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Abstract 

Mobile phone data – with file sizes scaling into terabytes – easily overwhelm the computational 
capacity available to some researchers. Moreover, for ethical reasons, data access is often granted 
only to particular subsets, restricting analyses to cover single days, weeks, or geographical areas.  
Consequently, it is frequently impossible to set a particular analysis or event in its context and know 
how typical it is, compared to other days, weeks or months.  This is important for academic referees 
questioning research on mobile phone data and for the analysts in deciding how to sample, how much 
data to process, and which events are anomalous.  All these issues require an understanding of 
variability in Big Data to answer the question of how average is average? This paper provides a 
method, using a large mobile phone dataset, to answer these basic but necessary questions.  We 
show that file size is a robust proxy for the activity level of phone users by profiling the temporal 
variability of the data at an hourly, daily and monthly level.  We then apply time-series analysis to 
isolate temporal periodicity.  Finally, we discuss confidence limits to anomalous events in the data.  
We recommend an analytical approach to mobile phone data selection which suggests that ideally 
data should be sampled across days, across working weeks, and across the year, to obtain a 
representative average. However, where this is impossible, the temporal variability is such that 
specific weekdays’ data can provide a fair picture of other days in their general structure. 
 

Significance Statement 

Often mobile phone research requires selecting a sample of records because of computational or 
ethical restrictions and this raises questions of representativeness. Here we develop a methodology to 
make an informed sample choice by understanding the temporal variability inherent in the data. In 
COVID-19 research, for instance to measure how much human activity has changed, a comparative 
‘normal’ baseline is necessary. But which days and hours are most ‘normal’ for this baseline? By 
analysing phone activity over a duration of more than 500 days using simple statistical procedures, we 
demonstrate a method to get the most stable findings by selecting 11.00 on Thursdays as the less 
variable day/hour – a day and hour with least variability than other weekdays. 
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Introduction 

As the sun rises on any given day, people go to work or education, engage in other daily activities 
whilst yet others stay at home, collectively making up the vibrant buzz and spatial patterns of the 
society. Modelling this complex behaviour demands large amounts of data, feasible due to recent 
advances in data collection and processing. The advent of Big Data, whether from mobile phones (1), 
travel cards (2), or social media (3), enables mapping of the daily patterns to understand such 
phenomena as segregation (4) (5), spread of diseases such as Covid-19 (6) (7), human mobility (8) 
(9), and urban dynamics (10). The time-dimensional difference between traditional data-sources in the 
form of census data or population registers means that what was measured on decennial or annual 
periodicity now can be measured in real time. As a result, there is an increasing number of studies 
using finer temporal resolutions in societal studies but there are, to our knowledge, no studies 
indicating which days or hours that are representative for societal activities in general. There is also a 
growing interest in the ethical implications of the collection and use of Big Data and much discussion 
about how to visualise and analyse these large datasets (11) (12).  We address these concerns by 
asking ‘how normal is normal?’. 
Understanding the periodicity and typical patterns in the data is important since one response to 
ethical/privacy concerns is to allow analysis only of a subset of the data and one quick answer to the 
large size of Big Data is similarly to subsample the data whether for a day, a week, a month or a 
particular place. These seemingly trivial questions are vital to our understanding of complexity and 
variability in Big Data and answering whether it is sufficient to analyse data for a day or a week to 
improve our understanding of societal processes such as segregation, whether all data should be 
analysed, or when and if there are decreasing returns to computing time in revealing the difference. 
Furthermore, to assess the impact of shock events such as extreme weather to get a better grasp on 
social resilience, it is important to study the natural dataset variability at different temporal scales and 
periodicities. After all, to understand how anomalous an event is, it is necessary to have a benchmark 
against which to judge it. The conceptual framework used to evaluate behaviour as revealed by our 
mobile phone dataset (supplementary Figure S1). 
 
Previous studies looked at variability in mobile phone usage data, for instance (13) assumed weekly 
periodicity in CDR for selecting a benchmark in their study of emergency related human behaviour in a 
European country. Here we examine the data to determine the extent of weekly/monthly/hourly 
periodicity rather than assuming it is there. Variation in the number of users and in daily travel 
distances manifested weekly, monthly and seasonal regularities in population movement around the 
holidays in connection with the earthquake in Haiti, the analysis (14) requiring opening and processing 
the trajectories of individuals. Comparison (15) of the load volume on electrical infrastructure with 
phone activity in Senegal, so that phone activity can function as a proxy for level of 
development/electrification, also required processing of the files. A visual analytic approach to 
detecting anomalies in call activity in Senegal (16) entailed illustrating visually the temporal changes in 
weekends/religious holidays. These studies showed significant and detectable variability in mobile 
phone activity based on Call Detail Records (CDR). Our Network Detail Records (NDR) dataset 
comprises calls, SMS, MMS, data connections, and also silent handovers, thus having more frequent 
entries per user than the popularly used CDR. Given the structure of our dataset, the activity level is 
proportional to the number of observations/rows in the dataset and thus to the file size (see 
supplementary Figure S2). We propose a convenient estimate of variability in activity based on file 
sizes, without opening them, with a measurement of deviation between expected vs observed 
periodical temporal signature of mobile phone activity. Moreover, in our case mobile technology 
penetration in Sweden (17) is 98% so phone activity is likely to be representative of behaviour across 
all demographic groups. 

Results 

Two different time lags were used for the autocorrelation analysis for hours (Figure 1 a) and days 
(Figure 1 b). The repetitive pattern in day lag autocorrelation is easily detectable (Figure 1 b). The thin 
black line indicates that the seventh, fourteenth, twenty-first days (and so on) are more correlated than 
the days in between, pointing to weekday-specific file sizes.  
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Figure 1 | Autocorrelation analysis: Two different time lags are illustrated for (a) hours or (b) days. In 
other words, correlations are conducted using the same hour (a) or the same day (b) and at a lag-
distance that grows with a day’s distance (for hours) or a week’s distance (for days) for each step on 
the x-axis. The far-right part of the red lines is located at around 2/3 of a month distance (hours – a) 
and around 7 months’ distance (days – b). The thin black lines depict a time lag that grows with one 
hour for each step on the x-axis (a) and a day for each step on the x-axis (b). Thus, the far right of the 
thin black line corresponds to a day’s distance (hours – a) and to a months’ distance (days – b). 

 
The bold blue line stretches for a longer time span (lag distance is one week) and describes the 
annual repetitive pattern where the lowest correlation value for any specific weekday is found at lag of 
26 weeks (six months) away. The strong repetitive hourly, daily, weekly and monthly patterns in the 
data indicate that file size can be used as a proxy for activity at the temporal scales illustrated here.  
 
MLM is used to (1) estimate file size variance is a three-level hierarchical model and (2) estimate the 
impact of events and weather on levels of activity. Table 1 shows the results of the empty model with 
no fixed effects and with standardised file size as the dependent variable. It shows that most of the 
variation is between hours (83.9%), followed by months (7.9%) and days (4.3%). An additional 3.9% of 
the variance cannot be explained but might be related other external factors such as weather and 
national events.  
 

Table 1 | Empty model. The variation at each level, hour, day, and month-year, plus residual is saved 
to the estimate column. % variation indicates the share of variation at each level. 

  Coef. Std. Err. z P>|z|  [95% Conf. Interval]  
Constant -0,0062 0,1874 -0,03 0,973 -0,3735 0,3610 

Random-effects Parameters Estimate Std. Err. % variation % cumulative [95% Conf. Interval] 
Variation (Hour): 0,8357 0,2432 83,9% 83,9% 0,4724 1,4784 
Variation (Day): 0,0433 0,0057 4,3% 88,2% 0,0334 0,0560 
Variation (MY): 0,0782 0,0024 7,9% 96,1% 0,0737 0,0831 

Variation (Residual): 0,0390 0,0006 3,9% 100,0% 0,0379 0,0402 
Number of observations = 11922           

LR test vs. Linear model: χ2= 31827,94           
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Table 2 presents the results of the full MLM with fixed effects. The random effects parameters indicate 
that the hour-level variation drops to 81.1% while no change is detectable at day and month-year (MY) 
levels. The fixed effects explain around 2.3% (note that cumulative % is reaching 97.7%) of the 
variation. This may sound small, but is in line with the expectations since the majority of phone usage 
is connected to regular reoccurring events such as workdays and weekends, night-rest and active 
hours. Of the fixed effects it is clear that religious and secular holidays significantly and negatively 
reduce the file size (usage of phones) while major sports and TV media-events increased the file 
sizes. Hours with major transport breakdowns or out-of-the-ordinary weather have small effects 
although some are statistically significant.  

Table 2 | Results from the full MLM with events and weather introduced as fixed effects 

FIXED EFFECTS Coef. Std. Err. z P>|z| [95% Conf. Interval] 
EVENTS       

Secular holiday -0,1220 0,0142 -8,57 0,0000 -0,1499 -0,0941 
Religious holiday -0,1616 0,0128 -12,63 0,0000 -0,1867 -0,1366 

Sports 0,0316 0,0144 2,19 0,0290 0,0033 0,0599 
TV Media 0,0349 0,0162 2,16 0,0310 0,0032 0,0666 

Weather & transport 0,0032 0,0253 0,13 0,8990 -0,0463 0,0528 
WEATHER       

Air temp Malmö 0,0015 0,0013 1,14 0,2560 -0,0011 0,0040 
Air temp Stockholm 0,0041 0,0015 2,73 0,0060 0,0011 0,0070 

precipitation Malmö 0,0029 0,0057 0,51 0,6100 -0,0083 0,0142 
Precipitation Stockholm 0,0203 0,0076 2,66 0,0080 0,0053 0,0352 

precipitation Malmö squared -0,0005 0,0014 -0,37 0,7100 -0,0034 0,0023 
Precipitation Stockholm Squared -0,0004 0,0008 -0,58 0,5590 -0,0019 0,0010 

Air temp Malmö squared -0,0001 0,0001 -2,19 0,0290 -0,0002 0,0000 
Air temp Stockholm squared 0,0002 0,0001 3,55 0,0000 0,0001 0,0004 

D precipitation Malmö 0,0013 0,0063 0,21 0,8380 -0,0110 0,0136 
D precipitation Stockholm -0,0038 0,0073 -0,52 0,6000 -0,0180 0,0104 

D Air temp Malmö 0,0025 0,0018 1,33 0,1830 -0,0012 0,0061 
D Air temp Stockholm 0,0028 0,0030 0,93 0,3500 -0,0031 0,0088 

D precipitation Malmö squared 0,0003 0,0009 0,31 0,7570 -0,0015 0,0021 
D precipitation Stockholm squared -0,0003 0,0005 -0,57 0,5710 -0,0014 0,0008 

D Air temp Malmö squared 0,0000 0,0001 -0,25 0,8000 -0,0003 0,0002 
D Air temp Stockholm squared 0,0043 0,0012 3,49 0,0000 0,0019 0,0068 

CONSTANT -0,0686 0,1851 -0,37 0,7110 -0,4315 0,2942 
Random-effects Parameters Estimate Std. Err. % variation % cumulative [95% Conf. Interval] 

Hour: 0,8148 0,2372 81,8% 81,8% 0,4605 1,4415 
Day: 0,0425 0,0056 4,3% 86,1% 0,0328 0,0550 
MY: 0,0786 0,0024 7,9% 93,9% 0,0740 0,0835 

Residual: 0,0370 0,0005 3,7% 97,7% 0,0359 0,0381 
Number of observations = 11922 

     

 
In Table 3, the third restricted model, an alternative empty model, is specified, which excludes festivals 
and national events leaving only ‘normal’ days. The results indicate that taking away unusual days 
strengthens the already clear temporality observed in the data; the variation attributable to hours 
increases to 84.2%, months to 8.0%, although that for days remains the same. 
 

Table 3 | Restricted model: alternative empty model where event days were excluded 

  Coef. Std. Err. z P>|z|  [95%  Conf. Interval]  
Constant -0,00068 0,18816 -0,000 0,997 -0,3694 0,368115 

Random-effects Parameters Estimate Std. Err. % variation % cumulative [95% Conf. Interval] 
Hour: 0,8429 0,2453 84,2% 84,2% 0,4765 1,4910 
Day: 0,0429 0,0057 4,3% 88,5% 0,0330 0,0556 
MY: 0,0801 0,0025 8,0% 96,5% 0,0753 0,0851 

Residual: 0,0353 0,0006 3,5% 100,0% 0,0342 0,0364 
Number of observations = 10,715           

LR test vs. Linear model: χ2= 29034,35           
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In the final analytical stage, the difference between observed file sizes and the values predicted by all 
three of the multilevel models for hours and days is analysed using RMSD. This shows which hours 
and which days are easier to predict. As a baseline, the three models produce RMSD values of 
~0,1877 for the empty model, ~0,1834 for the full model and ~0,1737 for the restricted empty model. 
The variation is largest for the empty model, with slight reduction when introducing fixed effects (full 
model) and smallest when all days having events are removed from the analysis (restricted model). 
 

 

Figure 2 | RMSD by weekday for the three models: empty (yellow), full (red), and restricted (blue). 
Turns out Thursday is the most ‘normal’ weekday (and not Tuesday) and Saturday is the most normal 
weekend day. 

 
Decomposing the files into weekdays (Figure 2) pinpoints Mondays as days with the greatest RMSD 
value, indicating that it is difficult to predict file-size (i.e. phone usage varies more amongst Mondays 
than between other days). The opposite situation is found for Saturdays which tend to have low RMSD 
values. There is an interesting deviation between models for Sundays where all hours are kept in 
(empty and full) and the model where only days without events (such as holidays) are modelled 
(restricted model).  See supplementary Figure S3 for graph of the relationship between standardized 
predicted and observed file size. 
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Figure 3 | RMSD by hour: empty (yellow), full (red) and restricted (blue) models. Some hours (e.g. 
01:00-02:00) have high variation among days and thus should not be selected for subsamples. 

 
 
The greatest RMSD for hour values (Figure 3) are found at hours 1 (01:00-02:00), 5 and 6 (05:00-
07:00). Early afternoon hours also have relatively high values. The least varying hour at night is 2 
(02:00-03:00), daytime is 11 (11:00 12:00), and evening is between 19 and 20 (19:00-21:00). In the 
supplementary material (Figure S4), combined day-hour graphs are available where the RMSD for all 
hours across all days is shown. 
 

Discussion  

The mobile phone dataset analysed in the paper reveals temporal complexity in human behaviour at 
temporal scales of hours, days, weeks and months.  The diurnal patterns shown are much as might be 
expected but the variability by day and month indicate the importance of considering these aspects.  
The method demonstrated to estimate the activity of mobile phone users from file size offers a quick 
and convenient way to extract patterns from datasets that are otherwise unwieldy thereby enabling 
generalisations to be made to set samples in their context.  Our model (see Figure S3) closely predicts 
observed file sizes (and thus levels of activity and phone usage).  It is noteworthy that the empty 
model performs as well in some regards as the full model which has explanatory terms for national 
holidays, events and extreme weather; this indicates the importance of hourly, daily and monthly 
temporal beats in the data, overlain with random variation, as the main drivers of activity.  Swedes are 
therefore largely creatures of habit (but with a certain amount of random variation thrown in).  Despite 
this, national holidays, other events, and weather do have some influence on behaviour although this 
is small compared to the rolling cycle of the day, week. month and year. 
 
The daily and hourly patterns can be explained by how human activities are organised. The difficulty in 
predicting activity on Mondays and Fridays arises from their position at the start and end of the 
working week and their consequent variability across seasons and sensitivity to holidays and other 
events. Thus, mid-week days are more ‘average’, but Thursday performs better than Tuesday like one 
might expect. This also explains the volatility of the hours between 05:00 and 07:00 and 22:00 and 
00:00 where behaviour will vary for the same reasons – other times of the day are less variable. The 
hourly variability therefore means most care should be taken in selecting which hours to sample; this 
is the largest source of variation in our data. However, month is also important and whereas 
neighbouring months are similar, the decrease in similarity as the temporal lag increases shows that if 
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possible data should be extracted from more than one month, and ideally months half a year apart, if 
the objective is to capture the full variability of human behaviour. 
 
There is a small number of high RMSDs. These are not correlated with any known extreme event.  
Closer inspection of these extreme file sizes (see supplementary Figures S5 and S6) which are more 
than 2 standard deviations from the series average indicates that these rare occurrences are usually 
in the early hours of the morning and during week days when file sizes are normally small.  Their 
cause is unknown but can most probably be attributed to technical issues such as system updating 
and maintenance (the providers are reluctant to discuss these issues openly).  It is important to note 
because these (and similar) technical issues may be present in other mobile phone (and other similar) 
big datasets.  If these extreme cases are dropped as anomalies, then the model performs even better 
since there is less random variation. The decision whether to drop them or not would depend on the 
objective of the study. If the focus is on human behaviour, then data integrity related outliers should be 
dropped. However, if the data itself is under scrutiny, then it is open to discussion whether these cases 
should stay part of the analysis.  Therefore, we kept them in. 
 
It is likely that similar societies to Sweden will show the same temporal patterns of behaviour but that 
there will be increasing divergence as social difference increases by level of economic development, 
religion and world area (1). Therefore, these results cannot be generalised to all national contexts. 
However, the method of using mobile phone NDR file sizes as proxies for activity and human 
behaviour can be generalised assuming that data providers release the essential data of file size by 
hour, day, week and month so as to permit the analysis of variation as has been undertaken here. 

Materials and Methods 

The phone data 

The data were obtained from a major Swedish mobile phone provider. At time of analysis the data 
series covers more than 500 days. Over time an archive of compressed data ranging on a byte-scale 
between terabytes (10^12) and petabytes (10^15) have been registered (the exact size cannot be 
revealed due to an agreement with the data provider). In a decompressed and analytically 
manageable format, the volume of the dataset becomes considerably bigger. The data are NDR which 
comprise calls, SMS and MMS messages, data uploads and downloads, and silent handovers. They 
record geographical movements at a small temporal scale of five-minute intervals nested within hours, 
days, weeks and months. As such, they provide a proxy for human activity and behaviour. For this 
study, the lowest five-minute level of the data is ignored as this requires processing of the files. 
Instead, we concentrate file size changes over hours, days, weeks and months ( 
Figure 4).  
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Figure 4 | Average standardized size of the hour-files: per hours (a) days (b), and over the week (d) 
and histogram of all file sizes (c). 
 
No personal information about phone owners is known and the individual records are anonymised. 
The hourly files number 12,000 and rising. Due to ethical, legal and computational restrictions, often it 
is only possible to analyse a fraction of the data. Data subsamples are unpacked and transferred to a 
database called MIND; non-analysed data are registered but moved in their compressed format to a 
repository1.  
Total number of phone events (rows) is highly correlated with standardized file-sizes (R² = 0,9971, see 
supplementary Figure S1). The database is available in the supplementary material, including the 
standardized hourly file-size and all the explanatory variables. 

Weather data 

Precipitation and temperature are used to describe weather during the studied period. Both variables 
are available for download with a temporal resolution of hours which makes the weather data easy to 
integrate with MIND data. However, geography poses a problem. Since the MIND data is derived from 
users in all of Sweden the weather data should represent the weather situation valid for a large share 
of the individuals. The challenge is to generate representative weather data for a relatively big country 
with considerable differences in temperature and precipitation. We have chosen to draw data from 
Stockholm and Malmö which both are located in the populous south. The two cities are ranked 
number one and three in population size and are located close to the remaining bigger cities in 
Sweden. The online data are available from the Swedish meteorological surveys2. The two variables 
were temperature (in centigrade per hour, Air temp Malmö and Stockholm) and precipitation (mm per 
hour, precipitation Malmö and Stockholm). However, since also rate and magnitude of change may 
contribute to the model, additional variables have been created:  

• squared precipitation per hour (precipitation Malmö and Stockholm Squared), and squared 
temperature per hour (Air temp Malmö and Stockholm squared), were added in case the 
relationship is not linear  

• precipitation change per hour (D precipitation Malmö and Stockholm), temperature change per 
hour (D Air temp Malmö and Stockholm), was added to cater for reaction for a change in 
temperature (e.g. it got colder, so there are “dad, pick me up” calls, or it got warmer and 
people connect to suggest outdoor activities)  

• squared precipitation change per hour (D precipitation Malmö and Stockholm squared) and 
finally, squared temperature change per hour (D Air temp Malmö and Stockholm squared), 

                                                   

1 referred to as NotOnOurMind 
2 For information about weather stations see Supplementary materials. 
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which were added because people might be reacting to a size of change rather than its 
direction.  

Events data 

Various regular calendar events as well as unplanned events affect the behaviour of populations. Big 
enough events may affect the entire country contributing to changes in how people spend their time, 
their spatial and digital activity. In order to test if and potentially which events that affect the size of 
hour-files we have generated a set of dummy variables, coded 1 for the hours (or full days) they are 
observed, including the following: Secular holiday, religious holiday, sports, TV, media and, weather & 
transport (i.e. complete stop in traffic between main national nodes or extreme weather affecting a 
large proportion of the population)3. 

Method 

The analysis relies on the relationship between activity, whether mobility or phone usage, as 
measured by the number of rows in a file and its size on disk.  This avoids the daunting need to open 
every file to measure and count each activity. The robustness of this approach is demonstrated by 
high correlation between file-size and count of activities (supplementary Figure S2). The dependent 
variable for the analysis – aggregated to hours – is thus simply file size. Temporal patterns in the data 
are described and then analysed using established methodologies. Autocorrelation across time is 
used to assess hourly and daily time lags in activity. We conduct an autocorrelation test of the 
variation in file size by correlating the of hours (and days) files to lag hours (and days) files as 
specified in equation 1. 
 

r" =
∑ (&'(&))(&'+,(&))-.,
'/0

∑ (&'(&))-
'/0

1 	  (eq.1.) 

 
The result r" is the correlation between any hour or day and time lag h that ranges between perfectly 
correlated, random or perfectly negatively correlated (r" values of 1, 0 and -1 respectively). By plotting 
the r" for a series of values where the time lag h is increasing by one hour (or one day for the day 
series) we depict changes in autocorrelation, as the distance in time lag increases, in the shape of a 
correlogram. The correlogram illustrates the trend-change in autocorrelation to test our hypothesis that 
the size of files follows a pattern that is strongly related to the repetitive nature of days and hours. 
 
Multilevel models (MLM) are used because the dependent variable is sorted on time in a nested 
hierarchy of hours, days and months. MLM is used to estimate variance across temporal levels 
accounting for weather and special events. Temporal categories, enable detecting how much of the 
file-size variation can be assigned to hours, days or months but also see how much, and which 
temporal category of the variation can be explained by the fixed effects. The fixed effects are listed as 
event and weather dummy variables. Three different multi-level analyses are employed in this study. 
First, we run the multi-level regression (the empty model) using no explanatory variables, but with 
three temporal levels: hour, day and a combined month-year. The empty model is formulated as 
specified in equation 2.  
 
  𝑦456 = 	𝛽8456 + 𝑣6 + 𝑢56 + 𝑒456 (eq.2.) 
 
Where 𝑦456 refers to the file size z-score and subscripts 𝑖𝑗𝑘 represents hour, day and month-year 
levels respectively. The variation (or random errors) at different levels is expressed as: 𝑣6 (month-
year), 𝑢56 (day) and 𝑒456 (hour). The empty model enables estimating the percentage of variation 
attributable to hours, days and month-years, but also enables assessing to what extent the 
introduction of fixed effects for events and weather in the full model reduce variation at different 
temporal levels. 
 
The second and third multi-level analyses differ from each other in two ways: (1) the second (full) 
model makes use of all listed event and weather variables and (2) the third (restricted) model is an 
empty model (no fixed effects) but contains only the hours and days that are not associated with 

                                                   

3 List of events is included as supplementary material 
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specific events. Therefore, the restricted model contains fewer cases.  The full multi-level model can 
be expressed as specified in equation 3. 
 
  𝑦456@𝛽8456 + 𝛽A𝑥A456 + ⋯+ 𝛽D𝑥D456+𝑣6 + 𝑢56 + 𝑒456 (eq.3.) 
 
Where 𝛽8456 represents the intercept and 𝛽D𝑥D456 the time-specific regression coefficient between a 
fixed effect predictor and the dependent variable. 
 
Predicted file-sizes from these MLM are compared with the observed using the Root Mean Square 
Deviation (RMSD) so as to measure the scale of temporal variation. By comparing the deviation 
between estimated and observed size of the hour-files, we trace which hours and weekdays tend to 
vary more or less from the average. By repeating the RMSD test for each hour, day and combined 
week-day and hour, we detect which hours and days are best suited for selection of a representative 
subsample. The RMSD can be expressed as in equation 4. 
 
  𝑅𝑀𝑆𝐷I = J∑(𝑌I − 𝑌IM)N/𝑛  (eq.4.) 
 
Where 𝑡 represents specific time (hour or day), 𝑌I and 𝑌IM  - observed and estimated file-size, and n - 
number of time units included in the analysis4. 
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