Pharmaceutics, Drug Delivery and Pharmaceutical Technology

Proteomics-Informed Identification of Luminal Targets For In Situ Diagnosis of Inflammatory Bowel Disease

Shno Asada, Christine Wegler, David Ahl, Christel A.S. Bergström, Mia Phillipson, Per Artursson, Alexandra Teleki

* Department of Pharmacy, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
b Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
c Department of Pharmacy, Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), SE-75123 Uppsala, Sweden
d Department of Medical Cell Biology, Uppsala University, SE-75123 Uppsala, Sweden
* The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden

A R T I C L E I N F O

Article history:
Received 20 August 2020
Revised 1 November 2020
Accepted 2 November 2020
Available online 4 November 2020

Keywords:
Biomarker(s)
Caco-2 cells
Colon
gastrointestinal tract
Inflammatory bowel disease (IBD)
in vitro model(s)
Nanoparticle(s)
Principal component analysis
Proteomic
Targeted drug delivery

A B S T R A C T

Inflammatory bowel disease (IBD) is a chronic condition resulting in impaired intestinal homeostasis. Current practices for diagnosis of IBD are challenged by invasive, demanding procedures. We hypothesized that proteomics analysis could provide a powerful tool for identifying clinical biomarkers for non-invasive IBD diagnosis. Here, the global intestinal proteomes from commonly used in vitro and in vivo models of IBD were analyzed to identify apical and luminal proteins that can be targeted by orally delivered diagnostic agents. Global proteomics analysis revealed upregulated plasma membrane proteins in intestinal segments of proximal- and distal colon from dextran sulfate sodium-treated mice and also in inflamed human intestinal Caco-2 cells pretreated with pro-inflammatory agents. The upregulated colon proteins in mice were compared to the proteome of the healthy ileum, to ensure targeting of diagnostic agents to the inflamed colon. Promising target proteins for future investigations of non-invasive diagnosis of IBD were found in both systems and included Tgm2/TGM2, Icam1/ICAM1, Ceacam1/CEACAM1, and Anxa1/ANXA1. Ultimately, these findings will guide the selection of appropriate antibodies for surface functionalization of imaging agents aimed to target inflammatory biomarkers in situ.

© 2020 The Authors. Published by Elsevier Inc. on behalf of the American Pharmacists Association. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Today, the life-long treatment and diagnosis of inflammatory bowel disease (IBD) suffers from several challenges. There is no standardized diagnostic method available for intestinal inflammation and the current gold standard is endoscopy combined with mucosal biopsies, which is costly, invasive and time-consuming. Disease activity is characterized by symptoms of diarrhea, urgency of defecation, and occasionally rectal bleeding and abdominal pain. IBD is diagnosed based on these clinical symptoms together with endoscopic and histopathologic examinations. However, especially in patients with Crohn’s disease (CD), the disease can progress without these symptoms or they can have other causes than an active inflammation. This can result in repeated invasive examinations and in unnecessary or not optimal treatments.1 Thus, the accurate assessment of disease location and activity is essential for successful disease management, minimizing adverse effects from medication, the risk of relapse, or even development of cancer.2

Due to the disadvantages of current means of diagnosing IBD, there is a continued interest in complimentary, non-invasive diagnostic alternatives. These include imaging techniques like computed tomography (CT) or magnetic resonance imaging (MRI)1–3 and biomarker analyses in feces or serum samples.4 C-reactive protein (CRP) is a widely used serum indicator for IBD in the clinic. However, it lacks specificity and sensitivity for inflammation in the gastrointestinal tract (GIT), and is only used...
complimentary to other diagnostic methods. To assess disease activity, the upregulated fecal biomarkers of inflammation, neutrophil-associated proteins calprotectin, lactoferrin, and myeloperoxidase, are routinely used in compliment to endoscopic examinations in the clinic. These fecal biomarkers are typically stable in stool for up to one week at room temperature, making them ideal for simple screening in the clinic. However, they do not give any spatial information about the spread of the disease in the GIT and suffer from large interpatient variability. Also, calprotectin is not only a biomarker for IBD but can be associated with e.g. neoplasia, infections, and celiac disease, and is elevated in patients taking nonsteroidal anti-inflammatory drugs. Finally, fecal biomarkers might not comprise a sensitive tool to evaluate early stages of inflammation. In contrast, local, membrane-bound biomarkers on intestinal epithelial cells (IECs) can be targeted to determine the exact disease location in the GIT. Furthermore, local detection of secreted, luminal biomarkers circumvent the stability requirement in stool samples. This could open for novel, potential biomarker targets and improve early detection of intestinal inflammation.

Amongst the non-invasive imaging techniques, CT is currently the preferred practice in hospitals mostly due to its rapid scan time, widespread availability and high resolution. However, it exposes patients to cumulative ionizing radiation as frequent re-evaluation of disease activity is typically required for IBD patients. MRI is thus gaining popularity, especially with the development of advanced MRI methods. Molecular MRI uses contrast agents such as functionalized superparamagnetic iron oxide nanoparticles (SPION) targeting overexpressed disease biomarkers to image disease location in vivo. This technique has so far primarily been applied for preclinical cancer diagnosis, as well as imaging of inflammation in the brain. Furthermore, MRI can be employed for the quantitative determination of the local biomarker concentration in vivo and this is already explored in clinical trials for cancer monitoring.

In order to develop such non-invasive, in situ imaging-based diagnostic tools for IBD, appropriate local biomarker targets have to be identified. Proteomics analysis is a powerful tool in biomarker discovery and has previously been applied for IBD using human tissue biopsies, serum, and feces samples, but to a much lesser extent to understand which structures to target for non-invasive imaging and oral drug delivery. In order to empower preclinical development of such novel targeted imaging probes, biomarker identification has to be carried out initially in commonly used in vitro and in vivo experimental models of acute inflammation and later on linked with biopsies from patient cohorts. Several experimental models have been developed to advance the understanding of IBD and thereby developing improved diagnostic and therapeutic platforms. The most commonly used animal model of IBD employs enteral administration of dextran sulfate sodium (DSS) at ~40 kDa in mice to gradually induce epithelial damage, predominantly in the proximal and distal parts of the colon, and resembles ulcerative colitis (UC) in humans. Amongst in vitro methods, Caco-2 cells originating from human epithelial colorectal adenocarcinoma cells, are widely used in studies of intestinal cell physiology and drug transport. Various methods have been reported to induce inflammation in this cell model and most commonly a mixture of cytokines and lipopoly-saccharides (LPS) or DSS is used.

In this study, the global proteomes of the most commonly used experimental in vitro and in vivo IBD models were quantified with the focus to find biomarkers for in situ targeting. The aim was to identify i) commonly expressed apical plasma membrane biomarkers on IECs in vitro and in vivo and ii) secreted biomarkers in vivo. Our studies identify luminal and membrane-bound IBD biomarkers that will be further investigated as non-invasive targets for diagnosis of IBD.

Experimental

Mouse Model for Acute Colitis

All animal experiments were approved by the Swedish Laboratory Animal Ethical Committee in Uppsala (animal experiment number C6/16) and were conducted in accordance with guidelines of the Swedish National Board for Laboratory Animals. Male, C57BL6/J mice (Taconic M&B, Ry, Denmark and Charles River, Sulzfeld, Germany) weighing between 20 and 35 g before treatment were kept under standardized conditions at a temperature of 21–22 °C and with 12 h light and 12 h dark cycle. For proteomics, fifteen mice were randomly divided into two groups: control (n = 8) and DSS-treated (n = 7). For immunohistochemical analysis, 12 mice were divided into two groups: control (n = 6) and DSS-treated (n = 6). Colitis was induced by adding 3% (w/v) DSS (molecular weight ~40 kDa) to the drinking water for 7 days (Fig. 1a). The colitis progression was evaluated for each DSS-treated mouse (n = 7 for proteomics and n = 6 for immunostaining) by daily assessment of clinical parameters (weight loss, stool consistency, and blood content). It is presented as a disease activity index (DAI) score with a minimum of 0 and maximum of 4 (Fig. S1). At the end of the experiment, the mice were euthanized by isoflurane inhalation followed by cervical dislocation.

Tissue Biopsy Sampling for Proteomics

Intestinal sections of ileum and colon were removed separately and placed in oxygenated Krebs solution. The tissues were rinsed from stool and a midline incision was made longitudinally along the intestine. The tissues were pinned on a Sylgard-lined Petro dish with the luminal side facing down. A fine incision was made through the muscle layer, and muscle was then carefully removed from the underlying tissue. The tissue preparations of the whole ileum were snap frozen in liquid nitrogen, while the preparations of the large intestine were first cut into two segments, proximal colon and distal colon, before snap frozen in liquid nitrogen. The proximal colon was morphologically distinct from the remaining parts of the tissue by transverse folds that project into the lumen. All tissue biopsies were kept at −80 °C until further treatment and analysis.

Immunohistochemistry

Colon tissue was removed and opened longitudinally, rinsed with cold PBS and rolled according to the Swiss-roll technique. Excised tissues were immediately fixed in 4% formalin (Sigma-Aldrich, St. Louis, MO, USA) overnight and then transferred to 70% ethanol in PBS. The tissue preparations were embedded in histowax (Histolab Products AB, Askim, Sweden). Consecutive sections, 4 μm thick, were cut, placed on SuperFrost Plus slides (Thermo Scientific, Braunschweig, Germany) and baked at 52 °C for 45 min. Sections were stained with the following antibodies: rabbit anti-mouse annexin A1 (abcam, #ab214486, dilution 1:2000), rabbit anti-mouse CEACAM1 (SinoBiological, #50571-R030, dilution 1:500), rabbit anti-mouse ICAM1 (abcam, #ab179707, dilution 1:2000), rabbit anti-annexin A1 (Agilent) using Envision FLEX +, High pH Kit (Agilent), rabbit anti-mouse IgG (Agilent, #P0448, dilution 1:200) as secondary antibody. Slides were counterstained with Mayers Hematoxylin (Histolab Products AB) for 5 min, washed in tap water, dehydrated in sequential changes of alcohols and xylene and mounted with Pertex (Histolab Products AB). All stained

specimens were imaged by light microscopy using Axio Scan.Z1 (objective: Plan-Apochromat 20 x/0.8 M27; Zeiss, Jena, Germany).

Inflammatory Cell Models

Caco-2 cells (originally obtained from the American Type Culture Collection), passage 96, were maintained in Dulbecco’s modified Eagle’s medium, containing 10% (v/v) fetal bovine serum, and 1% (v/v) nonessential amino acids. The cells were cultured in an incubator at 37 °C, 10% CO₂ (MMM Group, Munich, Germany) while maintained in 75 cm² tissue culture flasks. Cells were seeded on Transwell polycarbonate filters (Corning, NY, USA; diameter 12 mm, pore size 0.4 μm) at a density of 0.5 × 10⁶ cells/filter and maintained in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum, 1% nonessential amino acids, 100 U/mL penicillin, and 100 μg/mL streptomycin prior to the experiment. All cell culture media and reagents were purchased from ThermoFisher Scientific (Waltham, MA, USA) or Sigma-Aldrich (St. Louis, MO, USA). After 22 days in culture, the cells were treated with filter-sterilized (0.45 μm) solutions of either 1 w/v% dextran sulfate sodium (DSS)15 or a mixture of inflammatory mediators with tumor necrosis factor (TNF)-α (50 ng/ml), interleukin (IL)-1β (25 ng/ml), lipopolysaccharides (LPS; 10 ng/ml) and interferon (IFN)-γ (50 ng/ml)14 in culture medium (Fig. 1a). This mixture will simply be referred to as TNF-α treatment in the following. For DSS-treated cells, the medium was added to the apical side of the Transwell filters, while for the cells treated with the TNF-α mixture, the medium was applied to the basolateral side. After 24 h, filters were washed with phosphate-buffered saline (PBS) and then excised and prepared for proteomics analysis. Four 12-well filters were pooled for one sample. In total, six control, six TNF-α and six DSS-treated samples were prepared.

Global Proteomics Analysis

Mouse ileum (DSS-treated: 176 ± 28 mg, control: 158 ± 39 mg), proximal (DSS-treated: 93 ± 24 mg, control: 93 ± 31 mg) and distal (DSS-treated: 60 ± 12 mg, control: 50 ± 16 mg) colon samples were homogenized with a T10 Basic homogenizer (IKA®-Werke GmbH & Co. KG, Staufen, Germany) in lysis buffer containing 2% (w/v) SDS, 50 mM DTT, and 100 mM Tris/HCl, pH 7.8. Caco-2 cells were lysed directly with the lysis buffer. Proteins were denatured at 95 °C and DNA were sheared with a rod sonicator. Proteins were cleaned and digested with the multi–enzyme digestion filter-aided sample preparation (MED-FASP) protocol, using LysC and trypsin.10 Peptides were desalted on stage-tips packed with C18–material (3 M), and eluted with 60% acetonitrile (ACN) in water.19,20 Protein and peptide amounts were determined based on tryptophan fluorescence.21 Peptides were separated on a 50 cm EasySpray C18 column (2 μm particle size, 75 μm inner diameter, ThermoFisher Scientific, Waltham, MA, USA) using a gradient of 0–25% mobile phase B (0.1% formic acid in 100% ACN) at a flow rate of 300 nL/min over 100 min. This was followed by 15 min elution from 25 to 50% mobile phase B and a final washout of 95% mobile phase B. Peptides were ionized with electrospray in positive mode and analyzed on a Q Exactive HF mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA) using a data-dependent mode with survey scans acquired at 240,000 resolution with maximum ion injection time of 20 ms. Up to the top 15 most abundant isotope patterns with charge ≥2 from the survey scan were selected with an isolation window of 1.4 m/z and fragmented by HCD with normalized collision energies of 28.5. The MS/MS scans were obtained at 15,000 resolution and maximum ion injection time of 60 ms. The resulting MS data were processed with MaxQuant (version 1.6.10.43),22 where proteins were identified by searching MS and MS/MS data of peptides against the mouse UniProtKB (UP000005689) or human (Caco-2 cells) UniProtKB (UP000005640). Spectral raw intensities were normalized with variance stabilization (vsn),23 and subsequently used to calculate the protein concentrations using the Total Protein Approach.24

Data Analysis and Bioinformatics

To improve the quality of the data analysis, only proteins that were identified with at least two unique + razor peptides from
the MaxQuant processing were subject to further analysis. Proteins with significantly different concentration levels in the treated compared to control sample types were identified with limma (in R/Bioconductor), which is an analysis approach that uses linear models to analyze differential expression across all proteins in the dataset. From limma-analysis, proteins with absolute concentration fold change (geometric mean concentration treated/control) > 2 and p-value < 0.05 in treated against control samples were considered for further pathway analysis. Functional annotation clustering was performed in R with the clusterProfiler-package searching against the mouse or human database, respectively.

Upregulated plasma membrane bound proteins that can be targeted from the luminal side in the GIT for in situ diagnosis of IBD, were identified following the procedure outlined in Fig. 1b. First, only proteins identified with at least two unique + razor peptides were selected (Fig. 1b, step 1). Second, only proteins without missing values in any sample were selected (Fig. 1b, step 2). Next, proteins with a significant fold change (p-values < 0.05 from limma-analysis; Fig. 1b, step 3) in treated compared to healthy controls were selected for further analysis. As limma-analysis does not account for missing values, the proteins which were found to be upregulated in the treated mice and cells, but essentially absent in the controls, were manually added to the selection of proteins (Fig. 1b, step 4). Significant fold changes for these proteins were calculated with t-test corrected for multiple comparisons with the Holm-Sidak method in GraphPad Prism (version 8.4.0). Additionally for the mouse proteome, proteins with a higher concentration in the treated colon than in the healthy ileum were chosen (Fig. 1b, step 5). This decision was made since inflammation in the mouse model primarily occurs in the colon. Thus, an imaging probe should primarily be targeted there and not bind prematurely in the small intestine. Subsequently, upregulated proteins with a concentration fold change (geometric mean concentration treated/control) ≥ 1.5 (Fig. 1b, step 6) in proximal and distal colon were selected. Finally, to ensure sufficient protein concentration for targeting, only proteins with geometric mean concentration ≥0.5 fmol/μg total protein (Fig. 1b, step 7) were considered. The subcellular location of these proteins was determined based on their UniProt annotation.

Results

Global Proteomics Analysis of Mouse Model For Acute Colitis

The DSS treatment effectively induced intestinal inflammation in mice, evident by their weight loss and blood in the stool. The decrease in body weight started after five days of DSS treatment with a mean decrease of 7% before sacrifice. After seven days of treatment, the mean DAI score was 2.6 ± 0.5 and 2.1 ± 0.5 (standard deviation) out of maximum 4 across the DSS-treated mice used for proteomics and immunostaining, respectively (Fig. S1). When the tissue samples were collected, shortening of the colon was visually measured from treated mice compared to the healthy controls. Hematoxylin and eosin (H&E)-stained sections of the DSS-treated colon revealed inflammatory morphological changes of the mucosa compared to the healthy controls (Fig. 2). Regional differences were observed as the DSS-induced colitis induced immune cell infiltration, damaged epithelium and altered crypt morphology in the distal colon (Fig. 2c–e), while the proximal region of the colon was unaltered (Fig. 2f).

The global proteomics analysis resulted in quantification of 7340 proteins with at least two unique + razor peptides in total across the ileum, proximal and distal colon samples obtained from all mice (Fig. 1b, step 1, Data S1). The protein concentrations in the ileum were only affected to a small extent by the DSS-treatment compared to those in the healthy mice (Fig. 3a). Principal component analysis (PCA) showed that only 16% of the variability along the second most influential component in the ileum proteomes was explained by the treatment (Fig. S2a). Largest proteome variability was observed in the proximal and distal colon in DSS-treated mice compared to healthy controls (Fig. 3a). In these colon segments 22% and 25% of the variability (along the first most influential component), respectively, was ascribed to changes in the colon tissue from DSS-treated mice (Fig. S2b and S2c). limma-analysis showed that the concentrations of 128 proteins were significantly changed (fold change of geometric mean concentration treated/control > 2 and p-value < 0.05) in the ileum after DSS-treatment (Fig. 3b), while this number increased to 257 and 437 proteins in the proximal and distal colon, respectively (Fig. 3b). A correlation in concentration fold changes (geometric mean concentration treated/control) of the proteins quantified in the proximal and distal colon from treated and control mice were found (Pearson’s correlation coefficient, r = 0.55), suggesting that both tissue segments were similarly affected by the DSS-treatment (Fig. 3c). Functional annotation clustering confirmed that the significantly changed protein concentrations in the distal and proximal colon were involved in inflammatory response processes, such as ‘defense response’ and ‘immune response’ (Fig. 3d). More specifically, proteins involved in these processes with the highest upregulation in both distal and proximal colon of the DSS-treated mice, were S100a9, Lcn2, Chi3L, and Ilg1p1, with concentration fold changes ranging from 26 to 119 (Data S1). No enrichment of biological processes was identified for the affected proteins in the ileum from the treated mice. This further demonstrates that DSS-treatment had a lower impact on the ileum compared to the colon segments.

Global Proteomics Analysis of Inflammatory Caco-2 Cell Models

In the treated and control Caco-2 cells, a total of 6631 proteins were quantified with at least two unique + razor peptides in MaxQuant (Fig. 1b, step 1, Data S1). The largest change in the Caco-2 proteome was observed after the TNF-α treatment, which accounted for 25% of the variability (on the first influential component in the PCA; Fig. 4a). The TNF-α treatment of Caco-2 cells resulted in 465 proteins with significantly changed concentrations. The affected proteins were similarly involved in inflammatory response processes (Fig. 4c) as observed in the colon segments from DSS-treated mice (Fig. 3d). In the TNF-α treated Caco-2 cells, ‘defense response’ and ‘response to cytokine’ were the most enriched functional annotation clusters, including proteins such as Wip12, Parp9, IGBP1, and Lrsam1 with concentrations upregulated 2–4 fold (Data S1). DSS-treatment did not affect the proteome of the Caco-2 cells to the same extent as the TNF-α mixture. For the former, only 105 proteins were significantly changed, and no enriched functional clusters were obtained. Therefore, only TNF-α treated Caco-2 cells were analyzed for luminal protein targets (Fig. 1b).

Selection of Inflammatory Target Proteins

The selection criteria shown in Fig. 1b were applied to identify inflammatory biomarkers for in situ colon targeting in the selected experimental IBD models. The filtering process yielded 167 and 203 targets in the proximal (Table S1) and distal colon (Table S2) of the DSS-treated mice, respectively (Fig. 1b, step 7). In the Caco-2 cells, 264 targets were identified (Table S3; Fig. 1b, step 7). Finally, out of the proteins found from the overall filtering process (Fig. 1b, steps 1–7), plasma membrane bound proteins on the apical side of
epithelial cells (Table 1) and secreted proteins in the lumen (Table 2), based on their UniProt annotations, are proposed here as in situ targets.

A large number of the identified membrane bound proteins were associated with immune cells (Table 2) in agreement with the functional annotation clustering (Fig. 3d). Examples of such upregulated proteins in both proximal and distal colon are Lcn2 (80.1 and 26.3-fold, respectively), Prtn3 (17.7 and 11.0-fold, respectively) and Cybb (4.0 and 4.9-fold, respectively). The latter, however, was found at similar concentrations in both ileum and colon (0.4 fmol/mg and 0.6–0.7 fmol/mg respectively). Elane was also highly upregulated in the proximal colon (56.6-fold). This protein was also found at moderate concentrations in the distal colon (geometric mean: 0.5 fmol/µg), while it was not detectable in the healthy tissue. Thus, p-value and fold change could not be determined for this protein in the distal colon.

Plasma membrane bound proteins, common between the selected mouse and cell models (Table 1), are of particular interest for preclinical development of diagnostic agents to enable rapid translation and facile correlation between in vitro and in vivo models. Thus, proteins located on the apical side of the intestinal epithelium were selected. In total, four upregulated proteins present in both in vitro and in vivo models were found: Tgm2/TGM2, Icam1/ICAM1, Ceacam1/CEACAM1, and Anxa1/ANXA1 (Table 1). These proteins were all upregulated during inflammation in the experimental IBD models, with the exception of Icam1 that was only upregulated in the distal colon and slightly downregulated in the proximal colon. It should be noted, that the selection criteria for each protein in terms of fold change and total protein concentration (Fig. 1b) were never met for all samples analyzed, i.e. Caco-2 cells, distal and proximal colon segments. However, data was included in Table 1 if the criteria were met in at least one of these samples. For example, in the Caco-2 cells the highest upregulation was obtained for Icam1 (48-fold), with only a moderate increase in the distal colon for this protein (1.3-fold) and even a decrease in the proximal colon (0.7-fold). Tgm2/TGM2 and Ceacam1/CEACAM1 met all selection criteria in the Caco-2 cells (3.5 and 3.6-fold respectively) as well as the distal colon (2.4 and 1.6-fold, respectively). These proteins were more strongly upregulated in the treated samples in the distal colon as compared to the proximal colon (1.3 and 1.2-fold, respectively). In contrast, Anxa1/ANXA1 had a higher fold change in the proximal (1.8-fold) compared to distal colon (1.4-fold). It was also upregulated in the Caco-2 cells (2.3-fold), however, at overall rather low total protein concentration (geometric mean < 0.5 fmol/µg even after TNF-α treatment).

Importantly, expression of the four protein targets Tgm2, Icam1, Ceacam1, and Anxa1 was confirmed using immunohistochemistry in both inflamed (Fig. 5) and healthy mouse tissue, which is in agreement with the proteomics results (Table 1). While Anxa1 was moderately expressed along the crypts of nearly intact epithelial cells in the distal colon (Fig. 5a), it was not detected in highly inflamed areas that exhibited complete crypt loss (Fig. S3a and S3b). Ceacam1 was highly expressed along the epithelial cell surface in both distal (Fig. 5b) and proximal colon (Fig. 5f), but, similarly to Anxa1, was not observed in the inflamed regions with complete crypt loss (Fig. S3c and S3d). In contrast, Icam1 was highly expressed in such highly inflamed areas (Fig. 5c), while it was not observed in areas with less inflammation and more intact...
epithelium (Fig. S3e and S3f). Tgm2 was primarily found in the muscle layer and lamina propria, however, the expression of Tgm2 close to the IEC surface increased in severely inflamed regions (Fig. 5d).

Discussion

To develop novel, non-invasive diagnostic tools for IBD, relevant biomarkers have to be identified. This can be achieved by using proteomics analysis of tissue biopsies from patients, as well as from experimental in vitro and in vivo IBD models important for preclinical development. Here, global proteomics was used to study the protein expression in a wild-type (WT)-mouse model for acute colitis and two types of inflammatory Caco-2 cell models for the first time. With this approach, the total proteome could be quantified and compared across these commonly used experimental IBD models with the goal to select common targets for preclinical development of in situ diagnostic probes (Fig. 6).

Inflammatory Response in the Experimental IBD Models

The global proteome of Caco-2 cells was hardly affected by the DSS-treatment (Fig. 4a). This can be explained by the proposed mode of action by DSS to cause intestinal inflammation in vivo. As DSS disrupts the intestinal mucus layer, the epithelium is exposed to microbiota in the lumen that trigger the production of pro-inflammatory agents and recruitment of immune cells, ultimately leading to an inflamed state. This process cannot be mimicked by the DSS-treated Caco-2 cell culture that lacks microbiota, blood flow and an immune system. DSS itself can disrupt cell function, and thus previous reports using this treatment have primarily investigated its effect on cytotoxicity, monolayer integrity, and release of pro-inflammatory cytokines. In order to more closely mimic the inflammatory processes in the in vivo mouse model, the TNF-α treatment of the Caco-2 cells is more applicable as it produces a similar inflammatory response as that in the DSS-treated mice (Figs. 3d and 4c, respectively).

For the colitis mouse model, the DAI score of the treated mice at day seven (Fig. S1) was in line with previous studies, demonstrating an effectively induced intestinal inflammation. This inflammation causes release of proteases, free radicals and metalloproteinases, and results in colon shortening, as also observed in this study. The inflamed state of the DSS-treated mice was confirmed by immunohistochemistry of colon tissue (Fig. 2). DSS-induced colitis was confirmed when comparing colon tissues from the healthy controls (Fig. 4a and b) with the DSS-treated mice (Fig. 2c–f), as the latter revealed altered epithelial morphology with less ordered crypts (Fig. 2c), variable diameters in adjacent crypts or complete crypt loss. Furthermore, certain regions of the DSS-treated colon also exhibited elongated crypts (hyperplasia; Fig. 2d) that can be attributed to intestinal inflammation along with highly increased infiltration of immune cells between the crypts (Fig. 2e). These morphological changes were only observed in the distal colon, while the proximal colon was unaltered (Fig. 2f).

DSS-treatment has been shown to cause inflammation by disrupting the epithelium mostly in the distal colon. This is in
agreement with the small impact of the DSS-treatment on the ileum proteomes (Fig. 3a and b), and specifically proteins involved in inflammatory response, as well as the histomorphological changes in the distal colon sections (Fig. 2c–e). Interestingly, both proximal and distal colon samples showed similar proteome changes (Fig. 3c) and enriched inflammatory response processes (Fig. 3d) after DSS-treatment. For the proximal colon, the discrepancy between the results from immunohistochemistry and proteomics might originate from the difference in sensitivity of these two methods. Proteomics might be more sensitive to pre-inflammatory alterations rather than overt disease facilitating early detection and treatment of IBD. Previous studies have also reported upregulated mRNA levels of pro-inflammatory cytokines in both proximal and distal colon after DSS-treatment, albeit to a higher extent in the distal colon.34

The inflamed condition of the mice was further confirmed by the presence of highly upregulated known luminal IBD biomarkers in the proximal and distal colon (Table 2): myeloperoxidase (Mpo), calprotectin (S100a8 and S100a9), lactoferrin (Ltf), and eosinophil protein X (Epx). These biomarkers are routinely used in the clinic for non-invasive diagnosis using feces samples from IBD patients.35 Mpo is a lysosomal protein, secreted from neutrophils to combat invading microbes.35 Calprotectin is composed of two calcium- and zinc-binding proteins, S100a8 and S100a9 (Table 2). During inflammation, calprotectin is released from immune cells, and can thus be found in feces.36 Epx is secreted from activated eosinophil granulocytes, and is abundant in the mucosa in active UC and CD.37,38 Furthermore, the presence of highly upregulated proteins representing different subunits of fibrinogen, Fga, Fgb, and Fgg (with fold changes between 9.9 and 10.6 in proximal colon and 8.1–11.1 in distal colon, respectively; Tables S1 and S2), also indicate an ongoing inflammation in the mice and is in line with high fibrinogen plasma levels reported in IBD patients.39

Identification of IEC-Anchored Protein Targets

Plasma membrane proteins expressed commonly on the IECs of DSS-treated mice and inflammation induced Caco-2 cells were identified using the selection criteria shown in Fig. 1b for at least one of the samples. It is not to be expected that the upregulation will be quantitatively similar in the in vitro and in vivo setting, as the experimental procedure and complexity are different when moving from the in vitro to the in vivo situation. However, targets that are upregulated in both systems are useful when developing new imaging probes, and to allow contrasting the obtained results to the healthy intestine. The upregulated proteins included Tgm2/ TGM2, Icam1/ICAM1, Ceacam1/CEACAM1, and Anxa1/ANXA1 (Table 1). Overexpression of these proteins has previously been reported during active inflammation in IBD patients, confirming the clinical relevance of these biomarkers. Transglutaminase 2 (Tgm2/TGM2, 2.4- and 3.5-fold in distal colon and Caco-2 cells
Table 1

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Proximal Colon</th>
<th>Distal Colon</th>
<th>Proximal Ileum</th>
<th>Distal Ileum</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxa1/ANXA1</td>
<td>2.3</td>
<td>1.6</td>
<td>1.8</td>
<td>1.4</td>
<td>Fold Change 2.3</td>
</tr>
<tr>
<td>Ceacam1/CEACAM1</td>
<td>3.6</td>
<td>2.7</td>
<td>4.9</td>
<td>3.1</td>
<td>Fold Change 3.6</td>
</tr>
<tr>
<td>Icam1/ICAM1</td>
<td>1.4</td>
<td>0.9</td>
<td>2.6</td>
<td>1.7</td>
<td>Fold Change 1.6</td>
</tr>
<tr>
<td>Tgm2/TGM2</td>
<td>4.8</td>
<td>2.2</td>
<td>20.2</td>
<td>10.6</td>
<td>Fold Change 48</td>
</tr>
<tr>
<td>Annexin A1</td>
<td>0.2</td>
<td>1.3</td>
<td>0.1</td>
<td>0.2</td>
<td>Fold Change 3.6</td>
</tr>
</tbody>
</table>

Protein concentrations (fmol/mg protein) were calculated with the Total Protein Approach and are shown as geometric mean values (n = 8, treated n = 7 for mice). Fold Change is the protein concentration in treated/untreated. Protein expression was not significantly changed for numbers given in italics. The listed proteins are sorted alphabetically.

Localization of the identified IEC-anchored protein targets was validated by immunohistochemical staining of colon sections from the DSS-treated mice (Fig. 5). Anxa1 (Fig. 5a and e) and Ceacam1 (Fig. 5b and f) were found across the epithelium of moderately inflamed regions and especially Ceacam1 was strongly expressed on the IEC surface. In contrast, the presence of Icam1 (Fig. 5c and g) and Tgm2 (Fig. 5d and h) was more notable in highly inflamed areas with complete crypt loss. The loss of histomorphological features in these areas could render these proteins accessible for targeting from the luminal side of the GIT. These results indicate that the expression of the identified proteins differ in the various inflammatory states of the GIT, and could be explored further to locally distinguish IBD disease activity. Overall, Tgm2, Ceacam1, and Anxa1 were identified as the most promising inflammatory IEC-anchored protein targets common for the selected in vitro and in vivo IBD models. These common targets can bridge the gap between cell and mouse models for IBD for the future development of diagnostic systems.

Plasma Membrane Proteins of Immune Cells and Proteins Secreted in the Lumen

The majority of inflammatory proteins in DSS-treated mice is found in immune cells, such as neutrophils, macrophages, and lymphocytes. Neutrophils are known to infiltrate the mucosa and appear in the intestinal lumen during overt inflammation. This process cannot be mimicked by the in vitro Caco-2 cell model. As luminal presence of these proteins is a hallmark of intestinal inflammation, they form less accurate targets for localizing the site of inflammation in the GIT compared to the previously discussed IEC-anchored proteins. However, proteins expressed on or released by immune cells can be used to quantify disease activity. Currently used clinical fecal
Table 2
Proteins Located Extracellularly in Inflamed Intestinal Segments in Mice.

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Proximal Colon</th>
<th>Distal Colon</th>
<th>Heum</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fold Change</td>
<td>Conc. Treated</td>
<td>Conc. Healthy</td>
<td>Fold Change</td>
</tr>
<tr>
<td>Mpo</td>
<td>76.5</td>
<td>1.9</td>
<td>0.02</td>
<td>105.5</td>
</tr>
<tr>
<td>S100a8</td>
<td>265.2</td>
<td>6.4</td>
<td>0.02</td>
<td>33.2</td>
</tr>
<tr>
<td>S100a9</td>
<td>118.5</td>
<td>31.5</td>
<td>0.3</td>
<td>28.0</td>
</tr>
<tr>
<td>Lcn2</td>
<td>80.1</td>
<td>5.5</td>
<td>0.1</td>
<td>26.3</td>
</tr>
<tr>
<td>Ltf</td>
<td>91.7</td>
<td>2.8</td>
<td>0.03</td>
<td>20.8</td>
</tr>
<tr>
<td>Ctsg</td>
<td>48.7</td>
<td>0.5</td>
<td>0.01</td>
<td>21.4</td>
</tr>
<tr>
<td>Epox</td>
<td>7.6</td>
<td>4.6</td>
<td>0.6</td>
<td>12.7</td>
</tr>
<tr>
<td>Prtn3</td>
<td>17.6</td>
<td>0.8</td>
<td>0.04</td>
<td>11.0</td>
</tr>
<tr>
<td>Elane</td>
<td>57.6</td>
<td>0.8</td>
<td>0.08</td>
<td>NA</td>
</tr>
<tr>
<td>Cybb</td>
<td>4.0</td>
<td>0.6</td>
<td>0.1</td>
<td>4.9</td>
</tr>
<tr>
<td>Itgb2</td>
<td>5.4</td>
<td>0.9</td>
<td>0.2</td>
<td>4.8</td>
</tr>
<tr>
<td>Mrc1</td>
<td>2.7</td>
<td>0.4</td>
<td>0.2</td>
<td>3.9</td>
</tr>
<tr>
<td>Gsdmdc1</td>
<td>1.4</td>
<td>2.3</td>
<td>1.7</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Protein concentrations (fmol/µg protein) were calculated with the Total Protein Approach and are shown as geometric mean values (healthy n = 8, treated n = 7 for mice). Fold change is protein concentration in treated/uncept. The listed proteins are sorted with descending fold change in the distal colon.
biomarkers, such as calprotectin and Ltf described previously, have shown good correlation with disease activity, however, due to the harsh conditions of the fecal environment with bacterially expressed proteases, other biomarkers might be subject to cleavage throughout the GIT. Therefore, targeting luminal or immune cell associated proteins in situ could still be a promising strategy for diagnosing, localizing, and managing IBD.

Apart from these well-known fecal biomarkers, lipocalin 2 (Lcn2), cathepsin G (Ctsg), neutrophil elastase (Elane), and myeloblastin (Prtn3) were also highly upregulated in the inflamed colon segments of the mice (Table 2). Elevated Lcn2 levels have been reported in serum, urine, and feces of IBD patients. Elane is a serine protease secreted from neutrophils that has been reported at increased concentration in the colonic mucosa of IBD patients. Ctsg and Prtn3 are both serine proteases. The former is secreted by the colonic mucosa and plays a key role in the pathogenesis of IBD. There are not many studies regarding Prtn3 and its role in IBD, however, it is thought to be involved in degradation of extracellular matrix and modulating neutrophil clearance, thereby potentially enhancing inflammation and autoimmunity. Finally, Cybb, Itgb2, Mrc1, and Gsdmdc1 were found upregulated at moderate levels compared to the previously mentioned proteins in the inflamed colon tissue from mice and are all linked to inflammatory responses (Table 2).

Overall, the global proteomics approach identified several proteins (e.g. Lcn2, Ctsg, Prtn3 and Elane) that could be explored further as biomarkers for IBD disease activity in situ in the GIT. They could thus complement currently used, well-known luminal biomarkers such as calprotectin, Ltf and Mpo that have so far been limited for determining disease activity ex vivo. Common for the selected IEC-anchored and secreted proteins is that they can be targeted from the luminal side of the GIT. Thus compared to serum biomarkers, they are specific for intestinal inflammation. In particular, the use of imaging nanoparticles, such as SPION functionalized with antibodies that target the identified biomarkers in situ, could be a strategy to provide non-invasive, local and quantitative IBD diagnosis (Fig. 6).

Conclusions

In this work, commonly used in vitro and in vivo preclinical IBD models were analyzed by global proteomics to identify upregulated inflammatory proteins. We found that Tgm2/TGM2, Ceacam1/CEACAM1, Icam1/ICAM1, and Anxa1/ANXA1 were commonly expressed plasma membrane biomarkers on IECs in vitro and in vivo. These proteins are thereby promising, clinically relevant targets for development of diagnostic imaging probes that can easily be studied across the different experimental IBD models. Furthermore, highly upregulated, luminal and immune cell-associated proteins in the in vivo mouse model could provide quantitative information about IBD disease activity in situ in the GIT. Prominent amongst these proteins were Mpo, calprotectin (S100a8 and S100a9), Ltf, and Epox already well-known from established ex vivo feces analyses in the clinic, as well as Lcn2, Prtn3, Elane, and Ctsg. Overall, the provided dataset (Data S1) includes the global proteomes of in inflamed inflammatory Caco-2 cell and DSS colitis mice models. This can be further used to elucidate common proteins expressed intracellularly for delivery systems intended to pass through the epithelial plasma membrane. In future, the current proteomics approach to develop targeted diagnostic probes could be extended towards other animal disease models for IBD (e.g. intrarectal administration of haptenating agents) and human tissue biopsies from IBD patients.

Acknowledgements

The authors gratefully acknowledge Dr. Svetlana Popova at the laboratory for Clinical Pathology at Uppsala University Hospital for immunohistochemical staining of tissue samples. This work was supported by the Science for Life Laboratory, Sweden. Per
Artursson and Christine Weledger acknowledge funding from the Swedish Research Council (grant numbers 5715 och 1951). Mia Phillipson and David Ahl acknowledge funding from Knut and Alice Wallenberg foundation, Sweden as well as the Swedish Research Council (grant number 2552). The mass spectrometry proteomics data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD020245.

Appendix A Supplementary Data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.xphs.2020.11.001.

References

