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Abstract

The world is now in a transition towards a more sustainable future. Actions to reduce the green-
house gases (GHG) emissions have been promoted and implemented globally, including swit-
ching to electric vehicles (EVs) and renewable energy technologies, such as solar photovoltaics
(PV). This has led to a massive increase of EVs and PV adoption worldwide in the recent
decade.

However, large integration of EVs and PV in buildings and electricity distribution systems
pose new challenges such as increased peak loads, power mismatch, component overloading,
and voltage violations, etc. Improved synergy between EVs, PV and other building electricity
load can overcome these challenges. Coordinated charging of EVs, or so-called EV smart char-
ging, is believed to a promising solution to improve the synergy.

This licentiate thesis investigates the synergy between residential EV charging and PV gene-
ration with the application of EV smart charging schemes. The investigation in this thesis was
carried out on the individual building, community and distribution grid levels. Smart charging
models with an objective to reduce the net-load (load - generation) variability in residential
buildings were developed and simulated. Reducing the net-load variability implies both redu-
cing the peak loads and increasing the self-consumption of local generation, which will also
lead to improved power grid performance. Combined PV-EV grid hosting capacity was also
assessed.

Results show that smart charging schemes could improve the PV self-consumption and re-
duce the peak loads in buildings with EVs and PV systems. The PV self-consumption could be
increased up to 8.7% and the peak load could be reduced down to 50%. The limited improve-
ment on self-consumption was due to low EV availability at homes during midday when the
solar power peaks. Results also show that EV smart charging could improve the grid perfor-
mance such as reduce the grid losses and voltage violation occurrences. The smart charging
schemes improve the grid hosting capacity for EVs significantly and for PV slightly. It can also
be concluded that there was a slight positive correlation between PV and EV hosting capacity
in the case of residential electricity distribution grids.

Keywords: Electric vehicle, Smart charging, Photovoltaics, Residential buildings, Electricity
use, Self-consumption, Distribution Grid, Hosting capacity
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1. Introduction

A few centuries ago, humans did not have technologies as advanced as today,
including those for harnessing energy. For heating purposes such as cooking,
humans burned wood, straw and other dried combustible matters. For lighting,
humans used fire lamps, torches and candles which were mostly fueled by
animal fat. For transport, humans utilized animals such as horses and donkeys.
Other heavy work was also done with the use of animal power [1].

The industrial revolution era started in the early 1700s, during which tech-
nology advanced to the level that humans were able to do things much more ef-
fectively thanks to the many inventions during this period. After this era, light
bulbs replaced fire torches, cars and trains replaced donkeys and horses, and
most importantly much of the work done by humans and animals was replaced
by machines. Fossil fuels were discovered and used massively as energy
sources, to the level that humans became strongly dependent on them. Us-
able and reliable electricity systems were invented, and electric power plants
were massively constructed everywhere, starting in Europe and America [1].
In a nutshell, the industrial revolution significantly improved the human life
quality and expectancy to the levels we have today [2].

However, not all things on earth are better after the industrial revolution.
Along with the improving life quality and unprecedented population growth,
human energy use drastically increased [3]. This increase was also triggered
by the discovery of fossil fuels, which were the backbone of the industrial rev-
olution and are still by far the largest energy sources today. The burning of
fossil fuels produces green-house gas (GHG) emissions, which cause global
warming and threaten life on earth. Now, most countries in the world have
agreed to combat the global warming and set targets to limit the global temper-
ature to well below 2°C above pre-industrial levels [4]. Since then, switching
from using fossil fuels to renewable energy sources (RES) and, more recently,
from fossil-fueled internal combustion engine vehicles (ICEVs) to electric ve-
hicles (EVs) has been massively promoted globally [5].

Replacing fossil fuels with RES as the energy sources will reduce the GHG
emissions. But how about the use of EVs? While EVs do not have tailpipe
emissions, which creates a healthier environment for people living close to
streets, there are well-to-wheel (WTW) emissions, which in the case of EVs
include the emissions produced in the power generation and delivery process
to charge the EVs [6]. Research has shown that the well-to-wheel (WTW)
emissions of an EV recharged from a power system that has a large share of
coal-based power generation is similar to gasoline-based ICEVs [7, 8]. EVs
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will be more environmentally friendly if they are charged by electricity coming
from RES [8]. One study estimated that charging EVs by RESs can reduce the
GHG emissions by up to 400 Mtons per year [9].

The adoption of both EVs and RES, such as solar photovoltaic (PV) sys-
tems, has increased in recent years. In 2019, the International Energy Agency
estimated that there were 7.2 million cars worldwide, more than double the
number in 2017 [10]. This number is expected to grow significantly in the
coming decade [10]. The number of installed PV systems has also grown
during the last decade. The worldwide installed PV capacity was 627 GW,,
in 2019, more than double the capacity in 2016, and it is expected that the
increase in the coming decade will still be significant [11].

However, the massive increase in EV numbers and PV capacity pose new
challenges to power systems, especially to power distribution grids where most
of PV and EVs are integrated. Generally, existing distribution grids have not
been designed to host large shares of new high loads such as EVs and intermit-
tent distributed generation such as PV systems [12]. Problems such as voltage
deviations and overloading of components can arise from large scale integra-
tion of PV and EVs [13]. The synergy between load and distributed generation
are keys to overcoming these problems. In future cities, large amounts of PV
generation and EV charging have to be accommodated and optimized. Thus,
it is important to assess and improve the synergy between PV and EVs in the
built environment, so that expensive reinforcements of the electricity distribu-
tion systems can be avoided. Smart charging of EVs is a potential solution to
improve this synergy.

1.1 Aim of the thesis

The main aim of the thesis is to develop EV smart charging schemes and assess
their impacts in improving the synergy between PV and EVs in residential
buildings and power grids. Three goals are formulated in order to fulfil the
main aims:

I Review the state of the art in smart charging of EVs, especially related
to PV generation.

IT Develop EV smart charging schemes for home-charging with the objec-
tive to improve the local PV self-consumption and reduce the peak loads
in residential buildings

IIT Assess the impacts of the proposed residential EV smart charging scheme
deployment on the local power grid and the potential of combined PV-
EV grid hosting capacity enhancement with the proposed EV smart charg-
ing schemes and PV curtailment.



1.2 Overview of the thesis and the appended papers

The remainder of this licentiate thesis is structured as follows: Chapter 2 pro-
vides the background for the research conducted in this thesis. Chapter 3
introduces the data, case studies, models and methodologies that are used. In
Chapter 4, the main results from the appended papers are presented. Chapter 5
provides a discussion on these results and future work. In Chapter 6, conclu-
sions from these studies are drawn. The results in the thesis are based on the
following appended papers:

I Paper I provides a review of the state-of-the-art in smart charging of EVs
considering PV generation and electricity consumption. Besides the re-
view of the literature, the paper also aims at providing the introduction to
various control algorithms and mathematical optimization models used
for smart charging schemes.

IT Paper II presents distributed and centralized smart charging models for
residential buildings based on Swedish travel survey data. The objective
of the smart charging schemes is to minimize the net-load variability
of the residential buildings. The impact of the smart charging schemes
on both individual building and community level were quantified with
self-consumption and self-sufficiency metrics.

IIT Paper 11l is a combined PV-EV grid integration study and hosting ca-
pacity assessment. The impact from the the proposed smart charging
schemes on the local grid was assessed. In this paper, the grid impacts
from and hosting capacity for PV and EV were analyzed within the same
framework.






2. Background

This chapter presents the background for the research done in this thesis. Sec-
tions 2.1 to 2.3 introduce the readers to EVs, PV and residential electricity
consumption respectively. Interaction between PV, EVs and other electricity
consumption is presented in Section 2.4. Smart charging of EVs considering
PV power generation and electricity use is presented in Section 2.5. Finally,
research gaps are identified in Section 2.6.

2.1 Electric vehicles

Electric vehicles (EVs) refers to vehicles that use an electric motor for propul-
sion. Even though, by definition, trains, ships or aeroplanes that are powered
by electric power can be categorized as electric vehicles, most often EVs refer
to road transport vehicles, e.g., electric cars, buses and trucks.

There are several types of EVs. One of these is the battery electric vehicle
(BEV), also called all-electric vehicle. A BEV is solely using the electric mo-
tor for propulsion and is powered by a battery [14]. The battery in a BEV is
equivalent to the fuel tank in a regular ICEV. A BEV must be plugged in to
the electricity grid to charge its battery [14]. Another type of EV is the hybrid
electric vehicle (HEV). Being a hybrid, an HEV has both an internal combus-
tion engine, which is powered by fuel such as gasoline, and an electric motor,
which is powered by a battery. However, this type of EV cannot be plugged in
to charge the battery. The battery is charged via regenerative braking or by the
internal combustion engine [15]. In addition to these types, there is also the
plug-in hybrid electric vehicle (PHEV), which is basically the combination of
BEYV and HEV. Similar to HEV, a PHEV has both an internal combustion en-
gine including the fuel tank, and an electric motor including the battery. The
difference is that unlike an HEV, a PHEV can be plugged into the electricity
grid to charge its battery. A PHEV is typically powered by electricity until the
battery is depleted, after which it then automatically switches to the internal
combustion engine [16]. In this thesis, EV is a term that only refers to an EV
that can be charged from the electricity grid, i.e., BEVs and PHEVs.

2.1.1 Electric vehicle charging

There are several available methods and technologies to charge the EV battery.
In general they can be divided into inductive charging, i.e., wireless, or con-
ductive charging, of which the latter is the most commonly used technology.
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Conductive charging can be with direct current (DC) or alternating current
(AC) power. DC chargers have very high power, more than 50 kW, thus they
are usually used for fast charging. The most used charger worldwide is the
AC charger, since it is commonly available. Thus, almost all EV chargers in
homes, shopping plazas, and workplaces are AC chargers. In the Society of
Automotive Engineers (SAE) standard J1772, there are two different levels of
AC chargers [17]. The first one is the level 1 charger, which refers to charg-
ers with a specification of 120V/16A, up to 1.9 kW. The second is the level
2 charger which refers to chargers with a specification of 240V/32-80A, 7.6
kW-19.2 kW. This standard is commonly used in Japan and the United States
(U.S.). The European Union and China use a standard from the International
Electrotechnical Commission (IEC) for slow AC chargers, which can be di-
vided into single-phase and three-phase chargers with 220-240 V connection
[18]. With single-phase connections, the charger can have a charging rate of
3.7 kW (16 A) or 7.4 kW (32 A), while for a three-phase connection, it can
have a charging rate of 11 kW (16 A), 22 kW (32 A), and so on.

2.1.2 Integration of EVs in the power system

The power system is one of the most complex human-made systems ever cre-
ated in the world [19]. It can be divided into four main parts: generation, trans-
mission, distribution and loads [20]. When an EV is charged by being plugged
into the grid, it becomes a part of the power systems as a load. Since most of
the current power grid was not designed to host a large amount of EV charging
loads, it can pose new challenges if large amounts of EVs are integrated into
the power systems [12, 21]. The challenges include undervoltage problems,
component overloading, and harmonic distortion [12]. These problems lead to
a decrease of the lifetime of power grid components such as substation trans-
formers. If that is the case, the power grid might need reinforcements which is
most likely costly. Generally, the higher the charging power, the more signifi-
cant the impact from the EV charger to the power systems. The deployment of
higher power chargers will lead to high load variability since the EV charging
load will ramp up and down over shorter periods [22].

In a recent study [23], it was shown that modeling the EV charging load
based on mobility and travel survey data is an appropriate way to resemble the
real EV charging load. Thus, it implies that EV charging profiles are com-
monly defined by the daily mobility patterns or activity schedules of the vehi-
cle users [23, 24]. In [22], a Markov-chain model trained with Swedish travel
survey data was developed. The model estimated the workplace charging load
peaks to occur between 06.00 and 10.00, while home charging peaks occurred
between 16.00 and 20.00. Similar patterns were also found in [23], where
there was a validation against the real charging data. In the study, it was also
shown that most of the charging occurred at home, thus the peak charging
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load for home charging is the highest, compared to the ones in other locations.
The peaks of EV charging load coincide with the period when the electricity
consumption is high. This is due to the fact that in the opportunistic charging
(charging upon arrival) scheme, the charging correlates with other electric-
ity consumption activities such as cooking, watching TV, etc., at home in the
evening. The increased peak loads can lead to overloading problems, which
might lead to needs for grid reinforcement [12].

2.2 Solar energy and photovoltaic systems

Most energy used on earth today originally comes from the sun. Electricity
generated from hydro, wind and wave power plants is possible due to the heat-
ing of the earth and the atmosphere by the sun. Fossil fuels, such as coal, oil
and natural gas, even though categorized as non-renewable sources due to the
long carbon cycle process, were formed through photosynthesis, fueled by the
energy from the sun. Bioenergy, such as biomass and biogas, which is also
formed through the photosynthesis process, is considered renewable energy
due to its short carbon cycle. The only energy sources not originating from
the sun are geothermal energy, which comes from the heat derived within the
sub-surface of the earth, tidal energy, which comes from the gravitational pull
of the moon, and nuclear energy, which utilizes radioactive elements [25].

Energy coming from the sun can be utilized directly, either for heating or
electricity production. In this thesis, only solar energy for electricity produc-
tion is considered. There are mainly two techniques to generate electricity
from solar irradiation, i.e., PV and concentrated solar power (CSP). In a CSP
plant, mirrors are used to concentrate the solar irradiation to heat an energy
carrier such as water, which is then used to drive the conventional turbine-
generator to generate electricity [26]. In a PV system, electricity is generated
directly from solar irradiance with solar cell technology. In this thesis, only
PV electricity is studied.

2.2.1 Photovoltaic systems

PV cells convert incident photons in the sunlight into electric currents using
semiconductor materials [27]. The most commonly used PV cells in the world
currently are silicon-based solar cells. The efficiency of silicon-based PV cells
varies between 16-24% [28], which implies PV cells with an area of 1 m? will
generate 160-240 W electric power under standard test conditions (STC)!.

A collection of single PV cells connected in series is called a PV module,
and a collection of individual PV modules is called a PV array. Since a PV
system is composed of small units, it has the advantage of scalability. This

'STC corresponds to an irradiance of 1000 W/m?, cell temperature of 25 °C and air mass 1.5.
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implies that a PV system can be small and fit in a rooftop of a single family
house, or it can be as large as a utility scale power plant, and the net cost per
watt installed will not be significantly higher for the smaller scale system.

The generated electric power from a PV array is DC power. Even though
there exist DC power systems in which PV power can be used directly [29],
AC power systems are by far the most common. In order to be integrated into
an AC system, a PV array needs an inverter to convert DC power to AC power.
PV systems can be off-grid or on-grid. In an off-grid system, the PV system
is only connected to local loads and not to the main electric power grid. An
off-grid PV system likely needs battery storage to handle the intermittency of
solar irradiance. In an on-grid or grid-connected system, the PV system is
connected to the main electric power grid and this system is the most common
today in the world [11]. In this thesis, only grid-connected PV systems are
studied.

2.2.2 Integration of PV in the power system

When PV systems are connected to the grid, they become part of the power
system as generation units. PV systems can be integrated into the power sys-
tem as centralized or distributed units. Centralized PV systems are similar
to other utility-scale power plants, in the sense that they are larger in size,
usually far from the location of end-users, commonly connected to transmis-
sion grids or sometimes medium-voltage (MV) distribution grids. Conversely,
distributed PV systems are smaller in size, but more spread out, closer to
end-users, and commonly connected to the distribution grid [30]. The end-
users who produce and consume electricity, e.g., end-users who own a grid-
connected PV system on their rooftops, are commonly called electricity pro-
sumers.

Large-scale integration of PV systems into the power system can lead to
several problems, such as overvoltages, component overloading and harmonic
distortions, which can lead to a decrease of the lifetime of power grid compo-
nents and expensive grid reinforcements [31]. However, the most challenging
problem when it comes to PV systems, or generally almost all RES, is their
intermittent generation profiles. Unlike the traditional power plants, in which
the generation can be regulated to follow the load pattern, PV systems (without
battery storage) are non-dispatchable power sources. This is a fundamental
disadvantage, since power plants are essentially built to meet the power de-
mand. PV power generation varies according to seasonal and diurnal patterns
and depends on the apparent position of the sun in the sky. In the midday on
a sunny summer day, the PV generation peaks and can be much higher than
in other periods, whereas it is zero at night. In addition to this deterministic
pattern, cloudiness intermittently decreases the power generation [32]. This
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variable nature of PV power can lead to several problems in the power sys-
tems, such as voltage and frequency fluctuations.

2.3 Residential electricity consumption

Generally, electricity consumption is defined by numerous factors, mainly by
human and industrial activities and also by spatio-temporal and climate con-
ditions [33, 34, 35]. For heating and cooling, people need heating, ventilation,
and air conditioning (HVAC) systems. For lighting, they need lamps. For en-
tertainment, they need TVs, computers or other electrical devices. All of these
need electricity. When it comes to daily residential load shape, the pattern is
strongly correlated with human activities at home [34]. On weekday morn-
ings, people are getting ready for work, and thus the electricity consumption
is usually high in the morning. However, the daily peak of electricity con-
sumption is usually in the evening when people are back at home, cooking,
watching TV, etc., and having the lights on. The electricity consumption is
usually lower again after people go to sleep later in the night.

2.4 Interaction between EVs, PV and load in the power
system

It is expected that the future load profile is likely to experience drastic changes
due to increasing amounts of EV charging loads and RES, including dis-
tributed PV generation [35]. An example of a daily net-load (load minus gen-
eration) in a residential distribution grid with large shares of PV and EVs is
shown in Figure 2.1. High PV penetration in a residential grid will lead to
high load ramps in the morning and the evening. This phenomenon is often
called the duck-curve [36]. The duck-curve becomes more prominent when
combined with uncontrolled EV charging [37, 38]. Hence, there is a need for
power system management to reduce the impact of EV charging and PV power
generation.

A power grid has a specific capacity for new generation including PV, and
new loads including EVs, to be integrated so that expensive grid reinforce-
ments can be avoided. The term often used to refer to this is hosting capac-
ity. When it comes to the hosting capacity for PV, low PV hosting capacity
is often due to the mismatch between the load and the PV generation. It is
shown that improved load matching, or synergies between the load and the
generation, will improve the hosting capacity for new generation and new load
[31, 40]. Common ways to improve the load matching is by installing battery
storage or deploying demand side management (DSM) strategies, including
EV smart charging. In this thesis, studies on battery storage to improve the
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Figure 2.1. An illustration of typical net load shapes in different PV and EV scenarios
in residential distribution grids, inspired by the works in [13, 39].

self-consumption are excluded, even though such a study is available in Paper
VI (not included in this thesis).

A formal introduction to a load matching indicator, the PV self-consumption,
is presented in Section 2.4.1. The hosting capacity concept is described further
in Section 2.4.2. A general discussion on DSM is presented in Section 2.4.3.

2.4.1 Introduction to PV self-consumption

The matching between the local load and on-site PV generation is of interest to
end-users as well as grid operators. It is becoming increasingly common that
on-site PV system performance is assessed with load matching metrics [41].
There are several such metrics to evaluate the on-site PV system performance
in buildings [41]. In this thesis, two load matching metrics, self-consumption
and self-sufficiency, are used to evaluate the PV system performance.

Self-consumption is defined as the fraction of the self-consumed on-site
PV electricity to the total PV electricity production, while self-sufficiency is
defined as the fraction of the self-consumed on-site PV electricity to the to-
tal electricity consumption. Based on the illustration in Figure 2.2, the self-
consumption SC can be defined as

C

SC=——.
B+C

2.1
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Power

A C A

06.00 12.00 18.00 24.00
Time of day

Figure 2.2. Schematic outline of daily load (A + C), PV generation (B + C), and
self-consumed electricity (C).

Based on the illustration in Figure 2.2, the self-sufficiency SS can be defined

as
Cc

SS=——+. 22
A+C (22)

In other words, the higher the self-consumption, the higher the directly self-
consumed PV electricity will be compared to the generated PV electricity. The
higher the self-sufficiency, the closer the PV electricity will be to covering all
of the load.

2.4.2 Grid hosting capacity

The term hosting capacity is defined as the new generation and loads that can
be integrated to the grid without endangering grid reliability or voltage qual-
ity for other customers [42]. There are three aspects that need to be defined
for a hosting capacity study: a performance index, a corresponding limit and
a calculation method for the performance index as a function of the amount
of new generation or loads [40]. As the integration of new generation and
loads impact more than one aspect of the power grid, there are several param-
eters that can be used as performance indices, to define the hosting capacity
[43]. Voltage deviation levels, voltage unbalances, component loading, losses
and harmonics are some examples of hosting capacity performance indices.
Recent studies showed that voltage deviations and component loading have
been the most common performance indices for evaluating the hosting capac-
ity [43].
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Figure 2.3. Hosting capacity as a function of the performance index, where (a) the
performance deteriorates already with small amounts of local generation, and (b) the
performance initially improves with small amounts of new generation, but deteriorates
with larger amounts. Figure is inspired by the work in [40].

The hosting capacity as a function of new generation or load can vary de-
pending on the performance index and the initial condition of the power grid,
e.g., whether the grid already has or does not have distributed generation units
from the beginning. Examples of how a hosting capacity approach for a new
generator can be evaluated using performance indices, are presented in Fig-
ure 2.3. Figure 2.3 (a) represents a hosting capacity case where the perfor-
mance deteriorates already with small amounts of local generation or loads, for
example hosting capacity for new generation with overvoltage occurrences as
the performance index. Figure 2.3 (b) represents a hosting capacity case where
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the performance initially improves with small amounts of new generation or
loads, but deteriorates with larger amounts, for example hosting capacity for
new generation with overcurrent level as the performance index.

2.4.3 Demand side management

Demand-side management (DSM) is a broad term used for any activity related
to energy consumption, e.g., control and modification of energy use, device
installations, policies and regulation formulation, promotion, and education
[44]. On a specific case for the household level, heat pump control, turning
on the dishwasher when the electricity price is low, or any other household
activity that alters the use of energy on the demand side to meet some goals,
can be called a DSM activity.

Peak clipping, valley filling and load shifting are common objectives in
DSM activities [45]. Peak clipping or peak load reduction implies reducing
electricity consumption during the peak load periods, usually evening hours.
Valley filling means using more electricity when the electricity consumption is
low. Load shifting is a combination of peak clipping and valley filling strate-
gies by shifting the load in time from the peak load periods to the valley peri-
ods. Thus, flexibility of loads is of importance in DSM strategies.

At the household level, many electrical appliances are practically flexible
loads, since they can be started at any desired time. Examples include electric
stoves, dishwashers and washing machines. These kinds of loads need active
participation from users, in the sense that any use of a DSM strategy requires
behavioral change, i.e., a change in when to start and stop an appliance. Con-
versely, there are some flexible loads that need less active participation from
the users and are more practical to be programmed with smart controls. This
kind of flexible load includes heat pump or air conditioning devices that can
be programmed to automatically turn on or off depending on the temperature,
electricity price or even the amount of local generation. Electric vehicle charg-
ing can also be programmed with smart controls and it is possible to have such
a scheme without changing the user behaviours. The next section discusses
further the smart charging schemes of EVs, specifically the ones that consider
PV generation and electricity consumption.

2.5 Smart charging of EVs considering PV and loads

This section covers the specific type of DSM for EVs, which is often called
coordinated, controlled or smart charging of EVs [46]. The long parking dura-
tion of EVs offers the opportunity for EV smart charging control. Compared
to other electric appliances, the temporal flexibility of the EV charging load is
comparatively higher. Based on a travel survey in six European countries, cars
are, on average, parked 22 h per day, with 16 h per day of uninterrupted or
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inactive parking [47]. Smart charging schemes have the potential to improve
the synergy between EVs, local generation and other loads, for example by
programming the EVs to charge when PV generation is high and not to charge
when the load is high [38]. Several benefits of smart charging schemes related
to EV-PV-load synergy include: PV self-consumption improvements, peak
load reduction, grid overloading prevention, grid voltage fluctuation reduction,
grid loss reduction, and economic benefits for users and charging providers.
The temporal flexibility of EV parking also enables EVS to offer ancillary ser-
vices, such as voltage control and frequency regulation, with vehicle-to-grid
(V2G) schemes [48]. In a V2G scheme, EVs can not only charge, but also dis-
charge and act as an energy storage for the electricity grid. There are several
important aspects to EV smart charging. This section summarizes the litera-
ture review in Paper 1. In general, the main aspects of smart charging schemes
are objectives, charging approaches, spatio-temporal aspects, and mathemati-
cal models and algorithms.

2.5.1 Objectives

The motivations behind the deployment of smart charging can vary. The ob-
jectives can be related to technical aspects, financial aspects or a combination.
The smart charging scheme with a technical objective includes increasing PV
utilization, balancing electricity load, and other objectives related to the power
grids. Reducing charging cost and increasing profits for charging providers are
common financial objectives in smart charging schemes.

In the literature review in Paper I, it was found that smart charging with one
certain objective can lead to accomplishment of other objectives. This is, for
example, when a smart charging scheme with an objective of increasing PV
utilization can lead to the reduction of power losses and charging cost. For
the users or EV charging providers, financial objectives are more common for
smart charging deployments, since they will get the benefit directly. On the
other hand, for grid operators, technical aspects such as component overload-
ing and other grid problems are more important, even though in the long run
the real motivation is economic, i.e., avoiding expensive grid reinforcement.

2.5.2 Charging approach

Smart charging deployment can be centralized or distributed. In a central-
ized smart charging scheme, the charging schedule and power for EV fleets
are coordinated by a central unit called aggregator [49]. In such schemes, the
aggregator gathers the required data such as expected departure time, battery
state of charge, etc., to define the charging schedule of EVs, depending the ob-
jectives. In a distributed smart charging scheme, instead of being controlled by
a central unit the control is conducted on the individual EV level [49]. How-

14



ever, it is common that the distributed EV charging scheme is driven indirectly
by a central unit, such as through a dynamic price signal from the electricity
provider. A centralized charging scheme will benefit from the availability of
instantaneous information regarding the systems, so that system level optimum
is more likely to be achieved. In that case, the centralized approach will help
the system to optimize the utilization of power grid capacity and renewable
power on system level. However, centralized charging schemes need more ad-
vanced communication infrastructures which can be expensive. On the other
hand, distributed charging schemes need less advanced communication infras-
tructures, however they will be less optimal in terms of utilizing power system
capacity.

2.5.3 Spatio-temporal aspects

Spatio-temporal aspects of EV charging are of importance to the smart charg-
ing schemes, since they reflect what benefits the schemes can provide at certain
locations in a given specific time frame. The number of EVs available at each
location vary over time. Thus, smart charging schemes at certain location are
constrained by the parking periods of EVs at that particular location.

As mentioned earlier, most of the residential or home parking is inactive
or uninterrupted parking. It was shown in [22, 23] that EV home-charging on
weekdays commonly peaks in the evening when people just come back from
work, which most likely will coincide with and increase the power system
peak loads. If high temporal flexibility is utilized, the increase in overall peak
loads could be avoided by shifting the EV load to the valley load periods at
midnight. It is also possible to design a delayed smart charging scheme at
home, with which the users will still have the convenience of having the EV
fully charged before the first trip of the day [50]. In case of matching EV
charging with on-site PV generation, there is a lower potential compared to
valley filling and peak load reduction potentials at home [51]. This is due to
lower EV availability at home during the day when solar power peaks, and
very high EV availability at home during night.

Since most of the cars are away from home during daytime on weekdays,
they are either being driven or parked in non-residential buildings [23, 51]. In
contrast to home-charging, smart charging schemes at non-residential build-
ings might benefit more from local PV production since PV peaks in the mid-
day. There are also spatial configurations which can be different to residential
and non-residential buildings, i.e., charging stations. A charging station as a
single unit has a load curve that only depends on EV presence. EV fleet man-
agement is more practical to be conducted in the charging station. Thus, it
is more practical for a charging station as a single unit, compared to individ-
ual users, to provide ancillary services to the Transmission System Operator
(TSO) and the Distribution System Operator (DSO) or to provide energy stor-
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age services for renewable power producers. Recently, integrating PV systems
with EV charging stations has become more common since it can improve
technical, economic, and environmental performance of EVs [52]. Further-
more, they can be improved even more with EV smart charging schemes [53].

On a regional or territorial level, such as cities, counties and islands where
multiple residential buildings, non-residential buildings and charging stations
are aggregated, it can be seen that the EVs are always available to charge, as-
suming the charging infrastructure is available within the region, except when
being driven on the roads or the battery is full. Assessing the higher system
level is also important since the aggregation of EV charging load, PV genera-
tion and electricity consumption will lead to different load profiles compared
to the local scale. In this case, the impact of EV smart charging on problems
at higher system levels, such as system peak load management or regional
emissions, can be analyzed.

2.5.4 Mathematical models and algorithms

EV smart charging schemes can be programmed with various mathematical
models and control algorithms. These can be classified into two categories
based on problem formulations and solution methods: optimization methods
and rule based algorithms.

Optimization is a method of finding the best available solution for a certain
mathematical problem [54]. In an optimization problem, one typically wants
to minimize or maximize certain parameters given some constrained condi-
tions. A general optimization problem can be written as [54]

minimize f(x), subjectto g(x) <b (2.3)

with f(x) as the objective function, and g(x) as the constraints. Linear pro-
gramming (LP), mixed-integer linear programming (MILP), and quadratic
programming (QP) are some examples of various optimization methods that
are commonly used in energy management systems (EMS), including in EV
smart charging schemes [49, 55]. If uncertainty of variables is taken into ac-
count, then an optimization framework called stochastic programming (SP)
can be used to solve such problems [56, 57].

With a rule based method, a smart charging scheme typically uses a simple
problem solving approach, e.g., using if-then conditions, instead of mathemat-
ical formulation that can take a long time to compute. In many conditions, rule
based methods with simple logical rules, for example, charge when there is PV
power and stop charging when the electricity price and surrounding electrical
load is high, can be useful and more practical [38]. Compared to the optimiza-
tion method, the rule-based method might not reach an optimum condition,
but it can achieve the immediate goal following simpler rules.
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2.6 Research gaps

The focus of this thesis is specifically the impact of EV smart charging schemes
for residential buildings equipped with PV systems. The following research
gaps have been identified and addressed in the appended papers:

e The impact of smart charging schemes on PV self-consumption in res-
idential buildings are scarce in the literature. Paper II addresses this
gap by proposing smart charging models to improve PV-EV synergies at
residential buildings and evaluate the potential of PV self-consumption
enhancements.

e Smart charging impacts on both PV and EV grid integration in residen-
tial distribution grids are scarce. Paper III attempts to fill some of this
research gap.

e Combined PV-EV hosting capacity assessment, in the sense that both PV
and EV hosting capacity is assessed together, has not been conducted
before and is a research gap. Paper III also attempts to fill part of this
gap by introducing a combined PV-EV hosting capacity assessment ap-
proach, with a case study in a residential distribution grid.
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3. Methodology

This chapter introduces the data, case studies and methods used in Papers 11
and III.

3.1 Data and case studies

This section presents the data and case studies used in Papers II and III. It
covers the data regarding EV charging demand, solar irradiation, building
electricity consumption and the power grid. Data and models for EV charg-
ing demand, solar irradiation, building electricity consumption were based on
Swedish conditions, whereas the power grid model represents a standard Eu-
ropean distribution grid.

3.1.1 EV charging demand and mobility patterns

The EV charging demand model used in Papers II and III is described in this
section. Many existing papers used travel surveys of ICEV mobility as the
basis of their EV charging demand modeling [21]. The assumption is mainly
motivated by the fact that future EV users will not need to change their driving
behaviour, given that future EVs will have sufficient driving range for daily use
[58]. A recent study in [23] validated EV modeling methods based on house-
hold travel survey (HTS) data against real EV charging data and the results
show that this kind of modeling is an appropriate instrument to reproduce real
EV charging behaviour.

In this thesis, EV charging demand modeling was based on user mobility
data from a Swedish travel survey from 2006 [59]. The survey data included
the time of arrival and departure for trips made by cars, the traveled distance,
and also the origin and destination locations of these trips. The daily charging
requirement Exy 4., (KWh) is estimated by:

EEv.aay = Nev X D, (3.1

where ngy is the specific consumption of EVs (kWh/km) and D is the daily
driving distance. In Paper II, the specific consumption of EVs 1y was set
to 0.15 kWh/km, while in Paper III it was set to 0.16 kWh/km. These energy
consumption rates conform to the rates of many available EV models, as can
be seen in [60]. The daily driving distance D was calculated by doubling the
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trip distance, which was randomly sampled with a Monte Carlo method from
data on traveled distance for the recorded trips arriving at home in the travel
survey [59]. This was assuming that each EV had two equally long trips a
day, such as a trip from home to work and back to home again. The maxi-
mum usable energy in the battery was set to 30 kWh, which was based on the
assumption that that the battery could provide sufficient energy for moderate
trips within a city, rarely exceeding 200 km per day. It was assumed that the
EVs were only charged at home and not in other places such as workplaces or
supermarkets.

Besides the daily mileages, the time of home-arrival and home-departure
were also randomly sampled with a Monte Carlo method from the travel sur-
vey data [59]. Papers II and III were based on home-charging, and the model-
ing utilized trips which had home as origin and destination. Home-workplace-
home mobility patterns were used to model the EV charging demand in week-
days, while home-other-home mobility patterns were used to model the EV
charging demand in weekends. For more information on the trips starting and
ending at other locations, see [22]. In the studies in this thesis, the arrival and
departure time of EVs were randomly sampled with a Monte Carlo method
using survey data with an assumption that each EV made one round trip per
day. In the uncontrolled charging scheme, the charging starts at the arrival time
without considering the time of departure. The smart charging schemes utilize
the temporal flexibility between time of arrival and departure. The charging
schemes are presented in detail in Section 3.2. Figure 3.1 (a) shows the statis-
tic arrival and departure times at homes. Figure 3.1 (b) shows the mean daily
availability of vehicles parked at homes. In Papers II and III, the maximum
charging power was set to 3.7 kW, which was based on the power of a typical
home charger [61]. The charging efficiency was set to 90% which was based
on the average Level 2 EV charging efficiency [62]. The charging efficiency
was assumed constant regardless of the charging power. It was also assumed
that the EV charger had a constant unity power factor.

3.1.2 PV generation

The PV generation model used in Papers II and III is described in this section.
The PV generation used in these studies was modeled based on solar irradiance
data for 2018 from Stockholm, Sweden, with latitude 59.3° N and longitude
18.0° E, recorded by the Swedish Meteorological and Hydrological Institute
(SMHI) [63]. The PV generation was modeled as

st =MNpy X 1, (3.2)

where s; is PV power generation at time ¢, npy is the PV system efficiency
times the array area (m?), and I, is the incident solar irradiance at time 7. In
Papers II and III, for simplicity reasons, the incident solar irradiance I, was
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Figure 3.1. User mobility statistics: (a) time of home-arrival and home-departure
and (b) mean daily fraction of vehicles parked at home. In (b), the light green area
represents the weekday fraction, the light red area the weekend fraction, and the brown
area just the intersection area between the two fractions.

equal to the Global Horizontal Irradiance (GHI), which means, that roof tilt
was not taken into consideration.

In these studies, the PV system was scaled according to the ratio of annual
PV power production to electricity consumption Rpy, instead of sized directly
in kW). In that case, the PV system efficiency times footprint area 1py, was

21



calculated so that the annual PV power production satisfied the given studied
Rpy value. The ratio of the total annual PV generation to the annual building
electricity demand Rpy is defined as

Ppy
Rpy = — 33
PV LH ) ( )
where Ppy is the annual PV electricity production and Ly is annual building
electricity consumption. Then the PV system efficiency times array area npy
can be defined as
Ly X Rpy

(Xl 1,Ar)

The use of this kind of ratio is common, especially in the assessment of PV
self-consumption and self-sufficiency as conducted in [31, 64]. In this thesis,
several Rpy values were simulated. In Papers II and III, Rpy had both annual
building electricity consumption and EV charging demand in the denominator
part. In Paper III, Rpy only considered annual building electricity consumption
in the denominator part, since the similar ratio for EV, Rgy, was introduced
separately in order to assess the EV hosting capacity. The PV power was
assumed to have a constant unity power factor.

Npy = 3.4)

3.1.3 Residential building load

The building load data used in Papers II and III is described in this section.
Synthetic power consumption data was generated from the Widén Markov-
chain stochastic model in [65]. The model was trained on Swedish occupant
activity patterns and validated with Swedish electricity use data. In this thesis,
the model was used to generate electricity use patterns without electric heat-
ing for single-family buildings with two inhabitants. The building load was
assumed to have a constant power factor of 0.95.

3.1.4 Distribution grid

The power grid information used in Paper 111 is described in this section. The
power flow computations and hosting capacity assessments were performed
using the IEEE European LV Test Feeder [66]. The grid structure is shown in
Figure 3.2. The grid has 55 building loads and is operated in a radial struc-
ture. Even though the grid has a three-phase system, each customer has only a
single-phase connection. The transformer substation has a rating of 800 kVA
11 kV/0.416 kV. The voltage in the substation is by default set to 1.04 pu all
the time.
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Figure 3.2. The IEEE European LV Test Feeder that was used in Paper III.

3.2 Electric vehicle charging schemes

This section presents the EV charging schemes used in Papers II and III. There
are three different charging schemes used in this thesis: uncontrolled charg-
ing, distributed smart charging and centralized smart charging. The uncon-
trolled and the distributed smart charging schemes were simulated and studied
in Papers II and III, while the centralized smart charging scheme was only
simulated and studied in Paper II.

3.2.1 Uncontrolled charging scheme

In the uncontrolled charging scheme, the EVs charge opportunistically. In this
scheme, the EVs start to charge upon arrival at home, with the rated charging
power, without considering other parameters such as the building load or the
PV generation. The charging is stopped when the SoC of the EV battery meets
the targeted SoC. If the targeted SoC has not been fulfilled when the EV is to
depart, the charging is stopped at the departure time.
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3.2.2 Distributed smart charging scheme

In the distributed smart charging scheme, the EV charging considers other
parameters, i.e., building load, PV generation, the targeted SoC, and future
departure time. Since the scheme is distributed, it only considers the local
parameters, i.e., those of the single building, and not the community level
parameters.

The objective of the proposed distributed charging scheme is to minimize
the net-load variability over the parking period. Flatter and smoother net-load
is expected when the net-load variability is minimized. In that case, the self-
consumption of local power production should increase and the peak loads
should decrease. The variability is often measured by the variance which is
defined as the average squared difference of the population values from the
mean value [67]. Here, the net-load variability is represented by a variance
equation. In the optimization, only numerator part of the variance equation
is taken into account, since the denominator is constant and will not change
the optimization outcomes. The optimization problem of the smart charging
scheme is formulated with a quadratic programming approach since the vari-
ance itself is a quadratic equation. The optimization problem is defined as

tdep

chin Z (xz +l =5 — ,ulpark)zy (3.5)

t=tarr

ldep
st My Y XAt =S0Carger — S0Carr,

=tarr

0 <x < Xpmax,

(3.6)

where #,,, and t4,, are the arrival and departure times of the car, respectively,
X; is the charging power at time ¢, [, is the building load at time ¢, s; is the solar
power production at time ¢ and L4 is the mean net-load during the parking
period including the EV charging load. In the constraint, 1, is the charging
efficiency, At is the time step, which in this case is set to 15 minutes, S0C;4/ger
is the state of charge (kWh) targeted in the battery, SoC,,, is the state of charge
(kWh) in the battery on arrival, and x;;,,, is the maximum charging power. The
mean net-load during the parking period L . is obtained as

t=tarr

(thep (lt — S;) 'At) + SOCtarget —80Cqrr

Mipark = (3.7

tdep —larr

It should be noted that the charging scheduling for the scheduled parking pe-
riod is conducted only at the time of arrival #,,.. The optimization output is a
vector containing Xz, Xz, - » X, which is the time-series of the
smart EV charging load.

lep—1° xtdep ’
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3.2.3 Centralized smart charging scheme

The centralized smart charging scheme is the extension of the distributed smart
charging scheme. The difference is that the centralized smart charging consid-
ers community level parameters and the charging for several EVs at different
buildings is coordinated by a central unit simultaneously. In this case, the
centralized charging scheme minimizes the net-load variability of the whole
community. The community power consumption L, PV generation S; at time-
step ¢ with K number of buildings, respectively, can be written as

K
L = Z lt,k; (3.8)
k=1
K
Si=Y s (3.9)
k=1

with /; ;. and s, ; being the load and PV generation respectively at building &
Based on that, the objective function of the centralized smart charging scheme
can be written as

tdep
min Z (xt +Ll‘ - St _Mtpark)za (310)

=tarr

where the new variable M; . is introduced as the mean community net load
during the parking period, taking into account the charging demand of the EV
that is being scheduled. The new variable M, is obtained as

(Z;d:efa,.r (Lt - St) : At) + SOCtarget —S0Cqyrr

tdep —larr

My park = (3.11)

The constraint of the optimization problem is identical with the one in the
distributed charging, which is shown in Equation (3.6). In the centralized
charging scheme, the community net-load profiles for future smart charging
events are updated every time a charging load for an EV is scheduled. In this
case, after each time that EV charging is scheduled, the building load forecast
L] between the arrival time 7, and the departure time 7,4, p» 1s updated with the
inclusion of the scheduled EV charging load to L;, which can be written as

In other words, the charging schemes consider not only the building load and
the PV generation in the neighborhood, but also other EV charging load that
has been previously scheduled within the parking period of the recently ar-
rived EV. If more than one car arrives at time step ¢, the order of the charging
scheduling is based on the future departure time. The charging of the car that
will depart earlier will be scheduled earlier, since the cars that park longer
have a higher flexibility.
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3.3 PV curtailment

This section provides the description of the PV curtailment methods that were
used in Paper III, which were attempts to enhance the PV hosting capacity.
There are two curtailment scenarios studied in Paper III, full curtailment and
partial curtailment.

In the full curtailment method, the building is prevented to transfer excess
PV electricity to the grid. With this curtailment method, it is expected that the
maximum voltages on the customer side do not increase with the integration
of the PV systems, since no excess power is flowing to the grid. The generated
PV power after full curtailment s, can be defined as

Scurty = min(s;, [ +x;). (3.13)

Simulation results from deploying the full-curtailment method were compared
to other results deploying other EMS strategies, i.e., no control and EV smart
charging schemes, and was further used for the grid hosting capacity assess-
ment.

In the partial curtailment method, the building is allowed to transfer excess
PV power to the grid, however it is limited. The limitation is based on the
results from the no curtailment scenarios which did not violate the allowable
upper voltage limit. In the case that the PV power excess does not exceed
this limit, there is no curtailment. When PV power excess is higher than this
limit, curtailment is enforced. With this method, the maximum voltage due
to the injected PV power will increase, but it should not be higher than the
allowable upper voltage limit. It can be said that this curtailment method is
optimal compared to the full curtailment, since only the absolutely necessary
amount of excess power is curtailed. The generated PV power after optimal
curtailment s, , can be defined as

Sopta = by +x; +min(s; — (I +x;), Strmax), (3.14)

where ¢4y 18 the maximum allowed PV power transfer from a building to
the grid, which was set after the power flow simulation of the scenario without
any curtailment was conducted.

3.4 Simulation scenarios

This section describes the simulation scenarios in Papers II and II1.

3.4.1 Residential building

In Paper 11, there were two different scenarios with different numbers of build-
ings involved, i.e., a single building load and the aggregation of 100 buildings,
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which represented a small-sized community. The impacts of the deployment
of the smart charging schemes both for single buildings and on community
levels were assessed. In Paper 11, the number of buildings involved was set to
55, as the distribution grid used in the study by default has 55 customers.

3.4.2 PV share

Papers II and III shared the same quantification method of the PV shares in the
simulations, which were the ratio of annual production to annual consumption
Rpy. However, there are some differences in the implementation. In Paper
I, the annual consumption in the ratio Rpy ratios included the annual energy
demand for EV charging, while in paper III it did not. In Paper II, seven
different Rpy were simulated: 0.1, 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50. In
Paper 111, five Rpy ratios were simulated, i.e., 0.00, 0.25, 0.50, 0.75 and 1.00,
for combined PV-EV grid integration and hosting capacity assessment. Evenly
distributed PV systems among the customers were assumed.

3.4.3 EV share

In Paper 111, the ratio of the annual EV charging demand to the existing annual
building electricity consumption, Rgy, was introduced as a way to quantify
the EV charging addition to the power system. The ratio Rgy is similar to
the ratio Rpy, which was defined in Equation (3.3). The difference is that Rpy
quantifies PV share addition while Rgy quantifies EV share addition. The ratio
Rpy is defined as

Rpy = —, (3.15)

where Rgy is the annual EV charging demand and Ly is the annual building
electricity consumption, and in this case the EV load is excluded from Lg.
In Paper III, five Rpy were simulated: 0.00, 0.25, 0.50, 0.75 and 1.00, for
combined PV-EV grid integration and hosting capacity assessment. Evenly
distributed EVs among the customers were assumed in the study.

3.4.4 Energy management systems

In Paper 111, there were four EMS scenarios simulated: (1) without EMS, (2)
with EV smart charging only, (3) with PV curtailment only and (4) with both
EV smart charging and PV curtailment. In this case, the EV smart charg-
ing scheme refers to the distributed smart charging scheme, not the central-
ized smart charging scheme. These scenarios were simulated in order to esti-
mate the grid impacts when different EMS strategies were deployed, and also
to assess the possible combined PV-EV hosting capacity. The smart charg-
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ing schemes and the PV curtailment methods were described in Sections 3.2
and 3.3 respectively.

As described earlier, the building load and the PV generation are not con-
sidered in the uncontrolled charging scheme which is illustrated in Figure 3.3.
On the other hand, the EV smart charging scheme has the building load and the
PV generation as two of the inputs, as shown in Figure 3.4. In Figure 3.5, the
simulation flowchart for the scenario with only PV curtailment is shown. In
Figure 3.6, the simulation flowchart involving both EV smart charging and PV
curtailment is shown. It can be seen that the smart charging considers the PV
generation profile before the curtailment, while the curtailment considers the
EV smart charging load. That implies that the EV smart charging is scheduled
hours ahead, and the curtailment is conducted in real-time. In all scenarios,
the building load, the final PV generation and the final EV charging load are
used as inputs for the load flow calculations to generate power system profiles
such as voltages and system losses.

3.5 Hosting capacity quantification

In Paper III, the voltage deviation level was used as the hosting capacity per-
formance index, since it is the most commonly used one and usually the most
relevant one for defining the grid hosting capacity [43]. According to the Euro-
pean standard [68], rms voltages in a LV distribution system must be within the
range of 0.90 - 1.10 pu during 95% of the time, on a weekly basis. Thus, the
system should not allow voltage levels outside this range. In paper III, whole
year power flow simulations were performed, which produced estimates of the
voltage probability density. In one analysis, the whole probability density was
considered for the hosting capacity assessment. In another analysis, the low-
est and highest 0.01 % of voltage population were excluded; in other words,
only the range between the 0.01th and 99.99th percentiles of the voltage pop-
ulation was included. The interpretation of this case should be that the grid
tolerates very rare occurrences of overvoltage and undervoltage, but otherwise
conforms to the standard [68]. To evaluate the PV and EV hosting capacity in
combination, a novel graphical based analysis was proposed in Paper III. This
will be presented in Section 4.3.
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4. Results

In this chapter, the main results from the appended papers are summarized.
The sections in this chapter are ordered according to the papers. Section 4.1
provides a summary of the results from Paper II on impacts from the smart
charging schemes in residential buildings and for a community of residential
houses. Section 4.2 and Section 4.3 summarize the main results from Paper
IIT on impacts from the smart charging schemes on the distribution grid, and
from the combined PV-EV hosting capacity with EV smart charging and PV
curtailment, respectively.

4.1 EV smart charging at residential buildings with PV
systems

This section summarizes the results presented in Paper II. Both distributed and
centralized charging schemes in residential buildings were simulated.

Figure 4.1 shows the daily load and generation profiles averaged over a
year for a community of 100 buildings with 0.5 production to consumption
Rpy ratio. The amount of self-consumed PV electricity and peak load re-
duction in different charging schemes can be seen. As can be seen, in the
scenario with the uncontrolled charging scheme, EV charging mostly occurs
in the evening when people have just arrived home. In the scenario with smart
charging schemes, on the other hand, the EV charging load is distributed more
evenly over the night since it utilizes the flexibility of the expected long park-
ing periods. It can be seen that the peak load is lower with the smart charg-
ing scenarios. The intersection between the PV generation profile and both
the building and the EV charging load profiles indicates the amount of self-
consumed PV electricity. It can be seen that compared to the intersection
area with uncontrolled charging, the intersection areas with the smart charg-
ing schemes are larger, and the one with centralized charging is slightly larger
than the one with distributed charging.

A summary of the numerical results on self-consumption, self-sufficiency
and peak load reduction is presented in Sections 4.1.1 and 4.1.2. In Sec-
tion 4.1.3, a summary of the results on net-load variability, which was the
quantity minimized in of the smart charging schemes, is presented.
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Figure 4.1. Daily load profiles averaged in a year for a community of 100 residen-
tial buildings with (a) uncontrolled charging scheme, (b) distributed smart charging
scheme and (c) distributed smart charging scheme.

32



(@)

—@— centralized smart charging

——@— aggregated - distributed charging
—@-— aggregated - uncontrolled charging
0= single household - distributed charging
-~ 0~ single household - uncontrolled charging

100

90

60 -

50 [

Self-consumption ratio (%)

30

20 ! ! ! L ! ! !

40 -

35

Self-sufficiency ratio (%)

L —@— centralized charging
15 2 .
—@— aggregated - distributed charging
~—@-— aggregated - uncontrolled charging
100 -

O~ single household - distributed charging
-0 single household - uncontrolled charging
5 L L L L L L L
0.2 0.4 0.6 0.8 1 1.2 1.4
Rpy

Figure 4.2. (a) Self-consumption (SC) and (b) self-sufficiency (SS) ratios versus the
production-to-consumption ratio Rpy .

4.1.1 Self-consumption and self-sufficiency

Figure 4.2 (a) and (b) show the self-consumption (SC) and the self-sufficiency
(SS) ratios versus the production-to-consumption ratio Rpy. In the figures,
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several scenarios are presented. The grey lines represent the uncontrolled
charging scheme, the orange lines represent the distributed smart charging
scheme and the blue line represents the centralized charging scheme. Thin-
ner lines represent results from a single building and thicker lines represent
the results from 100 buildings aggregated. As can be seen in the figures, the
higher the Rpy is, the lower the SC, and the higher the SS. Regardless of the
charging schemes, the aggregation of net-loads from multiple buildings will
improve overall SC and SS. This is because when there is PV power excess in
one building it can still be consumed by nearby buildings.

From Figure 4.2, it can also be seen that the SC and SS are higher in the
smart charging scenarios compared to the uncontrolled charging scheme sce-
nario. The SC and SS on the community level in the centralized smart charging
scenarios are higher than in the distributed smart charging scenarios. This is
because the centralized charging scheme was designed to consider the net-load
in the community directly, unlike in the distributed smart charging scheme,
which only considers the net-load in each single building.

The increases in SC and SS by the smart charging schemes are presented
in Tables 4.1 and 4.2, respectively. The increases in SC by smart charging are
highest when the ratio Rpy is 0.50. As for SS, the highest increase among
the simulated scenarios comes from the highest simulated Rpy, i.e., 1.50. The
impacts from the distributed smart charging at the single building are more
prominent than the ones on community level. This is because the aggregation
of net-loads from multiple buildings already improved the SC and SS, leaving
less room for improvements with the distributed charging scheme. On com-
munity level, it can be seen that the increase in SC and SS in the centralized
charging scheme are higher than with the distributed charging scheme, and
close to the improvements achieved by the distributed smart charging at the
single building level. It is also interesting to see that, when the centralized
charging was deployed, the SC and the SS at the individual building level in-
creased, even though not as much as the one with distributed charging. This
implies that the centralized charging scheme did not penalize SC and SS at
the individual building level, instead the scheme improved them to a certain
extent.

Ideally, the charging is shifted in time to the hours when the solar power
is high. However, it was not always possible with unchanged user driving
behavior, which was an assumption in this study. Thus, the EV availability at
the residential buildings was mostly low during midday when the solar power
production was high. That is why the increase in both SC and SS by the smart
charging schemes were limited.
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Table 4.1. Self-consumption improvements by smart charging schemes with different
production-to-consumption ratios Rpy for a single building and on the community
level with both distributed and centralized charging approaches.

Self-consumption increase

Rev Distributed charging Centralized charging
Single building Community Averaged per building Community

0.10 1.3% 0.1% 0.4% 0.2%
0.25 7.3% 2.9% 2.8% 8.1%
0.50 8.7% 3.7% 3.8% 8.5%
0.75 7.4% 3.0% 3.5% 6.4%
1.00 6.0% 2.5% 3.4% 4.9%
1.25 5.0% 2.1% 3.0% 3.9%
1.50 4.3% 1.9% 2.7% 3.2%

Table 4.2. Self-sufficiency improvements by smart charging schemes with different
production-to-consumption ratios Rpy for a single building and on the community
level with both distributed and centralized charging approaches.

Self-sufficiency increase

Rpv Distributed charging Centralized charging
Single building Community Averaged per building Community

0.10 0.2% 0.1% 0.2% 0.2%
0.25 2.0% 0.9% 1.0% 2.3%
0.50 4.6% 2.1% 2.3% 4.7%
0.75 5.9% 2.6% 3.3% 5.3%
1.00 6.4% 2.9% 3.8% 5.4%
1.25 6.7% 3.1% 4.7% 5.4%
1.50 6.9% 32% 4.7% 5.5%

4.1.2 Peak load reduction

Table 4.3 presents the peak load reduction by the smart charging scenarios,
both for individual buildings and on community level. It should be noted that
what is meant by peak load reduction in this case is the amount of reduced
load compared to the peak load in the scenarios with uncontrolled charging.
In the scenarios with uncontrolled charging, the charging of EVs often coin-
cides with the building peak load. With smart charging schemes, a peak load
reduction is achieved by shifting and distributing the EV charging load in the
periods when the building load is not high.

From Table 4.3, it can be seen that the peak load reduction at the individual
building level was higher than on the community level. This is because peak
loads in residential buildings do not always coincide. Thus, when the net-
load from multiple buildings is aggregated, the peak loads in the aggregated
net-load will be lower than the sum of peak net-loads from each building. In
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that case, there is less room for the smart charging scheme to reduce the peak
loads. On community level, the peak load reduction by the centralized charg-
ing scheme was higher than with the distributed smart charging scheme since
the community net-load was directly considered in the centralized charging.

Table 4.3. Peak load reduction with different production-to-consumption ratios Rpy
in a single building and on the community level with both distributed and centralized

charging approaches.

Peak load reduction

Rpv
Single building Community: distributed Community: centralized

0.10 52.8% 36.1% 48.6%
0.25 53.6% 34.9% 47.3%
0.50 53.7% 32.7% 44.1%
0.75 52.4% 32.4% 42.6%
1.00 49.2% 32.3% 41.8%
1.25 46.6% 32.5% 41.3%
1.50 44.9% 32.7% 41.0%

4.1.3 Load variability

Figure 4.3 (a), (b) and (c) show example net-load profiles for a community of
100 buildings on spring, summer and winter days, respectively, with different
EV charging schemes and with Rpy = 0.50. Among the charging schemes, it
can be seen that the net-load with the smart charging schemes is less variable
than the one with the uncontrolled charging scheme. It can also be seen that
the net-load with the centralized smart charging is smoother than the one with
the distributed smart charging.

Since the objective in the smart charging schemes in Paper Il is to minimize
the net-load variability, it is important to assess the performance of the smart
charging scheme based on a measure related to the objective. Therefore, the
variability of the net-load was by the load standard deviation. Figure 4.4 shows
the net-load standard deviation per building with different Rpy ratios and with
different charging schemes. As can be observed, the aggregation of multiple
buildings decreases the net-load variability per building. It can also be seen
that the higher the PV share is, the higher the variability. This is due to the fact
that there is more unconsumed power when the share of PV is higher. From the
figure, it can also be seen that the smart charging, as expected, reduces the net-
load variability. However, the difference in net-load variability between the
uncontrolled charging and smart charging scenarios is lower when the share
of PV is increased. That implies that the effectiveness of the smart charging,
approach-wise, is lower when the PV share is higher. This is because the
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Figure 4.3. Examples of net-load profiles for a community of 100 buildings in selected

(a) spring, (b) summer and (c) winter days.

EV availability is low during midday, which is when most of the PV power
production is added when the PV share increases.

4.2 Grid impacts

In Paper II, the smart charging scheme with the objective to reduce the net-
load variability was introduced and the energy performance of single buildings
and on community level was assessed. In Paper III, a combined PV-EV grid
integration study was performed and the impact of smart charging schemes
on the distribution grid was assessed. Even though the objective of the smart
charging scheme is to minimize the net-load variability, and is not explicitly
related to grid operation, the results show that the grid performance was also
improved as a result of the reduced net-load variability. The study in Paper III
also involved PV curtailment. Sections 4.2.1 and 4.2.2 summarize the main
results on losses and voltage profiles of this combined PV-EV grid integration
study.
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4.2.1 System losses

Figure 4.5 shows the annual grid losses with different PV and EV shares and
with different EMS strategies. By comparing Figure 4.5 (a) and (b), it can be
seen that smart charging with an objective to minimize the net-load variability
also decreases the grid losses. This is due to the electrical losses being propor-
tional to the square of the current flowing in the line [69]. Thus, both higher
excess peak load and excess generation lead to higher electrical losses. When
the net-load variability is lower, it is expected that peak loads and generation
excesses will be lower, which in turn leads to lower losses. In Figure 4.5, it
can also be seen that the higher the EV share, the higher the grid losses. For
PV, losses first decrease to a minimum, then start increasing again. This is
shown in Figure 4.5 (a) and (b), where the plots of losses versus the PV share
are convex-shaped. That means that the PV power injected to the grid reduces
the losses provided that the size of the installed PV system is optimal. If the
PV production is too high, the losses start to increase again. In the scenario
with PV curtailment shown in Figure 4.5 (c) and (d), it can be seen that the
electrical losses continued to decrease when the installed PV share was higher.
However, it should be noted that it did not take the curtailed electricity into ac-
count, which should also be considered as system losses and could be much
higher if the installed PV is excessively high.
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Figure 4.5. Annual electrical system losses in different PV and EV integration sce-
narios: (a) without EMS, (b) EV smart charging only, (c) PV curtailment only and (d)
EV smart charging + PV curtailment.

4.2.2 Voltage profiles

Figure 4.6 shows the voltage probability distribution for a variety of EMS and
combined PV-EV scenarios. The x-axis corresponds to different EV shares,
and the y-axis corresponds to different PV shares. It can be seen that in the
scenarios without EMS, there were no voltage violations if both the share of
PV and EVs were under 75%. When the PV share was 100%, overvoltage
occurred, and when the EV share was 100%, undervoltage occurred. In the
scenario with the smart charging scheme only, the undervoltage problem in the
scenarios with 100% EV share was avoided. The smart charging scheme could
also reduce the maximum voltage, if the PV share was low. This can be seen in
the plots for the scenarios without EMS and smart charging only, with a 25%
PV share. In the scenario with PV curtailment only, the overvoltage problem
in the scenarios with a 100% PV share was avoided. In the scenario with both
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Figure 4.6. Violin plots of voltage probability distributions in different EMS scenarios
and with combined PV-EV shares.

EV smart charging and PV curtailment, both overvoltage and undervoltage
problems were avoided. From the voltage profiles, the grid hosting capacity
for both PV and EVs can be determined, see Section 4.3.

4.2.3 Optimal curtailment and grid sufficiency

Following the results on the maximum voltages from the full curtailment sce-
narios, which are still far from the upper limit, the simulation with the partial
curtailment was conducted to attempt to ascertain the trade-off between the
PV utilization and the voltage level. As can be seen in Figure 4.6, in the sce-
nario without curtailment, there were no overvoltage occurrences when the PV
share was 75%. Thus, the maximum excess power from each building in this
scenario was set as the maximum power transfer from the building to the grid
in the partial curtailment scenario.

Figure 4.7 shows the voltage probability distributions for a PV share of
100% in three different curtailment scenarios. With partial curtailment, the
maximum voltage reached the upper limit of the permissible voltage span.
Figure 4.8 shows the various PV electricity utilization levels relative to the
existing load. As can be seen in Figure 4.8 (a), the full curtailment reduced
the grid self-sufficiency slightly, while the partial curtailment kept the level
of self-sufficiency as it was without the curtailment scenarios. There was no
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Figure 4.7. Voltage distributions in different curtailment scenarios.

transferred electricity from the building to the grid in the scenario with the full
curtailment, as shown in Figure 4.8 (b), while with the partial curtailment, the
amount of transferred excess electricity was identical with the scenario with-
out curtailment, up to the 75% PV share scenario. After that, the amount of
transferred excess electricity from the buildings was lower since the curtail-
ment was enforced. Unlike the curtailed electricity which is considered to be
pure losses, the transferred electricity from the buildings can still be consid-
ered utilized electricity since it can be used elsewhere, including beyond the
local grid. As for the curtailed electricity, more than half of the PV electricity
was curtailed when the PV share was higher than 25% in the full curtailment
scenario, as shown in Figure 4.8 (c). It should be noted that only a small
amount of excess electricity was curtailed in the partial curtailment scenario,
even in the 100% PV share scenario.

4.3 Combined PV-EV grid hosting capacity

Figure 4.9 shows the combined PV-EV hosting capacity estimation with dif-
ferent EMS scenarios. Blue areas represent the scenario (1) without EMS,
red areas represent the scenario (2) with EV smart charging only, green areas
represent the scenario (3) with PV curtailment only, and yellow areas repre-
sent the scenario (4) with both EV smart charging and PV curtailment. In the
figure, there are some intersections between areas with different colors, thus a
venn diagram guide is also presented along with the figures. It should be noted
that the x-axis and y-axis are limited in the figures so that the essential results
can be analyzed.
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It can be seen that the blue areas that represent scenario (1) are also cov-
ered by all other colors that represent scenario (2)-(4). This means that among
the simulated scenarios, scenario 1 had the lowest combined PV-EV hosting
capacity. It can also be seen that the red (scenario (2)) and green (scenario
(3)) areas are also covered by the yellow areas (scenario (4)), while there are
parts of yellow areas (scenario (4)) that are not covered by other colors. This
implies that among the simulated scenarios, scenario 4 had the highest com-
bined PV-EV hosting capacity. From the figures, it can be seen that the smart
charging scheme increased the EV hosting capacity significantly and the PV
hosting slightly, and that the PV curtailment increased the PV hosting capac-
ity significantly but did not increase the EV hosting capacity at all. However,
it should be noted that in this study perfect forecasts for load, PV production
and time of departure were used for the smart charging schemes, as a best
case assumption for EV smart charging. Thus the results on minimum volt-
ages in the scenarios with smart charging reflect the identified upper limit of
minimum voltages. Less reliable forecasts are expected to give less significant
improvements. It should also be noted that for these results, full curtailment
was simulated. In that case, the results on maximum voltages in the scenarios
with PV curtailment reflected the identified lower limit of maximum voltages.
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If the whole voltage population is included, a correlation between PV and
EV hosting capacity cannot be observed. However, if the voltage within 0.01th
- 99.99th percentiles are analyzed, there is a slight correlation between PV
and EV hosting capacity. In that case, the increased PV share improved the
EV hosting capacity, and the increased EV share improved the PV hosting
capacity. It can also be seen that the EV hosting capacity was significantly
higher, but that the PV hosting capacity was almost the same. This implies
that the simulated minimum voltages shown in Figure 4.6 for 100% EV share
were uncommon, being entirely part of the excluded values, while the sim-
ulated maximum voltages for the 100% PV share represented the expected
conditions.
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5. Discussion and future work

This chapter discusses the important results described in the previous chapter
and provides a summary of prospective future research topics.

5.1 Discussion

The coordination of EV charging, often called EV smart charging, has a po-
tential to improve the synergy between local generation and load as reviewed
in Paper I. In the case of residential buildings, results from Paper II show
that both PV self-consumption improvement and peak load reduction could
be achieved by deploying a smart charging scheme with an objective of mini-
mizing the net-load variability. The PV self-consumption improvements were
limited by low vehicle availability in the residential buildings during midday
when the PV power production was high, given that there was no change in
mobility behavior.

Results also show that the self-consumption improvement and peak load
reduction at the individual building level are higher with distributed smart
charging compared to with centralized smart charging. On the contrary, on
community level, the self-consumption improvement and peak load reduction
was higher with centralized smart charging. In the case studies for Swedish
conditions, for the individual building level with distributed smart charging,
the PV self-consumption could be increased by up to 8.7% and the peak load
could be reduced by up to 53.7%. For community level with centralized smart
charging, the PV self-consumption could be increased by up to 8.5% and the
peak load could be reduced by up to 48.6%. With the distributed smart charg-
ing scheme, the PV self-consumption improvement on community level could
be increased by up to 3.7%, while with the centralized smart charging scheme,
the PV self-consumption improvement at the individual building level could
be increased by up to 3.7% on average.

Based on the results, it can be concluded that the DSO will get more bene-
fits when the centralized smart charging scheme is deployed since communal
PV self-consumption and system peak load reduction are higher. On the other
hand, individual users will get more benefits from the distributed smart charg-
ing deployment. Even though the DSO will benefit more from the deployment
of centralized smart charging, it should be noted that it will be more challeng-
ing to deploy the centralized smart charging given the EVs are parked at each
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user’s home and the deployment requires users’ agreement. At the individ-
ual building level, while self-consumption is a direct benefit for the users, the
peak load reduction is not as direct. The peak load reduction could be more
beneficial if a dynamic electricity price is deployed, in which the electricity
price is commonly high in the peak demand periods. Therefore, it is recom-
mended that the DSO design dynamic electricity price schemes which trigger
each user to minimize the net-load variability. In this case, the DSO only gives
a price signal and the users execute the charging scheme individually based on
the signal and their own PV generation profile.

Even though the smart charging objective did not directly consider grid
parameters, such as grid losses and voltage deviations, the deployment of the
smart charging scheme improved the grid performance as a result of reduced
net-load variability. Results from Paper III showed that when one deploys a
smart charging scheme that minimizes the net-load variability, the grid losses
and voltage deviation levels will also decrease.

The combined PV-EV hosting capacity in a residential grid with EV smart
charging and PV curtailment, was also assessed in Paper III. The improved
synergy between PV and EVs was expected to improve the grid hosting ca-
pacity for both. Indeed it was shown that smart charging of EVs did not only
improve the EV hosting capacity, but also the PV hosting capacity. How-
ever, the improvements in EV hosting capacity were much more significant
compared to the slight improvements in PV hosting capacity. The limited im-
provements in PV hosting capacity were also mainly due to low vehicle avail-
ability in the residential distribution grid during midday when the PV power
production were high. Results also showed that there was a positive correla-
tion between the PV share to the EV hosting capacity, and between the EV
share to the PV hosting capacity. In this case, it is shown that the increased
PV share improved EV hosting capacity slightly, and the increased EV share
improved the PV hosting capacity slightly.

5.2 Future work

Currently, research on the integration of PV and EVs in buildings and the en-
ergy systems is gaining interest from the scientific community and stakehold-
ers in the power and transport sectors. Therefore, there are many interesting
opportunities in this research field to explored in future work.

Generally, all the studies in this thesis can be extended to the city-scale
level, where it would involve non-residential energy use patterns, heteroge-
neous user mobility behavior and a larger distribution grid area. The inclusion
of other building and energy systems and technologies, such as electric heat-
ing systems, battery energy storage systems, heat storage, and other flexible
load controls, should also be considered in future studies.
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The research in Paper II can be extended by including realistic forecasts
of PV and loads in the smart charging scheme and assessing the forecast re-
liability impacts on energy system performance. Following the research gap
identified in the review article (Paper 1), the trade-offs between forecast sim-
plicity and energy performance should also be assessed in the future studies.
Smart charging with different objectives that are closer to a realistic scenario
for the users, e.g., smart charging based on dynamic electricity prices, can also
be developed and included in future work.

In the case of combined hosting capacity, which was introduced in Paper
I1I, it would also be interesting to implement a probabilistic approach in terms
of PV and EV allocations. In that case, the impact of phase unbalance in
the distribution grid will be more clearly visible. Combined hosting capacity
assessments for different technologies, such as PV-wind, PV-wind-EV, PV-
EV-battery, PV-heat pump-battery, etc., are also interesting to explore in future
studies.
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6. Conclusions

Increasing penetration of PV and EVs alters the electricity consumption of
buildings and communities and poses new challenges for the electricity distri-
bution grid. An improved synergy between PV generation and EV charging
in buildings is believed to be a prospective solution. Improved synergy can be
achieved by several strategies, one of which is coordination of EV charging,
often called EV smart charging. In this thesis, an EV smart charging scheme
for residential buildings equipped with PV systems, with an objective to min-
imize the net-load variability, was developed. The improvements by the smart
charging scheme on energy system performance, from the building level to the
distribution grid level, were assessed. Results show that EV smart charging at
home with the objective to reduce the net-load variability improved the syn-
ergy between the local load and PV generation, in the form of improved PV
self-consumption and reduced peak loads. Better performance was achieved
with a distributed charging scheme for individual buildings, and with a cen-
tralized charging scheme for a community. For the individual building level,
the PV self-consumption could be increased by up to 8.7% and the peak load
could be reduced by up to 54% when the distributed smart charging scheme
was deployed. For community level, the PV self-consumption could be in-
creased by up to 8.5% and the peak load could be reduced by up to 49% when
the centralized smart charging was deployed. The improved synergy also led
to improved grid performance, such as lower grid losses and voltage deviation
levels, and an improved combined PV-EV hosting capacity.
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