
From Mob Programming to Mob Development: User-
Centred Design in Collaborative Software Development

Victor Anderfelt

Uppsala University

Uppsala, Sweden

v.anderfelt@gmail.com

ABSTRACT

Mob programming is a collaborative software development

method that has gained increasing attention in both industry

and research. While the focus of mob programming is on

the benefits of teams programming together, there are also

potential benefits for other aspects of the software

development process. However, there is a lack of research

on the use of the method outside the domain of

programming. This study explores user-centred design

(UCD) in mob programming through a case study of three

software development teams at Sveriges Television, a

Swedish public broadcasting company. Results show that

the teams use the method for a variety of tasks in their daily

work, calling for a rebranding of the method to mob

development to encompass the broader scope. The

integration of UCD is analysed through the principles of

user-centred agile software development. The results

indicate that a revision of these principles is needed to

include the cross-functional and social factors that mob

development adds to the software development process.

Author Keywords

Mob Programming; Mob Development; UCD; UCASD;

Collaborative Software Development; HCI practice.

INTRODUCTION

In the wake of an increased interest from software

development businesses to acknowledge the importance of

usability and user experience (UX) design, a need for

discussions about collaboration and multi-disciplinary

software development teams has been expressed from the

industry [1, 2, 29]. The field of Human-Computer

Interaction (HCI) practice further acknowledges the

growing integration of user-centred design and research

practices in industry. Ogunyemi, Lamas, Lárusdóttir and

Loizides [25], for example, have found in their systematic

mapping study that HCI practice research has not only

focused on design tools, methods, and contexts, but also on

the importance of collaboration and team communication.

These two standpoints; the industry’s desire for multi-

disciplinary collaboration, and the research field’s stance on

collaborative HCI practices, demonstrate a need for cross-

functional collaborative methods for HCI practitioners and

developers.

One such collaboration practice is mob programming [37].

Mob programming is a software development approach

born from agile development philosophies such as extreme

programming [4]. Like pair programming [35], mob

programming involves simultaneous work at one computer

from several people. However, unlike pair programming,

mob programming involves more than two people, often

whole teams, working together at the same computer.

The interest in mob programming has increased during the

past few years, as seen by the discussion surrounding how

to best conduct mob programming both in Sweden and

internationally [5, 11, 12, 24, 33]. As it is described by Zuill

[37], one of the leading proponents of mob programming,

the method focuses on the coding aspects of software

development projects. However, he also argues that the

approach can be applied to all stages of a software

development project, from discovery to implementation and

beyond. As this study will focus more on this broader use of

the method, I have chosen to refer to the method as mob

development.

Most of the current research on mob development focuses

on programming [e.g. 3, 6, 18]. Although some researchers

have explored the integration of UX professionals and

software development teams using agile frameworks [8,

13], there is a need for understanding how collaborative

methods like mob development incorporate HCI-work.

Previous research on the integration of UX professionals in

agile teams has concentrated on user-centred design (UCD)

as part of HCI knowledge and practices [14, 32], a

perspective taken in this paper as well. UCD is used as a

broad term encompassing a focus on end-users as well as

practical aspects such as user evaluation and refinement of

design concepts [7]. This makes UCD an appropriate

perspective for analysing HCI practices in agile processes,

especially in the field of User-Centred Agile Software

Development (UCASD). This study uses the framework of

principles of UCASD presented by Brhel, Meth, Maedche

and Werder [7], who produced a foundation for the

integration of UCD and agile software development based

on a thorough literature analysis. By exploring UCD in mob

development through a case study of three teams from the

interactive department at Sveriges Television (SVT), a

This work was submitted in partial fulfilment for the master of science degree in

Human – Computer Interaction at Uppsala University, Sweden. Permission to make

digital or hard copies of all or part of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than the

author(s) must be honoured.

© <INSERT DATE AND YEAR> Copyright is held by the author(s).

public service broadcasting company working actively with

mob development, I aim to answer the following research

question and two sub questions:

How can user-centred design be integrated in mob

development?

1. How is mob development used at SVT?

2. What principles of UCASD are supported by

mob development?

BACKGROUND/RELATED LITERATURE

This chapter presents mob development and the research

and practitioner literature that covers the method. This is

followed by an overview of the literature on UCD and UX

in agile software development. Lastly, the theoretical

framework used in this paper is presented.

Mob Development

Mob development is a relatively new method, however, the

original term, mob programming, was first coined by

Hohman and Slocum [17]. The authors were attempting to

simplify and streamline their coding practices following a

transition to extreme programming at their company. The

method, and specifically the term mob programming, did

not gain traction until Zuill [37] presented his team’s

experience of working in the method-specific collaborative

fashion. According to Zuill, the method was born from

extreme programming and an agile development approach.

He describes the method as an approach to software

development where an entire team works together on the

same thing. The team sits at the same computer with a large

projector or screen, where one person is the “driver”,

controlling the keyboard and mouse, while the others are

“navigators”, discussing and explaining what the driver

should do. Since the method evolved from the experiences

of Zuill and his colleagues, it is primarily developed for

programming and code testing. However, he suggests that

mob development has potential for being used for all

aspects of a software development project, from early

discovery phases to deployment.

Apart from Zuill’s experience report there have been some

other instances of mob development being tried in practice.

Wilson [36] describes how he and his team went from using

pair programming to mob development. According to

Wilson the method was useful for solving complex tasks,

but not as successful for more complicated problems where

the solutions were already known. Similarly, Buchan and

Pearl [9] applied mob development in a software

development team and discovered both benefits and

challenges with the method. Some benefits were increased

productivity, consistency of the code design and broader

knowledge of the system in the entire team, while some

challenges were that the learning curve was steep and

getting used to the method was difficult. The team also

found social friction occurred more often when using the

method. These experiences were also present in Boekhout’s

[6] introduction of mob development in two less

experienced teams. Unlike the other studies, however,

Boekhout reports that mob development was successfully

used in non-software development settings.

Apart from experience reports, research conducted on mob

development is sparse. Balijepally, Chaudhry and Nerur [3]

conducted a literature study covering benefits and risks

associated with the method, such as less technical dept but

greater risk for social friction, as well as suggestions for

future research. The authors argue that although early

adapters of the method see value in the method there is a

need for the research community to validate those claims.

Considering the relative short time mob development has

been discussed and used, Balijepally’s et al. call for more

research is sound. However, their study, as all literature on

mob development, focuses on the programming aspect of

software development process’. There is an apparent lack of

research concerning non-programming aspects of mob

development and the method could therefore benefit from

being investigated from an HCI perspective.

User-centred Design and User Experience Design in
Agile Software Development

Understanding how UCD can be incorporated in mob

development can be difficult considering the lack of

literature on the method. However, several studies have

been conducted concerning UCD and UX design integrated

with other agile processes and practices that can help

illustrate the standpoint of relevant research.

One way of integrating UCD in agile frameworks is

through collaborative methods. Collaborative methods in

software development, other than mob development, like

for example pair programming, are commonly used and

have been thoroughly studied [15, 31, 35]. Some

researchers have focused on collaborative methods other

than those focussing on programming. Ramanujam and Lee

[30] developed a collaborative agile framework and

investigated its effects in a large multinational company.

They propose a framework for collaborative work on an

organizational level focused on team-level collaboration

which resulted in several strategical benefits. Not only did

the collaborative framework simplify the requirements

process in the case company, but it also improved other

processes like user story mapping and development. Apart

from direct collaboration between and in teams, managerial

and organizational support has been shown to be important

for UCD to be integrated successfully in agile teams [16].

Bruun, Larusdottir, Nielsen, Nielsen and Persson [8]

studied UX professionals’ roles and responsibilities in agile

teams. The UX professional role is decidedly broad,

covering responsibilities related to several disciplines and

development phases [8]. Bruun et al. found, after

interviewing 10 employees at an IT company, that the role

has responsibilities that are more cross-disciplinary

compared to what previous research has identified. The UX

role includes sales and business development

responsibilities in addition to the more traditionally UX

related responsibilities of e.g. interaction design,

prototyping and user research. The authors argue that the

case company they studied integrated UX disciplines well

through an active involvement of the UX professionals in

sales meetings and business development. However, these

newly identified responsibilities emphasize customer needs

over user needs. The authors discuss the choice between

user- and customer needs and conclude that there are

situations where working user-centred is not possible.

Although the professional UX role has a broad connection

to various parts of an organization, several studies have

shown that integrating UX processes and methods might

not always be easy. Kuusinen, Mikkonen and Pakarinen

[21] investigated the interaction of user experience design

and software development activities. They identified

several challenges and issues with the integration of the

approaches that are in line with the findings of Bruun et al.

[8]. The identified challenges related to communication and

frictions between management and development processes.

Ferreira, Sharp and Robinson [14] also investigate the

integration of UX and agile development. In line with

Kuusinen et al. [21], Ferreira et al. [14] find communication

between divisions and roles to be important factors,

however present a more positive outlook on the situation by

suggesting improvements for the integration.

Organizational structure and support for communication

and coordination between teams and roles are shown to be

important for design practices to be embedded in agile

software development processes successfully [13, 14, 20].

A different approach to the integration of UX practices in

agile development is presented by Øvad, Bornoe, Larsen

and Stage [26]. Through action research the authors let

software developers learn, apply, iterate, and improve upon

usability tests. The study shows that in some cases the sole

responsibility for certain UX tasks need not necessarily be

on the UX professional role, a conclusion reached by

Ferreira, Noble and Biddle [13] as well.

The field of UCASD takes a less practice-based perspective

to the definition and responsibilities of UX professionals.

There are, however, two exceptions to this. Patton [27]

presents an experience report where he describes the loss of

usefulness and usability of products when following a strict

extreme programming approach. By introducing interaction

design to the day-to-day software development process

Patton argues that the resulting products are of higher

quality. Although Patton does present some

recommendations for incorporating UCD in the agile

processes these are mainly of practical nature. Similarly,

Lárusdóttir, Cajander and Gulliksen [22] study what user

evaluation practices are used in agile software development

teams, concluding that user feedback is often collected

informally before the actual development begins.

Unlike Patton [27] and Lárusdóttir et al. [22] most other

literature on UCASD takes a broader standpoint, taking an

explorative look at UCASD. In a separate paper Cajander,

Lárusdóttir and Gulliksen [10] address the challenges when

adopting user perspectives specifically in Scrum projects.

They highlight responsibility, documentation, and user

centred activities as well as organizational and contextual

setting as factors that affect how well user perspectives are

adopted and incorporated in Scrum projects. In line with

these findings Wale-Kolade, Nielsen and Päivärinta [34]

also found that context and situational factors are important

but require more research. Communication and knowledge

sharing between roles is important for the integration of

UCD and agile software development [10, 19], however

Cajander et al. [10] do not discuss more collaborative

approaches to the integration. Da Silva, Martin, Maurer and

Silveira [32] conducted an extensive systematic literature

review of the UCASD field to pin-point common practices,

suggestions, and challenges in the literature. The authors

present several similarities between the studies, taking a

sprint-based standpoint in presenting suggestions for how to

integrate UCD and agile software development. From a

research perspective the authors establish that more

empirical or experimental studies are needed.

Based on the literature overview presented here the studies

on UX and UCD in agile software development show that

there are several factors to successfully integrating user-

centred perspectives and practices in agile approaches. The

role of the UX professional, communication, organizational

support and context-dependent factors are some elements

that have been shown important, however much of the

literature focus on the practices and tools used in software

development and UCD. Additionally, even though the

literature concentrates on practices or results in practical

suggestions, there is an obvious lack of consideration for

collaborative methods as a tool for easing the integration.

Principles of User-Centred Agile Software Development

Bhrel et al. [7] recognized the need for an even broader

perspective on UCASD, finding previously conducted

literature reviews to be lacking in quality. The authors point

out three major shortcomings: (1) the reviews do not

encompass all dimensions of UCASD, (2) the reviews do

not offer generalizable results and (3) the reviews do not

provide sufficient quality assessment of the reviewed

literature. With these shortcomings in mind, the authors

present a thorough analysis and summary of UCASD

literature by conducting yet another systematic literature

review, aiming to answer the research question: “which

principles constitute a user-centred agile software

development approach?” [p. 2, 7].

Bhrel et al. [7] included 83 papers in their review, after a

four-stage quality assessment process. The papers were

divided into dimensions, coded iteratively and then

analysed, ultimately resulting in five principles (Table 1).

Based on their literature review, the authors found a lack of

unanimous findings in the two dimensions they call

“technology” and “people/social”, leading to the five

principles only covering the dimensions the authors call

Table 1. The five principles of UCASD by Brhel et al. [7]

“process” (including principles 1, 2 and 3) and “practices”

(including principles 4 and 5). The principles cover the,

according to literature, important aspects of UCASD

making them an appropriate support for understanding

UCASD. In this paper the principles will be used to discuss

the integration of UCD in mob development, however the

lack of principles focusing on social and technological

aspects of UCASD is acknowledged.

METHOD

This study will follow the case study approach [23],

collecting data through semi-structured interviews. The

choice of case study is based on the assumption of

ontological realism, that there is knowledge to be gained by

exploring and researching phenomena in their real contexts.

This is accomplished by applying the principles presented

by Brhel et al. [7] to “the reality” of mob development. The

case studied in this paper has a history of working with mob

development for several years and has worked to integrate

more than just programming in the method, which allows

exploration of mob development in its real-life context. As

Lazar, Feng and Hochheiser [23] explain,

… case studies use careful analysis of carefully

selected subjects to generate interesting and novel

insights, ideally with an eye on developing general

principles that might facilitate understanding of other

cases. [p. 153, 23]

The lack of previous research on mob development and the

integration of non-programming tasks further cement the

choice of case study. By carefully analysing the case, and

developing general results based on the findings, the

resulting insights may help create an understanding of how

UCD can be integrated in mob development.

The Case of SVT

The case company studied in this paper is SVT, the

Swedish national public service television company. SVT’s

services span from television broadcasting to online news

and streaming services. In this study I worked with three

teams from the news department at SVT’s digital branch

SVT interaktiv (SVTi). The three teams work with

developing and maintaining the news- and sports website

and apps. The members of the teams are used to working

together both in person and remotely and can choose work

processes and methods freely. This freedom has led to the

teams’ dedication and engagement in finding the best

process for their teams. The teams all use mob development

as a method, to varying extents, every day. The content in

the mob sessions differ between the teams, but all teams

have had some experience adapting mob development to

both programming tasks and design related tasks. This

makes SVT and especially the news department an

appropriate case subject for studying user-centred design in

mob development.

Data Collection

I conducted nine semi-structured, qualitative interviews

with members of the three different teams. The roles of the

interviewees were one or a mixture of UX designer, art

director (AD), product owner (PO), developer (DEV), and

tester (TEST). Five of the interviews were conducted in

person at the company office, while four were conducted

remotely through Slack. The interviews were held in

Swedish, lasted 40 to 60 minutes and were recorded with

consent. During the interviews I followed an interview

guide and followed up interesting subjects not included in

the interview guide as they appeared. The interview guide

consisted of 17 questions and follow-up questions: two

questions were related to the interviewee’s role and their

team’s general workflow and software development

process, nine questions were on mob development, how

they use the method, what strengths and weaknesses the

method has, and six questions were on UCD, how they

apply UCD practices and methods as well as if and how

they apply it in mob sessions. In many cases the

interviewees answered the questions with examples from

their current or past projects, which helped give context to

their expositions. These examples were carefully

anonymized to ensure confidentiality.

Principle Description

1. Separate Product

Discovery and

Product Creation

User-centred agile software

development should be based on

separated product discovery and

product creation phases, with an

emphasis on research- and design

upfront.

2. Iterative and

Incremental Design

and Development

User-centred agile approaches should

support software design and

development in short iterations and

in an incremental manner.

3. Parallel

Interwoven

Creation Tracks

Design and development should

proceed in parallel interwoven

tracks. The principle stresses

finishing design tasks before

development but acknowledges the

importance of cross-functional teams

to improve the cooperation between

UCD experts and developers.

4. Continuous

Stakeholder

Involvement

Stakeholders should be actively

involved in user-centred agile

approaches early on and should

remain involved throughout the

entire development process to collect

input and feedback.

5. Artifact-

Mediated

Communication

Tangible and up-to-date artifacts

should be used to document and

communicate product and design

concepts and should be accessible to

all involved stakeholders.

Thematic Analysis

The data analysis process followed recommendations for

content analysis [23, 28], and was conducted digitally.

Content analysis, as described by Lazar et al. [23] and

Patton [28], is similar to what can be referred to as thematic

analysis in that it aims to reduce large data-sets to smaller,

yet rich and descriptive, patterns and themes. Content

analysis is well suited for analysing rich interview data to

generate general principles, in line with the case study

approach [23].

The process followed several steps beginning with a read-

through and notation of the transcripts. The transcripts were

transferred to the digital sketch and interface design tool

Figma, for easier visual access of the text data, and were re-

read and coded. The coding was deductive, based partly on

the theoretical framework, like “design upfront” based on

principle one [7], and partly on concepts related to mob

development, like “Empathy/Perspectives”. When new

codes emerged later in the process, the transcripts were re-

read to see if they fit in earlier sections.

After the iterative coding process, the codes were compared

and considered based on possible converging categories, as

suggested by Patton [28]. The grouped codes were

compared to the principles of UCASD [7] and categories

were created from the principles. These categories were

complemented with additional categories that were not

covered by the principles such as “mob development, not

mob programming” and “how is mob development

integrated?”, resulting in ten categories in total. However,

after analysing the categories’ external heterogeneity there

were several aspects of them that were too similar [28].

This led to another iteration of the categories resulting in

nine final top-level themes. The data gathered from the

interviews was recorded and transcribed in Swedish. The

coding and thematic analysis was therefore also done in

Swedish. Clarifications and translations to English were

done for the quotes included in the report.

RESULTS

This chapter is divided into sections based on three main

findings. The first section, Defining Mob Development,

outlines what, according to the informants, mob

development as a method is and how it is implemented. The

second section, Mob Development and Agile Processes,

presents the informants’ description of how the method fits

in with other processes, and how processes are affected by

the method. Collaboration was shown to be an important

aspect of the method. Even though it is touched upon in the

first two sections, I deem it important enough to be

highlighted in its own section due to its frequent occurrence

in the interviews. The last section, Collaboration and

Sociality, outlines these social and collaborative aspects of

mob development.

Defining Mob Development

A recurring theme during the interviews was the use of mob

development for more than just programming. This became

apparent in different contexts during the interviews but was

in many cases also directly referred to. The informants

described what constitutes as mob programming, including

stakeholder involvement, the use of artefacts and other

methods, and the effect organizational support has on the

use of mob development.

Mob Development, not Mob Programming

When describing mob development, the interviewees talked

about several different aspects of the method, such as group

collaboration, knowledge sharing, and programming,

among others. All the informants had a general idea of

Woody Zuill’s [37] explanation of the method, something

that came up despite not being a part of the interview guide.

However, most of the interviewees described this definition

of the method as too narrow for their needs. One of the

interviewees explained how they define mob development:

“It doesn’t have to be sitting and writing code or sitting in

front of a screen. A lot of our mob development is us sitting

on the couches in our mob station and discussing the

problem.” (PO-1). As the informant describes, the teams

often refer to group-based, non-programming tasks such as

design studios and workshops as mob development. The

broad definition of the method is also described by the

following informant: “But in our team we’ve extended that

concept to not only be about coding, and it’s not really test-

driven either, we try to apply the same way of thinking to

all aspects of system development.” (DEV-1). According to

this informant, “[E]verything from coding to, what do I

know, maybe planning a user test, in some case we have

sketched on design sketches together ...”, counts as mob

development. What the informant describes, similarly to the

others, is that mob development is used by the teams for

many different tasks, and in many stages of the software

development process.

For these reasons, many of the interviewees used the term

mob development rather than mob programming. It is safe

to assume that they did so to strengthen the idea of the mob

including more than just programming and being a method

for more than just developers. This was expressed by one

informant: “I think that it’s important to say mob

development and not mob programming, and that’s because

I’m a designer, because my background is not developer,

rather the opposite.” (AD-1). The term, mob development,

highlights the importance of solving different tasks, not just

programming. However, exactly what tasks should be

solved in a mob vary according to the interviewees, ranging

from user story mapping to mock-up creation.

Some of the informants suggested that mob development is

less effective when performing administrative tasks like

documentation, pointing to the participants’ individual

documentation styles. Others argued that the method was

appropriate for any type of work. The different teams used

the method to varying degrees which became apparent

when discussing what types of problems can be solved

using mob development. One informant explained that mob

development works best when: “you need to solve a more

complex problem where you need several approaches to

minimize any errors.” (AD-1), while another informant said

it works best when: “There is an immediate problem, we

don’t know what’s causing the problem and we don’t know

how to solve it, when we need all competences we think we

need to solve this together.” (PO-2). The two quotes show

disparate opinions of when mob development is best used.

There are apparent differences in what types of problems

and tasks the informants suggest could be solved with mob

development. However, all informants agreed that mob

development involves a group of people solving one

problem. As one informant put it: “[mob development] is

actually just a type of collaboration. And it feels like a

design studio could be a mob as well. Because you do it

together.” (PO-1).

Stakeholder and User Involvement

According to the informants, another benefit of using mob

development is the ability to include people from other

teams, users, or other stakeholders directly. The physically

and temporally immediate nature of mob development

means collaboration and insights without worrying about

lead times. One informant expressed it like this: “When [a

stakeholder] becomes a part of our team it’s much easier to

just, like `what is he thinking of?´, because he is sitting next

to us.” (DEV-2). Including stakeholders in the mob,

according to this informant, lets the stakeholder become a

part of the team. The importance of including stakeholders

in the mob can be related to principle four, Continuous

Stakeholder Involvement [7]. Principle four expresses the

importance of stakeholders being involved in all aspects of

the software development process. Mob development

allows for stakeholders to be involved, however as one

informant puts it: “the mob can be a good tool for building

good relationships with stakeholders, but I don’t think it is

the main purpose with [mob development].” (DEV-2). In

other words, mob development can help improve

communication and build relations in the organization but

might not always be the main reason for using the method.

Artefacts and Methods

Some of the informants stated that having the right tools for

the problem at hand is important for mob development.

Whiteboards were mentioned by most of the interviewees

as important, and especially when the problem is related to

UCD. One participant said, “[W]e actually work with these

boards. And, anything from just sketching something or

having a short workshop where you put up some post-its, or

physically moving post-its to prioritize things.” (AD-1). The

informant describes how important the physicality and

tangibility of whiteboards is to their team’s work process.

Although some of the informants described using tools, and

most described using whiteboards, some of the interviewees

questioned the value of the tools in mob development. One

participant reflected on the use of user-story maps: “But

since [updating the user-story maps] is done every day,

actually twice per day, during check-in and check-out…

The board doesn’t become as important, rather it’s the

discussion that is important.” (PO-1). Another informant

presented opposing thoughts in their reflection on the use of

whiteboards in general: “since you make decisions together,

you make choices together, I think that the tools we have

around us might help us remember what choices we’ve

taken. … So, it becomes some sort of collective memory.”

(DEV-1). In other words, there are differing opinions about

the value of tools in mob development.

Communication in mob development is often assisted using

tools such as whiteboards and user-story maps. According

to the fifth principle, Artifact-Mediated Communication,

this is central for UCASD [7]. However, while the principle

emphasizes communication and documentation, mob

development adds a need for active participation through

the artifacts. Due to the collaborative nature of mob

development, the artifacts become an integral part of the

method, not just mediating communication between roles

and teams. This leads to a problem that was touched upon

during the interviews: the participants in the mob need to

know how to use the tool. One participant expressed the

difficulties like this: “There is a threshold there that is

challenging which is, partly that everyone doesn’t know the

tool that you are working in, Sketch or Figma or whatever

you want to use.” (UX-2). When doing UCD-related work

through mob development, not knowing the tools may

become an issue, interrupting the workflow.

Supporting Mob Development

Many of the interviewees expressed the freedom their teams

had regarding how to best meet the strategic goals. As an

informant expressed it: “we start with the strategic goals

ourselves and find which one we can work best with.” (PO-

1). In other words, the teams have the freedom to choose

what to focus on. This is also the case regarding how the

teams work. Thus, the teams choose to use mob

development for both UCD and programming. However, it

is not enough for a team to have the freedom to use mob

development for UCD if the organization does not support

the team, and the team does not have the right attitude. This

was discussed by one of the interviewees: “Well, I would

say it’s a willingness from the team … [UCD is] difficult to

integrate in [mob development] if neither the organization

nor the team wants it.” (UX-1). A willingness to adopt mob

development for more than just programming is required

from both the organization and the team members.

Defining Mob Development Summarized

The interviews highlight the interviewees’ definition of

mob development as more than just programming. The

method is used by all the three teams but to different

extents, and for different tasks. Artefacts and other tools are

used in combination with mob development, but apart from

whiteboards there is no consensus whether specific tools are

necessary for all teams. The tools are used for

communication but are also a more integrated part of the

work practice. Lastly, mob development requires support

from the organization to be practiced successfully.

Mob Development and Agile Processes

The informants describe both strengths and weaknesses in

using mob development for UCD during different stages of

software development processes. This section presents the

opportunities and challenges, expressed by the informants,

that arise when using mob development during different

project phases. Furthermore, the informants discuss how

UCD is conducted, and how mob development helps

facilitate design work.

Discovery, Delivery and Design

Many of the informants discussed discovery and delivery as

two phases during their projects. Discovery was described

as an exploratory phase, sometimes referring to it as a

research phase. The research can be both technical and

user-centred, including user studies, interviews and

observations, or more technical investigations of the feature

being implemented. Discovery also included planning and

structuring goals, and formulating solutions to problems.

Delivery was explained as more of an implementation

phase, where most of the development and design is

conducted. The use of mob development for UCD during

the different phases appears to vary a lot depending on what

stage of the project the team is currently in.

Some informants found mob development more challenging

to utilize during the discovery phase. One informant

discussed situations where mob development is easier to

use, where there is a clear idea of the problem, and

continued by saying, “The opposite would be explorative

phases where the problem isn’t apparent yet, where there is

more insecurity and questions.” (PO-2). Conducting

research in mob development was tackled differently

among the teams. One informant described how research

was conducted by the UX designer “outside of the mob”:

“And there has often been requirements from outside of the

mob like `hi, I have been out doing user tests and I found

this out, think about that when you develop´.” (DEV-2). The

informant describes a situation where the UX designer has

conducted research and presents the findings to the

developers as a deliverable, rather than being part of the

mob. Another informant suggested that: “ideally [UCD]

should be one sprint ahead, so that you have explored,

understood, answered and straightened out most of the

questions.” (PO-2). A third informant stated that research

was conducted collectively by the team in what they

defined as part of the mob: “some teams have that kind of

mob where the mob is for the developers, and the designers

and PO jump in and out and add their perspective. But we

do it like, (two of the developers) are down there during the

user tests” (PO-1). These quotes show differences in how

the teams choose to tackle mob development during

discovery. UCD research can be conducted separately from

the mob, in some cases one sprint ahead of development, or

as part of the mob, including all roles in the process.

Likewise, the informants identified challenges with

integrating design-related tasks in mob development, such

as not knowing the tools being used or not having design

skills. However, all of them expressed a desire to solve

these challenges and successfully integrate UCD in mob

development. As described by one informant: “I mean,

nobody wants a delivery structure where you receive UX

and design in your lap and they say `this is what you’ll do´,

nobody likes that.” (DEV-3). One of the solutions to this

was doing design upfront, which could be built upon in the

mob. One of the UX designers explained that having,

“[S]ome type of input value” (UX-2), can make the

processes easier. The same informant continued, saying,

“[I]t doesn’t have to be exactly like it’s supposed to be, but

at least a guide to where we want to be which we can

change”. The informant suggested that creating a first

design to start with could help bridge the knowledge gap

between the different roles.

Although the informants referred to the two phases as

separate it was not always clear when one ended and

another began. In some cases, the informants described a

clear distinction between the phases: “[The project] that we

are working on right now is an example of where we have

an ongoing phase of UX/UI exploration.” (PO-2). In other

cases, the distinction and separation of the phases was less

clear: “Well, I always think when it comes to the discovery,

delivery phases, for me, whether it’s mob or project

based… It has often been pretty fluid either way.” (DEV-2).

Similarly, some informants described instances when

design and implementation tasks were mixed in the mob:

“we translated the views, restructured a bit, and then we sat

in the mob during the implementation, view-by-view.” (UX-

2). When integrating design and implementation in the

mob, the interviewees still expressed a need for some

design upfront, as seen in the previous quote.

Both research- and design upfront (collectively referred to

as Design upfront by Bhrel et al. [7]) seem to be important

for the teams. When performing tasks in mob development,

Design upfront helps performing UCD related tasks in the

mob. Design upfront is, according to the first principle,

Separate Product Discovery and Product Creation, an

important aspect of UCASD [7]. In some cases, the teams

expressed difficulties integrating design tasks in mob

development. This affirms the third principle, Parallel

Interwoven Creation Tasks, which states that design and

implementation should be separated in parallel, albeit

interwoven, tracks [7]. However, in certain cases

development and design are successfully integrated in mob

development. This differs from the parallel aspects of

principle three and presents an opportunity for design and

implementation to be joint rather than parallel.

The integration of UCD in mob development varies among

the teams depending on their needs and is something that

the teams are investigating and experimenting with. The

following informant explains, “On one side UX and design

are deliverables for development and on the other side

everyone is doing everything together all the time, I think

we have tried to find the middle.” (DEV-3). This suggests

that while the teams are trying to find a balance between

doing no UCD versus doing everything in mob, they are not

sure where the perfect balance is.

Agile User-Centred Design and Iterative Processes

The teams used agile processes, in various ways, utilizing

Kanban, Scrum or by following iterative but less strict

processes. The agile processes coloured the design

processes, iterating on designs based on research, as one

informant put it, “[W]e discussed with [the stakeholders] a

lot … and checked with them what felt like almost daily.”

(AD-1). The use of mob development was also affected by

the iterative nature of the team’s work practices: “one could

have done that, [the UX designer] did user tests and then

came back and talked about them. … but we take turns

doing them. So, that’s why there are more iterations

because we move the mob between them.” (PO-1). By

“moving the mob”, the informant’s team can be flexible in

how to use the method, in this case moving the mob to

include user tests.

Several other informants also presented examples of

flexibility in their processes. One interviewee explained,

“I’d say that we probably flow back and forth in a few

different processes depending on what we do.” (DEV-1).

The need to be flexible is based on the varied problems the

teams encounter. The teams choose how they use different

methods depending on which team members are available

and what problem they are solving. Iterative research,

design and development are natural parts of mob

development, because of the method’s roots in agile

software development. Thus, the second principle of

UCASD, Iterative Design and Creation tasks [7], is

supported by mob development.

Mob Development and Agile Processes Summarized

The teams face different phases during their projects,

referring specifically to discovery and delivery. The

interviewees express challenges integrating research and

design tasks in mob development during these phases but

solve them through design- and research upfront. In some

cases, design can be directly integrated with development.

Collaboration and Sociality

Mob development is a collaborative method, designed to

increase the quality of the product being developed. It

emphasizes social interaction and teamwork. This was

shown to be important for the practitioners at SVT as well.

The interviewees described cross-functional collaboration

in mob development, expressed the importance of

competence and knowledge sharing and presented several

examples of the social aspects of the method.

Cross-Functional Collaboration

The three teams were all cross-functional, meaning they all

included a mixture of developers, PO’s, UX designers,

AD’s, testers and data analysts. As previously explained,

the teams use mob development for a plethora of tasks. One

reason for this being possible is collaboration between

people with different roles. In many cases the informants

even included this when defining mob development. As one

informant puts it: “I would say that for me [mob

development] is when there is a cross-functional team, or at

least cross-functional people, it doesn’t have to be a team.”

(UX-2). In other words, mob development is defined, not

only as collaborative, but as cross-functional.

Several informants also gave examples of different roles

being part of tasks that traditionally are not included in the

role’s responsibilities: “the rest of the team has definitely

participated during these workshops, and been a part of the

user tests and interviews, so we’ve done it as a team but

with [the UX designer and AD] as leads for the work.”

(DEV-1). Several informants described examples of

designers practicing collaborative design. One example of

this is explained by this interviewee: “we had a design-, not

a sprint but more like a design studio … the entire team and

we developed ideas on paper, post-it white board level.”

(UX-2). Cross-functional teams are shown to be important

for the integration of UCD through mob development. The

importance of cross-functional teams is emphasized by

principle three, Parallel Interwoven Creation Tasks [7].

The Importance of Competence and Knowledge Sharing

Even though mob development makes collaboration with

different roles easier, getting the entire team to participate

in UCD tasks is easier for some teams than others. One of

the main challenges identified by the informants was a lack

of knowledge regarding UCD and the tools being used. This

was expressed by a UX designer, referring to digital

sketching tools: “if you’re working together with different

disciplines. That is, if there are developers, then maybe the

tools may be a threshold” (UX-2). Another informant

reflected on the output of mob development if not all

participants know what is being done: “people have said

that if it’s like four front-enders and a back-ender in the

mob then you’ll be writing CSS. And if there’s one designer

and five developers it won’t be design, it’ll be

programming.” (DEV-2). This suggests that including a

UCD specialist in a group mainly consisting of developers

may not necessarily impact the result.

However, the informants also acknowledged the importance

of including different roles in the same mob. This was

partly because mob development was described as a good

tool for knowledge sharing, and partly because not

including different roles made it easier for the teams to

forget the absent roles’ perspectives. One informant, for

example, said, “It’s noticeable that if you try to separate the

mob, people will experience knowledge gaps.” (UX-1).

Another informant discussed knowledge transfer and

different roles in mob development this way: “You love to

get that as a UX:er: `wait a second, this feels like a weird

interaction pattern´ or `nobody has asked for this´. It’s

really nice to get that from [other roles].” (UX-2). The

informant refers to instances where they have received

UCD related questions and remarks from other roles.

The Social Mob

One of the most important aspects of mob development,

according to the informants, was the social aspect of the

method. The informants discussed how the method helped

improve communication in and between teams, reducing

lead times significantly. One of the informants expressed it

like this: “It like develops quicker. Everyone is on board,

everyone who can give answers is sitting there.” (UX-1).

However, the informants also explained that the social

nature of mob development could lead to some frustrations

and friction. One interviewee said, “But as I said not

everyone likes to work in mob because it’s pretty socially

exhausting as well. You easily become a group that does

everything together. And it’s important that you are

comfortable with that.” (PO-1). The informants also

explained that for mob development to work as intended

there needs to be a safe group culture. As one informant

stated, “There should be such a safe climate that you feel

comfortable asking questions” (TEST-1). Additionally, the

informants emphasized a main strength of the social mob

development: it helped the team members better understand

the other roles’ perspectives. One participant described it

like this: “as soon as we don’t do it in mob the user

perspective becomes overlooked … just like you need to

have an emphasis on your users you need to have an

emphasis on your friends.” (UX-1). Similar to missing out

on UCD knowledge, not conducting UCD tasks in a mob

can lead to missing out on UCD perspectives.

Collaboration and Sociality Summarized

Cross-functional collaboration is an important aspect of

mob development. By having cross-functional teams, mob

development helps integrate UCD in agile software

development processes. Mob development is also an arena

for knowledge sharing, leading to further improved

integration. Lastly mob development is a social method

which relies on good teamwork and safe group culture.

DISCUSSION

Mob development is presented in previous research as a

collaborative method for software development, focusing

on programming and technical problem solving. In this

study I have investigated the use of mob development as a

collaborative and cross-functional way to integrate UCD in

agile software development processes. I aim to answer the

research question: how is user-centred design integrated in

mob development? This question is supported by two sub

questions: how is mob development used at SVT?, and what

principles of UCASD are supported by mob development?

Mob Development at SVT

Mob development is an important method for the three

teams at SVT. The method is used, as first intended by

Woody Zuill [37], for programming, but the method’s uses

cover much more than that. Similarly to what other studies

have found, the method helps the teams solve complex

problems and spread knowledge [36, 9]. However, the

interviews show that the teams apply the method to

problems over different competence areas and share

knowledge cross-functionally. Furthermore, the interviews

have shown that the method should not necessarily be

limited to sitting as a group in front of a large monitor. The

teams at SVT apply the same mentality to workshops,

design studios and even user studies and research. This is

possible because of the organizational support the teams

receive and the freedom they have to choose how to reach

their goals. The importance of organizational support is

supported by several previous studies [10, 13, 14, 16, 20,

21, 34], which shows how organizations’ trust in the teams

affects the integration of UCD in agile approaches.

The need for a broader definition of mob development is

apparent, and explicitly stated by the interviewees. As

mentioned in this paper’s introduction I have chosen to use

the term mob development rather than mob programming.

This was mentioned during the interviews as an important

way to express the various ways the method can be applied,

and for non-programmers to feel a sense of responsibility

towards using the method. There is, however, a common

acceptance among the interviewees that mob development

is not perfect. Administrative tasks or documentation are

examples of tasks that may not benefit from being

performed in mob. But by letting teams have responsibility

over their own work practices, mob development can be

complemented by other, more individual or pair-based tasks

as well. Despite the potential for mob development to

facilitate UCASD, the use of the method outside the realm

of programming has scarcely been acknowledged [6]. On

the other hand, this study supports the value of integrating

UCD practices in agile approaches, as suggested by

previous research [22, 27]. To answer the first sub question:

the teams at SVT show that mob development is an

effective way of tackling complex problems outside the

scope of mob programming.

UCASD Principles in Mob Development

Brhel et al. [7] presented five principles of UCASD based

on findings from UCASD- and related literature. The

findings in this paper suggest that mob development can

both facilitate and be supported by the principles. However,

some of the principles do not apply directly to the case of

mob development, and some cases are missed altogether.

This suggests that the principles need revising.

Mob development supports principle one [7] by

encouraging design- and research upfront. Separating

product discovery and product creation helps to keep the

“solving one problem at a time” mindset in the mob and

improves the involvement of developers in design-related

work. Furthermore, design- and research upfront, and

designing one sprint ahead of development supports

principle three [7]. Despite this, the collaborative nature of

the method and the cases where the interviewees describe

developing and designing together in mob, suggests that

principle three might not be entirely appropriate for mob

development. Rather than focusing on parallel creation

tasks, design in mob development may require some rough

first sketches, with the need for further collaboration. Just

as in earlier studies, the findings here suggest that an

important part of integrating UCD in mob development is

the cross-functionality of the teams [8, 13, 26, 30]. This

further incentivizes the mix of development and design in

mob development through joint activities across roles.

Principle two [7] is supported by mob development thanks

to the iterative and agile nature of the method. As

stakeholder involvement is an important part of mob

development, principle four [7] is also supported. These

principles would apply when using mob development

without modification. The last principle, principle five,

relates to artifact-mediated communication [7]. In mob

programming, the physical setting and the tools being used

are important. To some extent this is true for mob

development as well. However, the broader definition of

mob development refutes the explicit need for a monitor or

computer. As the informants explained, design studios and

workshops are also part of mob development. Interestingly,

few tools were shown to be very important, apart from

whiteboards. There is however a need for the participants to

have knowledge of how to use the tools when they are

necessary, for example when designing wireframes

digitally. This suggests that rather than requiring specific

artifacts to mediate communication, mob development

requires all practitioners in the mob to collectively decide

on what tools they need, and to learn to use them well, in

order to be able to participate in the mob.

One aspect that is important for mob development, but

which is not covered by the five principles presented by

Brhel et al. [7], is the social aspect. Mob development is a

collaborative method, with the aim of improving the quality

of products by gathering input and perspectives from

different people through active participation. Because of the

method’s social nature, mob development brings social

challenges, which supports the findings of previous

research [6, 9]. The findings in this study suggest that to

mitigate these challenges the method relies on the groups

having a safe culture and the participants being able to

understand other roles’ perspectives. Interestingly, Brhel et

al. [7] present “people/social” as one of the four dimensions

of UCASD. This dimension did not lead to any principles,

however, due to the lack of support in their literature

review. The results from this study suggest that this

dimension should be revised and re-evaluated.

To answer the second sub question: mob development

supports principles one, two and four without modification.

Principle three is partly supported by mob development, but

the method suggests the integration of design and

development to be more prominent. Principle five can be

supported by mob development, but should focus more on

participation, rather than communication, through tools. A

sixth principle focusing on the social aspects of the method

is needed to fully encompass UCASD in mob development.

Reflections

This study is based on nine interviews with mob

development practitioners. Despite the rich and descriptive

data these interviews resulted in, the study could have

benefited from a second source of data gathering.

Originally, the study was going to include observations as a

second data gathering source. Including observations could

have enhanced the study by providing the benefits of

methodological triangulation, which is recommended by

both Lazar et al. [23] and Patton [28]. Because of the

outbreak of Covid-19 during 2020, the observations were

not possible to conduct. However, the data gathered through

the interviews is of such quality that the results successfully

portray the use of the method for UCASD, while

highlighting the need for further research on the method.

CONCLUSIONS AND FUTURE WORK

In this paper I presented a case study of how user-centred

design is integrated in mob development in three teams at

SVT. The results from nine semi-structured interviews

show that, unlike most previous studies show, mob

development is a method that can be used for more than just

programming. The method supports several principles of

UCASD, specifically principles one, two and four, while

presenting opportunities for revisions of principles three

and five, and the addition of a sixth principle, to incorporate

the social and more collaborative aspects of the method.

There is a need for more HCI studies to be conducted on

mob development, and its uses outside the realm of

programming. The collaborative and cross-functional nature

of the method lends itself to new and interesting ways to

incorporate UCD and agile software development, which

would bring value to both the research field and mob

practitioners alike. One aspect that was not covered in this

study, but which would be interesting to further investigate,

is how the role of UX practitioner is affected by more

cross-functional and collaborative methods. Furthermore, I

see a need to revise Brhel’s et al. [7] principles of UCASD

for the use of mob development. The social aspects of the

method, connected to the people/social dimension of

UCASD, especially need further investigation. Mob

development is one new method birthed out of traditional

agile approaches. Understanding this method can help

understand how collaborative approaches improve the

quality of HCI practice.

ACKNOWLEDGMENTS

I would like to thank SVT, and especially the news

department at SVTi, for letting me conduct this case study.

I also want to thank the many people whose brains I picked

during my time at SVT. I would like to thank Helga

Sadowski for the help she offered despite the outbreak of

COVID19 (thank you Zoom). Lastly, I would like to thank

my fellow student Michael for introducing me to mob

programming in the first place.

REFERENCES

[1] Oluwatobi Akindunjoye. 2018. Reduce designer-

developer friction: embrace UX collaboration. Medium.

Retrieved January 22, 2020 from

https://uxdesign.cc/reduce-designer-developer-friction-

embrace-ux-collaboration-5627eaf55278

[2] Per Axbom and James Royal-Lawson. 2019. #223

Cross disciplinary collaboration with Becki Hyde. UX

Podcast. Retrieved January 22, 2020 from

https://uxpodcast.com/223-becki-hyde-cross-

disciplinary-collaboration/

[3] VenuGopal Balijepally, Sumera Chaudhry, and Sridhar

Nerur. 2017. Mob Programming – A Promising

Innovation in the Agile Toolkit. In Twenty-third

Americas Conference on Information Systems, 1-9.

[4] Kent Beck and Cynthia Andres. 2004. Extreme

Programming Explained: Embrace Change. Addison

Wesley Professional, Boston.

[5] Lea Kovac Beckman. 2018. 100% av teamet i en mobb

i 12 månader — att ta mobbprogrammering ett par steg

längre. Medium. Retrieved May 12, 2020 from

https://medium.com/@leakovacbeckman/100-av-

teamet-i-en-mobb-i-12-m%C3%A5nader-att-ta-

mobbprogrammering-ett-par-steg-l%C3%A4ngre-

29be5074a8f4

[6] Karel Boekhout. 2016. Mob Programming: Find Fun

Faster. In Agile Processes, in Software Engineering,

and Extreme Programming (Lecture Notes in Business

Information Processing), 185–192.

https://doi.org/10.1007/978-3-319-33515-5_15

[7] Manuel Brhel, Hendrik Meth, Alexander Maedche, and

Karl Werder. 2015. Exploring Principles of User-

Centered Agile Software Development: A Literature

Review. Information and Software Technology. 61

(May 2015), 163–181.

https://doi.org/10.1016/j.infsof.2015.01.004

[8] Anders Bruun, Marta Kristin Lárusdóttir, Lene Nielsen,

Peter Axel Nielsen, and John Stouby Persson. 2018.

The role of UX professionals in agile development: a

case study from industry. In Proceedings of the 10th

Nordic Conference on Human-Computer Interaction

(NordiCHI ’18), 352–363.

https://doi.org/10.1145/3240167.3240213

[9] Jim Buchan and Mark Pearl. 2018. Leveraging the

Mob Mentality: An Experience Report on Mob

Programming. In Proceedings of the 22nd

International Conference on Evaluation and

Assessment in Software Engineering 2018 (EASE’18),

199–204. https://doi.org/10.1145/3210459.3210482

[10] Åsa Cajander, Marta Larusdottir, and Jan Gulliksen.

2013. Existing but Not Explicit - The User Perspective

in Scrum Projects in Practice. In Human-Computer

Interaction – INTERACT 2013 (Lecture Notes in

Computer Science), 762–779.

https://doi.org/10.1007/978-3-642-40477-1_52

[11] Martin Christensen and Daniel Sundman. 2016.

Fördelen med mob-programming: “Alltid någon som

har svaret.” Expressen Utveckling. Retrieved May 12,

2020 from http://utveckling.expressen.se/blogg/mob-

programming/

[12] Sam Fare. 2018. I did mob programming every day for

5 months. Here’s what I learnt. Medium. Retrieved

May 12, 2020 from

https://medium.com/comparethemarket/i-did-mob-

programming-every-day-for-5-months-heres-what-i-

learnt-b586fb8b67c

[13] Jennifer Ferreira, James Noble, and Robert Biddle.

2007. Agile Development Iterations and UI Design. In

Agile 2007 (AGILE 2007), 50–58.

https://doi.org/10.1109/AGILE.2007.8

[14] Jennifer Ferreira, Helen Sharp, and Hugh Robinson.

2011. User experience design and agile development:

managing cooperation through articulation work.

Software: Practice and Experience. 41, 9 (July 2011),

963–974. https://doi.org/10.1002/spe.1012

[15] Shahla Ghobadi, John Campbell, and Stewart Clegg.

2017. Pair programming teams and high-quality

knowledge sharing: A comparative study of coopetitive

reward structures. Information Systems Frontiers 19, 2

(October 2015), 397–409.

https://doi.org/10.1007/s10796-015-9603-0

[16] Jan Gulliksen, Inger Boivie, Jenny Persson, Anders

Hektor, and Lena Herulf. 2004. Making a difference: a

survey of the usability profession in Sweden. In

Proceedings of the third Nordic conference on Human-

computer interaction (NordiCHI ’04), 207–215.

https://doi.org/10.1145/1028014.1028046

[17] Moses M Hohman and Andrew C Slocum. 2002. Mob

Programming and the Transition to XP. 1–5.

[18] Herez Moise Kattan, Flavio Soares, Alfredo Goldman,

Eduardo Deboni, and Eduardo Guerra. 2018. Swarm or

pair? strengths and weaknesses of pair programming

and mob programming. In Proceedings of the 19th

International Conference on Agile Software

Development: Companion (XP ’18), 1–4.

https://doi.org/10.1145/3234152.3234169

[19] Johanna Kollmann, Helen Sharp, and Ann Blandford.

2009. The Importance of Identity and Vision to User

Experience Designers on Agile Projects. In 2009 Agile

Conference, 11–18.

https://doi.org/10.1109/AGILE.2009.58

[20] Kati Kuusinen. 2015. Task Allocation Between UX

Specialists and Developers in Agile Software

Development Projects. In Human-Computer

Interaction – INTERACT 2015 (Lecture Notes in

https://uxdesign.cc/reduce-designer-developer-friction-embrace-ux-collaboration-5627eaf55278
https://uxdesign.cc/reduce-designer-developer-friction-embrace-ux-collaboration-5627eaf55278
https://uxpodcast.com/223-becki-hyde-cross-disciplinary-collaboration/
https://uxpodcast.com/223-becki-hyde-cross-disciplinary-collaboration/
https://medium.com/@leakovacbeckman/100-av-teamet-i-en-mobb-i-12-m%C3%A5nader-att-ta-mobbprogrammering-ett-par-steg-l%C3%A4ngre-29be5074a8f4
https://medium.com/@leakovacbeckman/100-av-teamet-i-en-mobb-i-12-m%C3%A5nader-att-ta-mobbprogrammering-ett-par-steg-l%C3%A4ngre-29be5074a8f4
https://medium.com/@leakovacbeckman/100-av-teamet-i-en-mobb-i-12-m%C3%A5nader-att-ta-mobbprogrammering-ett-par-steg-l%C3%A4ngre-29be5074a8f4
https://medium.com/@leakovacbeckman/100-av-teamet-i-en-mobb-i-12-m%C3%A5nader-att-ta-mobbprogrammering-ett-par-steg-l%C3%A4ngre-29be5074a8f4
https://doi.org/10.1007/978-3-319-33515-5_15
https://doi.org/10.1016/j.infsof.2015.01.004
https://doi.org/10.1145/3240167.3240213
https://doi.org/10.1145/3210459.3210482
https://doi.org/10.1007/978-3-642-40477-1_52
http://utveckling.expressen.se/blogg/mob-programming/
http://utveckling.expressen.se/blogg/mob-programming/
https://medium.com/comparethemarket/i-did-mob-programming-every-day-for-5-months-heres-what-i-learnt-b586fb8b67c
https://medium.com/comparethemarket/i-did-mob-programming-every-day-for-5-months-heres-what-i-learnt-b586fb8b67c
https://medium.com/comparethemarket/i-did-mob-programming-every-day-for-5-months-heres-what-i-learnt-b586fb8b67c
https://doi.org/10.1109/AGILE.2007.8
https://doi.org/10.1002/spe.1012
https://doi.org/10.1007/s10796-015-9603-0
https://doi.org/10.1145/1028014.1028046
https://doi.org/10.1145/3234152.3234169
https://doi.org/10.1109/AGILE.2009.58

Computer Science), 27–44.

https://doi.org/10.1007/978-3-319-22698-9_3

[21] Kati Kuusinen, Tommi Mikkonen, and Santtu

Pakarinen. 2012. Agile User Experience Development

in a Large Software Organization: Good Expertise but

Limited Impact. In Human-Centered Software

Engineering (Lecture Notes in Computer Science), 94–

111. https://doi.org/10.1007/978-3-642-34347-6_6

[22] Marta Lárusdóttir, Åsa Cajander, and Jan Gulliksen.

2014. Informal feedback rather than performance

measurements – user-centred evaluation in Scrum

projects. Behaviour & Information Technology. 33, 11

(December 2013), 1118–1135.

https://doi.org/10.1080/0144929X.2013.857430

[23] Jonathan Lazar, Jinjuan Heidi Feng, and Harry

Hochheiser. 2017. Research Methods in Human

Computer Interaction. Morgan Kaufmann, Cambridge,

Massachusetts.

[24] Karin Obermüller and Jeff Campbell. Mob

Programming - the Good, the Bad and the Great.

Retrieved May 12, 2020 from

https://underthehood.meltwater.com/blog/2016/06/01/

mob-programming/

[25] Abiodun Afolayan Ogunyemi, David Lamas, Marta

Kristin Lárusdóttir, and Fernando Loizides. 2019. A

Systematic Mapping Study of HCI Practice Research.

International Journal of Human–Computer Interaction

35, 16 (November 2018), 1461–1486.

https://doi.org/10.1080/10447318.2018.1541544

[26] Tina Øvad, Nis Bornoe, Lars Bo Larsen, and Jan Stage.

2015. Teaching Software Developers to Perform UX

Tasks. In Proceedings of the Annual Meeting of the

Australian Special Interest Group for Computer

Human Interaction (OzCHI ’15), 397–406.

https://doi.org/10.1145/2838739.2838764

[27] Jeff Patton. 2002. Hitting the target: adding interaction

design to agile software development. In OOPSLA

2002 Practitioners Reports (OOPSLA ’02), 1–7.

https://doi.org/10.1145/604251.604255

[28] Michael Quinn Patton. 2015. Qualitative research &

evaluation methods: integrating theory and practice.

SAGE Publications, Inc., Thousand Oaks, California.

[29] Loriah Pope. 2019. Cross-Functional Teams: Getting

Engineering, Product, and Design on the Same Page.

Medium. Retrieved January 30, 2020 from

https://medium.com/swlh/cross-functional-teams-

getting-engineering-product-and-design-on-the-same-

page-555f981ce164

[30] Rohit Ramanujam and Ickjai Lee. 2011. Collaborative

and competitive strategies for agile scrum

development. In The 7th International Conference on

Networked Computing and Advanced Information

Management, 123–127.

[31] Fernando J. Rodríguez, Kimberly Michelle Price, and

Kristy Elizabeth Boyer. 2017. Exploring the Pair

Programming Process: Characteristics of Effective

Collaboration. In Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science

Education (SIGCSE ’17), 507–512.

https://doi.org/10.1145/3017680.3017748

[32] Tiago da Silva, Angela Martin, Frank Maurer, and

Milene Silveira. 2011. User-Centered Design and Agile

Methods: A Systematic Review. In 2011 Agile

Conference, 77–86.

https://doi.org/10.1109/AGILE.2011.24

[33] Mikael Sundberg. 2017. A year of mob programming.

Medium. Retrieved May 12, 2020 from

https://engineering.klarna.com/a-year-of-mob-

programming-e8cc7543ac2

[34] Adeola Wale-Kolade, Peter Axel Nielsen, and Tero

Päivärinta. 2013. Usability Work in Agile Systems

Development Practice: A Systematic Review. In

Building Sustainable Information Systems, 569–582.

https://doi.org/10.1007/978-1-4614-7540-8_44

[35] Laurie Williams and Robert Kessler. 2002. Pair

Programming Illuminated. Addison-Wesley Longman

Publishing Co., Inc., USA.

[36] Alexander Wilson. 2015. Mob Programming - What

Works, What Doesn’t. In Agile Processes in Software

Engineering and Extreme Programming (Lecture

Notes in Business Information Processing), 319–325.

https://doi.org/10.1007/978-3-319-18612-2_33

[37] Woody Zuill. 2015. Mob Programming - A Whole

Team Approach by Woody Zuill | Agile Alliance.

Retrieved January 22, 2020 from

https://www.agilealliance.org/resources/experience-

reports/mob-programming-agile2014/

https://doi.org/10.1007/978-3-319-22698-9_3
https://doi.org/10.1007/978-3-642-34347-6_6
https://doi.org/10.1080/0144929X.2013.857430
https://underthehood.meltwater.com/blog/2016/06/01/mob-programming/
https://underthehood.meltwater.com/blog/2016/06/01/mob-programming/
https://doi.org/10.1080/10447318.2018.1541544
https://doi.org/10.1145/2838739.2838764
https://doi.org/10.1145/604251.604255
https://medium.com/swlh/cross-functional-teams-getting-engineering-product-and-design-on-the-same-page-555f981ce164
https://medium.com/swlh/cross-functional-teams-getting-engineering-product-and-design-on-the-same-page-555f981ce164
https://medium.com/swlh/cross-functional-teams-getting-engineering-product-and-design-on-the-same-page-555f981ce164
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1109/AGILE.2011.24
https://engineering.klarna.com/a-year-of-mob-programming-e8cc7543ac2
https://engineering.klarna.com/a-year-of-mob-programming-e8cc7543ac2
https://doi.org/10.1007/978-1-4614-7540-8_44
https://doi.org/10.1007/978-3-319-18612-2_33
https://www.agilealliance.org/resources/experience-reports/mob-programming-agile2014/
https://www.agilealliance.org/resources/experience-reports/mob-programming-agile2014/

SUPPLEMENTARY WORK
Appendix 1 - Final themes and codes from the content analysis

Themes Codes

Discovery, Delivery and Design Discovery/Delivery

Discovery hard

Research upfront

Design upfront

Parallel design/implementation

Design in development

Research

Agile User Centered Design and Iterative Processes Agile

Iterative design

Flexible processes

Discovery in each sprint

Data-driven design

Cross-Functional Collaboration User perspective / UCD

Cross-functional

Cross-functional teams

Cross-functional collaboration

Collaborative design / UX

Stakeholder and User Involvement Stakeholder involvement

Cross-team collaboration

UCD - several user groups

Artefacts and Methods Tools – mob

Tools - user story mapping

Tools - white boards

Tools – physical

Remote

Tools – digital

Discussion over tool

Mob Development not Mob Programming Mob - programming/development

Collaboration

UX/team responsibility

Solving one problem

Focus

When? – Documentation

When? – Always

When? – Crisis

Supporting Mob Development Organizational structure

Organizational focus

Organizational support

Self-driven

The Importance of Competence and Knowledge Sharing Technical challenges

Competence

Knowledge transfer

The Social Mob Empathy/perspectives

Communication

Lead Times

Mob – social

Appendix 2 - Interview guide

Welcome – thanks for being here and wanting to participate in this interview

In this interview you will be asked to talk about your roll, about how you and your team work generally as well as in mob

programming sessions, and how you keep a user-centred focus.

Consent form – including if I can record/take notes

Introductory questions

Can you tell me about your roll, what you get to do as ___ and what your responsibilities are.

Could you describe your team’s general workflow or a general system development process you follow?

Mob

Could you tell me what you think mob programming is? / Could you define mob programming?

- Who is part of a mob session?

- Could you tell me a bit about the tools you use in mob sessions?

In the process you described earlier – where does mob programming fit in? Why? Why not?

What is mob programming good for? When should it be used? When should it not be used?

If you think back to something your team has been working on recently – How did you use mob programming? When was it

appropriate to use that method?

What is the most important thing for a successful mob session?

What is the most difficult thing about mob programming?

How do you think mob programming affects communication and teamwork between roles in your team?

UCD

Could you tell me about what user-centred design means to you? How would you describe/define user-centred design?

Do you think that mob programming has helped your team focus on the user?

 If yes – how?

 If no – Why do you think that?

What do you believe is needed to keep a user focus in mob sessions?

Who do you believe has the responsibility of keeping a user focus in mob sessions?

