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Abstract

Simulation-Driven Machine Learning Control of a
Forestry Crane Manipulator

Jennifer Andersson

A forwarder is a forestry vehicle carrying felled logs from the forest 
harvesting site, thereby constituting an essential part of the modern 
forest harvesting cycle. Successful automation efforts can increase 
productivity and improve operator working conditions, but despite 
increasing levels of automation in industry today, forwarders have 
remained manually operated. In our work, the grasping motion of a 
hydraulic-actuated forestry crane manipulator is automated in a 
simulated environment using state-of-the-art deep reinforcement learning 
methods. Two approaches for single-log grasping are investigated; a 
multi-agent approach and a single-agent approach based on curriculum 
learning. We show that both approaches can yield a high grasping success 
rate. Given the position and orientation of the target log, the best 
control policy is able to successfully grasp 97.4% of target logs. 
Including incentive for energy optimization, we are able to reduce the 
average energy consumption by 58.4% compared to the non-energy optimized 
model, while maintaining 82.9% of the success rate. The energy optimized 
control policy results in an overall smoother crane motion and 
acceleration profile during grasping. The results are promising and 
provide a natural starting point for end-to-end automation of forestry 
crane manipulators in the real world.
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Chapter 1
Introduction

1.1 Context
The forest ecosystem is one of the world’s largest, with forests covering 31% of
the global surface area (FAO and UNEP, 2020). In Sweden, productive forest
land constitutes 57% of the total land area, and despite globally corresponding
to less than one percent of commercial forest land, the rich forest environment
has enabled the national forest industry to become a world-leading exporter
of timber, pulp and paper, and a main driver of the Swedish economy (Royal
Swedish Academy of Agriculture and Forestry, 2015). The success is directly
contingent upon the efficiency of the forest harvesting and regeneration proce-
dures, of which the former has been highly mechanized in recent history and
continues to facilitate efficient solutions with the development of more advanced
forest harvesting machines and technology.

Forwarding is an essential part of the forest harvesting cycle. A forwarder
is a mechanical off-road vehicle tasked with transporting timber out of the har-
vesting site. The key equipment is a hydraulic manipulator repeatedly under-
going monotonous pick-and-place motion to collect and redistribute logs pre-
pared by the harvester. Despite widespread automation in industry contexts
today, forwarders mainly remain manually operated. While the ambition to
deploy automatic and semi-automatic solutions has been present at least since
the beginning of the century (e.g. Hera et al. (2008)), the comparatively slow
automation progress in the forest industry can in part be traced to the very
complex and dynamic environments in which forestry cranes are utilized, which
inevitably complicates the automation process. For a human operator, manual
control of a forestry crane can be a both mentally and physically exhausting
task, requiring counterintuitive coordination of several hydraulic cylinders for
many hours straight (Hera and Morales, 2019) and exposing the operator to
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extensive cabin vibrations following the motion of the crane (Fodor, 2017). In
2019, motion patterns of a forwarder under operation were analyzed using mo-
tion sensors (Hera and Morales, 2019). The authors conclude that the motion
patterns of the crane joints are, as expected, highly repetitive. They argue that
although automation of the entire forwarding operation is complex − indeed,
in addition to the repetitive motion of the forestry crane, the task involves log
recognition, strategic log selection and forest navigation− automating the repet-
itive expanding and retracting motion of the crane can be done using analytical
methods. Such semi-automation of forestry crane control has been investigated
by for example Hansson and Servin (2010), who presented a solution for shared
control between the operator and a computer control system in unstructured
environments. The findings suggest that reduced workload and/or increased
performance can be achieved using semi-automation. Thus, if the forwarding
task can be automated, either fully or in part, this can relieve operators both
mentally and physically, while increasing overall efficiency and productivity in
the forest harvesting industry.

This thesis looks to investigate possible solutions to the forwarding automa-
tion problem. With increasing automation in industry today, there is a growing
demand for physics simulation tools, as these can reduce costs, increase per-
formance and speed up automation processes across various domains. Progress
in machine learning has excelled in recent years, revolutionizing fields from
computer vision to robotics, and the potential for simulation-driven machine
learning control for autonomous systems development in the automotive and
robotics industry is therefore evident. By extension, this includes robotic ma-
chines and vehicles in the forest industry, where safe simulation training can
provide a platform for mastering complex behavior in simulated unstructured
environments without the risk of damaging the physical machine. Currently,
many integral questions remain in order for machine learning automation in
simulated environments to excel, such as what simulation precision and robust-
ness is possible to obtain and required for reliable transfer between simulation
and reality, optimal method selection, and more.

In this project, the grasping motion of a forestry crane manipulator is fully
automated in a simulated environment using a branch of machine learning
known as deep reinforcement learning. This helps answer some of these ques-
tions and provides an initial step towards end-to-end automation of forestry
crane manipulators in the real world. The remainder of this chapter gives an
overview of related research, followed by a concise problem statement and a
discussion on the limitations constraining the work presented in this thesis.

1.2 Background
The grasping motion of a robotic arm can be defined as the end-effector’s mo-
tion to securely grab an object in its gripper, lift it from the ground and move
it to another location. In the forest industry context, the forestry crane manip-
ulator can be regarded as a robotic arm performing repeated grasping motion
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to collect and transport timber from the harvesting site. This section aims to
review previous machine learning automation efforts in the context of robotic
manipulation, as well as previous research related to the automation of forestry
crane manipulators.

1.2.1 Forestry Crane Automation
There are several major challenges to overcome in order to automate the entire
forwarding process, including autonomous navigation in dynamic forest envi-
ronments, strategic log selection, object recognition, obstacle detection, path
planning, grasp detection, and, of course, the grasping motion itself. A com-
pletely autonomous system also requires advanced safety systems to be in place
during operation. A particular challenge that separates this grasping task from
factory-floor robotic grasping even under non-moving vehicles is the very dy-
namic and unstructured environment in which a forestry crane is required to
operate. A perfected end-to-end autonomous forestry crane requires advanced
log perception systems and intelligent log selection systems. Moreover, it needs
to be robust to environmental disturbances in order to compensate for vibra-
tions, master difficult weather conditions and navigate in unfamiliar, uneven
terrains.

Due to the uneven terrain in forest environments, a crane operator must learn
to collect logs from multiple different vehicle configurations, as the limitations of
the manipulator are dependent on the vehicle position and inclination. Optimal
forwarding also includes time- and energy efficiency as well as load optimization,
in which the crane can adjust the position of logs relative to other logs in order to
strategically grasp configurations of multiple logs. Thus, optimized forwarding
depends on external optimization criteria that must be defined a priori.

We refer to Westerberg (2014) for a more elaborate analysis of the current
logging process. An important result of this analysis regards human-operated
forwarding. It is shown that the majority of the time is spent on crane manip-
ulation. Thus, the heart of the forwarding task lies in the repetitive grasping
motion of the forestry crane, essentially reducing the forestry crane automa-
tion problem to a complex robotic grasping problem in a highly unstructured
environment. Indeed, the unstructured environment, in combination with the
redundant kinematics of the crane configuration, is what makes automation of
the forwarding task much more difficult than similar manipulation tasks in con-
trolled environments. Previous research has analysed the motion patterns of
forestry cranes under operation (Hera and Morales, 2019) as well as proposed
solutions for 3D log recognition and pose estimation (Park et al., 2011), both
important building blocks for future automation of forestry crane manipulators
using visual sensory information. Mettin et al. (2009) showed that automation
efforts indeed can increase performance compared to manual operation, suggest-
ing that the full potential in the forwarding task is not met without some degree
of automation.

Several successful semi-automation approaches, focused on trajectory plan-
ning and motion control assisting the crane operator, have been investigated in
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order to increase productivity and learning speed of the operator and reduce
unnecessary workload, see for example Hansson and Servin (2010), Westerberg
(2014) and Fodor (2017).

So far semi-autonomous solutions have been restricted to guiding and com-
plementing the operator in routine tasks such as controlling the crane to the
grasping position along a trajectory, while trajectory tuning, the grasping and
releasing of logs as well as the intelligent analysis of the surroundings required
for log selection and forest navigation are left to a manual operator. Due to
the complexity of the forwarding task in the inevitably unstructured forest en-
vironment, end-to-end automation completely eliminating the involvement of a
human operator has been viewed as a far-off utopia. However, recent advances
in machine learning, including reinforcement learning agents that learn from
experience and can be trained in a simulated environment, may rekindle these
ambitions, or at the very least accelerate semi-automation efforts.

1.2.2 Machine Learning for Robotic Grasping
Robotic factory floor pick-and-place motion has been largely mastered through
analytical, purpose-specific control algorithms. However, grasping in unstruc-
tured environments remains an open problem in robotics today. Deriving an-
alytical algorithms is tedious and may prove impossible in many of the target
contexts, for example due to object occlusion and varying object properties,
backgrounds and illumination. This makes object identification from visual
input data difficult, and a general algorithm must be adaptive to constantly
changing environments. Alleviating this challenge, recent advances in the ap-
plication of machine learning to areas such as computer vision have inspired
progress within the area of robotics. This has proved important to the evolu-
tion of robotic grasping and grasp detection (e.g. Caldera et al. (2018)).

Robotic grasping can be divided in two primary steps; grasp detection and
grasp planning. The previous determines the grasping pose and the latter refers
to the process of determining the robotic path enabling a successful grasp, i.e.
mapping the coordinates of the grasping region in the image plane to the co-
ordinate system of the robot (Bicchi and Kumar, 2000). Finally, the planned
trajectory is executed using a control algorithm. Deep convolutional neural
networks (DCNN) are the most common deep learning architectures that have
been used for grasp detection with input data from visual sensors, as argued in
a review of deep learning methods in robotic grasping by Caldera et al. (2018).
They conclude that the one-shot method, where the grasping region represen-
tation is found through DCNN regression, is the most promising in terms of
real-time grasp detection, based on the research available at the time of their
review.

There are multiple examples of successful applications of CNN’s in grasp
detection (e.g. Kumra and Kanan (2017)). In this case, visual input is often
complemented with depth information using RGB-D images. Such deep learning
methods assume that there is enough annotated data, including domain specific
data, for the model to generalize well. For general grasp detection, researchers
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commonly use datasets such as the Cornell Grasp Dataset (Lenz et al., 2015),
a labelled dataset of RGB-D images for single-object grasp detection. An an-
alytical way to solve this problem is to use 3D model reasoning to detect the
grasping regions in the training dataset. Compared to identifying the grasping
regions from visual perception data, however, this is complicated and assumes
that important physical properties of the object, such as the mass distribution
and force profile, are known (Pinto and Gupta, 2016). Moreover, annotated
datasets run the risk of not being general enough, and manual prediction of
optimal robotic grasping poses may not be straightforward.

Empirical methods that rely on experience-based learning, through trial-and-
error or demonstration, escape this challenge altogether. Such systems either
require separate models for grasp detection and grasp planning, respectively,
or merge the steps using a visuomotor control policy. Pinto and Gupta (2016)
used a self-supervised approach inspired by the core of reinforcement learning,
i.e. learning by trial-and-error, to train a CNN for grasp detection. Levine
et al. (2016) developed a model combining learning of the perception and control
systems using a guided policy search method to learn policies mapping the visual
perception data to the robot motor torques in a single step. Their results showed
significant performance improvement compared to non-end-to-end methods.

The main obstacle in applying supervised deep learning to grasp detection
tasks is the lack of domain specific annotated training data, necessary to enable
sufficient model generalization. Simulated data can partly solve this problem.
For example, Viereck et al. (2017) designed a closed-loop controller for robotic
grasping using sensor training data gathered entirely through simulation. They
trained a CNN to learn a distance function to true grasps from the image data.
The closed-loop control approach enables dynamically guiding the gripper to
the target object, thus allowing for adaptation to environmental disturbances.
This is an essential challenge to overcome in order to master robot manipulation
in unstructured environments.

Supervised learning methods still require large labelled datasets which are
difficult and time-consuming to produce. In light of this, interest in applying
reinforcement learning for robotic grasp detection has increased. In the re-
inforcement learning framework, an agent learns from experience by receiving
rewards or penalties for desired or undesired behavior while navigating through
its environment. Thus, training data is assembled in real-time by the learn-
ing system itself. See Chapter 2 for a thorough introduction to the field of
reinforcement learning.

Of course, this approach requires trial-and-error and involves high risk of
damaging a physical agent. In a simulated environment, however, the agent
can learn from repeated experience in a secure, virtual setting and the final
knowledge can be transferred to the physical agent post training, depending
on how well the simulated and physical environments correlate. Methods to
ease model transfer between the simulated and real world have been explored
by for example Tobin et al. (2017), in the particular case in terms of domain
randomization for a deep neural network model used for robotic grasping.

In review literature covering deep learning methods in robotic grasp detec-
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tion (Caldera et al., 2018), the authors conclude that applying reinforcement
learning in the prediction of visuomotor control policies, or directly in the grasp
detection problem, is a largely unexplored territory with promising potential
when simulated environments can be utilized to speed up and mitigate damage
in the training process. One of the main advantages of the reinforcement learn-
ing framework is its potential for end-to-end learning, where stable grasping
regions can be learnt through trial and error without labelled datasets. More-
over, the sequential properties of the problem are naturally taken into consider-
ation, enabling correction for dynamics in the environment through continuous
strategy tuning, for example aiding the grasping process with pre-grasp object
manipulation.

While reinforcement learning in complex environments often suffers from
low sample efficiency and other dimensionality issues, combining the framework
with deep learning, through function approximation and representation learning
(see e.g. Lesort et al. (2018)), has accelerated progress in various areas, includ-
ing that of robotic grasping. Recent deep reinforcement learning achievements
in the field of robotic grasping include vision-based robotic grasping using two-
fingered grippers (e.g. Quillen et al. (2018), Kalashnikov et al. (2018) and Joshi
et al. (2020)) and dexterous multi-fingered grippers (Rajeswaran et al., 2018).
Exemplifying the potential in the field, Kalashnikov et al. (2018) shows that
vision-based reinforcement learning can yield models exhibiting promising gen-
eralization in both simulated and real-world grasping, also managing regrasping
of dynamic objects and other non-trivial behavior that is required for success in
unstructured environments.

1.3 Objective
In this thesis, the grasping motion of a hydraulic-actuated forestry crane manip-
ulator with redundant kinematical structure is fully automated in a simulated
environment. The main purpose is to increase knowledge of how machine learn-
ing methods can be applied in the development of physics-based simulation tools
for industry automation in general, and forest crane manipulation in particu-
lar. Specifically, the potential of using deep reinforcement learning methods
in simulation-driven end-to-end automation of a forestry crane manipulator is
explored.

As discussed, full automation of the forwarding process is an overwhelmingly
complex task. To this end, we limit our initial work to automation of the single-
log grasping motion of a forestry crane manipulator mounted on a static vehicle
on a fixed, horizontal surface. A perfected reinforcement learning agent could
ideally perform the grasping task using solely visual sensory signals capturing
the scene and sensory signals providing information on the actuator states. For
simplicity, our work is limited to a smaller observation space, including only
the state of the actuators and the position and orientation of the target log.
Thus, the existence of an external perception system is assumed. This provides
a natural starting point for future research.
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The final outcome is a prototype of a simulated forestry crane manipulator,
automated to perform single-log grasping under the preceding conditions using
state-of-the-art deep reinforcement learning techniques, in particular the empir-
ically stable Proximal Policy Optimization algorithm (Schulman et al., 2017).
Two automation strategies are investigated; a multi-agent approach separating
the task into the two subtasks of navigating to and grasping the log, and a
single-agent approach using curriculum learning to achieve full automation of
the grasping task. This is done in a simulated environment using the Unity
3D simulation platform (Juliani et al., 2020) together with the high-accuracy
simulation and modeling SDK, AGX Dynamics1.

1.4 Contribution
Though semi-automation has been explored before in the context of forestry
crane manipulation, to the best of our knowledge, simulation-driven machine
learning control of forestry crane manipulators is a topic previously not touched
upon in machine learning or robotics research. Thus, our contribution is the
first implementation of deep reinforcement learning control of a forestry crane
manipulator.

1.5 Collaboration
This research is carried out in collaboration with Algoryx Simulation, a com-
pany based in Ume̊a, Sweden, focusing on the development of advanced physics
simulation software. Founded in 2007, Algoryx Simulation has quickly become
a leading provider of visual and interactive multiphysics simulation software
and services. Their simulation engine, AGX Dynamics, lies at the core of this
project. It is a physics-based simulation SDK enabling high-accuracy, real-time
simulations of complex mechanical systems, thereby contributing to narrowing
the gap between dynamical multibody system simulation and reality. Today,
this simulation technology is used in a broad variety of applications ranging from
product development and virtual deployment to system optimization, simulation
training and engineering analysis in the automotive and robotics industry.

1https://www.algoryx.se/agx-dynamics/
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Chapter 2
Theory

This section introduces the reinforcement learning framework, providing back-
ground and context to the method used in this thesis. We begin by introduc-
ing the theory behind Markov decision processes, and move forward discussing
common exact solution methods. Next, we introduce the field of reinforcement
learning, arriving at Proximal Policy Optimization; the state-of-the-art algo-
rithm carrying the results produced in this thesis. The chapter is concluded
with a discussion on reinforcement learning techniques that can be used to
tackle particularly complex reinforcement learning problems.

2.1 Markov Decision Processes
The art of mastering automated sequential decision making in unstructured
environments spans a variety of domains; from decision-theoretic planning and
reinforcement learning to operations research, control theory and economics.
Though domain-specific issues naturally persist, many such problems can, at
least at a conceptual level, be formally described as Markov decision processes
(Boutilier et al., 1999).

A Markov decision process is a mathematical framework formalizing sequen-
tial decision making in stochastic state-transition systems. The control of such
stochastic, dynamical systems involves a decision maker, commonly referred to
as the agent, interacting with its environment through actions and rewards.
Through its actions, which influence the environment but not exclusively in
ways fully predictable, the agent carries the system through a random sequence
of states. The underlying objective of the agent is to maximize its utility for
a specified purpose, such as bringing the system to a desired state. Markov
decision processes can be either time-discrete or time-continuous, allowing the
decision maker to make decisions at discrete or continuous time intervals. Which
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time-discretization better models the behaviour of a system depends on the sys-
tem properties.

This section begins with a mathematical definition of the Markov decision
process, which will be referred to as MDP in the remainder of this thesis, and
continues with a discussion on the Markov decision problem and its solution. We
restrict ourselves to the discrete-time and discrete and finite state- and action
space Markov decision process, but the formalization can be extended to include
continuous-time Markov decision processes with infinite state- or action spaces.
For the interested reader, extensive literature has been written on the topic and
a more in-depth overview of the elegant theory of Markov decision processes is
provided by for example Puterman (1994).

2.1.1 Definition
A Markov decision process is a 4-tuple M :=

〈
S,A, T ,R

〉
, where S denotes

the state space, A denotes the action space, T denotes the transition probabil-
ity function, and R denotes the reinforcement or reward function An MDP is
therefore defined by a set of states s ∈ S and a set of actions a ∈ A, as well
as the transition probability function T and the reinforcement function R, such
that T : S ×A× S → [0, 1] and R : S ×A× S → <.

Based on this definition, we note that spaces S and A are system properties,
whereas R and T are model properties. Each element ofM is described below:

i State space
The state space S is a set of all possible states s in the system. Typically,
each state is a collection of important environment features needed to model
the system in that particular state. Possible board configurations is a basic
example of a state space in the board game context, where each state is
constituted by its board configuration.

ii Action space
The action space A is a set of all possible actions a in the system. In each
state, the decision maker, or agent, can choose an action from the entire set
of actions, or, depending on the system, a subset of actions specific to the
current state. Extending the board game example, the action space consists
of all possible actions the player can take, which may vary depending on the
state, i.e. current board configuration.

iii Transition probability function
Given a state s ∈ S and an action a ∈ A, the system moves into a subse-
quent state s′ ∈ S. Aptly denominated, the transition probability function
T (s, a, s′) controls these state transitions by providing the proper probabil-
ity distribution over all possible subsequent states s′. Thus, given any state
s ∈ S and action a ∈ A, the subsequent state s′ ∈ S is determined by the
transition probability function T (st, at, st+1) = P

{
st+1 = s′ | st = s, at =

a
}

= P
{
st+1 = s′ | st = s, at = a, st−1, at−1, ..., st−N , at−N

}
, where N is
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the number of preceding time steps and st denotes the state s at time t. Ev-
idently, the state transition in only dependent on the currently visited state
and currently applied action, i.e. it satisfies the Markov property. In this,
each state is assumed to be fully observable, an often optimistic assump-
tion (Arulkumaran et al., 2017). The theory of partially observable MDP’s
(POMDP) is omitted in our discussion on MDP’s, but has been discussed
for example by (Kaelbling et al., 1998).

iv Reward function
The reward function R specifies a scalar feedback signal that depends on the
current state, action or state transition. This feedback signal is referred to as
the reward. Here, we limit the discussion to deterministic reward functions
based exclusively on actions and state transitions; R(s, a, s′). Depending
on its sign, the reward aims to encourage or discourage certain state transi-
tions, thus controlling the target system evolution. Returning to our board
game example, a simple reward function grants the decision maker a posi-
tive reward for state transitions to winning states, negative reward for the
corresponding transitions to losing states, and zero reward for transitions to
remaining states. In this way, the reward function is designed to specify the
goal of the decision maker and guide the learning process.

To summarize the discrete-time MDP, we let st be the system state at time
t. Given st at any given time step, the agent takes an action at, causing the
system to move to the subsequent state st+1, sampled from the probability
distribution T (s, a, s′), and the agent to receive a reward rt+1 = R(st, at, st+1).
This is repeated until a terminal state is reached, or until the system has been
modelled for a finite or infinite number of time steps.

In finite-time MDP’s, an episode is defined as the time between the initial
and terminal states. In the episodic task, the initial state is sampled from an
initial state distribution, and the terminal state is commonly characterized by
T (s, a, s′) = 1 and R(s, a, s′) = 0 for all s′ ∈ S and a ∈ A. This allows for
treating episodic tasks similarly to continuing tasks mathematically, implying
that our mathematical discussion in the following section holds for both types
of MDP’s.

2.1.2 Solution
Solving an MDP is a question of finding the optimal policy π∗ in order to max-
imize the cumulative reward, or return. A deterministic policy π controls the
agent’s decision making process by mapping each state s ∈ S to an action a ∈ A;
π : S → A. A fixed, optimal policy π∗ therefore yields a stochastic transition
system where the distribution over states is stationary.

Note that the policy is not necessarily deterministic. In fact, the determin-
istic policy can be viewed as a special case of the stochastic policy, where only
one action is performed with non-zero probability in each state. In general,
the stochastic policy is defined by π : S × A → [0, 1], where π(a|s) ≥ 0 and
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∑
a∈A π(a|s) = 1 for each state s ∈ S. Thus, π(a|s) is the probability that the

agent takes action a in state s.
To determine the optimal policy, an optimality criteria needs to be defined.

An MDP coupled with such a criteria is known as the Markov decision problem
(Littman et al., 1995), to which the optimal solution is the optimal policy π∗.
We will focus on a common optimality criteria in which the agent seeks to
maximize the expectation of the discounted return defined according to (2.1).
This is known as the discounted, infinite-horizon optimality criteria.

Rt =
∞∑
τ=0

γτrt+τ+1 (2.1)

Here, an agent currently in state st aims to maximize the expectation of
the discounted cumulative reward Rt, where rt+τ+1 = R(st+τ , at+τ , st+τ+1) is
the reward at each subsequent time step t+ τ and γ ∈ [0, 1) is the exponential
discount factor.

The discount factor enforces larger weight to earlier rewards, and is often 1
in finite-horizon systems, i.e. episodic systems. If γτ = 0, the optimality criteria
is reduced to maximizing the expected immediate reward at each time step.

To find the optimal policy, each state is given a value or state-action value,
through the value function V : S → < or action-value function Q : S ×A → <.
Using the definition of the return specified in (2.1), V π(s)(2.2) denotes the
expected return from being in state s ∈ S, following the policy π. Similarly,
Qπ(s, a)(2.3) denotes the expected return from taking action a ∈ A while in
state s ∈ S, following the policy π. The state value function allows for policy
evaluation, whereas the state-action value function carries information on which
action maximises the expected return at a particular state.

V π(s) = Eπ

[ ∞∑
τ=0

γτrt+τ+1 | st = s
]

(2.2)

Qπ(s, a) = Eπ

[ ∞∑
τ=0

γτrt+τ+1 | st = s, at = a
]

(2.3)

Using the recursive properties of the formulation, (2.2) can be reduced to
depend only on immediate rewards and values of possible subsequent states s′
under the policy π. Expanding (2.2) and applying the law of total expectation,
we arrive at (2.4) and, the Bellman equation for the state-value function.

V π(s) = Eπ

[
rt+1 + γrt+2 + γ2rt+3 + ... | st = s

]
= Eπ

[
rt+1 + γRt+1 | st = s

]
= Eπ

[
rt+1 | st = s

]
+ γEπ

[
Rt+1 | st = s

]
= Eπ

[
rt+1 | st = s

]
+ γEπ

[
Eπ

{
Rt+1 | st+1 = s′

}
| st = s

]
= Eπ

[
rt+1 + γV π(s′) | st = s

]
(2.4)
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Similarly, the Bellman state-action value equation can be derived from (2.3)
according to (2.7). Here, a′ denotes actions taken at the next state s′.

Qπ(s, a) = Eπ

[
rt+1 + γrt+2 + γ2rt+3 + ... | st = s, at = a

]
= Eπ

[
rt+1 + γRt+1 | st = s, at = a

]
= Eπ

[
rt+1 + γ

∑
a′

π(a′|s′)Eπ
{
Rt+1|st+1 = s′, at+1 = a′

}
|st = s, at = a

]
= Eπ

[
rt+1 +

∑
a′

π(a′|s′)Qπ(s′, a′) | st = s′, at = a′
]

(2.5)

For a stochastic policy, the state value function and the state-action value
function can be expanded into (2.6) and (2.7)

V π(s) =
∑
a

π(a | s)
∑
s′

T (s, a, s′)
(
R(s, a, s′) + γV π(s′)

)
(2.6)

Qπ(s, a) =
∑
s′

T (s, a, s′)
(
R(s, a, s′) + γQπ(s′, a′)

)
(2.7)

We realize that the state value is the expectation value of the state-action
value, averaged over possible actions and weighted by their probabilities, i.e.
V π(s) =

∑
a π(a | s)Qπ(s, a) for each s ∈ S.

The Bellman state-value equation has remarkable implications, as its sim-
plicity promises that the calculation of one state-value only depends on possible
next state-values, as opposed to all subsequent state-values.

Now that the value function and state value functions are defined, we can
define the optimal policy π∗. Given two stationary policies π1 and π2, π1 is
considered superior to π2, i.e. π1 ≥ π2 where π1 > π2 holds for at least one
state, if and only if V π1(s) ≥ V π2(s) ∀ s ∈ S, and V π1(s) > V π2(s) holds for at
least one state. Thus, finding the optimal value function V ∗(s) = maxπ V π(s)
yields the optimal policy π∗, which dominates or equals all other policies π. It
can be shown that at least one such optimal policy exists (Bellman, 1957). To
find the optimal value function from our definition of the value function (2.6), we
simply choose the action yielding the maximum value. The resulting expression
is presented in (2.8), which is known as the Bellman optimality equation.

V ∗(s) = max
a

∑
s′

T (s, a, s′)
(
R(s, a, s′) + γV ∗(s′)

)
(2.8)

Based on the previous definition, this gives the value for each state s ∈ S,
following the optimal policy π∗. The optimal policy π∗ can then be defined
according to (2.9).

π∗ = argmax
a

∑
s′

T (s, a, s′)
(
R(s, a, s′) + γV ∗(s′)

)
(2.9)
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To complete our discussion, we define the optimal action-state value function
in a similar way (2.10).

Q∗(s) =
∑
s′

T (s, a, s′)
(
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

)
(2.10)

Comparing (2.10) to (2.8), it is evident that V ∗(s) = maxaQ∗(s, a). This
yields a more elegant expression for the optimal policy, given in (2.11). Using
this expression, solving an MDP by finding the optimal policy π∗ is reduced to
finding the optimal state-action value function Q∗(s, a) ∀(s, a) ∈ S ×A.

π∗ = argmax
a

Q∗(s, a) (2.11)

2.2 Dynamic Programming
Solving a Markov decision problem amounts to finding the optimal policy π∗

(2.9, 2.11) for the MDP given an optimality criteria, as discussed in section 2.1.
Dynamic programming is a name given to a collection of model-based MDP
solution algorithms requiring full knowledge of the environment. Of course,
if such a comprehensive model of the environment exists, the linear system
of |S| equations, constituted by (2.6) ∀s ∈ S, can be used to solve directly
for the optimal value function V ∗(s). In fact, linear programming is an exact
method that achieves this by solving the optimization problem of minimizing∑
s V (s) subject to V (s) ≥ maxa

∑
s′ T (s, a, s′)

(
R(s, a, s′) + γV (s′)

)
∀s ∈ S

and a ∈ A (Sanner and Boutilier, 2009). However, most algorithms, including
dynamic programming algorithms, lend themselves to iterative methods to find
the optimal value function and policy.

Dynamic programming algorithms integrate policy evaluation, finding the
value function given a policy, with policy improvement, improving said policy,
in different ways to find the optimal policy π∗. In this section, two principle
dynamic programming algorithms are discussed; policy iteration and value iter-
ation. The former was originally proposed by Howard (1960) and the latter by
Bellman (1957), and both algorithms have since given rise to a range of modified
and approximate versions (see e.g. Puterman and Shin (1978), Bertsekas and
Tsitsiklis (1996) and Scherrer et al. (2012)). As before, we assume discrete-time
MDP’s with discrete and finite state- and action spaces in our discussion of
these solution methods.

2.2.1 Policy Iteration
The policy iteration algorithm (Howard, 1960) iterates between policy evaluation
and policy improvement. Policy evaluation involves finding the value function
V π for the policy π. We repeat the Bellman equation for the value function
(2.6) in (2.12), adding the iteration index n and assuming a deterministic policy
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πm. Updating V πmn (s) iteratively ∀s ∈ S in this way, it converges to V πm(s) ∀s
∈ S as n→∞.

V πmn+1(s) =
∑
s′

T (s, a, s′)
(
R(s, a, s′) + γV πmn (s′)

)
(2.12)

The next step is to improve the policy. To do this, Qπm(s, a) is obtained by
evaluating V πm(s) ∀a ∈ A in each state s ∈ S (2.13). If an action a ∈ A exists
such that Qπm(s, a) ≥ Qπm(s, πm(s)), the current policy πm is updated, and
the process is repeated with the improved policy πm+1 (2.14)

Qπm(s, a) =
∑
s′

T (s, a, s′)
(
R(s, a, s′) + γV πm(s′)

)
(2.13)

πm+1(s) = argmax
a

Qπm(s, a) (2.14)

This repeated until the value function approximation converges to the opti-
mal value function V ∗(s), and the optimal policy π∗ has been obtained.

The value function can be shown to increase monotonically in each policy
improvement iteration. Thus, given finite state and action spaces S and A,
there is an upper bound |A||S| to the possible number of policies and thus
the maximum number of iterations required until convergence, suggesting that
policy iteration converges in a finite number of steps. In practice, the algorithm
often converges a lot faster, balanced by its comparatively high complexity per
iteration (Santos and Rust, 2004).

The computational algorithm for policy iteration is summarized in Algo-
rithm (1), where σ denotes some specified tolerance for convergence.

Algorithm 1: Policy Iteration
Result: The optimal policy π∗
1. Initialization

Initialize V (s) ∈ < and π(s) ∈ A arbitrarily ∀s ∈ S.
2. Policy Evaluation

while ∆ ≥ σ do
∆ := 0.
for each s ∈ S do

v := V π(s)
V (s) :=

∑
s′ T (s, a, s′)

(
R(s, a, s′) + γV (s′)

)
∆ := max(∆, |v − V (s)|)

3. Policy Improvement
for each s ∈ S do

π̃(s) := π(s)
π(s) := argmaxa

∑
s′ T (s, a, s′)

(
R(s, a, s′) + γV (s′)

)
if π̃(s) 6= π(s) then return to 2; else π∗(s) := π̃(s)
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2.2.2 Value Iteration
Full convergence of the value function in the policy evaluation step at each
iteration is not required for convergence to the optimal policy. To this end,
Bellman (1957) introduced the value iteration algorithm, for which a single
policy evaluation iteration suffices. Hence, the policy evaluation and policy
improvement step are completely merged.

As per policy iteration, Vn(s) is updated iteratively ∀s ∈ S, though incorpo-
rating the policy improvement immediately according to (2.15). Like the policy
iteration algorithm, it can be shown to converge to V ∗(s)∀s ∈ S as n→∞.

Vn+1(s) = max
a

∑
s′

T (s, a, s′)
(
R(s, a, s′) + γVn(s′)

)
(2.15)

The value iteration algorithm can be shown to converge linearly to the opti-
mal value function (e.g. Puterman (1994)). Puterman (1994) also proves that if
the iterations are terminated under the tolerance σ = maxs |Vn(s)−Vn−1(s)| =
ε(1−γ)

2γ , then the obtained value function Vn(s) fulfills maxs |Vn(s)− V ∗(s)| < ε,
i.e. the value iteration algorithm converges to the ε-optimal value function.

Once the optimal value function is found, the optimal, deterministic policy
π∗ can be obtained from (2.16) as before. The resulting value iteration algorithm
is summarized in Algorithm (2).

π∗ = argmax
a

∑
s′

T (s, a, s′)
(
R(s, a, s′) + γV ∗(s′)

)
(2.16)

Algorithm 2: Value Iteration
Result: The optimal policy π∗
1. Initialization

Initialize V (s) ∈ < arbitrarily ∀s ∈ S.
2. Value Iteration

while ∆ ≥ σ do
∆ := 0.
for each s ∈ S do

v := V (s)
for each a ∈ A do

Q(s, a) :=
∑
s′ T (s, a, s′)

(
R(s, a, s′) + γV (s′)

)
V (s) := maxaQ(s, a)
∆ := max(∆, |v − V (s)|)

for each s ∈ S do
V ∗(s) := V (s)

3. Policy Determination
for each s ∈ S do

π∗(s) = argmaxa
∑
s′ T (s, a, s′)

(
R(s, a, s′) + γV ∗(s′)

)
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2.2.3 Computational Complexity
Many Markov decision problems require large state spaces, in which the effi-
ciency of the algorithms discussed in this section is questionable in practice.
Consider a game like chess, where there are approximately 1043 possible states
(Shannon, 1950). Finding the optimal value function and/or policy in this case
would be considered computationally expensive even with a computational com-
plexity linearly dependent on the state space, and not considering the number
of iterations required for convergence.

Denoting the state and action spaces as before, the computational com-
plexity of each iteration of the algorithms discussed so far is O(|A||S|2) for
value iteration and O(|A||S|2 + |S|3) for policy iteration (Littman et al., 1995).
Littman et al. (1995) shows that at worst, the run time of value iteration can
grow faster than 1

1−γ , where γ per usual denotes the discount factor. Policy
iteration typically converges faster, but the number of iterations can still grow
to be very large depending on the problem (Santos and Rust, 2004). Previous
work has aimed to mitigate these issues by improving the algorithms in different
ways. Such methods include the adoption of search algorithm elements in which
only a relevant fraction of the entire state space is visited, and the adoption of
asynchronous updating schemes through different versions of modified policy it-
eration (Wiering and van Otterlo, 2012). Reinforcement learning, to which the
following section is dedicated, is another collection of MDP solution methods
that have proven successful in many large-scale applications.

2.3 Reinforcement Learning
Though exact methods like the linear and dynamic programming algorithms
discussed in Section 2.2 provide simple and beautiful model-based solutions to
Markov decision processes, they rely on the assumption that full knowledge
of the environment is accessible, which is often not the case. Moreover, even
when a complete environmental model does exist, many large-scale problems in
the field of sequential decision making require state spaces too large for these
algorithms to be computationally feasible, as briefly touched upon at the end
of the last section. This becomes evident when the exponential growth of the
number of states with the number of state variables is considered. Consequently,
the state spaces of complex problems can quickly become very large.

The aforementioned problems, sometimes described as results of the curse of
modeling and the curse of dimensionality (Gosavi, 2004), are often tackled using
an assembly of methods collectively known as reinforcement learning. The field
of reinforcement learning has seen major advances in recent decades, providing
successful adaptive control algorithms through a combination of concepts from
fields such as dynamic programming, stochastic approximation and function ap-
proximation. More recently, the adoption of function approximation paradigms
like deep learning has begun revolutionizing the scale of problems that can be
mastered by reinforcement learning techniques.
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In this section, the concept of reinforcement learning is introduced, followed
by a description of a number of key algorithms and their contributions. We
assume that the reader is familiar with machine learning in general, and deep
learning in particular. For the unacquainted reader, rich literature has been
provided on the subject, e.g. Goodfellow et al. (2016).

2.3.1 Perception-Action-Learning Framework
At its core, reinforcement learning revolves around an agent interacting with
its environment and adapting its behaviour based on a feedback system, using
previous experience to learn how to solve novel problems through a trial-and-
error approach. It stands on a foundation rooted in behaviourist psychology
(Sutton and Barto, 1998) and optimal control (Arulkumaran et al., 2017).

As we have seen, a reinforcement learning problem can be mathematically
formulated as a Markov decision process, but in many real-world problems re-
lated to sequential decision making, a model of the environment is not fully
accessible. In the language of Markov decision processes introduced in Section
2.1, this means that the MDP cannot be perfectly modelled, i.e. the transi-
tion function T (s, a, s′) and the reward function R(s, a, s′) are at least partially
unknown. Algorithms adamant about solving Markov decision problems where
this applies, which lie at the heart of reinforcement learning, are known as
model-free solution methods.

Model-free methods naturally rely on exploration of the environment to com-
pensate for the lack of global model information. If this is done to obtain a suf-
ficiently accurate approximation of the transition function and the reward func-
tion, classical methods for solving MDP’s remain valid. Most methods, however,
attempt to directly estimate the state-action value functionQ(a, s) (Wiering and
van Otterlo, 2012). This is where the formulation of a reinforcement learning
problem deviates from that of optimal control problems in general, and what
generates the characteristic trial-and-error description of reinforcement learn-
ing. We refer to this as perception-action-learning (Arulkumaran et al., 2017),
where each iteration allows the agent to update its knowledge of the environment
based on its experience.

The perception-action-learning concept is summarized in Figure 2.1. The
success of algorithms resting on this notion relies on a proper exploration-
exploitation trade-off. In essence, the agent needs to explore in order to learn,
and exploit what it already knows in order to achieve its goal of maximising the
return. A simple approach commonly used to accomplish this is to apply an
ε-greedy policy, in which the agent simply follows the best policy with a prob-
ability of 1 − ε and explores with a probability of ε (Wiering and van Otterlo,
2012), but several other well-proven methods exist as well (e.g. Kaelbling et al.
(1996)).

Since the transition probabilities and the reward function are unknown, re-
inforcement learning algorithms cannot build upon our previous definitions of
the state-value function (2.6) and the state-action value function (2.7). The
following sections outline common reinforcement learning algorithms and how
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Figure 2.1: The agent performs an action at ∈ A from the current state st ∈ S,
information about which it has received from the environment. This causes the system
to transition to state st+1, and the agent receives information about the new state
st+1 and the current reward rt+1. The agent continues exploring and exploiting its
environment to improve its policy π throughout the learning process, with the goal of
finding the optimal policy π∗ generating the maximum return.

they get around this problem, starting with a simple algorithm estimating these
values based on previous estimates. This lays the groundwork for Proximal Pol-
icy Optimization (Schulman et al., 2017), the reinforcement learning algorithm
used in the work presented in this thesis.

2.3.2 Temporal Difference Learning
Temporal difference learning is a fundamental solution method aimed at the
temporal credit assignment problem in reinforcement learning (e.g. Sutton and
Barto (1998)). In its simplest form, the state-value or state-action value of each
state is stored in a lookup-table, which is updated continuously throughout the
training process by means of bootstrapping. Of course, this does not alleviate
us from the problem of requiring an enumerated state space, but in contrast to
the dynamic programming algorithms, the need for a full model of the MDP is
removed, and values are only updated for states visited throughout the learning
process.

The most basic temporal difference learning algorithm is the TD(0)-algorithm
(Sutton, 1988). To find the value function V π(s), an estimate of the return (dis-
counted, infinite-horizon accumulated reward (2.1)) is calculated each iteration,
such that the estimated return R̃t+1 = rt+1 + γV (st+1). In this way, the up-
dated value estimate of state s, Vn+1(s), is based solely on the immediate reward
and estimated value of the actual subsequent state st+1, Vn(s). For any state
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s, observed reward r and immediately subsequent state s′, a TD(0)-update is
formulated according to (2.17), where r+γV (s′)−V (s) is known as the TD er-
ror and α ∈ [0, 1] is the learning rate. The latter specifies the trade-off between
prior and new information.

Vn+1(s) = Vn(s) + α
(
r + γVn(s′)− Vn(s)

)
(2.17)

An extension of the TD(0)-algorithm is the Q-learning algorithm (Watkins
and Dayan, 1992), which, as the name suggests, aims to estimate the state-
action value function Q(s, a) directly. It is highly reminiscent of TD(0), but,
given a state s ∈ S and action a ∈ A, updates its estimate of the state-action
value Qn+1(s, a) based on the immediate reward and the maximum state-action
value of the immediately subsequent state s′, i.e. r and maxaQn(s′, a). Thus,
this is an example of a so-called off-policy method, where each update is not
necessarily based on the action taken according to the policy. Each Q-learning
update is formulated according to (2.18).

Qn+1(s, a) = Qn(s, a) + α
(
r + γmax

a
Qn(s′, a)−Qn(s, a)

)
(2.18)

SARSA (e.g. Singh et al. (2000)) is a corresponding on-policy algorithm, for
which the single-step update is presented in (2.19). Here, a′ denotes the action
taken in the subsequent step according to the current policy.

Qn+1(s, a) = Qn(s, a) + α
(
r + γQn(s′, a′)−Qn(s, a)

)
(2.19)

With the proper learning rate α, Watkins and Dayan (1992) showed that the
Q-learning algorithm is guaranteed to converge to the optimal state-action value
function Q∗(s, a) for discrete action-value functions, provided each state-action
value is sampled enough times. If, in addition, the given policy converges to
the greedy policy in the limit, the same is true for SARSA (Singh et al., 2000).
Given the optimal state-action value function Q∗(s, a), the optimal policy π∗ is
easily derived using (2.20).

π∗ = argmax
a

Q∗(s, a) (2.20)

Our discussion on temporal difference learning algorithms is concluded with
a summary of the Q-learning algorithm, presented in Algorithm (3). Minor
changes can be applied for this outline to apply to SARSA and TD(0). The
ε-greedy policy π is used to demonstrate the exploration strategy.
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Algorithm 3: Q-Learning
Result: The optimal state-action value function Q∗(s, a)
1. Initialization

Initialize Q(s, a) ∈ < arbitrarily ∀s ∈ S, ∀a ∈ A.
Let γ ∈ [0, 1) and α, ε ∈ [0, 1].

2. Q-Learning
for each episode do

Choose an arbitrary starting state s ∈ S.
while s 6= terminal state do

Choose x ∼ U(0, 1)
if x < ε

Choose a random action a ∈ A.
else

Choose action a := π(s) = argmaxaQ(s, a)
Perform action a and observe r, s′.
Q(s, a) = Q(s, a) + α

(
r + γmaxaQ(s′, a)−Q(s, a)

)
Let s := s′.

2.3.3 Deep Q-learning
Methods like temporal difference learning avoid repeatedly traversing the entire
state space, but tabular storage of state-action values can quickly become com-
putationally inefficient. The remedy to this lies in modification of the algorithms
using function approximation techniques. To this end, and owing to its success
in the field of supervised machine learning, deep learning quickly emerged as a
bright star in the reinforcement learning community. This section is devoted to
Deep Q-learning (DQL), an approach combining Q-learning with deep learning.

Deep Q-learning algorithms (e.g. Mnih et al. (2013)) use deep neural net-
works as non-linear function approximators. Instead of explicitly storing each
state-action value, experience gathered by the agent is used to train a deep
neural network to generate state-action values from the input states. Such a
network is called a Deep Q-Network (DQN), which for each state s ∈ S outputs
a state-action value vector Q(s, ·; θ) parametrized by θ.

Deep learning belongs to the class of supervised learning techniques in which
a generalized mapping between input-target pairs is learned. To adopt this
approach, we define the temporal difference target yi according to (2.21) for
each iteration i, where r is the reward received upon transition from state s to
subsequent state s′. Hence, unlike classic supervised learning, the target values
are not fixed, ground-truth values, but improves with the network parameters
during the training process. The next step is to minimize the loss, which at
each iteration i is defined according to (2.22). Here, two particular features are
added to increase stability and data efficiency; experience replay (Mnih et al.,
2013), and the inclusion of a target network (Mnih et al., 2015).
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yi = r + γ argmax
a

Q(s′, a; θ−i ) (2.21)

Li(θi) = E(s,a,r,s′)∼U(D)

[(
yi −Q(s, a; θi)

)2]
(2.22)

θi and θ−i denote the weights of each network at iteration i. The parameters
of the target network θ− are fixed between iterations i, only allowing for updates
according to the current weights θ of the primary neural network in fixed inter-
vals. Such more infrequent updates of the target network yields a reduction in
data correlations, leading to increased stability (Mnih et al., 2015). Alternative
approaches showing promising results have recently been developed, such as us-
ing an alternative softmax operator in place of adding a target network (Kim
et al., 2019), but we settle for presenting the target network approach here.

Experience replay is another feature included to randomize the data set and
reduce sample correlations, shown to have a significant positive effect on the
agent performance. Using experience replay, each training sample (s, a, r, s′) is
uniformly drawn from a circular experience buffer D, where experience samples
are stored as the training progresses. This is an important development, as non-
linear function approximation has been previously known to cause significant
instability due to effects of for example sequence and sample-target correlations.
These issues have been discussed by e.g. Dai et al. (2018). The DQL algorithm
using experience replay and a target network (Mnih et al., 2015) is summarized
in Algorithm (4), under an ε-greedy policy as before.

Deep Q-learning extends the reach of reinforcement learning algorithms to
complex environments with high-dimensional state spaces. The DQN developed
by Mnih et al. (2015) was able to outperform previous algorithms on multi-
ple Atari 2600 games despite requiring high-dimensional sensory input data,
proving the potential of reinforcement learning methods in complex situations.
Moreover, Mnih et al. (2015) sheds light on the intimate relationship between
reinforcement learning and neurobiological learning processes, motivating im-
portant algorithm components in recent biological findings.

Since the first successes of deep Q-learning, the algorithm has been ame-
liorated in different ways. This includes Double Deep Q-learning (van Hasselt
et al., 2016) and prioritized experience replay (Schaul et al., 2016), the former
improving DQN performance by decoupling action selection from state-action
value evaluation, and the latter by exchanging uniform experience sampling for
weighted sampling in favor of important transitions. More recently, Kaptur-
owski et al. (2019) used recurrent neural networks with distributed prioritized
experience replay for deep Q-learning, exceeding previous state-of-the-art per-
formance on a range of Atari games. Other advances in deep reinforcement
learning include dueling network architectures (Wang et al., 2016) and multi-
ple agent asynchronous learning methods (Mnih et al., 2016), exemplifying the
potential in combining deep learning with a variety of different reinforcement
learning methods.

Recently, Zahavy et al. (2016) investigated the underlying ways in which fea-
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ture learning is progressed using Deep Q-Networks, finding that these networks
indeed capture hierarchical structures of the target task.

Generalizing a state-to-value mapping is not the only way deep learning mit-
igates the curse of dimensionality. Often, sensory input provides the agent with
an unnecessarily high-dimensional observation state, in which case state repre-
sentation learning (e.g. Lesort et al. (2018); Jonschkowski and Brock (2014))
can greatly reduce the effective dimensionality of the problem. Deep learning
methods are often used to learn such an observation-state mapping.

Algorithm 4: Deep Q-Learning
Result: The optimal state-action value function Q∗(s, a)
1. Initialization

Initialize the primary network with random weights θ and let i := 0.
Let D be the empty replay buffer, θ− := θ, γ ∈ [0, 1) and ε ∈ [0, 1].

2. Deep Q-Learning
for each episode do

Choose an arbitrary starting state s ∈ S.
while s 6= terminal state do

Choose x ∼ U(0, 1)
if x < ε

Choose a random action a ∈ A.
else

Choose action a := π(s) = argmaxaQ(s, a)
Perform action a and observe r, s′.
Add < s, a, r, s′ > to the replay buffer D.
Sample random minibatch of transitions < sj , aj , rj+1, sj+1 >.
if sj+1 6= terminal state

yj := rj+1.
else

yj := rj+1 + γ argmaxaQ(sj+1, a; θ−i )

Perform gradient descent step on Lθi =
(
yj −Q(s, a; θi)

)2

If i % c = 0 for some c, set θ− := θ.
Let s := s′, i = i+ 1.

2.3.4 Policy Gradient Methods
As we have seen, Deep Q-learning algorithms require repeatedly maximizing the
state-action value function over all legal actions. This is computationally expen-
sive for large action spaces, and can quickly become infeasible in the continuous
case, where discretization of the action space is necessary which further reduces
performance. As a result, another class of methods, policy gradient methods
(e.g. Sutton et al. (1999a)), has become the go-to technique in contexts of con-
tinuous action reinforcement learning problems. These methods have achieved
great success in contexts including robot manipulation tasks and games like Go
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(Li, 2018).
Instead of parametrizing the state-action value function, policy gradient

methods are based on direct parametrization of the policy itself. In the fol-
lowing derivation, πθ(a|s) = π(a|s; θ) is a stochastic policy parametrized by θ
and R(τ) is the finite horizon discounted return following the policy πθ along
a trajectory τ , where τ refers to the sequence of states, actions and rewards
generated by the policy. T is the horizon length. Given an initial state proba-
bility distribution I(s0) and transition probability distribution T (s, a, r, s′), the
trajectory probability distribution p(τ |θ) is given by (2.23).

p(τ |θ) = I(s0)
T−1∏
t=0
T (st, at, rt+1, st+1)πθ(at|st) (2.23)

The learning objective is to maximize the expected return (2.24). This is
done by updating the parameters θ in the direction of the policy gradient (2.25)
throughout the learning process.

J(θ) = Eτ∼p(τ |θ)

[
R(τ)

]
=
∫
p(τ |θ)R(τ)dτ (2.24)

∇θJ(θ) =
∫
p(τ |θ)∇θ log p(τ |θ)(τ)R(τ)dτ

= Eτ∼p(τ |θ)

[
∇θ log p(τ |θ)R(τ)

] (2.25)

Here, the gradient∇θ log p(τ |θ) can be computed directly from (2.23) accord-
ing to (2.26), since both distributions I(s0) and T (s, a, r, s′) are independent
on θ. Our expression for the policy gradient can then be simplified according
to (2.27).

∇θ log p(τ |θ) = ∇θ log
(
I(s0)

T−1∏
t=0
T (st, at, rt+1, st+1)πθ(at|st)

)
= ∇θ

(
log I(s0) +

T−1∑
t=0

[
log T (st, at, rt+1, st+1) + log πθ(at|st)

])
= ∇θ

T−1∑
t=0

log πθ(at|st)

(2.26)

∇θJ(θ) = Eτ∼p(τ |θ)

[ T−1∑
t=0
∇θ log πθ(at|st)R(τ)

]
(2.27)

This is the result of the policy gradient theorem, which lays the foundation
for several celebrated policy gradient methods. Once the policy gradient is
obtained the policy can be optimized, e.g. through gradient ascent according to
(2.28), where α denotes the step size.
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θk+1 = θk + α∇θJ(θ)|θk (2.28)

In practice, Monte Carlo sampling is often used to practically compute the
expectation (2.27). Given a set N = {τj}Nj=1 of N on-policy trajectory samples
such that τj ∼ p(τ |θ) ∀j, estimators of the expected return and its policy
gradient can be obtained according to (2.29) and (2.30).

J̃(θ) =
∑
τ∈N

R(τ) (2.29)

∇θJ̃(θ) = 1
|N |

∑
τ∈N

[ T−1∑
t=0
∇θ log πθ(at|st)R(τ)

]
(2.30)

The policy gradient theorem result (2.27) can be written on a more general
form given in (2.31), where Φ is not locked to be the return R(τ). If Φt is
defined as the discounted, accumulated reward after the current time step t, i.e.
the reward-to-go, this does not affect the obtained expected value of the policy
gradient. It does, however, affect the variance which has a negative impact
on convergence properties. In fact, one problem with our current definition,
and with policy gradient methods in general, is the high variance in the policy
gradient sample estimates (Wu et al., 2018). There are several ways to reduce
this effect, though some are prone to introduce bias.

If we let Φt = Rt − b(st), where Rt =
∑T−1
t′=t γ

t′−trt is the reward-to-go
and b is a θ-independent baseline, we arrive at the REINFORCE algorithm with
a baseline, first introduced by Williams (1992). The resulting expectation is
presented in (2.32), in which the variance is reduced without introducing bias in
the empirical evaluation. This is shown by e.g. Wu et al. (2018), and can easily
be motivated by (2.33). Wu et al. (2018) also provide a derivation of the optimal
baseline. The two aforementioned variance reduction tricks, using the reward-to-
go instead of the full trajectory return and adding a baseline, are two of the most
common techniques for variance reduction (Greensmith et al., 2004). Recently,
a lot of research has been aimed at finding better variance reduction techniques.
Examples include Generalized Advantage Estimation (GAE) (Schulman et al.,
2016), combining GAE with a linear baseline (Gu et al., 2017) and using action-
dependent baselines (Wu et al., 2018).

∇θJ(θ) = Eτ∼p(τ |θ)

[ T−1∑
t=0
∇θ log πθ(at|st)Φt

]
(2.31)

∇θJ(θ) = Eτ∼p(τ |θ)

[ T−1∑
t=0

(Rt − b(st))∇θ log πθ(at|st)
]

(2.32)

Eτ∼p(τ |θ)

[
∇θ log πθ(at|st)b(st)

]
= ∇θEτ∼p(τ |θ)

[
b(st)

]
= 0 (2.33)
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Another option is to define Φt as the state-value function Qπθ (st, at) (Schul-
man et al., 2016). This can be shown without exhaustive mathematics using
the law of iterated expectations. This is done by letting b(st) = 0 in (2.32) and
denoting τt the trajectory from step t to T − 1, from which (2.34) is derived.
Then, Eτt∼πθ

[
Rt|τt

]
= Eτt∼πθ

[
Rt|st, at

]
= Qπθ (st, at), and the claim is true.

∇θJ(θ) = Eτ∼p(τ |θ)

[ T−1∑
t=0

Rt∇θ log πθ(at|st)
]

=
T−1∑
t=0

Eτ∼p(τ |θ)

[
Rt∇θ log πθ(at|st)

]
=
T−1∑
t=0

Eτt

[
Eτt

[
∇θ log πθ(at|st)Rt|τt

]]
=
T−1∑
t=0

Eτt

[
∇θ log πθ(at|st)Eτt

[
Rt|τt

]]
(2.34)

A common baseline choice is b(st) = V π(st). In fact, Aπ(st, at) = Qπ(st, at)−
V π(st), known as the advantage function, is a close to optimal Φt in terms of
variance reduction (Schulman et al., 2016). This is reasonable, since it mea-
sures the value difference induced by taking an action at compared to acting
on-policy. Thus, the probability of taking action at is only increased for posi-
tive advantages Aπ(st, at). However, since it is unknown, estimation is required.
Such an estimation often introduces some bias, which needs to be considered.
Many policy gradient algorithms make use of different advantage estimators.
For example, Schulman et al. (2016) introduces Generalized Advantage Esti-
mation, mentioned briefly above. In this case, the advantage function depends
on an estimation of the TD error (2.35), previously defined in our discussion
on temporal difference learning. The generalized advantage estimator derived
by Schulman et al. (2016) is presented in (2.36), where the GAE parameter
λ ∈ [0, 1] controls credit assignment and determines the bias-variance trade-off,
and γ allows for control of the value estimation trust.

δṼt = rt + γṼ (st+1)− Ṽ (st) (2.35)

Ãt =
∞∑
l=0

(γλ)lδṼt+l (2.36)

Of course, this approach relies on estimates of the value function to determine
δṼt . If Ṽ = V π, then δṼt is an unbiased advantage estimator in itself (Schulman
et al., 2016). Approximation of the value function can be obtained through
non-linear function approximation techniques, using methods such as the TD(1)
method for value estimation (Sutton and Barto, 1998) or trust region methods
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(Schulman et al., 2016). The latter uses trust region optimization for both the
policy neural network and the value function neural network.

The above is an example of an Actor-Critic method, combining the policy
gradient approach with value iteration. In such algorithms, the parametrized
policy is referred to as the actor, updating its parameters based on feedback
from the critic, in this case the parametrized value function. An example of an
actor-critic method that has received a lot of praise is Asynchronous Advantage
Actor-Critic (A3C), proposed by Mnih et al. (2016).

Despite the many successes made possible by the combination of policy gra-
dient methods and deep learning, these algorithms often display poor sample
efficiency and high sensitivity to the policy update step size. If the latter is
too large, the signal-to-noise ratio is low, often resulting in an unstable learning
process. On the other hand, if it is not large enough, the learning process may
not progress at all. To remedy this, methods like Trust Region Policy Opti-
mization (Schulman et al., 2015) use techniques to limit the policy update. A
related method is Proximal Policy Optimization, which takes a novel approach
to resolving these issues. This method is discussed in detail in the following sec-
tion. Concluding this section, the REINFORCE algorithm with a parametrized
state-value baseline Vϕ(st) = V (st;ϕ) is presented in Algorithm (5).

Algorithm 5: REINFORCE with State-Value Baseline
Result: An optimized policy π(a|s; θ)
1. Initialization

Initialize the primary network with random weights θ and the
baseline network with random weights ϕ.
Initialize γ ∈ [0, 1) and step sizes αθ > 0 and αϕ > 0.

2. REINFORCE algorithm
for each episode do

Generate a trajectory τ ∼ π(a|s; θ) of length T .
for t = 0, 1....T − 1 do

Rt =
∑T−1
t′=t γ

t′−trt
G = Rt − Vϕ(st)
ϕ = ϕ+ αϕG∇Vϕ(st)
θ = θ + αθG∇ log πθ(at|st)

2.3.5 Proximal Policy Optimization
The algorithm on which our results are based belongs to a class of policy gradient
algorithms known as Proximal Policy Optimization algorithms, introduced by
Schulman et al. (2017). They improve on preceding policy gradient methods by
allowing policy updates in multiple epochs, addressing the issue of large policy
updates and increasing sample efficiency. These algorithms, which are referred
to as PPO in the remainder of this thesis, rely on alternation between data
sampling and optimization of a surrogate objective function through stochastic
gradient descent.
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To begin our derivation, we repeat the gradient estimator (2.31) as an ex-
pected value over time t with an advantage estimator, i.e. Φt = Ãt, according
to (2.38). The corresponding objective function is presented in (2.37). Multi-
step optimization of J(θ) often results in policy updates too large for stable
convergence, a problem PPO aims to evade by limiting the policy update using
a clipped surrogate objective function.

Jt(θ) = Et

[
log πθ(at|st)Ãt

]
(2.37)

∇θJt(θ) = Et

[
∇θ log πθ(at|st)Ãt

]
(2.38)

Schulman et al. (2017) truncated the generalized advantage estimator (2.36)
to trajectory length or horizon T , yielding the advantage estimator presented
in (2.39). λ is the GAE parameter, γ is the discount factor and δṼt is defined as
before, see (2.35).

Ãt =
T−t−1∑
l=0

(γλ)lδṼt+l (2.39)

Next, we introduce the probability ratio ηt(θ) according to (2.40), where πθ
denotes the current policy, and πθ̂ denotes the policy under the parameters of
the previous update. The objective function (2.37) can then be reformulated
according to (2.41). On this form, first introduced by Kakade and Langford
(2002), straightforward optimization does not avoid the instability issues in-
duced by large policy ratios.

ηt(θ) = πθ(at|st)
πθ̂(at|st)

(2.40)

JCPIt (θ) = Et

[πθ(at|st)
πθ̂(at|st)

Ãt

]
= Et

[
ηt(θ)Ãt

]
(2.41)

Schulman et al. (2015) imposes a trust region constraint based on Kull-
back–Leibler (KL) divergence to constrain the size of parameter updates up to
a parameter ε by enforcing Et

[
KL
[
πθ̂(·|st), πθ(·|st)

]]
≤ ε. One PPO-algorithm

addresses the issue using an adaptive KL penalty in place of the constraint, but
the main PPO-algorithm, which we are concerned with in this section, takes a
different approach, penalizing large policy updates by introducing the clipped
surrogate objective function according to (2.42), for some clipping threshold ε.

JCLIPt (θ) = Et

[
min

(
ηt(θ)Ãt, clip(ηt(θ), 1− ε, 1 + ε)Ãt

)]
(2.42)

The clip-function prevents the policies from diverging by confining the prob-
ability ratio to the interval 1−ε ≤ ηt(θ) ≤ 1+ε. The objective function JCLIP (θ)
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then takes the minimum value between the objective function JCPI(θ) and the
clipped objective function. Thus, JCLIP (θ) is a lower bound on JCPI(θ).

Schulman et al. (2017) implements PPO in a deep learning setting, with
shared parameters for the policy and state-value functions. As such, the objec-
tive function is extended with an error term on the value function, in this case
the squared error loss. Additionally, as originally proposed by Williams and
Peng (1991), an entropy regularization term is added to encourage continued
exploration. The final objective function then takes the form of (2.43), where
V ∗t denotes the target state-value function, H denotes the entropy bonus and
c1, c2 are the tunable value function- and entropy regularization coefficients.

JPPOt (θ) = Et

[
JCLIPt + c1(Ṽθ(st)− Ṽ ∗t )

2
+ c2H(st, πθ)

]
(2.43)

The form of the objective varies slightly depending on the solution method.
For example, (2.42) can be optimized directly using automatic differentiation
and multi-step stochastic gradient ascent. Algorithm (6) presents a PPO-
pseudocode in which separate neural networks are learned to represent the policy
and the value function, the latter parametrized according to Vϕ(st) = V (st;ϕ)
as before. In this case, learning proceeds for K iterations, Rτt is the reward-to-
go at time step t on trajectory τ , and Ãτt,ϕ is the advantage estimate at time
step t under V (st;ϕκ), in this case the truncated generalized advantage estimate
(2.39).

The PPO algorithm outlined by Schulman et al. (2017) optimizes (2.43) with
the truncated generalized advantage function using minibatch stochastic gradi-
ent descent with N parallel actors, and their work shows promising results on an
array of benchmark tasks. The main takeaway, however, is the combination of
a stable learning process, performance, sample complexity and implementation
simplicity, which have made PPO a dominating algorithm on a wide range of
reinforcement learning tasks for problems demanding either discrete or contin-
uous action spaces.
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Algorithm 6: PPO with Clipped Surrogate Objective
Result: An optimized policy π(a|s; θ)
1. Initialization

Initialize the policy network with random weights θ and the
state-value function network with random weights ϕ.
Initialize γ ∈ [0, 1) and clipping threshold ε.

2. Proximal Policy Optimization
for each κ= 0, 1...K do

Generate a set of trajectories Nκ = {τj}Nj=1 under current policy
π(a|s; θκ), each trajectory of length T .
for each τ ∈ Nκ do

Collect rewards-to-go and advantage estimates:
for t = 0, 1....T − 1 do

Rτt =
∑T−1
t′=t γ

t′−trt

Ãτt,ϕ =
∑T−t−1
l=0 (γλ)lδVϕκt+l

Update policy parameters θ by optimizing the PPO objective:
θκ+1 = argmaxθ

(
1

|Nκ|T
∑
τ∈Nκ

∑T−1
t=0 Jτt (θ)

)
,

where Jτt (θ) = min
(
ηt(θ)Ãτt,ϕ, clip(ηt(θ), 1− ε, 1 + ε)Ãτt,ϕ

)
Update the state-value function parameters ϕ by regression:
ϕκ+1 = argminϕ

(
1

|Nκ|T
∑
τ∈Nκ

∑T−1
t=0 (Vϕ(st)−Rτt )2

)

2.4 Multiple Skill Acquisition & Sparse Rewards
The reinforcement learning solution methods discussed so far often result in
slow learning processes when applied to complex tasks. This includes contexts
characterized by long-term temporal dependencies, in which reward signals are
naturally sparse. This type of reward signal is tempting to consider since it only
requires a definition of success in relation to the goal. The drawback, however,
is that such an approach forces the agent to rely on random exploration of the
environment, which, if at all successful, is slow in complex environments.

In this section, we will explore different ways of adjusting the standard rein-
forcement learning framework to successfully complete a complex task by means
of breaking it down into sub-tasks. In our example setting, the goal of a rein-
forcement learning agent constituted by a robotic arm is to find an object and
place it on top of another object. This is a multifaceted problem that can be
broken down into several sub-tasks, i.e. locating the first object, grasping it,
moving it to the second object, and stacking it onto said object. This can be
viewed as a simple analogy to the forestry crane problem constituting the objec-
tive of this thesis. Intuitively, simply rewarding the agent when accomplishing
this task, i.e. when the objects are finally stacked onto each other, would require
endless exploration with rare to no feedback from which it can learn.

To begin our discussion, we will dive into techniques that can be applied to
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the standard reinforcement learning framework in settings where sparse rewards
pose a particular challenge.

2.4.1 Dealing with Sparse Extrinsic Rewards
In our example setting, the goal of the agent is to place one object on top of an-
other. In a setting only allowing for very sparse rewards, the agent only receives
feedback signals when this goal is achieved. Depending on the dimensionality of
the problem, this can prove to be a very challenging task. In fact, this is often
the case even in the comparatively simple sub-task of locating the first object.

The most common technique used to tackle the credit assignment problem in
complex settings is known as reward shaping, in which reward functions yielding
intermediate rewards are carefully designed to encourage incremental progress.
(Ng et al., 1999) shows that basing the reward transformation on potentials does
not affect the optimal policy compared to the corresponding extrinsic-reward
setting. In many cases, however, the reward function is carefully shaped by
domain experts, which can lead to increased implementation complexity and
decreased generalizability in the final model. Moreover, reward shaping can
introduce local optima, and while tedious reward function design can prevent
illegal solutions, it may also yield a loss in solution innovation, removing the po-
tential for harvesting unexpected solutions to problems facing the reinforcement
learning agent. These limitations have been discussed by e.g. Zou et al. (2019)
and Trott et al. (2019), two among several recent studies aimed at developing
improved reward shaping techniques.

Besides reward shaping, other approaches have utilized curiosity-driven learn-
ing based on intrinsic rewards to circumvent the credit assignment problem.
For example, Pathak et al. (2017) shows that combining an A3C baseline model
with their intrinsic curiosity module significantly improves both performance
and learning speed in VizDoom 3D-navigation tasks. This is true regardless
of extrinsic-reward sparsity, but especially in settings displaying sparse or very
sparse extrinsic rewards. Curiosity-driven methods encourage efficient explo-
ration and are inspired by ideas derived from developmental human psychology
(Oudeyer and Kaplan, 2007).

Recently, Burda et al. (2018) introduced Random Network Distillation to en-
courage exploration of novel states, succeeding in multiple Atari games in sparse
extrinsic reward settings. The method did, however, struggle in settings display-
ing long-term temporal dependencies. An example of another recent technique
used to aid exploration is Uncertainty Bellman Exploration (O’Donoghue et al.,
2017), which later inspired an extension of PPO known as Optimistic Proximal
Policy Optimization (Imagawa et al., 2019).

Before proceeding, a final, novel approach to dealing with sparse extrinsic re-
wards is introduced, namely Hindsight Experience Replay (Andrychowicz et al.,
2017). This method relies solely on sparse, extrinsic rewards, but makes use
of the fact that in certain tasks, each state can be considered a (pseudo) goal
state. When this applies, episodes can be replayed with a goal state reached
during the episode, streamlining updates during training. This method avoids

39



reward shaping, and is useful when homogeneity in visited states is not what
prevents sufficient exploration, but rather dimensionality itself. Andrychowicz
et al. (2017) successfully demonstrates this approach on simple robot manipu-
lation tasks using a simulated robotic arm, and shows that the results transfer
to a physical robot.

For very complex problems these methods may not prove sufficient, especially
if the agent is expected to learn skills that vary significantly between sub-tasks,
such as locating, grasping and moving an object to a specific target object, as
in our example setting. Thus, the following subsections discuss methods that
can be applied to more complex problem settings.

2.4.2 Transfer Learning
The conventional reinforcement learning techniques previously discussed usu-
ally rely on an untrained agent learning to solve a task from scratch. If a
parametrized policy is utilized, this means initializing the policy with random
weights, as we have done in the algorithms summarized up to this point. This is,
however, not a necessity. On this note, transfer learning is a paradigm which, in
the context of reinforcement learning, refers to the transfer of knowledge from
an agent previously trained to perform one task, to another agent faced with
a different but similar task, in order to ease learning on the second task. In
other words, the agent first learns to perform a simpler source task, and uses its
acquired knowledge to bias learning on the target task.

Depending on the implementation, transfer learning techniques are not lim-
ited to parameter initialization. For example, Fernández et al. (2010) combines
probabilistic reuse of policies with action- and state space mapping, removing
the need for identical state- and action spaces in the source and target tasks.
Moreover, the transfer of knowledge is not restricted to policies, but can also be
carried out through other means, such as the value functions (e.g. Taylor and
Stone (2005), Taylor et al. (2007)).

Upon evaluation of the success of transfer learning, it is common to dis-
tinguish between weak and strong transfer. The former refers to comparing
the agent’s performance and learning speed on the target task directly against
the corresponding performance and learning speed in a setting without trans-
fer learning, and the latter refers to a way of evaluation where the source task
training process is taken into account (Narvekar et al., 2020).

Returning to our example setting, transfer learning by training an agent
on the source task of locating the first object may ease learning on the target
task of grasping the object. For a more in-depth coverage of transfer learning
in reinforcement learning domains, surveys such as that of Taylor and Stone
(2009) can be consulted.

2.4.3 Curriculum Learning
Building on the idea of transfer learning, recent reinforcement learning research
has explored the possibility of improving an agent’s performance on a target task
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by allowing the agent to gain and transfer knowledge on a sequence of source
tasks. Narvekar et al. (2016) introduces this concept, referred to as curriculum
learning, and shows how a tailored sequence of source tasks can significantly
improve performance on a target task in two reinforcement learning domains.
Moreover, their results confirm that the order in which each source task is
learned impacts the performance on the target task. This suggests that com-
plex reinforcement learning problems can be approached by means of applying
transfer learning to a sequence of source tasks that optimizes performance on
the target task. A classic example motivating the concept of curriculum learn-
ing is the game of Quick Chess, following a step-by-step approach introducing
children to the advanced game of Chess.

The research by Narvekar et al. (2016) proposes functions for semi-automatic
source task generation, while relying on domain knowledge to optimize the cur-
riculum. A further extension was introduced by Narvekar et al. (2017), au-
tomating the sequence generation by formulating the process as an MDP of its
own.

The curriculum learning framework was recently formalized by Narvekar
et al. (2020) in the domain of reinforcement learning, further providing an ex-
tensive overview on recent accomplishments within the field. Not contrary to
intuition, early work on the periphery of curriculum learning suggests that trans-
ferring knowledge between a sequence of source tasks organized in an order of
increasing complexity accelerates learning and optimizes performance on the
target task.

Finally, as elaborated on by Narvekar et al. (2020), the domain of curriculum
learning is not limited to learning through a linear sequence of source tasks. As
an example, a curriculum-guided approach to the method of Hindsight Experi-
ence Replay (Andrychowicz et al., 2017) was recently developed by Fang et al.
(2019). Here, the core contribution is adaptive selection of pseudo goals, grad-
ually trading curiosity for proximity to the true goal as the training progresses.
Directly adopting the curriculum learning concept through optimization of sam-
ple order in the target task in this way has also sparked progress in supervised
machine learning: For example, Bengio et al. (2009) shows that gradually in-
creasing sample complexity in supervised tasks increases generalization in the
final model.

As we have seen, curriculum learning brings with it the potential to ease
learning and improve performance in complex reinforcement learning problems
by breaking them down into simpler sub-tasks. In our example, the target task is
for the robotic arm to stack two objects onto each other. We proposed four sub-
tasks, which in theory may be broken down into an even larger sequence of source
tasks forming a complete curriculum. Each of the four primary sub-tasks may
also be performed by different agents, each learning one skill through a smaller
curriculum. This nears the domain of hierarchical reinforcement learning, in
which a hierarchical policy can be learned to decide when to activate previously
learned policies, opening up for multi-task reinforcement learning agents acting
through an hierarchy of sub-policies. To this the following subsection is devoted.
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2.4.4 Hierarchical Reinforcement Learning
As noted, conventional reinforcement learning algorithms often struggle in solv-
ing complex problems with sparse extrinsic rewards or other long-term depen-
dencies. As an advanced alternative to the approaches previously discussed,
early work (e.g. Hauskrecht et al. (1998), Sutton et al. (1999b)) looked to
temporally abstract actions, so-called macro actions, to remedy this through
hierarchical policy representations. In the beginning of the 21st century, Barto
and Mahadevan (2003) gave an overview of advances on this topic. Since then,
the field of hierarchical reinforcement learning has remained an active field of
research. The promise of this approach lies in the temporal and spatial abstrac-
tion of complex reinforcement learning problems, and is reflected through its
potential to decompose such problems into multiple sub-tasks while retaining
the ability to reuse skills previously learned, consequently reducing the total
computational complexity and increasing learning speed.

In this context, we are viewing the hierarchical reinforcement learning prob-
lem as a high-level abstraction of the complete problem, with actions that can be
temporally extended and represented by sub-policies learning specific sub-tasks.
While multiple solutions in terms of specific architectures exist, hierarchical re-
inforcement learning problems are typically formalized through semi-Markov
decision processes (SMDP). The Bellman Equation of the discrete-time state-
value function under high-level fixed policy π such that π(s) = a can then be
expressed according to (2.44), where N is a random variable corresponding to
the temporal extension of macro action a (Dietterich, 2000).

V π(s) =
∑
s′,N

TN (s, a, s′)
(
RN (s, a, s′) + γNV π(s′)

)
(2.44)

Here, the transition probability function TN (s, a, s′) refers to the transition
probabilities between states s = st and subsequent states s′ = st+N upon
performing action a = at, and RN (s, a, s′) refers to the expected sum of (dis-
counted) rewards over the corresponding time horizon. These are then joint
distributions over s′ and N . Using this formulation, conventional reinforcement
learning algorithms can be used to solve the temporally, and possibly spatially,
abstracted problem.

To clarify the concept of hierarchical reinforcement learning, we return to
our example problem of stacking two objects onto each other. Figure 2.2 shows
a task graph illustrating a simple hierarchical representation of this problem,
the solution to which in this case is the high-level policy π. The action space,
then, consists of the two sub-policies π1 and π2, each a macro action of either
picking up an object or stacking an object onto another. These sub-policies, in
turn, consist of an action space composed of one or more of the macro actions
or sub-policies π3, π4 and π5, corresponding to the sub-tasks of either finding an
object, grasping an object, or releasing an object. Depending on the complex-
ity of the sub-problem, these sub-policies then calls a set of primary actions,
controlling the movement of the robotic arm to perform the specified low-level
task. Together, this hierarchy of policies solves the overall problem of stacking
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two objects onto each other. This can, of course, be extended to the more com-
plicated problem of fitting an entire set of objects initially spread out over some
space into a tower, for example.

Figure 2.2: A schematic illustration of a hierarchical reinforcement learning problem
represented as a task graph.

In general, a hierarchical policy may invoke either a sub-policy, as illustrated,
or some primary action. Additionally, a hierarchical policy representation is
of course not guaranteed to converge to the same behavior as a flat policy
representation, since the sub-task design guides the learning process similarly
to reward shaping. For example, the single-policy motion of a robotic arm
successfully grasping an object may not coincide with the motion of a robotic
arm first navigating to an object to then attempt to grasp it. A thorough
introduction to the optimality problem in hierarchical reinforcement learning is
provided by Hengst (2011).

An early method for hierarchical reinforcement learning is Hierarchies of Ab-
stract Machines (Parr and Russell, 1997), which was soon followed by a frame-
work for temporal abstraction using options, as well as the MAXQ-method based
on value function decomposition (Dietterich, 2000). Examples of progress in hi-
erarchical reinforcement learning include partial-order task-hierarchies invoking
multi-task actions. The study was conducted by Hengst (2008), also demon-
strating automatic decomposition into such task-hierarchies, one of multiple
attempts at automating sub-task division in hierarchical reinforcement learn-
ing.

More recently, research in hierarchical reinforcement learning has made a
series of notable achievements, e.g. Levy et al. (2017), Frans et al. (2018) and
Nachum et al. (2019b). The latter involves a hierarchical architecture where
goals are iteratively communicated between high- and low-level policies. On
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a similar note, Nachum et al. (2019a) shows that hierarchical reinforcement
learning methods can yield great results on quadrupedal manipulation tasks
using such a goal-conditioned hierarchical approach. The foundation, then, is
a low-level policy learning basic locomotion behavior, from which a high-level,
more abstract policy can make use of the learned skill to reach more demanding
goals. The authors show that simulation success in the context of hierarchical
reinforcement learning is transferable to a physical robot.

Furthermore, Levy et al. (2017) introduces a novel Hierarchical Actor-Critic
approach in which a multi-level policy hierarchy is learned in parallel. What
is more, the architecture adopts hindsight transitions allowing for success using
solely sparse rewards in robot simulation settings. Moreover, Tessler et al.
(2017) recently proposed the Hierarchical Deep Reinforcement Learning Network
architecture, enabling lifelong learning through selective transfer of reusable
skills, and Shu et al. (2018) proposed another framework for efficient multi-task
reinforcement learning using a multi-level hierarchical policy structure, both
demonstrating their success in the game of Minecraft.

While these kinds of empirical demonstrations of success are encouraging,
Nachum et al. (2019c) recently investigated the theoretical foundation for the
intuition behind the concept of hierarchical reinforcement learning, concluding
that it is actually more efficient exploration that lays the groundwork for many
achievements. Interestingly, Zahavy et al. (2016) simultaneously shows that
Deep Q-Networks indeed works by capturing hierarchical structures of the target
task.

Finally, for the interested reader, a brief but comprehensive overview of the
fundamentals of hierarchical reinforcement learning is given by Hengst (2011).
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Chapter 3
Method

The main objective of this thesis is to automate the grasping motion of a forestry
crane manipulator in a simulated environment. This is done using deep rein-
forcement learning, in which the policy is parametrized by a feedforward neural
network and optimized using the widely applied state-of-the-art on-policy algo-
rithm Proximal Policy Optimization (PPO) (Schulman et al., 2017) outlined in
Section 2.3.5. The simulation setup consists of the Unity 3D simulation platform
together with the high-accuracy simulation engine AGX Dynamics and a rein-
forcement learning framework built on the PPO-algorithm available through the
open source Unity ML-Agents Toolkit, an algorithm that has displayed promis-
ing performance and stability on a range of different tasks of varying complexity
(Juliani et al., 2020). We investigate two approaches to this grasping task; a
multi-agent approach and a single-agent approach using curriculum learning.

This section begins with an introduction to the simulation platform and
the tools used in this research, followed by a formal problem formalization and
a description of the forestry crane simulation model used in our simulations.
Finally, details of each approach investigated in this thesis are described.

3.1 Problem Formalization
For our purposes, the grasping problem of the forestry crane manipulator is
formulated as a Markov decision process (MDP); see Section 2.1 for theoretical
details. The agent, which controls the forestry crane simulation model (see
Section 3.3), is at a given time t in state st ∈ S making an observation ot ∈ O,
where the observation space O refers to the environment observable to the agent.
Following the policy π(a|s), the agent performs action π(at|st), whereupon it
receives the reward rt = R(st, at), where R(st, at) is some specified reward
function. The problem is then reduced to finding the optimal policy π∗(a|s) ∀s ∈
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S, for which the total expected return over an episode is maximized.

3.2 Simulation Environment
In this work, the simulation platform Unity is used as a training environment
for the agent, here constituted by the forestry crane simulation model. Unity
is interfaced with the simulation engine AGX Dynamics1 and the Unity plugin
ML-Agents Toolkit2, which together enable advanced physics simulation with
Unity scenes as machine learning training environments. Figure 3.1 shows an
overview of the simulation setup. A more detailed description of the three main
components, Unity, AGX Dynamics and the ML-Agents Toolkit, are provided
in the following subsections.

Figure 3.1: An overview of the simulation setup.

3.2.1 Unity
The simulation platform used in this research is Unity; a general platform sup-
porting advanced 3D simulation development in real-time (Juliani et al., 2020).
While used in various domains, ranging from the movie industry to mechanical
engineering, Unity is perhaps most well-known for its popularity in the gaming
industry.

The Unity platform consists of an incorporated multi-purpose engine offer-
ing not only physics simulation through the default engines Nvidia PhysX and
Havok Physics, but also advanced rendering. In this work we use the AGX
Dynamics plugin for Unity, AGX Dynamics for Unity, to employ advanced

1https://www.algoryx.se/agx-dynamics/
2https://github.com/Unity-Technologies/ml-agents
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multi-body dynamics; see Section 3.2.2 for details. In addition to compre-
hensive physics integration, real-time graphical rendering and programmatic
control through its C# scripting features, Unity offers an easy-to-use graphical
user interface. This combination has made Unity a leading platform in game de-
velopment and similar domains built on interactive 3D content, with increasing
potential in research and engineering through its platform for building complex
machine learning and simulation environments, in particular since the launch of
the Unity ML-Agent Toolkit detailed in Section 3.2.3. This work is carried out
using Unity 2019.3.11f1.

3.2.2 AGX Dynamics
Simulation-to-reality transfer is a requirement in the development of autonomous
systems using simulated environments. This makes reliable physics simulation
in complex systems a necessity in order to ensure correct system evolution
over time. AGX Dynamics is a physics-based simulation and modeling tool for
research- and industry purposes, enabling realistic simulations of constrained,
multi-domain, multi-body mechanical systems under nonsmooth dynamics, in-
cluding systems rich in for example impact and dry frictional contacts.

The discrete time integration employed is based on SPOOK; an implicit,
fixed-step time-stepping scheme derived from the discrete variational principle,
which ensures preservation of fundamental symmetries, and for which linear
stability has been shown (Lacoursière, 2007). An advantage of this treatment
of dynamical system evolution is that it enables the solutions to remain stable
over large integration steps.

In a system of nonsmooth dynamics, the nonlinear complementary problem
can be linearized to a mixed complementary problem. AGX Dynamics invokes
both a direct and an iterative solver for such problems, as well as a hybrid of the
two. This flexibility yields control of the accuracy-scalability tradeoff, allowing
for varied precision between subsystems. This offers a desired imbalance be-
tween machine precision and efficient approximation where so is required, such
as in systems displaying both nonsmooth granular dynamics and large vehicle
dynamics (Servin and Brandl, 2018). The AGX Dynamics SDK includes a joint-
and constraint library, providing common and easy-to-use joint configurations
for which the technical specifications can be adjusted depending on the model
requirements. For example, joints can be relaxed to introduce linear elastic-
ity, non-holonomic constraints can be used to model simple motors and range
limits on the force or motion can be used to induce complex joint behavior.
Moreover, the joints can be parametrized to mirror physical systems in the real
world. These properties together allow for the use of joints to model complicated
multi-body systems.

The demonstrably high performance of the dynamical solutions attained by
AGX Dynamics can also be attributed to its sophisticated contact detection
and contact reduction techniques. Overall, it is an advanced simulation engine
ensuring high, scalable performance in simulations of multi-domain mechanical
systems. In the current work, an integration of AGX Dynamics with Unity,
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AGX Dynamics for Unity3, is used, enabling reliable multi-body dynamics to
be simulated in real-time or faster, while retaining the high-grade simulation
graphics provided by Unity. In contexts of interactive 3D content, AGX Dy-
namics is sometimes referred to as the physics engine, here overriding the default
physics engines offered by Unity. This work is carried out using AGX Dynamics
for Unity 2.29.0.0.

3.2.3 Unity ML-Agents Toolkit
The Unity ML-Agents Toolkit (Juliani et al., 2020) is an open source toolkit for
machine learning implementation, enabling the use of Unity scenes as training
environments for reinforcement learning agents, and the setup makes the deploy-
ment of trained models into a scene straightforward through the neural network
inference engine Barracuda. Two TensorFlow-based (Abadi et al., 2015) rein-
forcement learning algorithms are offered, including the PPO-algorithm used in
this work. These machine learning algorithms are provided through the mla-
gents Python package4. Interaction between the low-level Python API and
Unity is carried out through an external communicator. In addition to these
components, an OpenAI gym wrapper is included to facilitate research in the
machine learning community. The ML-Agents Toolkit enables several advanced
machine learning concepts to be deployed, such as curriculum learning (see Sec-
tion 2.4.3), curiosity-driven exploration (see Section 2.4.1), imitation learning
and domain randomization.

The hierarchical composition of scene objects and components in Unity of-
fers flexible multi-agent reinforcement learning solutions. The ML-Agents C#
SDK constitutes the core of the toolkit, providing a learning environment built
on the interaction between agents and a global academy managing the sim-
ulation environment. The model, used for training and inference, is denoted
with a specific behavior, which can be shared between multiple agents. A final
important property is that physics simulations can be run independently from
the graphical rendering, significantly accelerating training when visual sensory
input is not required.

We conclude this section with a summary of the reinforcement learning
pipeline using the Unity ML-Agents Toolkit. See Figure 3.2 for an illustration.
During training, an agent in a Unity scene collects observations of its environ-
ment, which are communicated to the Python API via the external communi-
cator. The observations are processed by the Python API, which communicates
with the Python trainers, sending back the next action to take. When train-
ing has converged, the final model can be embedded directly into the Unity
scene. The Python API is no longer part of the workflow, and the inference
observations are fed directly into the model network, which generates the opti-
mal action. This work is carried out using the Unity ML-Agents Toolkit 1.0.2
(Release 5) and Python 3.7.7.

3https://www.algoryx.se/agx-unity/
4https://pypi.org/project/mlagents/
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Figure 3.2: An overview of the ML-Agents Toolkit.

3.3 Simulation Model
In this work, a 3D model of a forestry crane manipulator constitutes the rein-
forcement learning agent. The complete simulation model of the forwarder is
depicted in Figure 3.3 a), with a close-up view of the forestry crane manipu-
lator provided in Figure 3.3 b). It is a slightly modified version of the XT28
simulation model (Vesterlund and Servin, 2020), consisting of 52 rigid bodies
and 60 constraints in total. The physical parameters of each rigid body and
constraint are estimated to simulate a realistic crane behavior, but have not
been validated by domain experts. This does not reduce the complexity of the
problem, and the methods used and conclusions drawn therefore also apply to
a validated model.

The kinematical configuration can be described using seven degrees of free-
dom, six of which are actuated joints equipped with velocity-controlled motors,
q1, q2, q3, q4, q5 and q6, and one of which is composed of two additional non-
actuated joints, here jointly denoted qf . Each motor is internally controlled to
reach a given reference velocity while obeying current dynamics and constraints,
such as maximum motor torques or maximum motor speeds. See Section 3.4.3
for details on how the motors are controlled. Figure 3.4 shows a schematic image
of the forestry crane manipulator, marking each degree of freedom. Here, the
position and orientation of the forwarder is disregarded. q2f and q3f are non-
actuated joints kinetically constrained by q2 and q3, respectively. Moreover, we
see that the model exhibits the redundant kinematical structure of conventional
forwarders through links q2, q3 and q4.

As depicted in Figure 3.4, the global frame of reference is a Cartesian co-
ordinate system with y-axis in the direction opposing gravity and the x-axis
along the direction of the vehicle’s axis of symmetry. The coordinate system is
fixed and centred at the base of the crane, and only moved outwards to increase
visibility in the sketch. When describing the motion of each joint, we refer to
local coordinate systems moving with the crane. The kinematics is easily vi-
sualized by moving the depicted global coordinate system to the centre of the
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(a) (b)

Figure 3.3: a) Full view of the forwarder simulation model in Unity. b) Close-up
view of the simulation model of the forestry crane manipulator in Unity.

corresponding joint, aligned with the crane in its current position.
The first link, q1, is a revolute joint, or hinge, with an angular motion mo-

tor constraint. A revolute joint constrains five degrees of freedom, in this case
restricting q1 to rotation around the positive y-axis centred at the joint. Simi-
larly, the second and third links, q2f and q3f , are both revolute joints allowing
for rotational motion around the positive z-axis. Together, these joints pro-
vide the kinematics of a 3-link elbow manipulator, controlling the motion of the
pillar (mounted on the fixed base), the inner boom and the outer boom of the
crane. q2f and q3f are non-actuated joints, to which the crane kinematics are
transferred from the actuated prismatic joints q2 and q3, respectively. Prismatic
joints constrain motion to translation along one axis, in this case along the axis
of the hydraulic cylinders depicted in the figure. The fourth joint, q4, is an-
other actuated prismatic constraint which allows for translation of the crane’s
telescope along its axis.

The remaining joints, q5, qf and q6, control the motion of the end-effector,
here referred to as the grapple. q5 is a revolute joint restricting motion to rota-
tion around the grapple’s axis of symmetry, whereas q6 is a prismatic joint con-
trolling the grasping motion of the grapple. qf denotes two free revolute joints
allowing for none-actuated rotation around the positive z-axis and the positive
x-axis, respectively. This imposes additional control complexity, as exact crane
maneuver requires adjusting control of the actuated joints to compensate for
grapple motion in the xy-plane and the zy-plane due to the dynamics of the
crane and the environment. The compliance of both free joints are set to 0.5
rad/Nm and the damping coefficients are set to 0.034 Nms/rad. In Figure 3.4,
qf is located at the boom tip, which we use to define the position of the grapple.

In addition to the motor, each actuated revolute and prismatic joint has
secondary constraints in terms of a range and a lock, the former limiting the
working range of the constraint and the latter forcing the constraint to a fixed
position at zero-velocity.

A summary of the actuated joints can be found in Table 3.1. The angle
range of each constraint is included, as well as its force range and maximum
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Figure 3.4: A schematic illustration of the forestry crane manipulator, marking crane
parts (black) and joints (blue). Revolute joints are marked with curved arrows in the
direction of rotation, and prismatic joints are marked with straight arrows in the di-
rection of translation. q1, q2, q3, q4, q5 and q6 are actuated, whereas qf denote two non-
actuated revolute joints. q2f and q3f are non actuated joints, kinematically constrained
by q2 and q3. A more elaborate model description is provided in the text.
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speed. The position of the crane depicted in Figure 3.3 and 3.4 is the reference
position for the positions and angles of the joints, i.e. at this position, each
joint’s position or angle is 0.

The crane and the target log are placed on a horizontal, static floor. For
simplicity, the target log is modelled as a uniform cylinder of length 3 m, ra-
dius 0.08 m and mass 50 kg. The properties of the contact material between
the gripping claws and the surface material of the target log include a surface
uniform friction coefficient of 0.7, a uniform surface viscosity of 5 · 10−8 Pa · s,
a damping coefficient of 0.075 Nms/rad and a Young’s modulus of magnitude
4 · 108 N/m2.

Constraint Min Angle Max Angle Max Speed Max Force
q1 Revolute π

2 rad π
2 rad 1.0 rad/s ± 30 kNm

q2 Prismatic -0.17 m 0.19 m 0.1 m/s ± 800 kN
q3 Prismatic -0.01 m 0.84 m 0.4 m/s ± 400 kN
q4 Prismatic -1.25 m 0.94 m 1.0 m/s ± 400 kN
q5 Revolute -∞ ∞ 0.2 rad/s ± 8 kNm
q6 Prismatic -0.02 m 0.22 m 0.5 m/s ± 400 kN

Table 3.1: Summary of actuated joints, including the constraint type, maximum and
minimum angles, maximum motor speed and motor force (or torque) range for each
actuator.

3.4 Multi-Agent Approach
We have reduced the complete forwarding and grasping problem to a problem in
which the agent grasps a single log from a static vehicle on a horizontal surface.
This limits the number of degrees of freedom to seven, as discussed in the pre-
vious subsection. The multi-agent approach splits the complete grasping task
into two distinct tasks; a navigation task and a reduced-complexity grasping
task, where grasping is performed from close proximity to the target log. The
motivation is that performing the complete grasping task in a system dynam-
ically controlled by six actuators requires learning complicated behavior in a
natural sparse-reward setting. Exploring the environment efficiently enough to
grasp the target log, and thus beginning to learn task completion, is difficult,
especially in continuous state- and action spaces.

The agents, or sub-policies, performing each task are referred to as Agent
1 and Agent 2. The goal of Agent 1 is to navigate to and remain still with
the boom tip at a point 3.0 meter above the log centre of mass, and the goal
of Agent 2 is to grasp the target log and lift it from the ground starting from
the end-configuration of Agent 1. Agent 1 makes use of five degrees of freedom
controlling actuators q1, q2, q3, q4 and q5, i.e. all actuated joints except q6. q6
corresponds to the grasping motion of the grapple, which is considered redun-
dant in the navigation task. In the case of Agent 2, actuators q5 and q1 are
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locked, thereby restricting the rotation angle of the grapple to the current ro-
tation angle at the end-configuration of Agent 1, and restricting motion of the
crane to the xy-plane in the local coordinate system moving with q1.

3.4.1 Initial Condition
The initial condition of Agent 1 places the grapple above the vehicle’s load bunk,
with actuator angles according to Table 3.2. At the beginning of each episode,
the angles are slightly perturbed according to a uniform distribution over the
displayed ranges. The initial conditions should be viewed with the reference
position of the crane in mind, see Figure 3.3 and 3.4.

Constraint Initial Angle
q1 Revolute 0.000± 0.150 rad
q2 Prismatic 0.145± 0.003 m
q3 Prismatic 0.158± 0.005 m
q4 Prismatic 0.000± 0.150 m
q5 Revolute 0.000± 0.150 rad
q6 Prismatic 0.000± 0.000 m

Table 3.2: The initial condition ranges of the angle (or position) of each actu-
ated joint. The grapple prismatic q6 is initially open. The resulting initial Carte-
sian position of the boom tip in the global coordinate system is (−6, 96, 5, 33, 0.00) ±
(0.15, 0.07, 0.73) m.

To allow the agent to generalize its behavior to target logs at different posi-
tions, the initial position of the target log is randomly distributed over the area
highlighted in grey in Figure 3.5. This is referred to as the legal target log area.
The distribution of target log positions is uniform in the rθ-plane. The area
is designed such that the target log remains well within grasping reach of the
forestry crane manipulator. The target log position refers to the centre of mass.

The rotation of the target log about the y-axis is also drawn from a uniform
random distribution. To prevent the log from rotating beneath the vehicle, the
possible rotation angles linearly increase with the distance to the load bunk on
the interval [−π2 ,

π
2 ], reaching the upper limit only for logs no closer than the

right-angled distance of half a log length to the vehicle.
Agent 2 continues where Agent 1 leaves off. In the training of Agent 2, the

transition between the agents occurs when the boom tip of the crane constituting
Agent 1 reaches within a distance of 0.2 m from the target position.

3.4.2 State Space
An agent can observe the states of each actuated joint, as well as the Cartesian
target log position and the target log rotation about the y-axis. Thus, the state
space is continuous and assumes an external perception system. Each actuator
state consists of the actuator position or angle, the current force applied to the
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Figure 3.5: The legal target log area is highlighted in grey. The origo of the polar
coordinate system is located at the centre of mass of the fixed base of the forestry crane
manipulator. The dotted line marks the symmetry axis in the direction of the vehicle,
the end marking the initial position of the grapple in the xz-plane.

motor, as well as the current motor speed. Observations from the 7 previous
time steps are stacked to simulate short-term memory, and each observation
is normalized based on the running mean and standard deviation of previous
observations.

Agent 1 observes the states of actuators q1, q2, q3, q4 and q5. q6 is omitted
since information about the closing-opening motion of the grapple is redundant
in the navigation task. Accounting for the stacking of observations, the resulting
size of the state vector is then 152. For the first 7 steps, the state vector is
padded with zeros.

Agent 2 observes the states of the joints q2, q3, q4 and q6, as well as the Carte-
sian target log position. q1 and q5 are locked, since control of these joints are
redundant for completion of the Agent 2 task, and the corresponding actuator
states are not observed. With 8 stacked observations, the size of the Agent 2
state vector then amounts to 120.

3.4.3 Action Space
The agent is controlled by action signals given to the velocity-controlled motor of
each actuated joint. Agent 1 is controlled by the five actuated joints q1, q2, q3, q4
and q5, and receives action signals corresponding to the velocity changes of the
corresponding motors. Likewise, Agent 2 receives action signals controlling the
motor velocity changes of the four joints q2, q3, q4 and q6. The size of the action
vector is then 5 for Agent 1 and 4 for Agent 2. Upon receiving an action signal,
the motor tries to apply a force such that the corresponding velocity is reached
in the degree of freedom it controls. The force of the motor is, however, limited,
as described in Section 3.3.

The agents make a decision every other time step of each episode. Each
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action a is normalized to the interval a ∈ [−1, 1] of a continuous action space,
and the actions are then transformed to the corresponding velocity change of
the motor constraints. The maximum velocity change at each time step for
joints q1, q2, q3, q4 and q5 corresponds to a thirtieth of the maximum speed of
that particular joint. Thus, at zero-velocity, each joint requires 30 time steps
to reach maximum speed, which enforces a smoother velocity profile and limits
the acceleration of the crane. The limit is chosen to simulates the physical
restrictions of the machine more realistically, but has not been validated by
experts.

3.4.4 Reward Structure
The reward function of Agent 1 is shaped to incrementally reward the agent for
reaching a point 3.0 m above the target log centre of mass, and remain at this
point with the grapple in a grasping position, i.e. its rotation aligning with the
rotation of the log. The target point is referred to as the target position. The
reward function is presented in (3.1), where rt is the reward received at time
step t.

rt = pet · prt · rdt (1 + rst ) (3.1)

Here, rdt is a reward factor exponentially decreasing with the distance from
the boom tip to the target position. Similarly, when the boom tip is within
0.5 m from the target position, the factor rst awards the agent an exponentially
increasing reward inversely dependent on the extension speed of the telescope
and the distance between the boom tip and the target position. This is nec-
essary to prevent unnatural solutions in which the agent utilizes the kinematic
redundancy to hold the boom tip at the target position while still moving q2, q3
and q4 synchronously. rs is illustrated in Figure 3.7 e). It can be decomposed
into a speed dependent part rs1 and a distance dependent part rs2 , such that
rs = rs1rs2 . The two components are illustrated in Figure 3.7 c) and d). Figure
3.7 a) illustrates the distance reward rd.

pet is a penalty factor scaling down the reward if the telescope extension
exceeds the angle range of q4, specified in Table 3.1. This avoids illegal solutions
where the grapple is held still by continuously applying force at the maximum
or minimum telescope extensions. Finally, prt is a factor scaling down the reward
depending on the relative rotation of the grapple and the target log. Figure 3.7
a) and b) illustrate pe and pr, respectively.

Moreover, the agent is penalized for illegal behavior. These include the
grapple colliding with the load bunk, the ground or the wheels of the vehicle,
q1 moving beyond 98% of its working angle range, and q2 or q3 reaching within
98% of the maximum or minimum limit of their respective force ranges (see
Table 3.1). If an illegal move is detected, the agent is awarded a zero-reward
and the episode is terminated prematurely.

The reward function of Agent 2 relies less on reward shaping. Initially, the
reward function (3.1) applies with the target position 1.3 m above the centre of
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Figure 3.6: The total unpenalized reward function r = rd(1 + rs). The reward at
each time step is dependent on the distance between the boom tip of the crane and the
target position, as well as on the telescope extension speed.

mass of the target log, such that the grapple claws are placed slightly above the
surface of the log. The reward increases when the log is secured in the grapple,
which defines a successful grasp. When the log is in contact with both grapple
claws, the current reward increases by a factor of 2. If the target log is moved
one radius in the y-direction, while in contact with both grapple claws and the
upper part of the grapple, the grasp is considered a success and the reward
instead increases by a factor of 10.

Agent 2 is penalized for the same illegal behaviors as Agent 1, the only
difference being the endorsement of collisions between the grapple claws and
the ground for Agent 2.

3.5 Single-Agent Approach
The single-agent approach solves the forwarding problem identical to the prob-
lem solved by the two agents of the multi-agent approach, but, as the name
suggests, uses a single agent to perform the task of both navigating to and
grasping the single log from a static, horizontal surfaced vehicle. This is done
using curriculum learning; see Section 2.4.3 for theoretical details. With this
approach, an additional experiment is carried out in which energy optimization
is added to the goal of the agent. The remainder of this section details the state
space, action space and reward structure used, as well as the different curricula
investigated. In this approach, no actuated joint is locked and all six actuated
joints are controlled by the agent.

56



3.5.1 State Space
The observation space is similar to that of Agent 1 in the multi-agent approach,
see Section 3.4.2. The only difference is that the states of all actuated joints
(q1, q2, q3, q4, q5 and q6) are observed. In addition to the actuator states, the
Cartesian target log position and the target log rotation about the y-axis is
observed. Thus, accounting for the stacked observations, the state vector length
is 176.

3.5.2 Action Space
Identical to the multi-agent approach, the agent makes a decision every other
time step, the action space is continuous and each action corresponds to a
velocity change of each motor constraint. The action space is similar to that of
Agent 2 in the multi-agent approach (see Section 3.4.3), although in this case
all actuated joints (q1, q2, q3, q4, q5 and q6) are controlled. Thus, the length of
the action vector is 6.

3.5.3 Reward Structure
The reward structure is similar to that of Agent 2 in the multi-agent approach,
see Section 3.4.4, the difference being that the agent is given a total cumulative
reward of 10 000 when the log is secured in the grapple, upon which the episode
is terminated. In practice, this means that the shaped reward function incre-
mentally increasing the agent’s reward as it navigates to the target position is
negligible in the total return after the agent has learned a grasping behavior.

An additional experiment is carried out in which the reward received upon
successful grasps is scaled by the inverted ratio between the current total energy
consumed by the agent, and the average total energy consumed by an agent
based on the corresponding curriculum without energy optimization. Thus, the
agent is given incentive to perform the grasping task as energy efficiently as
possible. The total energy is defined as the energy consumed by constraints
q1q2, q3 and q4 up until the grasping initiation, i.e. only the energy consumed
as the crane moves towards the target log is measured.

3.5.4 Curriculum
In order to gradually increase the difficulty of the problem, the height of the
floor on which the target log is resting relative to the grapple varies with the
lessons constituting the curricula of the curriculum learning training process.
We investigate three different curricula, where the height of the floor is decreased
with intervals of 0.5 m, 0.1 m and 0.01 m, respectively.

The initial condition in terms of the actuator states is identical to that of
Agent 1 (see Section 3.4.1), and the legal target log area at the final lesson in
each curriculum is identical to that of Figure 3.5. As such, the final task solved
by each approach is the same. A major difficulty lies in the sparse reward setting
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accompanying the grasping task. Using the multi-agent approach, the combined
behavior of the agents may not converge to the optimal grasping behavior of
a single agent. Using curriculum learning, the difficulty is gradually increased
which, ideally, increases learning speed, performance and the probability of
finding the optimal grasping behavior.

Under the hypothesis that the learning process using a single agent is slow
due to the few grasping attempts occurring during the training, the curricula
investigated initially places the target log in close proximity to the grapple,
gradually increasing the distance. Since no path planner is implemented, this is
realized by gradually changing the height of the floor on which the target log is
placed, and varying the legal area for the initial target log position.

Three curricula is investigated. The first four lessons are common to all
three of them with a floor height of 3.55 m, placing the log directly beneath the
grapple and above the vehicle’s load bunk. In lesson 2-4 the legal target log area
gradually shifts to the side of the load bunk. This is illustrated in Figure 3.8 a)
to d). Since the area where the manipulator can successfully grasp the target
log varies depending on the height of the target log relative to the ground, a
further gradual shift of the area occurs with the floor height. Thus, in succeeding
lessons, the inner and outer radii of the circles enclosing the blue area in e.g.
Figure 3.8 c) varies linearly with the floor height throughout the curricula.
This is where the three curricula diverge: The floor of the first curriculum is
lowered 0.5 m between later lessons, while the corresponding number is 1 dm
for curriculum 2 and 1 cm for curriculum 3. While the increase in difficulty
between lessons is greater in the first curriculum compared to the second and
third curricula, the number of lessons is significantly lower.

The agent advances to the succeeding lesson after obtaining an average re-
turn of 3000 over 20 subsequent episodes. With the reward structure defined in
the previous subsection, this corresponds to a grasping success rate of 30%. The
comparatively low threshold is chosen to prevent specialisation on the tasks of
early lessons, since this may be destructive to the learning process of the final
task. Table 3.3 shows the total number of lessons and the floor height varia-
tion throughout each curriculum. Figure 3.8 e) and f) illustrate the gradually
expanding legal target position area at two later lessons of the first curriculum.

Collisions between the grapple claws and the static height-adjustable floor
are disabled throughout the curriculum, while collisions between the grapple
claws and the ground remain. This reduces the task complexity in earlier lessons,
and forces the agent to learn to adjust its motion relative to the ground level at
the final lessons, after mastering the grasping behavior.

3.6 Training Configuration & Architecture
This section details the neural network architecture and the hyperparameters
of the PPO algorithm used, as well as important global simulation parameters.
These are common to both the multi-agent and the single-agent approach.

The simulation time step is 0.02 s. The agent makes a decision every other
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Curriculum 1
Lesson Height [m]

1 3.55
2 3.55
3 3.55
4 3.55
5 3.30
6 3.00
7 2.50
8 2.00
: :

12 0.00

Curriculum 2
Lesson Height [m]

1 3.55
2 3.55
3 3.55
4 3.55
5 3.50
6 3.40
7 3.30
8 3.20
: :

42 0.00

Curriculum 3
Lesson Height [m]

1 3.55
2 3.55
3 3.55
4 3.55
5 3.54
6 3.53
7 3.52
8 3.51
: :

361 0.00

Table 3.3: The number of lessons until ground level in each curriculum, and the floor
height corresponding to each lesson.

time step and the maximum length of an episode is 2000 time steps for Agent
1, and 400 time steps for Agent 2. The deep learning architecture consists of a
3-hidden layer feedforward neural network with 256 neurons in each layer.

The PPO hyperparameters used are the linear learning rate α = 0.001, the
clipping parameter ε = 0.3, the entropy regularization coefficient β = 0.01, the
GAE parameter λ = 0.95 and the discount factor γ = 0.995. See Section 2.3.5
on PPO for details on these hyperparameters. The number of epochs is 3, the
mini-batch size 2024 and the buffer size 20240. Each training session is run
using 8 parallel environments.

3.7 Safety, Ethics & Responsibility
With today’s progress in the development of artificially intelligent (AI) sys-
tems, ongoing discussions regarding responsible development of trustworthy AI
systems in terms of ethics and safety aspects have become increasingly impor-
tant. To this end, the European Commission has established an independent
High-Level Expert Group on Artificial Intelligence (AI HLEG), which recently
released a collection of ethics guidelines for Trustworthy AI (AI HLEG, 2019).
These guidelines state a number of requirements for responsible AI development
covering various areas, including ethics (e.g. non-discrimination and data pro-
tection) and safety (e.g. social and technical robustness to avoid unintentional
harm).

Our work is exclusively conducted in simulated environments and the imme-
diate implications are therefore small. While the current application area likely
provides natural adherence to ethical imperatives, it is important to be aware
of safety aspects at this stage, as these kinds of autonomous systems require
advanced safety systems to be deployed during operation in order to avoid un-
intentionally harming bystanders, the environment, or the physical machine. In

59



this case, the agent is given the positional coordinates of the target log directly,
which assumes the existence of an external perception system that can map
the scene to these coordinates. Since the current network is blind to external
obstacles and unexpected environmental changes, and thus cannot be trained
to react to them, a deployed model needs to be monitored by an operator that
can intervene in case of an upcoming safety breach. A separate network for
visual perception of the scene allows for greater flexibility in the incorporation
of more sophisticated and autonomous safety systems, but even without visual
sensors it may be possible to train the network to detect and react to unexpected
behavior. This is an important perspective for future research.
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(a) The agent is penalized if constraint q4
exceeds the angle range specified in Table 3.1,
at which point the scale factor exponentially
decreases.

(b) The agent is penalized if the grapple ro-
tation at all deviates from the rotation of the
target log, and the reward is 0 if the relative
rotation exceeds 1 rad.

(c) The speed dependent part rs1 of the speed
reward rs increases exponentially with the
decreasing telescope extension speed below a
speed of 0.3 m/s, beyond which threshold the
reward factor is 0.

(d) The distance dependent part rs2 of the
speed reward rs increases linearly with de-
creasing distance from the boom tip of the
crane to the target position. The scale factor
is 0 for distances exceeding 0.5 m.

(e) The total speed reward rs, depending on
both the telescope extension speed and the
distance between the boom tip of the crane
and the target position.

(f) The distance reward rd decreases expo-
nentially with the distance between the boom
tip of the crane and the target position, and
becomes 0 beyond a distance of 6 m.

Figure 3.7: Illustrative descriptions of the components of the total reward function
3.1 used during training of Agent 1.
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(a) Legal target log area (blue) during lesson
2, with floor height 3.55 m. Also visible is
the legal area at the final lesson (grey).

(b) Legal target log area (blue) during lesson
2, with floor height 3.55 m. Also visible is
the legal area at the final lesson (grey).

(c) Legal target log area (blue) during lesson
3, with floor height 3.55 m. Also visible is
the legal area at the final lesson (grey).

(d) Legal target log area (blue) during lesson
4, with floor height 3.55 m. Also visible is
the legal area at the final lesson (grey).

(e) Legal target log area (blue) during lesson
8, with floor height 2.0 m. Also visible is the
legal area at the final lesson (grey).

(f) Legal target log area (blue) during the fi-
nal lesson. The floor height is 0.0 m.

Figure 3.8: Legal target area for different lessons of one of the curricula. The total
number of lessons is 12 and the floor is lowered 0.5 m each lesson after lesson 4.
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Chapter 4
Results

This section summarizes the results obtained using the multi-agent approach
and the single-agent approach, as well as results obtained in the evaluation of
the robustness of the final models of the single-agent approach. A more thorough
discussion of the results presented here is found in Chapter 5.

4.1 Multi-Agent Approach
Figure 4.1 a) shows the Agent 1 learning progress in terms of average episodic
return over time for the best model obtained. The corresponding results for
Agent 2 are presented in Figure 4.1 b). See Section 3.4.4 for details on the
reward structures and goals of the agents. Both agents are trained for 10 million
training steps.

The final Agent 1 model is able to reach the target position with a suc-
cess rate of 99.6% over 1000 consecutive episodes. Episodes constituting the
remaining 0.4% are prematurely interrupted due to illegal behavior, in this case
exceeding the working range of q1. In 94.8% of the successful episodes, the
distance between the boom tip and the target position is within 0.2 m at the
final time step, the maximum distance from which Agent 2 is initialized. The
following evaluation of the success of Agent 1 is based on the 99.6% successful
episodes.

Figure 4.2 a) shows the Kernel Density Estimate (KDE) of the absolute
distance between the boom tip and the target position at the final time step
of each episode. This illustrates the precision with which Agent 1 is able to
reach its goal, and the mean distance is 0.08 m. The deviation between the
boom tip and target position is generally larger in the z−direction, according
to Figure 4.3. Besides minimizing the distance between the boom tip and the
target position, Agent 1 is rewarded for minimizing the telescope speed when the
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(a) (b)

Figure 4.1: a) The learning progress of Agent 1 in terms of time evolution of the
average episodic return. b) Corresponding learning progress for Agent 2.

boom tip is in close proximity to the target position. The q4 velocity measured
at the final time step is 0.00± 0.04 m/s, according to the distribution presented
in Figure 4.2 b).

Agent 1 is also penalized for deviations between the global grapple rotation
and the rotation of the target log about the global y−axis. Figure 4.4 a) shows
the correlation between the global grapple rotation and the target log rotation.
The q5 rotation error is illustrated in the KDE of the relative rotation angle
presented in Figure 4.4 b).

(a) (b)

Figure 4.2: a) KDE of the absolute distance between the boom tip and the target
position at the final time step of successful episodes. b) KDE of the telescope velocity
(q4 velocity) at the final time step of successful episodes.

Agent 2 is able to successfully grasp 76.3% of target logs over 1000 con-
secutive episodes. Of the failed grasping attempts, 54.7% fails due to illegal
behavior, specifically collisions between the crane’s inner boom and the load
bunk. The remaining failed attempts occur when the grasping motion of q6 fails
to secure the log in the grapple as a result of unsuccessful coordination between
the motion of each joint. In the case of both Agent 1 and Agent 2, no correlation
between the success of the agents and the initial target log position is identified.
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(a) (b)

Figure 4.3: a) KDE of the distance between the boom tip and the target position in
the xz−plane at the final time step of successful episodes. b) Corresponding KDE of
the distance in the xy-plane.

(a) (b)

Figure 4.4: a) Correlation between grapple rotation and target log rotation in the
global coordinate system. b) KDE of the relative grapple-target log rotation.

4.2 Single-Agent Approach
Several models, with differences in curricula and reward structures, are obtained
using the single-agent approach; see Section 3.5.3 and 3.5.4 for details. To ease
comparison between models trained on different curricula, each model based on
Curriculum 1, 2 and 3 are trained from lesson 4, inheriting knowledge from the
best agent trained on lesson 1-4, since these lessons are common to all curricula.
Figure 4.1 a) shows the learning progress, in terms of episodic return over time,
for three independent agents trained on lesson 1-4. This illustrates examples
of the deviation in the learning progress observed between training sessions.
The corresponding lesson transitions are presented in Figure 4.5 b). The agents
need a slightly different number of training steps to reach the cumulative reward
threshold required to move to the next lesson. The agent trained using Training
Session C completes lesson 4 in the least number of steps and arrives at the
highest cumulative reward. This model is used to initialize the training sessions
of agents trained using the different curricula presented below.

The best models obtained using Curricula 1, 2 and 3 are presented in Figure
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4.6 a), with corresponding lesson transitions presented in Figure 4.6 b). The
best average episodic return is achieved by the model based on Curriculum 2,
and the energy optimized agent is trained on this curriculum. The learning
progress for the energy optimized model is displayed in Figure 4.7. The former
models are trained for 30 million time steps, at which point the episodic return
shows a stabilizing tendency close to the theoretically maximum total return of
10000. This corresponds to training sessions consisting of approximately 150 000
episodes, depending on the length of each episode. The energy optimized model
has no theoretical return limit and the average return has still not stabilized
after 80 million training steps, at which point training is interrupted and the
model is evaluated. The following results should be viewed in light of these
training results.

To show the variation in the learning progress between different training
sessions of agents trained on an identical curriculum, the learning progress of
three different training sessions using Curriculum 2 is presented in Figure 4.8.
The corresponding lesson transitions are presented in Figure 4.8 b).

(a) (b)

Figure 4.5: a) The learning progress during the first four lessons for three different
agents. b) Corresponding lesson transitions.

(a) (b)

Figure 4.6: a) The learning progress for agents trained on Curriculum 1,2 and 3,
respectively. b) Corresponding lesson transitions.

The definition of a successful grasp, i.e. when the agent is able to secure
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Figure 4.7: The learning progress of the agent trained on Curriculum 2 with energy
optimization.

(a) (b)

Figure 4.8: a) The learning progress for three agents trained on Curriculum 2. b)
Corresponding lesson transitions.

the target log in its grapple, is given in Section 3.4.4. The best model in terms
of grasping success rate is obtained using Curriculum 2, for which the grasping
success rate is 97.4% over 1000 episodes. This can be compared to the success
rates of 88.4% and 88.0% for the best models based on Curriculum 1 and 3,
respectively. At 80 million training steps, the energy optimized Curriculum
2-based model reaches a success rate of 80.7% over 1000 episodes. Here, the
scale factor used in the reward function (see Section 3.5.3) is 8.3 kJ; the mean
episodic energy consumption of the Curriculum 2-based model without energy
optimization.

The following evaluation of the control policies of each model is based on
episodes during which successful grasping occurs. To compare the solutions
of different models, the end-configuration of the crane is defined as the crane
configuration at grasping initiation, up to which point the energy consumption
is measured, as described in Section 3.5.3. The reason for this is that a large
part of the total energy is consumed during grasping, and our goal is to measure
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the difference in energy consumption depending on how the crane reaches the
target log depending on the learned control policy.

Figure 4.9 shows a KDE of the end-configuration angle (or position) for each
constraint q1, q2, q3 and q4, over successful episodes for the best models based
on Curriculum 1, 2 and 3, as well as the Curriculum 2-based energy optimized
model.

(a) (b)

(c) (d)

Figure 4.9: Distribution of end-configuration angles for constraints q1, q2, q3 and q4
using the best models based on Curriculum 1, 2 and 3, as well as the energy optimized
model based on Curriculum 2.

A KDE of the total energy consumption of constraints q1, q2, q3 and q4 is dis-
played in Figure 4.15 a) - d) for the four models. The corresponding distribution
of the total energy consumption is presented in Figure 4.15 e). As can be seen,
the mean energy consumed using the energy optimized model is significantly
lower than the corresponding energy consumption of all non-energy optimized
models. In this case, the mean energy consumed using the energy optimized
model is 3.46 kJ, compared to 8.31 kJ for successful episodes using the same
curriculum without energy optimization. This corresponds to a decrease in the
total energy consumption of 58.4%. The mean energy consumption for the best
model obtained using Curriculum 1 and 3 is 5.87 kJ and 6.79 kJ, corresponding
to an energy decrease of 41.1% and 49.0%, respectively, in the energy optimized
model.

On average, a grasping cycle takes 3.5 seconds for the model based on Cur-
riculum 2, compared to 4.6 seconds for the energy optimized model. For the
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models based on Curriculum 1 and 3 the corresponding grasping cycle time is
3.8 and 3.9 seconds, respectively. Figure 4.10 shows the boom tip speed during
five different grasping cycles using the model based on Curriculum 2 and the
energy-optimized model, illustrating the smoother and lower boom tip speed
profiles generally obtained by the energy-optimized model. The log position
and orientation for each of the five example cycles are distributed across the
target domain.

Observations suggest a general reduction in the magnitude of the grapple
oscillations relative to the boom tip in the energy optimized model compared
to the corresponding non-energy optimized model. An example illustrating
this for one of the grasping cycles is presented in Figure 4.11 a). The boom
tip acceleration profile during the corresponding grasping cycle is presented in
Figure 4.11 b).

Figure 4.10: Boom tip speed variation during five different grasping cycles using
the Curriculum 2-based model (solid) and the corresponding energy-optimized model
(dashed). Each color refers to cycles with a specific log position and orientation.

Figure 4.12 a) shows the log distribution for successful grasps in the legal
target log area for the best Curriculum 2-based model. The log distribution is
similar for the models based on Curriculum 1 and 3, and across these models no
clear correlation between failed or successful grasping attempts and the target
log position is found. Figure 4.12 b) shows the corresponding target log dis-
tribution for successful episodes during different stages of the training session
for the energy optimized model. Green dots represent the target log position
after 40 million training steps, black dots represent the corresponding target
log position after 60 million training steps, and blue dots represent the target
log position for successful grasps after 80 million training steps. Following the
notation of the polar coordinate system introduced in Figure 3.5, we can see
that the final distribution in the rθ−plane is similar to that of Figure 4.12 a),
and that the energy optimized model initially fails at grasping logs at low-radii
positions. As the training progresses, the agent successively learns to master the
grasping of logs at lower radii at the same rate as logs positioned at higher radii.

69



(a) (b)

Figure 4.11: a) The grapple speed (dashed), defined as the speed of a point at the
centre of the grapple claws, and the boom tip speed (solid) during a grasping cycle
using both the Curriculum 2-based model (blue) and the corresponding energy-optimized
model (green). b) The boom tip acceleration during the grasping cycle selected in a)
for the Curriculum 2-based model (blue) and the corresponding energy-optimized model
(green).

Figure 4.13 shows that for the energy optimized model, there is a correlation
between the radial position of the target log and the total energy consumption
of the crane, which may explain this observation.

(a) (b)

Figure 4.12: Distribution of the log position (blue) over the legal target area (grey)
in the xz-plane for successful grasps using the best Curriculum 2-based model. The
legal target log area is highlighted in grey. b) Corresponding distribution of the log
position of successful grasps using the energy optimized model trained for 40 million
steps (green), 60 million steps (black) and 80 million steps (blue).

To investigate the robustness of the models to unexpected environmental
changes, the success rate is measured for each model with target logs resting
on floors at heights above ground level. This simulates the model robustness to
uneven terrains. The robustness of each model to varying target log heights is
demonstrated in Figure 4.14.

Moreover, the model robustness is evaluated by analysing the model response
to additional crane oscillations. This is done by measuring the impact on the
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Figure 4.13: Correlation between the radial target log position in the rθ−plane and
the total energy consumption for the energy optimized model.

Figure 4.14: Success rate variation with the target log height above the ground for
the best models based on Curriculum 1, 2 and 3 without energy optimization, as well
as for the Curriculum 2-based energy optimized model.
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success rate of each model when the crane is exposed to increased oscillations
due to the natural dynamical motion of the vehicle during grasping, despite
being trained to grasp logs with a crane mounted on a static vehicle. The
increased oscillatory crane motion induced by a dynamic vehicle are referred to
as crane oscillations or crane vibrations. The magnitude of these are estimated
by the episodic mean and standard deviation of the positional variation of the
rigid body on which the base of the crane is mounted. This rigid body is
never static, but its motion is negligible under a static vehicle. The mean of
these measurements over 1000 episodes is presented in Table 4.1, along with
the impact on the success rate of the increased crane vibrations. The positional
offset of the rigid body in the static and the dynamic case is −0.77 cm in the
x−direction, −10.9 cm in the y−direction and −3.4 cm in the z−direction.

Model x [cm] y [cm] z [cm] Success Rate
Curriculum 1 0.74 (0.81) 5.5 (2.3) 0.05 (0.78) 0.562 [0.884]
Curriculum 2 -0.18 (0.75) 5.4 (2.4) 0.07 (0.82) 0.810 [0.974]
Curriculum 3 0.15 (0.74) 5.6 (2.2) 0.11 (0.73) 0.274 [0.880]

Energy Optimized 0.70 (0.65) 5.4 (2.3) 0.09 (0.59) 0.270 [0.807]

Table 4.1: Size of crane vibrations in terms of the positional variation of the rigid body
on which the base of the crane is mounted. Displayed is the mean episodic positional
variation in the x, y− and z−direction along with the corresponding mean standard
deviation (parenthesis) and the success rate for each of the four models (original success
rate in brackets).
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(a) (b)

(c) (d)

(e)

Figure 4.15: Distribution of the total energy consumption and the energy consumption
for constraints q1, q2, q3 and q4 using the best models based on Curriculum 1, 2 and 3,
as well as the energy optimized Curriculum 2-based model.
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Chapter 5
Discussion

The results presented in Chapter 4 show that the grasping motion of a forestry
crane manipulator can be automated in a simulated environment using both the
multi-agent and the single-agent reinforcement learning approaches described in
Chapter 3. This section aims to discuss and analyse these results.

5.1 Multi-Agent Approach
In the multi-agent approach, the applied reward functions yield stable training
processes for both Agent 1 and Agent 2, as displayed in Figure 4.1. Agent 1
reaches a high success rate, with a mean distance of less than 10 cm between
the boom tip of the crane and the target position. The true distance is often
much smaller than this, as can be seen in Figure 4.2 a). A higher precision is
not required in order to accomplish the task at hand. In fact, our results show
that an Agent 1 precision of 0.2 m is enough to reach a grasping success rate
exceeding 76% for Agent 2, and while no such measurements have been carried
out in this work, it is likely unnecessary for a human operator to reach a higher
navigation precision than what is reached by Agent 1. Since our implementation
prevents transitions between the agents with an Agent 1 precision of less than
0.2 m, it is possible that utilizing the full precision of Agent 1 would generate
a higher grasping success rate of Agent 2 with the current setup and reward
structure. Likewise, the target position of Agent 1 is fairly arbitrarily chosen,
and an optimal subtask-division of the global task in the multi-agent approach
is a welcomed subject for future work.

It should be noted that not all training sessions result in a stable learning
process and that some agents never learn using the setup and reward struc-
ture investigated in this thesis. Similar learning behavior can be observed using
the single-agent approach. While no statistics on the success and stability of
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learning processes over multiple independent training sessions have been inves-
tigated, it is an interesting perspective for future work as the corresponding
analyses could prove useful in future development of autonomous systems in
simulated environments.

The Agent 1 results presented in Figure 4.2 and 4.3 suggest that the final
q4 velocity and the final boom tip position of the crane are oscillating slightly
about zero-velocity at the target position, with the boom tip and telescope
practically remaining still very close to the target position. As a completely
static crane motion at the target position cannot be expected by an agent for
which all actuated constraints remain free, these results are promising. As can
be seen in Figure 4.3 a), the deviation between the boom tip and the target
position at the final time step is slightly larger in the z−direction than in the
x− and y−direction. While the deviation in the y−direction is expected to
be smaller than the deviation in the xz−plane since the crane motion in this
direction is dependent on one less degree of freedom, the relative deviation in
the x− and z−direction may simply result from the stochastic nature of the
learning process.

The goal of Agent 1 could only be accomplished by shaping the reward
function to prevent the agent from finding illegal solutions. Such illegal behavior
include colliding with the load bunk, exploiting the working range of certain
joints and inefficiently taking advantage of the redundant kinematics of the
crane. While the agent may be able to learn to avoid collisions even without
such penalties, this may in theory lead to actual collision-based strategies, which
can, of course, not be applied to a physical machine. The same is true for the
illegal solution in which the agent comes up with a strategy to remain close to the
target position by applying maximum motor force to q4, pushing the telescope
towards either working range limit. Other illegal behavior observed in early
control policies are connected to the redundant kinematical crane configuration,
expressed through coordinated motion of q2, q3 and q4 in order for the boom tip
to remain at the target position. This may not damage the physical machine
but can be destructive in other ways, for example in terms of energy efficiency.
In our work, the goal of Agent 1 is to navigate to and reach zero-velocity at
the target position. In the practical application, the forestry crane manipulator
is not required to remain at a target position for any amount of time before
the transition to Agent 2 can occur, but the results are interesting nonetheless,
and the conclusions drawn can be applicable to other systems exhibiting similar
redundancy.

The learning response to the grapple rotation goal of Agent 1 shows highly
promising results, with the mean deviation between the rotation of the grapple
and the rotation of the target log amounting to a mere 0.73 degrees. The high
rotational precision is independent on the target log rotation, as can be seen in
Figure 4.4. These results show that scaling down the reward to reach a sub-goal
can be efficient, and that adding positive reward factors is not always necessary.
In itself, the sub-goal of rotating the grapple correctly is not trivial, as it requires
coordination between q1 and q5, but it is not as complex as coordinating all six
actuated joints correctly to perform the complete grasping task.
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Early results showed that solving the complete grasping task with reward
structures similar to those investigated here was not possible without either
dividing the main task into subtasks and learning one policy for each subtask,
or using a curriculum to ease learning of a single policy to complete the grasping
task in its entirety. As presented in Chapter 4, the success rate of Agent 2 is
high but not perfect, and significantly lower than the success rates obtained
using the single-agent approach. This is not necessarily an approach-specific
conclusion, and the comparatively low success rate of Agent 2 can likely rather
be explained by the solution favoured by the control policy learned by the agent.
Observations suggest that the solution of Agent 2 relies heavily on the motion of
the crane’s inner boom, controlled by q2. Indeed, failed grasping attempts often
result from collisions between the inner boom and the load bunk. As Figure
4.1 suggests, there may be room for improvements in the policy learned by
Agent 2, as it cannot be ruled out that a longer training time could increase the
performance further. Due to time-limitations, training Agent 2 more excessively
was not possible, but it is not implausible that the agent may be able to master
the grasping task with greater precision and adjust its solution to avoid collisions
and increase coordination if allowed more time to learn. Moreover, the initial
position of Agent 2 is dependent on the final control policy learned by Agent
1. Thus, it is not unlikely that other solutions to the navigation task, or other
transitions between the agents, may ease learning and improve the performance
of Agent 2 in the multi-agent approach.

A second observation regarding the solution of Agent 2 is that it only at-
tempts to grasp the log once each episode. This is contrary to the resulting
behavior of several control policies in the single-agent approach. According to
our results, these agents often initialize a second attempt at grasping the target
log after failing the initial grasping attempt, though this is not the case for all
models and is likely dependent on the agent’s state after the initial grasping
attempt along with the particular experience accumulated during training. The
major difference between the reward structures is that the agent in the single-
agent approach is given a very high, discrete reward for succeeding to grasp
the target log, whereas Agent 2 can accumulate rewards by remaining in close
proximity to the target log even after failing to grasp it. Of course, the reward
function theoretically incentivizes Agent 2 to re-grasp the log, but this is cur-
rently not reflected in the resulting behavior of the learned control policy. Since
Agent 2 is not free to move q1, a plausible explanation is that it is impossible to
complete a successful second attempt if the initial attempt leads to a positional
relocation of the target log. Locking several degrees of freedom reduces the
number of parameters to learn during the training process, but simultaneously
limits the flexibility of the agent to respond to unforeseen circumstances.

In light of this, the single-agent approach may be better suited for the un-
structured forest environment of the current context, since the learning of flexi-
ble behavior requiring cooperation between multiple agents further complicates
the learning process and our results show that success in the grasping task is
possible to achieve with a single agent. However, dividing the entire forwarding
task into subtasks is likely inevitable, and the results obtained using the multi-
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agent approach show that transition between multiple agents is possible in this
context, but that it is important to investigate how the subtask-division is best
implemented in practice.

5.2 Single-Agent Approach
The results obtained by the single-agent approach show that it is possible to
achieve high success rates for agents trained to perform the entire grasping task
using a single control policy. The best single-agent model in terms of success
rate is the non-energy optimized model trained on Curriculum 2, which achieves
the nearly perfect success rate of 97.4%. The best models obtained using each
curriculum exceeds 88%, while the energy optimized model reaches a success
rate of just above 80%.

5.2.1 Learning Process
Figure 4.6 and 4.7 illustrate that the learning process is stable in all cases, but
as discussed, occurrences of training sessions in which the agents fail to learn
altogether, or in which learning is slow or unstable, have also been observed.
Moreover, no extensive hyper-parameter search has been performed, and a set of
parameters generating higher performance may be possible to obtain in future
research.

The learning process of the lessons common to all curricula, presented in
Figure 4.5 for three independent training sessions, shows that there is not much
deviation between the learning progress of each training session. Thus, it is likely
that training agents from the first lesson yields differences specific to the current
curriculum. Figure 4.8 shows that deviations between training sessions are larger
for models trained on the full curriculum. In this case, the differences in the
average episodic return obtained are larger between different models trained on
the same curriculum than between the best models obtained using the various
curricula. Though the final average episodic return obtained during the training
session directly relates to the success rate of the final model, this is, however, not
directly correlated with the behavior resulting from the learned control policy.
In general, the solutions of Curriculum 2-based models show common traits
differing from the solutions obtained by agents trained on Curriculum 1 and 3,
and also from the solution obtained by the energy optimized model.

It is interesting to note that the best model overall, i.e. the best model
obtained using Curriculum 2, reaches the final lesson faster than agents trained
using Curriculum 1 and 3, which can be seen in Figure 4.6 b). Though Figure
4.8 b) shows that the time required for an agent to reach the final lesson varies
between agents within a curriculum, it can be concluded based on our observa-
tions that agents trained on Curriculum 2 reaches the final lesson faster than
agents trained on the remaining curricula. This may partly explain the high
success rate obtained by the best Curriculum 2-based model, since this agent
has spent more time learning the specific task on which it is evaluated. The
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success rates obtained by the best agents trained on Curriculum 1 and 3 are
similar to one another, reaching slightly above 88%, and Figure 4.6 b) shows
that these agents have spent a similar amount of time on ground level. This is
not a general rule, however, since Figure 4.8 suggests a lower success rate for
the other models trained on Curriculum 2, despite reaching the final lesson in
a smaller amount of training time.

5.2.2 Solution
Due to the redundant kinematics of the crane configuration, there exists an in-
finite number of different solutions in order for the agent to successfully grasp
a single log at a fixed position. Figure 4.9 illustrates some of the differences be-
tween the solutions obtained by the best agents trained on the different curricula
in terms of the joint angle distributions of their respective end-configuration,
where the end-configuration is defined as the configuration of the crane at the
moment of grasping initiation.

It is evident that the best Curriculum 2-based model relies excessively on the
use of q4, unlike the other models. Thus, it reaches far out with the telescope of
the crane, nearing the maximum working range independent of the log position.
In contrast, the model based on Curriculum 1 has found a solution in which the
telescope is contracting in the general case. As a consequence, it compensates
by higher link activation of q2, which moves the crane’s inner boom. The trade-
off for the agent trained on Curriculum 2 is the minimal use of q2 compared to
the other agents, which reduces the risk of collisions between the inner boom
and the load bunk.

The agent trained on Curriculum 3 has found a solution in which it alter-
nates between the usage of q2, q3 and q4 using a larger portion of the working
range for each joint. These observations show possible effects of using differ-
ent curricula, but further research should be carried out in order to conclude
whether these differences are statistically dependent on the curriculum or arise
due to the stochastic nature of the learning algorithms. Comparisons to the so-
lutions obtained by the energy optimized model is perhaps the most interesting.
This is discussed in the following subsection.

5.2.3 Energy Optimization
As we have seen, the total energy consumption decreases by almost 60% in the
energy optimized model compared to the non-energy optimized model based on
the corresponding curriculum, and over 40% compared to the agents trained on
Curriculum 1 and 3. Analysing the end-configuration distributions presented
in Figure 4.9, it is evident that, in general, the energy optimized model relies
far more on q2 and far less on q3 than the other models. This is reasonable, as
the consumed energy can be minimized by taking advantage of gravity to the
largest extent possible. The energy optimized model also restricts usage of q4.
While it covers the necessary part of the working range, the mean angle remains
close to the initial condition. This is also expected, as the energy consumed by

78



q4 is directly correlated with the high energy consumption of the Curriculum
2-based model, which relies heavily on the use of q4. By adopting this strategy,
the energy optimized model relies on the most energy efficient joint, q2, while
minimizing the energy consumed by q3 and q4 by using these links to a smaller
extent. Moving the inner boom with gravity reduces the energy consumption
the most, since q2 carries the largest total crane weight and can take advantage
of gravity independent on the activation of the other links. Both the outer boom
(q3) and the telescope (q4) can, however, also move in ways that take advantage
of the gravitational effects, and with certain coordination q4 can also utilize the
centripetal force of the rotating motion of the crane due to activation of q1 to
reduce the total energy consumption. Observations show that this is indeed
the case for the energy optimized model. For example, it is explicitly observed
that the learned control policy often results in the agent adjusting the telescope
position upon coordination of the remaining joints such that this can be done
in the direction of gravity at the end of the episode.

In general, the energy optimized model also uses q1 slightly less than the
other models, despite the fact that the motion and energy consumption of q1
is not affected by the redundant kinematics or gravitational pull on the crane.
Instead, its motion is largely restricted to the position of the target log, limiting
the available energy optimization strategies for q1. However, due to the large
inertia of the crane, q1 activation has a large effect on the total energy con-
sumption and the reduction in q1 activation may result from a strategy aiming
to grasp the log from the minimal q1 angle possible. The difference in the energy
consumed by q1 compared to the other models is indeed significant, as can be
seen in Figure 4.15 a).

Of course, the energy consumption is not necessarily directly correlated with
the end-configuration, as the energy consumption is dependent on for example
the acceleration profile throughout the episode. This can be observed in the
overall smoother motion enforced by the energy optimized model compared
to the non-energy optimized models, and the smaller magnitude of the grapple
oscillations that occur before grasping. As shown in Figure 4.11 a), the deviation
between the speed profiles of the grapple and the boom tip during a randomly
selected grasping cycle is smaller for the energy optimized model compared
to the corresponding non-energy optimized model. This suggests a smoother
acceleration profile resulting in reduced grapple oscillations, which is confirmed
by the acceleration profiles of the two models during the grasping cycle, as
presented in Figure 4.11 b).

A consequence of the calmer behavior observed in the energy optimized
model is that the grasping cycle time exceeds the cycle time required by the
corresponding non-energy optimized model by 30%. Though the absolute time
differences are small, there is a positive correlation between the mean time cost
and energy efficiency of the models analysed here, suggesting an overall smoother
crane motion in the energy optimized model. This is confirmed by Figure 4.10,
showing the boom tip speed profiles of five randomly selected grasping cycles.
The boom tip speed and acceleration is generally lower in magnitude using the
energy-optimized model. We emphasize that the energy consumption is only
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measured up until the point of grasping initiation, i.e. the grasping of the logs
and the energy consumption of q5 and q6 are not included.

As previously mentioned, it is observed that agents trained using the single-
agent approach often attempts at re-grasping the logs if the initial grasping
attempts fail. Thus, outliers in terms of energy consumption may correspond
to agents succeeding to secure the log in its grapple during a re-grasping at-
tempt, as these have been recorded as successful grasps. It is also worth noting
that the energy optimized strategy for the sub-task investigated in this the-
sis is not necessarily the energy optimal strategy for a grasping task including
transporting the logs back to the load bunk, in which case the crane is required
to also work against gravity and another grasping end-configuration may be
preferable. Indeed, human operators are instructed to rely on the use of the
telescope to increase precision as well as energy and time efficiency. Nonethe-
less, the results show that invoking an energy optimization goal in the reward
function by a simple scale factor can yield significant changes to the final con-
trol policy and smooth the acceleration profile of an agent of this complexity. A
more extensive analysis of the differences in the obtained behaviors between the
energy-optimized model and the non-energy optimized model is left for future
research.

5.2.4 Grapple Rotation
No clear correlation between the rotation of the grapple and the rotation of
the target log can be found in most single-agent models. The reason for this is
simply that the forestry crane manipulator is able to secure a single log in its
grapple almost independent on the grapple rotation due to the small log radius
relative to the maximum grapple capacity. Thus, there is no incentive for the
agent to learn to rotate the grapple with high precision.

The Curriculum 1-based model does exhibit a lower success rate for target
logs with large rotations such that the grapple needs to rotate in the direction
opposite to the rotational direction of q1. The best control policy results in a
solution in which the crane uses the claws of the grapple to instead rotate the
logs with these rotations on the ground before grasping. Since the terrain is
modelled by a flat surface without obstacles, these kinds of strategies are likely
not as successful in reality. This highlights the importance of addressing inno-
vative solutions that the agent may find due to simplifications in the simulation
model and environment. In this case, incentive can be given to the agent to
prohibit accumulation of high rewards without the agent learning to coordinate
the grapple rotation with the rotation of the log. Though a more realistic sim-
ulation model of the ground is preferable, adding an energy optimization goal
including the energy consumption of q5 and q6 to the reward function should
lead to the agent learning a control policy relying more on the rotation of the
grapple, thus reducing the log-rotating behavior observed in some models.
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5.2.5 Failed Grasping Attempts
For the best models based on Curriculum 1, 2 and 3, no correlation between
failed grasping attempts and the log position is identified. However, Figure 4.12
shows that there is a radial dependency between failed and successful grasps
throughout the training session for the energy optimized model, where the agent
successively masters the grasping of logs at small radii. This may directly relate
to the energy optimized solution in which q2 is heavily used. Figure 4.13 shows
that in the final energy optimized model, there is a correlation between high
energy consumption and a small radial position of the target log. If the use of
q2 in the energy optimized solution makes it difficult to reach logs closer to the
forwarder in the radial direction, the agent has to adjust its behavior to a less
energy efficient strategy in order to succeed at grasping these logs.

Except for the aforementioned observations, no specific behavior behind or
common reasons for failed grasping attempts are identified. In the case of Agent
1, it is observed that for a small fraction of episodes, the model exhibits a strange
behavior in which it exceeds the working range of q1. Similar behavior can be
seen in 4% of episodes in which the energy optimized model fails to grasp the
target log. In these episodes, the crane simply accelerates to maximum q1 speed
until the working range of q1 is reached, without trying to grasp the target log.
No reason for this behavior can be identified, but it is important to mention
since removing this kind of behavior before applying the model to a physical
machine is vital, whether it be related to the learned policy or the simulation
model.

5.2.6 Robustness & Generalization
As we can see in Figure 4.14, all models remain robust to changes in target log
heights of 0.1 m. This is enough to ensure a high success rate under slightly
more uneven terrains than those the agent is exposed to during training. The
model most robust to varying target heights is the energy optimized model, for
which the success rate remains approximately constants up to relative target log
heights of 0.3 m above the ground. This must be viewed as a consequence of the
learned control policy, since the energy optimized model has trained far longer
than the remaining models on the ground floor level. It is otherwise reasonable
that the curriculum used may ease adaptation to varying target log heights,
since the agents are trained to perform grasping under these circumstances
in previous lessons. However, no such tendency can be observed, likely due
to the low reward threshold required to move to the succeeding lesson of the
curriculum, and the comparatively long training time spent on the final lesson.
This motivates the use of this measurement in the evaluation of robustness.

Since transitions between the lessons are relatively smooth in all training
sessions, there is no indication that training an agent to adjust to varying target
log heights, rotation and inclination would pose an unattainable challenge. This
is an important indication, since the simplified problem setting that has been
the focus of this thesis is too trivial to provide efficient solutions in the real-
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world forwarding task, where uneven terrains are constantly affecting the work
of the operator.

The decreased success rate of models exposed to increased crane oscillations
are perhaps less encouraging across models, but nonetheless show that it is
possible for well-trained models to generalize to a more dynamic environment
than the one present during training. As Table 4.1 shows, the best Curriculum
2-based model is the most robust to increased crane oscillations, with a success
rate of 81.0% with a dynamic vehicle. This corresponds to a decrease of 16.4
percentage points compared to the static case. The decrease is expected, since
the models have learnt to utilize the expected grapple oscillations in the moment
of grasping, and these oscillations are affected by the changed dynamics. The
only other model for which the success rate remains higher than 50% is the one
based on Curriculum 1 without energy optimization. Figure 4.15 suggests that
the solutions of these models use q4 to a larger extent than remaining models,
but otherwise see large differences in link activation during the course of an
episode.

The magnitude of the differences between the agents’ abilities to adapt to
increased environmental dynamics is not surprising, as the resulting robustness
likely depends on the acceleration profile and the particular coordination be-
tween the joints favoured by the control policy learned by each agent. Observa-
tions suggest that the dominating effect of the added dynamics is the increased
oscillating motion of the grapple at the moment of grasping. In the case of the
models based on Curriculum 1 and 2, this sometimes causes the grapple to close
before it has secured the target log in its claws, whereas the agent trained on
Curriculum 3, which has learnt to move closer to the target log before initializing
the grasping attempt, often pushes the target log away with its grapple before
having a chance to grasp it. Thus, the effects of the increased crane oscillations
are similar in all three cases and relate to the increased grapple oscillations, but
the decrease in success rate is larger in the latter case due to the differences in
the control policy found by the agents during training.

Another reason for the decreased success rate with a dynamic vehicle is
that the agent experiences difficulties in estimating the crane position relative
to the load bunk, resulting in an increased collision risk for agent’s relying on
solutions where the crane moves closer to the load bunk. Indeed, in several
episodes displaying failed grasping attempts due to increased oscillations, this
is caused by collisions between the crane and the load bunk. This is particularly
the case for the energy optimized model, for which the success rate decreases
from 80.7% with a static vehicle to 27.0% with a dynamic vehicle. The solution
obtained by this model largely relies on the use of q2, contrary to the excessive
use of q4 in the non-energy optimized model trained on the same curriculum; a
difference that may account for the comparatively high robustness to increased
crane oscillations in the non-energy optimized model. Table 4.1 shows that the
system oscillations are largest in the y−direction, and that the same is true
for the offset between a fixed position on the static and dynamic vehicle. In
addition, the added dynamical flexibility leads to an increased bending motion
of the crane due to the bending moment at its base, causing the effective initial
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condition of the grapple to move closer to the load bunk. This is more likely
to affect the success rate of an agent for which the solution is more dependent
on the use of the inner boom (q2) or solutions which otherwise lower the crane
and/or grapple early in the episode since these motions reduce the margins
between the load bunk and the crane.

Based on these observations, the control policy robustness to these kinds of
oscillations may increase if the definition of illegal behavior extends to a safe
zone around the vehicle. This can be incorporated into the reward function
during training to prevent solutions where the margins between the crane and
the vehicle are very small. Such solutions may not only increase the success rate
under increased oscillations, but are perhaps even more important to prevent
damage due to dynamical differences occurring during transfer from simulation
to reality. Indeed, even if the simulation physics is a perfect representation of
reality, the model needs to be robust to the inevitable environmental changes
that, in practice, cannot be perfectly modelled for very unstructured environ-
ments. Moreover, the simulation model parameters are difficult to specify to
high precision, especially since the parameters of a physical machine are prone
to uncertainties, temporal variations and variations due to weather and temper-
ature conditions.

Despite the difficulties of several models to handle increased crane oscilla-
tions, the fact that the best model remains largely robust to increased oscilla-
tions is auspicious, and suggests that adapting to differences between the sim-
ulated and real world is possible depending on the learned control policy. This
is encouraging in terms of prospects for simulation-to-reality transfer in the de-
velopment of simulated autonomous systems. Moreover, the induced grapple
oscillations are smaller for the energy optimized model compared to the non-
energy optimized models, likely due to an energy optimized acceleration profile,
which suggests that the robustness to changes in the dynamics can be expected
to increase significantly in the energy optimized model if the added collision risk
can be avoided. It should also be emphasized that neither of these agents are
trained under oscillations of this magnitude, and that they have all successfully
learnt to compensate for the crane oscillations present under a static vehicle.
Thus, given the success rates obtained and the observed behavior of models
displaying low success rates under a dynamic vehicle, the agents are likely able
to adapt their solutions when trained on similarly dynamic environments.

5.3 Concluding Thoughts
Overall, the agents trained using the single-agent approach reaches a higher
grasping success rate than the agents trained using the multi-agent approach.
The best model reaches a success rate of 97.4% in the single-agent approach,
compared to 76.3% for Agent 2 using the multi-agent approach. Though the
success rates of the two approaches are not intended to be directly compared,
both approaches show encouraging results. To perform the complete forwarding
task, including transporting the log back to the log bunk, a combination of the
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two approaches is likely necessary in practice. This can be realized through the
use of curriculum learning to achieve complex subtasks, combined with efficient
transitions between agents specialized in each specific subtask. Since the overall
forwarding task requires significant strategic planning and consists of multiple
different subtasks, a hierarchy of sub-policies may be the best approach.

Our observations suggest that the control policies found by agents trained
using the single-agent approach result in crane behaviors that are, in essence,
similar to the ones achieved by manual operators, and that the crane motions
are generally smooth enough not to damage a physical machine. An especially
promising observation is that the agents have learnt to utilize the grapple dy-
namics during grasping, which is typical for well-trained and experienced oper-
ators. One advantage to applying reinforcement learning in this context is that
simultaneous coordination of multiple joints is difficult for a human operator,
whereas this is the default for a reinforcement learning agent that receives ac-
tion signals for each joint at every time step. Thus, the optimal solution from
the perspective of an agent may not be the optimal solution from the perspec-
tive of an operator. Additional experiments can be carried out to compare link
activation between the solutions obtained by the agents and the link activation
resulting from manual operation.

Of course, there are many steps remaining before such approaches can be
applied to physical machines. One such step is related to the observation space
of the agent. While a completely autonomous system must be able to detect
target logs by for example visual sensory observations of the environment, our
setup assumes an external perception system which is not developed at this
stage. These questions are left for future research, but our results provide an
encouraging foundation showing that deep reinforcement learning can be used
to successfully train agents to perform simple forms of log grasping in simulated
environments. See Section 3.7 for a brief discussion on safety aspects of the
current and future work.
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Chapter 6
Conclusions &
Recommendations

The aim of the work presented in this thesis has been to automate the grasp-
ing motion of a hydraulic-actuated forestry crane manipulator in a simulated
environment using deep reinforcement learning methods, in particular the state-
of-the-art reinforcement learning algorithm Proximal Policy Optimization. Two
strategies have been investigated; a multi-agent approach dividing the main
task into a navigation task and a grasping task, and a single-agent approach
using curriculum learning to enable the learning of a single control policy to
perform the entire task. Our work is limited to automation of the single log
grasping motion using a crane mounted on a static vehicle. The agent observes
the state of its six actuated joints together with the spatial position and rota-
tion of the target log, and is controlled by continuous action signals given to the
velocity-controlled motor of each actuated joint.

The results are promising using both the multi-agent and the single-agent
approach. According to our observations, the joint activation profiles of our
models yield a grasping behavior similar to that produced by a human operator.
Further experiments can investigate this in detail. The best model obtained
using the multi-agent approach reaches a grasping success rate of 76.3%. The
corresponding success rate for the best model obtained using the single-agent
approach is 97.4%. Our results show that energy optimization incentivized in
the reward function reduces the mean energy consumption up until the point of
grasping by 58.4%. The joint activation profile of this model takes advantage
of gravity to a large extent, while also smoothing the overall acceleration profile
and reducing grapple oscillations.

Three different curricula are investigated, where the distance between the
initial position of the grapple and the target log increases discretely over a
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curriculum-specific number of lessons. The conclusion is that this affects the
policy of the agent and thus the joint activation profile over the course of an
episode, though further research is needed to conclude whether or not this is
strictly dependent on the curriculum. The best model obtained using each cur-
riculum reaches success rates exceeding 88%. All models are robust to target
logs placed 0.1 m above the log position on the ground, with the energy opti-
mized model managing to grasp target logs placed up to 0.3 m above the ground
position without significant performance loss. Moreover, exposure to increased
crane oscillations induced by a dynamic vehicle reduces the success rate of the
best model from 97.4% to 81.0%. These results are encouraging, since they
imply potential for success in uneven terrains and increasingly dynamic envi-
ronments even before exposing the agent to such environments during training.

This thesis has provided the first implementation of deep reinforcement
learning control of a forestry crane manipulator in a simulated environment. Our
results show that both the multi-agent and the single-agent approach can reach
high success rates in a simulated environment using this method. While the
performance is higher using a single policy, this is likely not approach-specific.
Overall, our results show potential for end-to-end automation of forestry cranes,
including robustness encouraging for transfer from simulation to reality, and
provide a starting point for future research. To automate the entire task of
forest forwarding, a combination of multi-agent and single-agent approaches is
likely necessary. Next steps include investigating the potential for reinforcement
learning to be applied to more complex grasping scenarios in environments mir-
roring the dynamics of the real forest environments, as well as to other subtasks,
such as releasing the log in the log bunk, grasping logs from a moving vehicle or
grasping multiple logs simultaneously. Other interesting investigations left for
future research include analysing the model sensitivity to physical parameters
as well as using for example off-policy methods, physics informed networks or
differentiable physics to augment training.

While our models require an external perception system providing the po-
sition and orientation of the target log, it is also important to investigate the
possibility for reinforcement learning automation based on visual observations of
the environment, which is necessary to obtain a completely autonomous system.
Such systems could also be designed to address safety issues to prevent accidents
and physical damage upon real-world model deployment. Further research may
also investigate the differences induced by the use of different curricula in the
grasping task, as it is vital to understand its impact on the joint activation
profile in the final policy. This is important to any subtask in the forwarding
process that requires the use of curriculum learning.
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