Chan 2008). For further explanation and assumptions for 

stationarity see the mentioned reference. The model consists of both weighted lags 

of past values and weighted lags of error terms with the estimated properties 

illustrated as ARIMA( 𝑝, 𝑑, 𝑞 ). The entire model can be expressed concisely as 

 

 ϕ(𝐵)(1 − 𝐵)
𝑑

𝑌𝑡 = θ(𝐵)𝑒𝑡 , 
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where 𝐵 is the backshift operator defined as 𝐵𝑌𝑡 = 𝑌𝑡−1. The term ϕ(𝐵) is the AR 

characteristic polynomial, θ(𝐵) is the MA characteristic polynomial and (1 − 𝐵)𝑑  is 

the 𝑑 :th difference. The term 𝑌𝑡  is the independent variable of interest and 𝑒𝑡  is 

independent error terms with mean 0 and σ𝑒
2 > 0 (Cryer & Chan, 2008). The order of 

the parameters 𝑝 and 𝑞 of the ARIMA model is decided with the function auto.arima 

by minimizing the AICc (see Section 2.4 for AICc) after differencing the data. The 

values of the coefficients 𝜙𝑖 and θ𝑖 are estimated by maximum likelihood estimations 

(Hyndman and Athanasopoulos, 2018).  

 

2.2 Naïve Method 

Forecasting using the naïve method is a very simple method and means that the 

forecast is estimated to be equal to the last observed value (Hyndman and 

Athanasopoulos, 2018) i.e.   

 

𝑌𝑡 = 𝑌𝑡−ℎ . 

 

The simplest naïve will be used in this study with forecasts calculated as described 

above. There are several versions of naïve methods with small differences e.g. 

seasonal naïve which takes the last value from the same season and naïve with drift 

which takes into consideration the average change in the past (Hyndman and 

Athanasopoulos, 2018). These versions will not be included since the forecasting 

horizon will be short and the mean temperature does not change noticeably for only a 

couple of days.  

 

2.3 Neural Network 

Artificial neural networks are a type of machine learning models that got the name 

from the comparison to the connections in the nervous system of living beings. They 

can be described as networks being composed of processing units, called nods, 

carrying information and having many internal connections. The increasing interest in 

the field of neural networks is due to their ability of learning underlying structures in 

data and the ability to capture non-linear relationships (da Silva et al., 2017). Neural 

networks are applicable in many different fields and for different purposes with some 

of them being prediction, classification, and forecasting (da Silva et al., 2017).  
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Figure 2.1 Feed-forward network with four variable inputs, one hidden layer with five 
nods and one output layer. Source: Feedforward Deep Learning Models (2020). 
 
The structure of a neural network can generally be separated into three parts. The 

input layer in the model has the responsibility of receiving data and the hidden layers 

are constructs of nods that are trained to carry information and patterns from the 

data. The last part is the output layer which creates and presents the final output (da 

Silva et al., 2017), which in the case of time series is the forecast.  

 

The simplest neural network has only an input and an output layer and has, in that 

case, the same properties as linear regression. When adding hidden layers, the 

neural network can capture non-linear structures in the data as well (Hyndman & 

Athanasopoulos, 2018). In Figure 2.1 above, we can see an example of a neural 

network called a feed-forward network that moves information in only one direction 

i.e. is not cyclical. The input layer in the feed-forward network receives inputs that are 

then weighted in a linear combination to the nods in the hidden layer where the 

inputs are adjusted into a non-linear function before resulting in an output (Hyndman 

& Athanasopoulos, 2018). After a neural network is trained, the weights represented 

by 𝑏𝑗 and 𝑤𝑗,𝑖 are estimated by minimizing a cost function that in this study will be the 

mean squared error (MSE). The input in the 𝑗: 𝑡ℎ node in the hidden layer is 

calculated as 

𝑧𝑗 =  𝑏𝑗 + ∑ 𝑤𝑗,𝑖𝑥𝑖 

𝑖=1

, 
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where 𝑗 is the number of nodes in the hidden layer and 𝑖 is the number of nodes in 

the input layer. The inputs in the hidden layer are then transformed into a value 

between zero and one by a non-linear function where the sigmoid function is the 

standard one and calculated as  

𝑠(𝑧) =  
1

1 + 𝑒−𝑧
 .  

 

When training a neural network, the starting point takes on random values at first, to 

later be optimized to the data as more observations are processed by the network. 

Thus, the estimations of the weights differ when running the same neural network 

several times with the same training data. The neural network is, therefore, usually 

trained several times and thereafter estimated by taking the average of the 

estimations (Hyndman & Athanasopoulos, 2018). 

 

When applying neural networks in time series, a feed-forward network as explained 

above can be used where the lagged values of the time series are used as the 

variables in the input layer. This is called a neural network autoregression (NNAR) 

and has similarities to an AR model but with the structure of a neural network 

(Hyndman and Athanasopoulos, 2018). In this study, only one hidden layer is 

considered, and the properties of the network are denoted NNAR(𝑝, 𝑘) with 𝑝 being 

the number of lags from the forecast and 𝑘 being the number of nodes in the hidden 

layer. The function nnetar is used to estimate the neural network and the number of 

lags 𝑝 is decided by minimizing the AIC of an AR model to the data. The number of 

nods 𝑘 is specified by 𝑘 = (𝑝 + 1)/2, rounded to the closest integer (Hyndman and 

Athanasopoulos, 2018). 

 

2.4 Akaike's Information Criterion (AIC) 

Akaike's Information Criterion abbreviated AIC is one of the most commonly used 

information criteria and is designed to compare models with the usefulness of 

choosing the one that minimizes the AIC value (Cryer & Chan 2008). The purpose of 

the AIC is to estimate the relative loss of information for different models and is 

defined as 

𝐴𝐼𝐶 = −2 log(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑘. 
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The term 𝑘 takes into consideration the number of parameters in the model e.g. in 

the case of an ARIMA the term corresponds to 𝑘 = 𝑝 + 𝑞 + 1  if an intercept is 

included in the model and 𝑘 = 𝑝 + 𝑞 if not. The inclusion of the term 2𝑘 serves as a 

penalty term for overfitting the model by adding too many parameters in the model. 

The AIC is, however, considered a biased estimator in small samples which has 

given rise to a successor called the corrected AIC abbreviated AICc to reduce this 

bias by adding one more penalizing term (Cryer & Chan 2008). The AICc is defined 

as  

 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2(𝑘 + 1)(𝑘 + 2)

𝑛 − 𝑘 − 2
 . 

 

Where the AIC as defined above has been accompanied with another term 

considering the number of parameters, where 𝑘 being defined by the parameters in 

the model as earlier and 𝑛 is the sample size. The preference of the AICc has been 

suggested to be preferred within forecasting to other approaches of selecting models, 

especially when working with many parameters and smaller sample sizes (Cryer & 

Chan 2008).   

 

2.5 Residual Diagnostics 

When a model is selected, the order of the model decided and the different 

parameters estimated, some diagnostics are done to ensure the goodness of fit to 

the time series. One approach of doing this is to analyze the residuals of the fitted 

model on the training set. A model can be said to have a good fit and is estimated to 

be close to representing the real process if the residuals show similarities in 

properties with white noise (Cryer & Chan 2008). Examining whether the residuals 

are close to white noise or not is done to ensure that no important patterns in the 

data are left out of consideration in the fitted model. The autocorrelation of the 

residuals is therefore investigated to ensure the independence of the residuals (Cryer 

& Chan 2008). This is done both visually for individual lags from an autocorrelation 

function (ACF) plot together with the more overall extent of the autocorrelation in the 

lags by the Ljung-Box test. The Ljung-Box test is based on the below statistic 
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𝑄∗ = 𝑛(𝑛 + 2) ∑(𝑛 − 𝑘)−1𝑟𝑘
2

ℎ

𝑘=1

  , 

 

where 𝑟𝑘  is the autocorrelation for lag  𝑘 , 𝑛  is the number of observations in the 

training set and ℎ  is the largest considered lag from the ACF (Athanasopoulos, 

2018). Using ℎ = 10 is suggested as a rule of thumb since too many lags can be bad 

for the test (Hyndman and Athanasopoulos, 2018). The test investigates the 

independence of the residuals with a null hypothesis that the residuals are 

indistinguishable to white noise and an alternative hypothesis that they are 

distinguishable to white noise. A large 𝑄∗ gives a small p-value and infer rejection of 

the null hypothesis. 

 

2.6 Cross-validation 

When forecasting with a horizon of one or just a few steps in the future, time-series 

cross-validation can be used to include many point-forecasts for evaluation 

(Hyndman and Athanasopoulos, 2018). Specifically, in this study, a so-called walk 

forward validation will be used with an expanding window. A walk forward validation 

is a way of including many forecasts with a short horizon by iteratively making point 

forecasts one step at the time, having multiple overlapping training sets. The 

expanding window implies that the training set is getting larger for every new 

forecast, keeping all the observations from the original training set. The procedure of 

the walk forward validation is iterative and can be divided into the four following steps 

(Brownlee, 2016).  

 

(1) The different models are first estimated on the training set. (2) The models are 

used to do a point forecast with forecast horizon ℎ at the point 𝑡, where 𝑡 is the last 

point in the training set. (3) When the value of 𝑌𝑡+ℎ is predicted, the estimated value 

and the known real value from the test set is compared. (4) For the next forecast, the 

training set is expanded by including the observation at 𝑡 + 1  and the entire 

procedure in steps 1 to 4 are repeated for the entire test set.   

 

Cross-validation can be used for both one-step and multi-step forecasts. In this study, 

the original training set consists of 730 observations corresponding to all days in 
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2017 and 2018, and the test set consists of the days of the first three months of 2019 

corresponding to 90 observations, as will be described in Section 3. When applying 

the walk forward validation to the dataset in this study, the original models are 

estimated on the training set and predictions are made on the following 90 − (ℎ − 1) 

observations in the test set. Forecasts horizons included in the study are ℎ = 1, 2, 3, 5. 

 

2.7 Forecasting Accuracy Measures 

Two different measures for the forecasting accuracy will be used. One scale-

dependent accuracy measure and one which can be used to compare forecasting 

accuracy between time series on different scales.  

 

Mean Absolute Error (MAE) 

The scale-dependent accuracy measure used is the mean absolute error (MAE). The 

MAE is an easily interpreted measurement that can be used to compare different 

forecasting approaches when using them on the same time series, or for time series 

measured on the same unit (Hyndman and Athanasopoulos, 2018). The MAE is 

calculated as  

 

𝑀𝐴𝐸 =  𝑚𝑒𝑎𝑛(|𝑒𝑡|) =
∑ |𝑦𝑡 − 𝑦𝑡 |̂

𝑇
 . 

 

Even though MAE is restricted to the same time series for comparison, it is 

meaningful to use because of the easy and direct interpretation of the measurement.  

 

Mean Absolute Scaled Error (MASE)  

The scaled measurement for comparison of forecasting accuracy for different time 

series used in this study is the mean absolute scaled error (MASE). A scaled 

measurement is included to get a general perception of the accuracy of the forecasts 

and to be able to compare the forecasts in this study with forecasts from other 

studies of interest. Past forecasting competitions, where forecasting methods been 

compared, have used percentage errors as the scale-independent measurement but 

with the last competition, the MASE has been added for the preferable mathematical 

properties (Makridakis et al., 2019). One of the advantages of MASE is that it can be 
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used for forecasting temperature e.g. measured on Celsius, which is problematic for 

percentage errors (Hyndman and Athanasopoulos, 2018). MASE can be calculated 

based on MAE but with the difference of scaling it by adding the average naïve to the 

denominator (Hyndman and Athanasopoulos, 2018), as follows  

 

𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(|𝑞𝑗|),  

𝑤ℎ𝑒𝑟𝑒 𝑞𝑗 =
𝑒𝑗

1
𝑇 − 1

 ∑ |𝑦𝑡 − 𝑦𝑡−1|𝑇
𝑡=2

. 

 

The MASE value is less than one if the forecasting method generates better 

forecasts than the average naïve forecasts on the training set and correspondingly 

larger than one for worse forecasts (Hyndman and Athanasopoulos, 2018). Further, 

the MASE value is unit free and not scaled dependent since both numerator and 

denominator have the same units. 

 

2.8 Diebold-Mariano Test 

When comparing accuracy by solely looking at point forecasts or averaged errors no 

consideration is taking to the randomness and uncertainty in the assessment. The 

Diebold-Mariano (DM) test is a formal statistical test for assessing if there is a 

significant difference between forecast accuracy produced by different methods, 

applicable in many settings (Diebold & Mariano, 1995). The null hypothesis of the test 

is - there is no difference in forecast accuracy between two sample forecasts and the 

alternative hypothesis in this study is – the forecast accuracy of method 2 is less 

accurate than the forecast accuracy of method 1. The DM-test is based on the below 

statistic 

 𝑆1 =
�̅�

√2𝜋 𝑓�̂�(0)
𝑇

 , 

𝑤ℎ𝑒𝑟𝑒 �̅� =
1

𝑇
∑[𝑔(𝑒𝑖𝑡) − 𝑔(𝑒𝑗𝑡)]

𝑇

𝑡=1

, 𝑎𝑛𝑑 𝑓�̂�(0) =  
1

2𝜋
∑ ϒ𝑑

∞

𝜏=−∞

(𝜏). 
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The term �̅� is the sample average loss differential between the forecast method 𝑖 and 

method 𝑗. The term 𝑓
𝑑

̂(0) is the loss differential spectral density at frequency zero 

(Diebold & Mariano, 1995) and the entire expression in the denominator of the DM-

tests statistic represents the consistent estimate of the loss differential standard 

deviation (Diebold, 2015). The null hypothesis is tested using the DM-tests statistic 𝑆1 

under the assumption of stationarity i.e. constant loss differential, constant 

autocorrelation in loss differential, and finite variance (Diebold, 2015). For a more 

detailed description of the test, see the two references (Diebold & Mariano, 1995) 

and (Diebold, 2015). 
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3. Data 

The data for this study are collected from the Swedish Meteorological and 

Hydrological Institute (SMHI) which has an open database for collected information 

concerning historical weather and water parameters in Sweden. SMHI is an expert 

agency working under the Ministry of the Environment in Sweden collecting and 

managing information in the fields of metrology, climatology, oceanography, and 

hydrology (SMHI, 2019). The dataset collected for this study comes from the 

meteorological station Uppsala Aut, in the center of Uppsala which has been running 

since 1985.  

 

To get a larger picture of the data to be forecasted Figure 3.1 below is included, 

where we can see the observed maximum temperatures in Uppsala from 2010 until 

the end of 2018, corresponding to 3287 observed values. In the upper figure, we can 

see that there is a frequent recurrent pattern or seasonality in the data with low  

temperatures in the beginning and the end of the year and high temperatures in the 

summer.  

 

Figure 3.1. Overviewing represented data of daily maximum temperatures in Uppsala 
from 2010 until the end of 2019. 
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Further, it seems to be a constant mean throughout the years of the time series. In 

the lower figure, we can see the variability in temperature for every month within the 

given period. The middle line in the boxes is the median value and the lower and 

upper bounds of the boxes are the first and third quartiles. 

 

The dataset used for this study contains daily observations and is narrowed down to 

contain data from 1 January 2017 to 31 March 2019. The oldest observations are 

omitted for the training of the models to not be too time-consuming. The omitting of 

the oldest observations should not affect the results very much since the used 

methods are simple and the patterns in the data are recurring. The dataset has no 

missing values and is corresponding to 820 observations of the maximum 

temperature in degrees Celsius registered daily. The first 730 observations serve as 

the training set and the last 90 observations serve as the test set. The data are 

collected two times a day with a 12-hour interval from 18 UTC the day before until 18 

UTC the representative day, where the highest temperature of the day is registered in 

the dataset (SMHI, 2019). 

 

The statistical software and programming language R is used for this thesis. The 

mainly used package for this thesis is the complete time series package forecast 

written by Hyndman et al. (2020). The package includes tools for working with and 

graphically displaying time series data as well as methods for analyzing the time 

series and estimating forecasting models. Several large imports are included in the 

package e.g. the ggplot2, zoo, and nnet packages (Hyndman et al., 2020).    
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4. Results  

Table 4.1. Properties of ARIMA when estimated using the training set.  
ARIMA 

(𝑝, 𝑑, 𝑞) (4, 1, 4) 

𝐴𝐼𝐶𝑐 3506 

P-VALUE (LJUNG-BOX TEST) 0.8877 

 

The ARIMA model is estimated on the training dataset consisting of 720 observations 

from 1 January 2017 to 31 December 2018. The model is fitted by the auto.arima 

function where different properties of the order of the model are automatically 

compared by looking at the AICc of the model, without any approximations. The 

residuals of the fitted model are investigated both visually and by doing a Ljung-Box 

test to make sure that no autocorrelation is left in the residuals i.e. the residuals are 

close to white noise. The residual diagnostic of the chosen model is presented in 

Appendix A. In the table above, the properties of the best ARIMA are presented. 

 

The NNAR model is fitted to the training dataset by the nnetar function where the 

number of lags denoted 𝑝 is decided automatically by minimizing the AIC just like a 

regular AR model. The number of nodes in the hidden layer is decided by 𝑘 = (𝑝 +

1)/2. The automatically decided number of lags from the nnetar function is compared 

with choosing the number of lags of an AR model through the auto.arima function, 

with MA and the first difference being set equal to zero to alter the hyperparameters 

and avoid overfitting.  

 

Table 4.2. Properties of NNAR when estimated using the training set. The presented 
AICc is the AICc from the AR process when choosing the order to include in the input 
layer. 

NNAR 

(𝑝, 𝑘) (5, 3) 

𝐴𝐼𝐶𝑐 (ORDER OF AR) 3538 

P-VALUE (LJUNG-BOX TEST) 0.3469 
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Due to the risk of overfitting with neural networks, the model with the least lags which 

still has residuals indistinguishable to white noise i.e. a non-significant Ljung-Box test 

is chosen as the best model, see Appendix B for residual diagnostics. The residuals 

of the final model are investigated just like in the case of fitting the ARIMA and the 

properties of the model are presented in the table above. Since the starting weights 

of the NNAR are determined randomly the function set.seed is used and set to 

set.seed(12345) to be able to reproduce the estimations of the weights in the NNAR.  

The naïve method has no hyperparameters to be estimated since it only uses the last 

observed value for predictions and is not needed to be fitted to the training set. The 

residuals of the naïve method from the training set are, however, still included in 

Appendix C. 

4.1 One-step Forecasting 

The one-step forecasts are done through a walk forward validation on the test set 

consisting of 90 observations from the 1 January 2019 to the 31 of March 2019. For 

each model, every forecast is compared with the real value in the test set and an 

absolute error (AE) is calculated and then summed up and averaged, resulting in the 

MAE. In Table 4.3 below we can see the forecast accuracy presented in MAE and 

MASE for one-step forecasts for the three models ARIMA(4, 1, 4), NNAR(5, 3), and 

naïve. The MAE is calculated and presented on the scale degrees Celsius, which 

means that the MAE represents how many degrees Celsius the different models on 

average are wrong with compared to the observed values, in absolute values. The 

MASE is scale-independent and calculated by taking the MAE of the models divided 

by the MAE of the naïve method from the training set i.e. the in-sample dataset.  

 

Table 4.3. The forecast accuracy of ARIMA, NNAR, and naïve for one-step forecasts, 
with MAE in degrees Celsius and MASE being scale independent. 

MODEL MAE MASE 

ARIMA 2.245 1.048 

NNAR 2.227 1.039 

NAÏVE 2.301 1.074 

 



16 
 

The lowest forecast error i.e. the best forecast accuracy is bolded in the table and we 

can see that NNAR has slightly better forecast accuracy than the other methods, with 

a MAE at 2.227 and a MASE at 1.039. This means that forecasts by the NNAR model 

on average are wrong with 2.227 degrees Celsius. By looking at the MASE value at 

1.039 we can see that the MAE of the forecasts produced by the NNAR is slightly 

worse than the MAE of the in-sample naïve since it is larger than 1. The second-best 

one-step forecasts are produced by the ARIMA with a MAE of 2.245 degrees Celsius 

and a MASE at 1.048. The worst one-step forecasts are produced by the naïve 

method with a MAE of 2.301 degrees Celsius and a MASE at 1.074. It should be 

noted that the MAE of the forecasts using the naïve method on the test set is larger 

than the MAE on the training set i.e. the test set has larger differences between 

observations and could be harder to predict.  

 

In the figure below the variation in one-step forecast errors for the three models 

ARIMA, naïve, and NNAR is presented. The result of the highest accuracy is not very 

apparent in the figure since the differences in variation are small between the errors 

of the models.  

 

Figure 4.1. Distributions of one-step forecast errors for the ARIMA, naïve, and NNAR 
regarding the one-step forecasts on the test data. 
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The NNAR has the highest median error even though the model has the lowest MAE, 

which could be because the model seems to have the smallest errors above the third 

quartile. The figure indicates that the NNAR could have a smaller variation in errors 

compared to the two other models. The errors of the naïve method are most obvious 

to differ from the two other models even though the first quartile and the median are 

very similar to the other two models. What is obvious, however, is that the third 

quartile and the maximum value of the naïve are higher than the once of the NNAR 

and the ARIMA. 

 

4.2 Multi-step Forecasting 

The multi-step forecasts follow the same procedure as for the one-step forecasts and 

are tested on the 90 observations of 2019. However, the obtained forecasts for 

evaluation are only 86 since the forecast horizon is ℎ = 5, making predictions for two 

to five steps in the future, resulting in 90 − (ℎ − 1) observations.   

 

In the table below we can see the multi-step forecasts for the ARIMA, NNAR, and 

naïve i.e. for forecast horizons two, three, and five days into the future. The ARIMA 

and NNAR model makes stepwise predictions for every day into the future and uses 

the predicted values to predict the succeeding days iteratively. The naïve method, 

however, always predicts its forecasts to be equal to the last observed value. This 

means that the forecasts for two, three, and five days into the future always are the 

same when having the same last observed value. 

 

Table 4.4. The forecast accuracy of ARIMA, NNAR, and naïve for more than one step 
forecasts, with MAE in degrees Celsius and MASE being scale independent. 

 H = 2 H = 3 H = 5 

MODEL MAE MASE MAE MASE MAE MASE 

ARIMA 2.821 1.317 2.932 1.368 3.397 1.585 

NNAR 2.764 1.290 2.892 1.350 3.346 1.562 

NAÏVE 2.897 1.352 3.057 1.427 3.437 1.604 
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In Table 4.4, we can see that the NNAR has the best predictions for all forecast 

horizons with a mean absolute error of 2.764 degrees Celsius for two-step forecasts. 

Together with a mean absolute error of 2.892 and 3.346 degrees Celsius for three 

and five-step forecasts respectively. The second-best forecast accuracy is obtained 

by the ARIMA and the worst by the naïve method for all forecast horizons. Further, 

we can see that all methods have larger absolute errors for longer forecast horizons 

and that the MASE of all methods is increasing correspondingly. The mean absolute 

scaled errors are gradually increasing for all methods with longer forecast horizons 

since the scaling component always is the MAE of the one-step forecasts from the in-

sample naïve.  

  

In Table 4.5 below, we can see the results of the DM-test assessing whether a 

significant difference among the forecasts from the different methods is apparent. 

With the null hypothesis that there is no difference and a one-sided alternative 

hypothesis. To be noted is that the DM-test is used in this thesis to assess for the 

potential difference in forecasts in an out-of-sample period and is not necessarily an 

indicator of which underlying model is the best one. The significance level in this 

thesis is set to be the standard 0.05 and the significant p-values in the table below 

have been bolded.  

 

Table 4.5. One-sided Diebold-Mariano test for predictive accuracy, comparing the 
forecast accuracy of forecasting methods. 

 DIEBOLD-MARIANO TEST 

 H = 1 H = 2 H = 3 H = 5 

ACCURACY p-value p-value p-value p-value 

NNAR > ARIMA 0.091 0.298 0.522 0.614 

NNAR > NAÏVE 0.039 0.048 0.174 0.367 

ARIMA > NAÏVE 0.105 0.109 0.206 0.326 
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From the DM-tests, we can on a five percent significance level reject that the NNAR 

and the naïve forecasts are equally accurate on one-step and two-step forecasts in 

favor of the alternative that the NNAR has more accurate forecasts. Even though the 

NNAR has lower MAE than the ARIMA and the ARIMA has lower MAE than the 

naïve for all forecast horizons, the differences are not large enough to be able to 

reject the null hypothesis.  
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5. Discussion 

What can be seen in the result is that we have a hierarchy among the different 

forecasting models in terms of forecasting accuracy for the used test set. The best 

i.e. most accurate method for the used dataset is the NNAR, the second-best is the 

ARIMA and the method with the lowest accuracy is the naïve method, which is 

consistent for all forecasting horizons. The differences in MAE for the methods are, 

however, not consistently getting larger when conducting forecasts with larger 

forecast horizons. The NNAR for example, which had the best accuracy for every 

forecast horizon had a decrease in difference in MAE compared to the other two 

models when going from three steps to five steps into the future. This could be an 

indication of the NNAR not having an increasing difference in accuracy compared to 

the other two methods for larger forecast horizons but have higher accuracy for at 

least the five-step horizon due to lower errors in the shorter forecast horizons.  

 

The differences in MAE between the different methods are not very large which 

raises the question of whether the differences are large enough to say that one 

model is more accurate than the others. By testing with the formal Diebold-Mariano 

test for comparing forecasts, the methods with significantly better forecasting 

accuracy compared to the other methods could be determined. The only same-step 

forecasts where the null hypothesis of two forecasts being equally accurate could be 

rejected is when comparing the NNAR and naïve for one and two-step forecasts. 

Therefore, we can assert that the NNAR is better at forecasting the daily maximum 

temperature than the naïve for the used dataset and the mentioned forecast 

horizons. For the comparison of NNAR and ARIMA together with ARIMA and naïve, 

we can say that NNAR and ARIMA have a higher forecasting accuracy in the used 

dataset but not that they are significantly better.  

 

Diebold (2015) gives his own take on comparing forecasts and models in his article 

Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the 

Use and Abuse of Diebold-Mariano Test*. His opinion is that the DM-test should not 

be used to make general conclusions when comparing models but rather to compare 

specific forecasts. Together with the fact that the forecasts are done on only one test 

set and only three months out of twelve, it is no point in making assertive 
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generalizations about which model is the best for all periods of a year or all years in 

general. Even though we could in Section 3, see that the time series had a very 

recurrent pattern we can still see slight variability in the time series which could affect 

the conclusions when only testing on three months which makes the generalizability 

low. This argument could be strengthened by the fact that the MASE always is larger 

than one for all methods and forecast horizons. Even though the naïve method is 

distinctly worse in forecasting the test period, the in-sample naïve had a lower MAE 

than both the ARIMA and NNAR for the test set. This could be an indication that 

there is some variability in the data depending on the different seasons of a year 

which could affect the results of the performance of the different methods. We do, 

however, have a strong indication that the NNAR could be a better forecasting 

method, at least compared to the naïve since the difference for some forecast 

horizons is significant in favor of the NNAR. Especially since the data follows a 

closely similar pattern through every year and can be assumed to have the same 

recurrent pattern in the future. This would imply that the use of an NNAR would be a 

better method compared to only estimate the maximum temperature of a day solely 

on the maximum temperature of yesterday.   

 

One of the reasons why the test is not made iteratively over many test periods in this 

thesis is due to the computational heaviness of primarily the neural network. 

Hyndman (2019) stated when summarizing the evolution of forecasting competitions 

that there is a consensus in the field of forecasting, that complex methods such as 

neural networks are performing badly for univariate time series. Partially because 

many data points are needed. A large dataset is prioritized at the expense of 

generalizability in this study for the neural network to have enough data points to 

learn from. This gives the neural network the needed circumstances for good 

forecasts and could shed new light on the usefulness compared to the results of 

previous forecast competitions when the datasets been small. There are a lot of data 

points for maximum temperatures for a lot of different areas in Sweden, which makes 

the field a potentially good one for the use of a neural network.    

 

An interesting aspect of the result from the conducted study is that the NNAR 

performs better than for example the ARIMA, which could be due to the use of a 

large sample size in the training dataset. Many of the comparisons with conclusions 
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of neural networks being bad methods for forecasting in previous studies, compared 

to older statistical methods has been made with small datasets even though neural 

networks are known for requiring many observations. In a thesis by Naz (2015) 

comparing the temperature in Umeå, the author concluded that the ARIMA was the 

best model compared to other classical forecasting methods which were both 

univariate and multivariate. Further, the author found that the ARIMA in many cases 

performed better than the forecasts made by SMHI. The result that the NNAR even 

could outperform an ARIMA for the Uppsala dataset used in this study makes it 

interesting to do further comparisons. To investigate how good an NNAR and ARIMA 

could perform when comparing them for a variety of datasets and periods, of 

observed maximum temperatures in Sweden, to be able to make more generalizable 

conclusions. 

 

In conclusion, the NNAR model had the best forecast accuracy for all forecast 

horizons when predicting the maximum temperature in Uppsala, which suggests that 

the method could be superior to the other for this purpose. To more emphatically 

state this conclusion and to be able to interpret this result as generalizable a larger 

research is encouraged.  
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