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One of the challenges with predictive modeling is how to quantify the reliability of the models' pre-
dictions on new objects. In this work we give an introduction to conformal prediction, a framework that
sits on top of traditional machine learning algorithms and which outputs valid confidence estimates to
predictions from QSAR models in the form of prediction intervals that are specific to each predicted
object. For regression, a prediction interval consists of an upper and a lower bound. For classification, a
Keywords: pred?ct@on .interval_is a set that contains none, one, or many qf the potential classes. The size of t_he
QSAR ’ prediction interval is affected by a user-specified confidence/significance level, and by the nonconformity
of the predicted object; i.e., the strangeness as defined by a nonconformity function. Conformal pre-
diction provides a rigorous and mathematically proven framework for in silico modeling with guarantees
on error rates as well as a consistent handling of the models’ applicability domain intrinsically linked to
the underlying machine learning model. Apart from introducing the concepts and types of conformal
prediction, we also provide an example application for modeling ABC transporters using conformal
prediction, as well as a discussion on general implications for drug discovery.
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Introduction

Prediction of different endpoints based on chemical structure
constitutes an important problem in drug discovery projects. A
common approach is to use predictive modeling with QSAR
(Quantitative Structure-Activity Relationships) with the aim to
correlate chemical structures to a response (target) value, such as
the biological activity towards a certain target, physiological
properties such as solubility, or other measurable effects such as
cytotoxicity. QSAR predictions can then support decision making in
drug discovery, such as prioritizing between compounds and ex-
periments.! QSAR is a ligand-based method which often relies on
machine learning algorithms for making predictions, and a key
challenge when constructing and using these types of models is the
concept of confidence in predictions; i.e., how much can you trust
the predictions made by this approach on a novel compound that
has never been tested or sometimes not even synthesized?
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In this article we give an introduction to conformal prediction, a
framework operating on top of a regression or classification algorithm
in predictive modeling. Conformal prediction adds several benefits to
predictive modeling, mainly by assigning a valid measure of the
confidence in predictions that is specific to the predicted object. In
QSAR, the predictions made by the conformal predictor thus already
take into account the strangeness of a new compound compared to
training data, delivering an alternative to the concept of applicability
domain that is commonly used within this field.” The rest of this
article is organised as follows: firstin (2) we give some background on
conformal prediction in QSAR and introduce the concepts of validity
and efficiency, then in (3) we describe general applications of
conformal prediction in drug discovery, in (4) we present a case study
on ABC transporters, in (5) we describe different approaches to
conformal prediction and conclude in (6) with discussing the impli-
cations of using conformal prediction in drug discovery.

Methods

QSAR modeling constructs in silico prediction models from a set
of collected training compounds described by a set of chemical
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structural descriptors,® e.g., molecular fingerprints or physi-

ochemical parameters, using an appropriate algorithm of some
sort, e.g., Random Forest, Support Vector Machines or Neural Net-
works. The derived model is then used to predict new test com-
pounds for the model property in question such as biological
activity or toxicity. An important aspect during model building is
the applicability domain (AD) of the derived model, i.e., for which
compounds the model can make reliable predictions, that needs to
be determined by some metric.* There exist a plethora of suggested
methods and metrics for creating the AD that are more or less
closely linked to the underlying model,” and with varying degrees
of mathematical rigor.

Conformal Prediction

Predictions made by standard learning algorithms are typically
point predictions, e.g., a real value such as 2.4 for a regression
problem or “active” (predicting active vs inactive) for a classifica-
tion problem. These point predictions have no measure of uncer-
tainty assigned to them and either an external validation set or
cross validation is needed in order to estimate the average perfor-
mance of the model. However, using the average performance of a
model as a level of confidence for predictions from a model gives
the same confidence region to all predictions made by the model.
With conformal prediction we can improve the handling of pre-
diction confidence. If the new compound being predicted is similar
to the compounds used in the training data we would typically trust
the prediction to a higher degree than if it was chemically dis-
similar compared to training compounds of a small chemical space
(the background of applicability domain). Conformal prediction
addresses this by returning prediction regions, ie., intervals for
regression problems and sets of labels for classification problems.
For a given compound and a given confidence level the conformal
predictor provides a prediction interval that the true value should
lay within with a probability of the given confidence, e.g., in the
interval (2.29, 2.53), or that the true class is in the prediction set
{active}. These prediction regions are very similar to confidence
intervals used in statistics but they are not based only on overall
statistics but on the individual predictions. The region size is
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Fig. 1. In the typical workflow of machine learning, all available data is initially split up
into two disjoint sets; the training set used for generating the model and an external
test used for evaluating final model performance. In inductive conformal prediction,
the section surrounded by the dashed line, the training set is further split into a
calibration set and a proper training set. The proper training set is used for training a
machine learning model and the calibration set is used for calibrating the predictions
made by the model to yield the conformal prediction. How the calibration is performed
differs between, e.g., regression and classification.

dependent on multiple factors, such as strangeness of the test
compound compared to training compounds, the desired confi-
dence of the prediction and the overall efficiency of the predictor,
further discussed in Section Efficiency.

Inductive conformal prediction (ICP) is the most widely used
approach to conformal prediction. Just as any other conformal
prediction method it acts as a layer on top of an underlying ma-
chine learning algorithm, it then adds calibration by splitting the
training set into a calibration set and a proper training set (Fig. 1). A
model is then constructed based on the proper training set, and the
prediction region (confidence estimate of confidence) is obtained
from the calibration set.

The most commonly used ICPs for classification are Mondrian
ICPs, addressing a common problem in machine learning which is
in dealing with classification problems having imbalanced data
(many more examples in the training data having one of the class
labels). There are many techniques used for balancing such data
sets, e.g., under/oversampling®® and boosting.” In Mondrian
conformal prediction, the prediction for each class is estimated
separately using an individual calibration set per class. This has
been shown to work well even for severely imbalanced data-
sets,'®!! without the need for additional balancing techniques.

In binary classification (active/inactive classes) there exists four
outcomes for conformal prediction:

1. active

2. inactive

3. both classes (active and inactive)
4. no class assignment (empty class)

A conformal prediction is deemed correct if it includes the
correct class which means that “both” predictions are always cor-
rect and “empty” predictions are always erroneous.

What are the implications of “both” and “empty” predictions?
For “both” predictions it means that the predicted compound is
similar to both sets of known compounds at the set significance
level (significance level = error rate or 1 — confidence level) and
vice versa for “empty” predictions, i.e., the predicted compound is
too dissimilar to both classes of known compounds for the model to
give a reliable prediction. The implication for the first case (“both”)
is lack of information to distinguish between the 2 classes and that
new information through additional descriptors must be provided
in order to result in a single class prediction. The implication for the
second case (“empty”) is that the predicted compound is out-of the
applicability domain and that the class for the compound should be
determined (e.g., experimentally) and the compound later incor-
porated into the updated model in order to expand the model's
applicability domain.

The Mondrian conformal classification predictor outputs p-
values for each class, which are used slightly differently than in
standard hypothesis testing in statistics. In essence, these p-values
are the ranking of a test object compared to known instances of
each class. The prediction sets are calculated from these p-values
together with the desired confidence by finding the p-values that
are equal to or larger than the significance threshold € = 1— confi-
dence level (ie., the percentage of accepted errors). By only
including p-values over the desired significance level, the true label
is excluded with a probability of €. So for a class with p-value of, e.g,
0.85 that class will be part of the prediction set at a confidence of
0.15 or higher (or, equivalently, at an € of 0.85 or lower).

Conformity and Nonconformity

Central to conformal prediction is the use of a nonconformity
measure to assess how dissimilar or ‘strange’ a new object is
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Calibration plots
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Fig. 2. Calibration plots plot the error rate as a function of the significance €. In the best of worlds the error rate is equal to the significance (b) and we obtain the error rate that we
ask for. However, something to look out for is when the error rate is higher than the significance as in sub figure (c). Sometimes the error rates are lower than the significance (a),
although this is in some sense wrong it is not a problem in practice since making fewer errors than anticipated is normally perceived as an advantage.

compared to the data that the model has been built upon. An
alternative is to present this as a conformity measure which mea-
sures similarity instead of dissimilarity (going from one to the other
is trivial, e.g, by defining conformity: = —nonconformity or
conformity: = 1 — nonconformity). Although it is possible to use
either a conformity or nonconformity measure, nonconformity
measures are used more frequently as it follows the original work
by Vovk et al. were they prefer nonconformity due to it typically
being easier to construct a measure of an object's distance to
another set of objects in some space than its corresponding close-
ness and to follow conventions in mathematical statistics.'> How-
ever, some people find it more natural to think in terms of similarity
and prefer conformity measures. The nonconformity measure is
calculated via a nonconformity function, which in most cases
comes from the prediction of a machine learning algorithm. Ex-
amples of nonconformity measures include distance to the decision
hyperplane when using a Support Vector Machine, the out-of-bag
measure when using a Random Forest, or the SoftMax value from
a neural network. It is important to note that it is proven that any
function can be used as a nonconformity function,'? but that the
choice of this function is the key to obtaining a predictor with high
efficiency (see Section Efficiency and'®).

Validity

Conformal prediction has been mathematically proven to pro-
duce valid predictions, given that data is exchangeable, meaning
that examples are drawn from the same distribution of data and
that there is no particular ordering of the examples.'” Validity
implies that for a given confidence level of, e.g., 0.9 the predictor
will include the correct value in its prediction intervals or predic-
tion sets in at least 90% of all predictions (i.e., the predictor is cor-
rect at least 90% of the time).

It is important to note that all machine learning methods in
general assume exchangability, or, in fact, the slightly stricter
assumption of the data being Independent and Identically Distrib-
uted (IID) which means that there are no new requirements
introduced by conformal prediction since the same assumptions on
the underlying data are made when using any machine learning
methodology.

When the exchangability assumption does not hold this might
be discovered in a calibration plot (see Fig. 2), the error rate is
plotted versus the significance and the model is considered valid
(well-calibrated) if the result is a straight diagonal line, ie., we
obtain the error-rate we ask for when making predictions. De-
viations from the expected error rates can mainly be attributed to

either: lack of exchangeability for the set of predicted compounds,
or statistical fluctuations due to small sets of predicted com-
pounds'*" since conformal prediction will provide valid pre-
dictions “over time”, i.e., given enough predictions (law-of-large-
numbers).'?

Efficiency

Efficiency is another important concept in conformal prediction,
especially given the guaranteed validity for the derived model. There
are many different definitions of efficiency in conformal prediction,'?
where some are dependent on the confidence level and others are
not. A predictor can always be correct in 100% of its predictions by
always predicting all possible values, but such predictions are not
informative, i.e., a predictor that when asked if a compound is toxic
always answers with both yes and no is always correct, but not
particularly useful. The efficiency of a predictor is a measure of how
specific the predictions can be, while still remaining valid. For
regression, efficiency is typically defined as the mean or median
prediction interval width and for classification as the ratio of single
label predictions (a higher ratio is preferable) or ratio of prediction
sets with two or more labels (a smaller value is preferable).

In order to construct a predictor that is as efficient as possible,
several aspects need to be taken into consideration and investi-
gated such as descriptors, learning algorithms, validation tech-
niques as well as parameters to optimize, e.g., various algorithmic
settings and descriptors selection procedures. Additionally when
using conformal predictions, a good nonconformity or conformity
measure is needed (see Section Conformity and Nonconformity).

Conformal Prediction Applied to Drug Discovery
Regression

In this section we will investigate a few examples to illustrate
how conformal predictors operate. We will start with a regression
problem of predicting LogD for omeprazol using our online service
found at https://cplogd.service.pharmb.io/. The service contains a
QSAR model built on approximately 1.6 million calculated LogD
values at pH 7.4 found in the ChEMBL database.'® In Fig. 3 we show
how the confidence affects the prediction region where a higher
confidence forces the predictor to assign a larger prediction interval
(i.e., being less specific); requiring a high confidence in the pre-
diction result in larger intervals, and the opposite, allowing for
more errors lets the predictor be more specific. For the extreme
value of confidence set to 1.0 (in Fig. 3), ie., we want to be
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LogD for omeprazol
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Fig. 3. Example of LogD prediction for omeprazol at different confidence levels. At
confidence 0 the algorithm gives a single point and then as the confidence is increased,
so is the interval. The only way to safely guarantee a correct prediction, i.e., confidence
1, is to provide an infinitely large interval.

absolutely sure that the predicted interval covers the true value, we
see that in order to be that certain an infinitely wide interval is
needed which is not useful at all. At the other extreme, if we set the
confidence to 0, we obtain a point value without any useful mea-
sure of certainty.

Another of the advantages of conformal prediction is that pre-
dictions are object related, an easier to predict compound will produce
smaller prediction intervals compared to a more difficult one. This is
visualized in Fig. 4 where we predict LogD for the well known drug
paracetamol and for 4-acetamidothiophenol. The prediction interval for
paracetamol is roughly half the size of that of 4-acetamidothiophenol,
indicating that paracetamol is more similar to examples used for
training than 4-acetamidothiophenol and the predictor can thus pro-
vide a more specific prediction for the well known drug.

Classification

For a binary classification problem with the classes A and N (e.g.,
active and non-active compounds) there are, as already mentioned,

LogD for paracetamol

jent

Interval

(0.031, 0.782) -+ =4
0.0 1.0

For paracetamol the model gives an interval of width
0.751 at a confidence level of 0.7.

four possible prediction sets: {A}, {N}, {A, N} and {@}. The sets {A}
and {N} are single label sets and are the best result for an end user;
the predictor will provide a single label (class) for the test com-
pound indicating one or the other of the two possible classes. For
the {A, N} prediction the predictor cannot, for the given confidence,
distinguish between the two classes. The empty prediction set, {@},
means that the test compound is difficult to predict and no reliable
predictions can be made by the predictor.

We will now look at an example of how the classes A = active
and N = nonactive are derived from the p-values by using the
prediction of off-target binding from our online service http://ptp.
service.pharmb.io/ '7 by use of gene LCK(Fig. 5). The service con-
tains 31 QSAR models modeling known adverse targets. More
specifically we will look at a model modeling binding to the target
connected to the LCK gene. This model is based on 2662 known
actives, 283 known non-actives and 4963 assumed non-actives. For
more details about the model see Refs.!” Predicting binding for
omeprazol results in p-values 0.137 for the active class and 0.488 for
non-active class, both relatively low p-values. In Fig. 5 we investi-
gate how the desired confidence affects the prediction set; at a low
confidence the prediction set is as small as possible (even empty
when having a confidence of 0.512 or lower) and then the predictor
set grows larger as confidence increases. At a confidence of 0.87 the
predictor will start to include both classes.

Case Study: Prediction of ABC Transporters Using Conformal
Prediction

Data Sets and Descriptors

The Bcrp, BSEP and Pgp inhibition data sets were obtained from
Montanari et al.'® The transporters and the number of inhibitors
and non-inhibitors are listed in Table 1. The compounds were
characterized using 97 different physiochemical RDKit!® de-
scriptors previously successfully used in in silico model building.?°

ATP-Binding Cassette (ABC) transporters are membrane pro-
teins that mediate translocation of substrates across cellular
membranes.’! P-glycoprotein (P-gp/ABCB1), Breast Cancer Resis-
tance Protein (BCRP/ABCG2) and Bile salt export pump (BSEP/
ABCB11) inhibitors exhibit a wide variation with respect to chem-
ical structures.?? P-gp is an efflux transporters found in tissues such
as the intestine, brain and kidney.?> Blockade or absence of intes-
tinal P-gp results in decreased extrusion and increased availability
of drugs that are P-gp substrates, which may lead to toxicity.”* BCRP
plays an important role in drug disposition?> and BSEP is an

b
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For 4-acetamidothiophenol the model gives an inter-
val of width 1.461 at a confidence level of 0.7.

Fig. 4. The interval given by the model represents how certain the model is about the specific compound. For paracetamol (a) the interval is smaller than for 4-acetamidothiophenol

(b) because the model is more certain about the prediction of LogD for that compound.
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Binding prediction based on the LCK gene for omeprazol
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Fig. 5. Prediction of binding for omeprazol to the LCK target using a classification
model. The prediction is given as a set of p-values, one for each class, forming the final
prediction sets when deciding on a desired confidence. Formation of the prediction set
can be visualized with the bar plot on the left, where a p-value above the significance
level (defined as 1 — confidence) places it into the prediction set.

important transporter where bile secretory failure causes chole-
stasis and drug-induced liver injury (DILI).%®

Study Design

The case study consists of classification modeling for the three
different transporters. The training and test sets for each data set
from the original publication were combined and duplicates
removed. An external test set, 20%, was selected for each data set
using stratified random sampling. The remaining part of each data
set was used as training set for model building.

Model Building

Mondrian ICP models'"?” were trained based on an underlying
random forest (RF) model with 100 trees (Scikit-learn version
0.20.4%%). The nonconformist package (version 1.2.5)?° was used for
building the Mondrian conformal predictors. Default values were
used for all parameters unless explicitly stated and a calibration set
of 30% was randomly selected from the training set and the
remaining part (proper training set) used for model building. The
conformity measure used was the probabilities from the RF
ensemble.

Results

The results of the case study is presented in Table 2 and Figs. 6
and 7, where the table presents validity and efficiency for a set of
pre-determined significance levels.

Table 1
The Targets in the Datasets, Number of Active Inhibitors (A) and Non-Inhibitors (N),
and Percentage Inhibitors (A (%)) for the Calibration, Proper Train and Test Sets.

Transporter Training Test

Calibration ProperTrain

A N A% A N A% A N A%
BerpINH 130 150 =46% 300 352 =46% 108 125 =46%
BSEPINH 38 124 =23% 87 292 =23% 31 105 =23%
PgpINH 166 145 =53% 391 333 =54% 104 119 =47%

Fig. 6a and b contains calibration plots both for each class
separately and for both of them together (‘Overall’). For BSEPINH
we see that all curves are below the diagonal for small significance
values. In fact the ‘Overall’ and ‘non-inhibitor’ class line stays below
or close to the diagonal most of the time, meaning that they give an
error rate lower (over-conservative) or well corresponding to the
required significance level for all significance levels. However, at
significance around 0.6 the error rates for the ‘Inhibitor’ class is
close to 0.7. For the PgpINH dataset there is a clear trend that the
‘Inhibitor’ class is predicted with an error rate lower than the
required significance and the ‘noninhibitor’ class with an error rate
that is higher, but the ‘Overall’ line is below or near the diagonal
meaning that when looking at both classes at the same time the
error rate is the required one. However, the deviations observed in
Fig. 6a and b are minor considering the small data set sizes and can
be considered as statistical fluctuations.'

Fig. 6¢c and d shows the p-values for the two classes plotted
against each other. This gives a visualisation of the data used for
making predictions. We see that a few compounds are strongly
indicated as being in the wrong class, e.g., for BSEPINH there is a
cyan dot almost all the way up in the left corner, however there are
no inhibitors in the test set for BSEPINH with a p-value higher than
0.4 for non-inhibitor so the bottom right corner of that plot only
contains the correct class.

Fig. 6e and f shows how the distribution of prediction labels
varies as we vary the significance level. The significance level
printed in the grey box (0.22 for BSEPINH and 0.12 for PgpINH)
corresponds to the significance level giving rise to the highest
number of single label predictions. As before we see that at sig-
nificance level 0 we obtain only multiset predictions and at 1.0 we
obtain only empty set predictions.

When using a conformal prediction classifier one has to set a
significance e. Once € has been set it is possible to create a confusion
matrix for the test set. A classic confusion matrix consists of 2 rows
and 2 columns but in the case of conformal prediction there are two
more rows, one for empty predictions and one for multiclass pre-
dictions, (in the case of binary classification ‘Both’ classes). Fig. 7
shows a visualisation of confusion matrixes for the BSEPINH data-
set and the PgpINH dataset at two different significance levels.
Once again we see that at lower € we obtain more multiclass pre-
dictions and at higher € we obtain more empty prediction sets.

Approaches to Conformal Prediction

The two most widely used approaches for conformal prediction
are inductive conformal prediction (ICP) and transductive
conformal prediction (TCP). In ICP, as previously described in Sec-
tion Conformal Prediction, all training examples are split up into
two sets and a single machine learning model is trained using the
proper training set (see Fig. 1) and this model is used for all future
predictions until enough new data has been collected for the model
to be worth updating. ICP is possible to use in both classification
and regression problems, TCP on the other hand is only available for
classification. In TCP, the online approach which was the one first
described, all training examples are used in both training the un-
derlying learning model and calibrating the predictions. A new
model is trained for each class and each predicted object (e.g., for a
binary classification two models are learnt for every prediction).
This makes TCP much more computationally demanding, which
can be practically infeasible for larger datasets, but in general it
provides better results than the ICP approach since it does not
require to set aside training examples for calibration.

The ICP approach has been further developed into aggregated
conformal prediction (ACP)*° in which many ICP's are produced by
randomly sampling the same training dataset multiple times, and
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Table 2
Results From the Classification.

Transporter Significance Level Validity Inhibitor Class Validity Non-Inhibitor Class Efficiency Efficiency Inhibitors Efficiency Non-Inhibitor
BerpINH 0.1 0.954 0.896 0.632 0.759 0.520
0.15 0.926 0.840 0.790 0.870 0.720
0.2 0.917 0.800 0.893 0.954 0.840
0.25 0.880 0.760 0.974 0.991 0.960
BSEPINH 0.1 0.968 0.971 0.765 0.613 0.810
0.15 0.935 0.895 0.882 0.806 0.905
0.2 0.935 0.838 0.978 0.968 0.981
0.25 0.935 0.810 0.971 1.000 0.962
PgpINH 0.1 0.929 0.891 0.942 0.943 0.941
0.15 0.893 0.840 0.961 0.964 0.958
0.2 0.871 0.790 0.907 0.929 0.882
0.25 0.793 0.748 0.834 0.843 0.824

Validity is defined as percentage of correct predictions where the label set includes the correct label. The efficiency measure used is fraction of single label predictions. For
many practical applications an efficiency of around 0.8 or higher is desirable. See also plots in Fig. 6 for a graphical illustration.

cross conformal prediction (CCP)*' in which the random sampling
used in ACP is replaced by the same sampling approach as is used in
cross validation. Fig. 1 shows an outline of the construction of an

ICP, where the ICP specific section is performed repeatedly for ACP
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and CCP and the final prediction is an aggregation of the individual
predictions using the mean or median prediction.

For further reading about conformal prediction, if you found the
application in this work interesting, we recommend Norinder et al.?
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and Eklund et al.>? both describing conformal prediction in the
drug discovery setting but from a more mathematical viewpoint. If
you are specifically interested in papers dealing with imbalanced
QSAR datasets in conformal prediction we recommend Norinder
et al.'? and Sun et al."! For someone interested in implementation
details and mathematical theorems a good place to start is http://
alrw.net/, or even the original book introducing conformal predic-
tion by Vovk et al.'?

Worth noting is that recently there has been a shift in naming
conventions, where the inductive conformal predictor in some
literature is now referred to as Split Conformal Predictor (SCP) as in
Colombo and Vovk®? written by one of the original authors of
conformal prediction.

Discussion

Predictive modeling in drug discovery is still relatively new, and
there has been (and still is) resistance among some scientists to use
predictions to aid decision making. It is hard to know how much to
trust a point estimate made by a computer software and in this
situation it may be considered reasonable to chose not to trust
them at all. In the authors experience it is a convincing argument in
this discussion that the conformal prediction provides confidence
measures and that they are mathematically proven to be valid, and
also that the results depend on the rather natural question: How
certain do you want the prediction to be?

As we have seen in both the regression and classification ex-
amples presented herein, the general outcome of conformal pre-
diction is that the higher the desired level of confidence — the
larger the prediction interval or prediction set (i.e., less specific
predictions). This is easy to comprehend — if you need to be very
certain about an estimate you will then need to provide a large
prediction interval. Prediction intervals also depend on the test
objects themselves, where a larger prediction interval is assigned to
more difficult objects and vice versa. One observation the authors
have made in drug discovery projects is that when users are faced
with prediction intervals, it is not uncommon that they at first sight
are disappointed that the interval is larger than they expected.
However when faced with the decision to simply remove the pre-
diction interval and go back to point predictions as they have done
before, they tend to prefer to keep the prediction interval and
continue to use the prediction leading to, in our opinion, more
informed and balanced decisions.

Conformal prediction is a relatively new framework, and un-
known to many readers and practitioners. For conformal prediction
classification an additional challenge arises in that it is difficult to
compare the results with more familiar methods of statistical
model evaluation. Mondrian conformal prediction, as used in this
work, results in two p-values per predicted object (one for each
class label) that do not have to sum to 1. An object-specific confi-
dence interval is derived from these p-values, and while this has
the benefits of being a valid measure of confidence for the pre-
diction, it is nevertheless difficult to compare to more traditional
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used measures like area under the receiver operator characteristics
curve, balanced accuracy, Matthews correlation coefficient, or just
specificity and sensitivity, due to the presence of multi-label and/or
empty-label predictions.

In order to use conformal prediction, a significance level needs
to be set. As earlier eluded to, for conformal prediction to be as
effective as possible the efficiency (often defined as the percentage
of single label predictions) must be high at significance levels that
are supportive to the user of the models when attempting to make
the decision at hand, e.g., whether to send a set of compounds to
synthesis and/or biological screening or determine whether the
compounds are toxic or not. Therefore, different significance levels
need to be investigated in order to understand the performance of
the conformal prediction model. It may also be so that a signifi-
cance level set at the beginning of a drug discovery project, where
more errors are acceptable and less expensive tests are used, may
not be acceptable later on when more expensive investigations
have to be performed. This, in turn, may warrant a lower signifi-
cance level and the consequences of such a change must be un-
derstood for future predictions.

Conformal prediction has many advantages over traditional
machine learning models yielding point estimates, and a key
objective of this manuscript is to introduce and explain these ad-
vantages. Despite not being able to directly evaluate conformal
predictors using traditional accuracy metrics, and the educational
aspect of having to decide on a significance level when making
predictions, in our experience scientists who have learnt to inter-
pret prediction intervals from conformal prediction are unwilling to
go back to point estimates or use ad-hoc approaches to applicability
domain estimation without mathematical rigor. Given the increase
over the last years in the number of published studies presenting
results from conformal prediction, it is clear that conformal pre-
diction is a methodology worth grasping.
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