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Abstract

Time prediction and process discovery of
administration process

Johanna Öberg

Machine learning and process mining are two techniques that are 
becoming more and more popular among organisations for business 
intelligence purposes. Results from these techniques can be very useful 
for organisations' decision-making. The Swedish National Forensic 
Centre (NFC), an organisation that performs forensic analyses, is in 
need of a way to visualise and understand its administration process. 
In addition, the organisation would like to be able to predict the time 
analyses will take to perform. In this project, it was evaluated if 
machine learning and process mining could be used on NFC's 
administration process-related data to satisfy the organisation's 
needs. 
 
Using the process mining tool Mehrwerk Process Mining implemented in 
the software Qlik Sense, different process variants were discovered 
from the data and visualised in a comprehensible way. The process 
variants were easy to interpret and useful for NFC. Machine learning 
regression models were trained on the data to predict analysis length. 
Two different datasets were tried, a large dataset with few features 
and a smaller dataset with more features. The models were then 
evaluated on test datasets. The models did not predict the length of 
analyses in an acceptable way. A reason to this could be that the 
information in the data was not sufficient for this prediction.
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Populärvetenskaplig sammanfattning

Artificiell intelligens (AI) och maskininlärning är två begrepp som dyker upp i många
sammanhang och används allt mer i dagens samhälle. Maskininlärning är en teknik
inom AI och kanske den mest använda just nu. Den handlar om att skapa modeller som
beskriver verkliga processer, genom att mata en modell med data och låta modellen själv
få lära sig mönster i datan, som kan vara för svåra eller tidskrävande för en människa
att upptäcka. Det som skiljer maskininlärning mot traditionell programmering är att
maskininlärning inte kräver någon explicit programmering av hur modellen ska fungera
eller någon kunskap om hur verkligheten är. Det lär sig modellen själv med hjälp av
datan. Maskininlärning har visat stor potential inom många applikationer och en modell
kan bland annat användas för att klassificera objekt eller prediktera framtida utfall i olika
processer.

Många organisationer och företag har stora datamängder insamlade och skulle potentiellt
kunna ha stor nytta av maskininlärning. Men det finns en del krav som behöver uppfyllas
för att lyckas med maskininlärning, till exempel att ha tillräckligt mycket data och av
god kvalitet. Nationellt Forensiskt Center (NFC) är en del av polismyndigheten i Sverige
och genomför forensiska analyser. Organisationen har en stor mängd insamlad data om
alla ärenden från 2015 till 2020 som NFC önskar kunna använda för maskininlärning. I
det här projektet undersöks det hur denna ärendedata kan användas för maskininlärning
och om en maskininlärningsmodell kan prediktera analystid för en analys i ett ärende.
Projektet syftar till att bredda kunskapen om vad som krävs för att få ett framgångsrikt
maskininlärningsprojekt.

Process mining är annan teknik som är data-baserad och som kan utnyttjas av organisa-
tioner som har data relaterad till en process, som en produktionsprocess eller, som i det
här fallet, en ärendehanteringsprocess. Process mining kan ge insikter i hur den tänkta
processen ser ut i verkligheten, hitta varianter av processen som en del av produkterna
eller ärendena tar och visa avvikelser och förseningar i processen. I det här projektet
har det undersökts hur NFC’s ärendedata kan användas för process mining för att se
om det kan vara givande för organisationer att använda. En mjukvara användes för att
beräkna en processmodell från datan, vilken sedan kunde analyseras. NFC’s data med
tidsstämplar för de olika stegen i processen var mycket väl anpassad till process mining,
mjukvaran var enkel att använda och processmodellen visade en stor mängd processvari-
anter. Sammanfattningsvis verkar process mining kunna vara ett mycket bra verktyg för
organisationer med processer. Men att förstå processvarianterna till fullo kräver tid och
stor insikt i organisationens verksamhet, något som en organisation bör vara medveten
om innan process mining används.



Maskininlärningsdelen av projektet visade att maskininlärning går att applicera på datan,
men att datan inte innehöll tillräckligt med faktorer som påverkar analystid som kunde
användas till att prediktera analystid på ett bra sätt. Prediktionerna blev väldigt otillför-
litliga. Ett mindre dataset med mer faktorer testades också, för att se om dessa faktorer
kunde förbättra prediktionen. Men datasetet var för litet för maskininlärning av den här
typen. Ett lyckat maskininlärningsprojekt kräver en stor mängd av bra, högkvalitativ
data som är representativ för datan som modellen ska användas för i framtiden.
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1 Introduction

The use of Artificial Intelligence (AI) is increasing rapidly within all kinds of industries
and AI shows promising results in many applications. A popular type of AI is machine
learning – the development of computer models that can adjust to data without being
explicitly programmed. Machine learning models are typically designed to find patterns
in data or to predict future outcomes based on historical data (Gruson et al. 2019, Géron
2017). One such industry that has started to use AI is the Business Intelligence (BI)
industry. BI can be described as the tools and methods that organisations use to analyse
information to optimise decision-making (Larson & Chang 2016). Most organisations
acquire large amounts of business-related or process-related data every year, and tra-
ditional BI is widely used. With AI, the BI methods could be even more helpful for
organisations and give insights in the data that are not possible to get with traditional BI.
But how easy is it to implement AI, and what type of data is required?

Different techniques for process-related machine learning predictions have been devel-
oped during the past years, and the applications for these techniques are many. Examples
are prediction of the remaining running time of the process, prediction of the next ac-
tivity and its timestamps, and prediction of the case outcome. Research has shown that
using Long Short-Term Memory recurrent neural networks to predict the next activity
and its timestamp of a case can be successful (Tax et al. 2017).

Another field that is growing within BI is the process mining field. The goal of pro-
cess mining is to extract process-related information in data. The most common step
in process mining is process discovery, i.e. to create a process model that describes
the true process and reveals bottlenecks and deviations from the expected process (van
der Aalst 2016). Process discovery and visualisation of processes can be made in many
ways; there are successful examples of both specific process discovery algorithms and
machine learning algorithms (Vartianien 2017).

This project aims to investigate how machine learning and process discovery can be ap-
plied to an organisation’s administration data, by using data from the Swedish National
Forensic Centre (NFC). NFC is an expert organisation within the Swedish Police Au-
thority that performs forensic analyses and investigations. NFC receives orders from the
Police Authority and judicial authorities of forensic analyses to be performed. Each or-
der (called case) can consist of one or several analyses. The case administration process
is complex and NFC handles many thousands of cases every year. This has resulted in
a large amount of data in NFC’s administration database, with information about all the
cases and timestamps of the process activities.
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In the coming years the Swedish Police Authority, which NFC is a part of, aims to shorten
the pre-trial detention times and increase the efficiency of police investigations. For
NFC, this means to have a more efficient case administration and time planning. To
do this it is essential to have a high understanding of the administration process. NFC
would need a way to discover and visualise the process, and also to be able to predict
how much time an analysis will take to complete. These abilities would greatly help
NFC achieve the efficiency goal.

To succeed with this project, I have had support from the IT consulting company Drake
Analytics. Drake Analytics is specialised in BI and data analytics, and has both the right
competence and the right software for process mining and training machine learning
models.

1.1 Project aims and limitations

The large amounts of process data at NFC could give NFC valuable information about
the administration process and possibly give a way to predict the analysis time. The
project’s goals are (1) to discover and visualise the case administration process using
the process discovery tool Mehrwerk Process Mining (MPM), and (2) to investigate if
and how the data can be used for machine learning predictions by training and testing
machine learning models. MPM was selected as process discovery tool since it is an ad-
vanced but easy tool to understand and to use. The second goal is specified to predicting
the time it takes to execute an analysis (i.e. the analysis length), not the complete case
length. The machine learning predictions will be made on two different data sets – one
containing more information but fewer examples than the other data set – to see if the
predictions become better with more information.

The impact goal of the project is to help NFC, but also to understand more generally
how organisations similar to NFC can use machine learning and process discovery on
their data. My hope is that this project can increase the knowledge of what is needed for
a successful machine learning project.

In this short time frame it is unlikely that the project will result in a machine learning
model that can be implemented directly at NFC, but the project will answer if and how
the data at NFC can be used for time predictions, and if this idea is something to continue
to work on for the organisation.
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2 Background

In this section, theory and concepts needed to understand the other sections of the report
are presented, including the case administration at NFC, BI, process mining and machine
learning. The three last concepts are all parts of the data science field, and are closely
related and partially overlapping. Data science is an interdisciplinary field that includes
all types of data extraction, preparation, transformation, visualisation, data mining and
prediction techniques (van der Aalst 2016). All information about NFC in this report
has been given to me by employees at NFC and I have their consent to use it.

2.1 The case administration at NFC

The cases at NFC consists of one or sometimes several forensic analyses to perform. At
the receiving of each case NFC presents a time plan for the administration of the case
to the client. The time it will take to complete a case depends on factors such as the
number and type of analyses, the available resources and the current work load of the
organisation.

2.2 Business Intelligence

Large amounts of data are produced today and stored in information systems, and a main
challenge for many organisations is to extract information from the data. BI can be de-
fined as an umbrella term for methods and tools for organisations to access and analyse
information, in order to optimise decision-making. It often begins with collecting raw
data and applying business context to the data to create information. Then, the informa-
tion is used for decisions and actions that can provide business value (Larson & Chang
2016).

BI has been highly affected by the rapid emerge of “Big Data” and AI during the last
years. Traditional BI focus on descriptive analytics, with questions like “what has hap-
pened, how is the situation today?”, but it is starting to be replaced by predictive and
prescriptive analytics that uses machine learning predictions, that can answer the ques-
tion “what will happen?” (Larson & Chang 2016).

The BI software used in this project is Qlik Sense. To the Qlik Sense platform the user
can import data sets from files or from enterprise information systems. The platform
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provides search, selection and filter functions, and the user can calculate visualisations
and diagrams of any subset of the data (Meyer et al. 2019).

2.3 Process mining

Process mining combines data mining with business processes. Data mining is the anal-
ysis of large data sets to find summaries and relationships. The goal of process mining is
to extract process-related information, and it is done by using historical data recorded by
enterprise information systems. Either a process model is discovered from the data, or
process models are applied as reference models. With process mining techniques an or-
ganisation can visualise and analyse a process, and discover bottlenecks and deviations
from the expected process path (van der Aalst 2016).

Most processes leave traces or recorded information in databases, called event logs. An
event log can be described as the set of events belonging to the execution of cases (i.e.
process instances). The events represent activities or steps in the process, and are char-
acterised by properties like activity name and timestamp. Event logs can also store ad-
ditional information of the events, like the resources executing the activity (Tax et al.
2017, van der Aalst 2016). In this project, NFC’s data can be seen as event logs, where
each row consists of events with names and timestamps. Table 1 shows a small example
of an event log based on NFC’s data. If a start event and a stop event belong to the
same activity, like analysis started and analysis completed in Table 1, the duration of
that activity can be measured (van der Aalst 2016).

Table 1: An example of a small event log based on the order administration data of NFC. Each
row represent an event (activity) of the process for a certain case.

Case-ID Timestamp Activity name Activity resource

1 2020-01-20 Case created Name 1
1 2020-01-22 Material received Name 1
1 2020-01-23 Analysis started Name 2
1 2020-01-29 Analysis completed Name 2
1 2020-02-05 Case completed Name 1
2 2020-01-17 Case created Name 3
2 2020-01-18 Analysis started Name 3
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To use event logs to create a model of the underlying process is called process discovery,
and that is the first step of process mining (van der Aalst 2016). It is the only step that
will be used in this project, and it will be made by MPM. A process model is often in the
shape of a directed graph, i.e. a set of nodes (activities or events) connected by edges
(transitions between events) (Vartianien 2017).

2.3.1 Mehrwerk Process Mining

The process mining tool Mehrwerk Process Mining (MPM) is used in this project.
Mehrwerk is a German company working with Qlik Sense that has developed MPM.
MPM is implemented as a Qlik Sense extension; a tool deployed on the Qlik Sense plat-
form. MPM combines BI with process mining algorithms and visualisations. Event logs
are used as data to discover the process. The data can be imported to Qlik Sense from
CSV files and transformed into event log shape by an MPM algorithm. The right for-
mat of event logs for MPM is a table with the columns Case ID, Activity type, Activity
username, Activity start timestamp, and Activity end timestamp, where the Case ID col-
umn contains the IDs of the cases that flow through the process. Activity username is
optional (Meyer et al. 2019).

The MPM algorithms transform the event log into a process model. The order that the
activities are performed in can be seen in the model, and it is visible if the activities
are performed in alternative orders (alternative process variants). It shows the average
duration time for the activities and the lag time between activities (Meyer et al. 2019).

2.4 Artificial Intelligence and machine learning

The mimicking of human behaviours and human thoughts for actions is a key char-
acteristic of AI. AI has been shown to be very useful for complex tasks like weather
forecasting and face recognition. Machine learning can be seen as a subfield of AI and
includes the developing of computer models (Gruson et al. 2019). Normally, the data
used for machine learning consists of rows and columns, where each row is called an
instance, and where each column is called a feature and represents some characteristic
of the instance (Géron 2017).

With machine learning, the model do not require explicit rule descriptions. This is the
main difference between machine learning and traditional model programming. The
model adjusts to fit the training data that it is provided with, and can then be used to
predict outcome from new data (Gruson et al. 2019). A machine learning model can
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learn from the data which features that are informative and most important for predicting
correctly (Géron 2017).

2.4.1 Supervised machine learning

There are three main types of machine learning: supervised, unsupervised and reinforce-
ment learning. In this project only supervised learning is used. In supervised learning,
each instance in the data that the model is trained on has been labelled with the instance’s
“answer”, the correct outcome. The labels can be manually assigned or come from mea-
surements. The features are the input and the label the output when using the model for
predictions. The model is “fitted” or “trained” on the training data, by predicting the
data, measuring how “wrong” it was using the correct answers, and then adjusting itself
(its model parameters) to perform better next time. This is repeated until the model is
well fitted to all of the training data. A separate test data set can be used to measure the
performance of the model, to assess how well it can generalise to new, “unseen” data.
The test set is normally not used until at the end of the project (Géron 2017).

Two common supervised learning tasks are classification and regression. A regression
example is to predict a numeric value (target value) such as the price of a house, given
a set of features, e.g. the size of the house and number of bathrooms (Géron 2017).
Since the task in this project is to predict a natural number, i.e. the analysis length, only
regression models and no classification models will be used. An example structure of a
data set used for regression is shown in Table 2.

Table 2: An example structure of a data set with three features used for machine learning
regression. The prediction target is the price of a house.

INDEX FEATURES TARGET
ID Bathrooms Distance to city Colour Price

1 2 5 Blue 100,000
2 3 20 White 75,000

2.4.2 Requirements

The requirements for supervised machine learning are (a) a definition of the task to
perform, (b) a performance metric for evaluating the model’s performance, (c) a data
set of examples to learn from with known predictions, and (d) one or several models
to be tested (Gruson et al. 2019). Machine learning also requires sufficient quantity
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and quality of the data. Typically thousands of examples are needed, even for simple
problems. The training data needs to be representative of the new data that should be
predicted, and not contain too much errors, noise or outliers which make it harder for
the algorithm to detect the underlying patterns of the data. The data needs to contain
enough relevant and not too many irrelevant features.

Another challenge is that the model can be overfitting or underfitting while training. If
the model is fitted too good to the data (overfitting), it has learnt the training data too
well and will not be able to generalise well. This can happen if the model is too com-
plex in comparison to the complexity or amount of training data. To reduce overfitting,
regularisation techniques that constrain the model can be used. If the model is not fitted
well to the data (underfitting), it may be too simple to describe the data and learn its
underlying structure, and the model will not predict well. In that case a more complex
model can be tried, or more informative features should be used (Géron 2017).

2.5 Regression

Regression is about writing the numeric output as a function (model) of the input. The
most simple regression method is a linear function, e.g. y = kx + m, where y is the
output value and x is the input feature. There are two model parameters, k and m, that
can be adjusted to the data so that the model represents any linear function. To decide
which linear function that represents the data points the best, a performance measure
needs to be specified. Normally a cost function is defined, that describes how bad the
model fits the data, i.e. how big the difference is between the training data and the
linear model’s predictions. During the training, the linear regression algorithm finds the
model parameters that minimises the cost function (Géron 2017). How the training and
optimisation of the cost function is done will not be explained in this report.

Two common cost functions for regression tasks are Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE). RMSE is the square root of the average squared error,
while MAE is the “sum of absolutes”, the average of absolutes of the errors. RMSE is
more sensitive to outliers, since it is affected more by very large errors (Géron 2017).

A linear regression model can have more than two parameters, so that the data points
cannot be visualised by a 1-dimensional graph. If the parameters are seen as weights, a
linear model computes a weighted sum of the input features plus a constant term (called
bias term or intercept term). It is described in the equation below,

y = θ0 + θ1x1 + θ2x2 + ...+ θnxn (1)
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where y is the predicted value, θi is the ith model parameter, n is the number of features
and xj is the jth feature value (Géron 2017).

The features can be both categorical (e.g. red, blue, green) and numerical (e.g. 1, 2,
3). Most machine learning models work best with numerical features, so categorical
features need to be mapped to numerical values. One way is to simply replace each
category with a number, e.g. red becomes 1, blue becomes 2, and green becomes 3. A
problem with this is that the algorithms will assume that nearby values are more similar
than distant ones, so that red is more similar to blue than to green. In this case the method
one-hot encoding can be used. With one-hot encoding new features are created, one for
each category of the original feature, and each new feature either contains 1 or 0. So for
the example with colours, the feature names can be red, blue and green, and for a red
instance the values are [1, 0, 0], while for a green instance the values are [0, 0, 1]. If
the number of possible categories of a feature is large, the resulting features of a one-hot
encoding will be many, which can decrease the performance and slow down training
(Géron 2017).

Numerical features are often scaled. If the numerical features have very different scales
the models might not perform well. But scaling the target value, in this project the anal-
ysis length, is often not needed. Scaling can be done with normalisation (also called
min-max scaling) or with standardisation. Normalisation uses the maximum and min-
imum values of all features and results in a range from 0 to 1 for all feature values.
Standardisation rescales the values so that all features have a zero mean and the distri-
bution has unit variance. Normalisation is more sensitive to outliers than standardisation
(Géron 2017).

Commonly, the training set is pre-processed independently of the test set. The test set
or other new data is then transformed in the same way as the training set, before making
predictions. The test set is treated as if it was not present during the training. For exam-
ple, when normalising the test data the same min-max range should be used as for the
training set. To ensure this, the pre-processing functions’ parameters are often fitted to
the training data and then saved (Géron 2017).

When training a first model on the training set, it can be interesting to evaluate the model
without using the test set. In this case, the training set can be divided into a training part
and a validation part. The model is trained on the training part and evaluated on the
validation part. To make this evaluation result more reliable, the training data can be
split into k distinct subsets, and the model is trained on k-1 subsets and evaluated on the
last subset. This is done k times, and each time a different subset is used for validation.
This is called k-fold cross-validation. After training, k different evaluation scores are
available and an average of the scores can be taken (Géron 2017).
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There are other models than a linear function that can be used for regression. The goal
is to find the best performing model, the model that best describes new data. A good
approach is to first try different models, and then choose two to five promising models to
use for fine-tuning of the hyperparameters. After fine-tuning, the models with their final
settings are evaluated on the test set. Hyperparameters are the parameters of a machine
learning algorithm that are set by the user; the hyperparameters do not change in the
learning process. Fine-tuning can be done by manually changing the hyperparameters,
one by one, to find a good combination, or by using a method. Randomised Search and
Grid Search are the two methods used in this project. Randomised Search randomly se-
lects and evaluates a given number of combinations from defined sets of hyperparameter
values, while Grid Search evaluates all possible combinations of the defined sets (Géron
2017).

2.5.1 Decision Trees and Random Forest regressors

A Decision Tree is a machine learning model that can fit complex data sets and handle
both classification and regression. An example tree of a regression task is shown in
Figure 1. The model consists of a root node (top), child nodes, and leaf nodes. During
training of the model, features are associated with the nodes and the values are adjusted
so that the errors are minimised. For regression tasks the value in each leaf node is
the average target value of the training instances that are connected to that node. A
Decision Tree can be regularised by setting a defined constraint on the minimum number
of instances per leaf node. After training, the model can be used to predict new instances.
In general, Decision Trees are sensitive to variations in the data, e.g. if a some instances
from the training data are removed the resulting tree can be completely different (Géron
2017).

Figure 1: Example of a simple Decision Tree model for a regression task. The features are colour
and weight, and the prediction target is price.
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A Random Forest is a model that consists of a “forest” of many Decision Trees, and each
tree is being trained on random subsets of the features. The prediction of the Random
Forest is the average of the prediction from the trees. This is called ensemble learning,
to create a model from many other models. Random Forests are generally more stable
than Decision Trees (Géron 2017).

2.5.2 Feature selection

A trained Random Forest regressor can, in addition to making predictions, also give
information about the relative importance of each feature. How much each feature con-
tributes to accurate predictions. The trained model contains importance scores for all
features. This can give valuable insights to the problem and data, but the feature im-
portance analysis can also be used to change the learning. One or several of the less
important features can be dropped, which can make the model simpler and possibly in-
crease the accuracy. A feature’s importance can be estimated by how much the impurity
is reduced by the nodes that use the feature, across all trees. The impurity of a node is a
measure of how “pure” it is, i.e. how many of the training instances that it is connected
to belong to the same class or have similar target values (Géron 2017).

3 Material and methods

The project consisted of the following four main activities: examine the data, visualise
the process using MPM, pre-process the data to fit machine learning, and train and eval-
uate different machine learning models. These activities are described in the following
subsections, starting with a description of the data.

3.1 Data

Five different data sets were used in this project – four for the machine learning part
and one for the process discovery part – and they were all in CSV format. The data sets
came originally from the same source. The data fields in the database have been filled
in manually by the users at NFC and there are no controls in the database that the values
are correct or that all fields are filled in.

For the machine learning part, there were a large data set with all cases created and com-
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pleted or cancelled in January 2015 to April 2020 (called the case data set) and a smaller
data set with only the fingerprint analyses from October 2019 to April 2020 (called the
fingerprint data set) that had additional information about the employee occupancy rate
and the analysis queue where the analysis was performed. This additional information
was not available for the case data set. Almost all cases and analyses used had been
completed; only a few had been cancelled and they had in general short lengths.

There were also two very small data sets with data from May 2020, used in the end of
the project. All five data sets are described below.

3.1.1 The case data set

The case data set contained originally 643,527 rows (instances). In this data set each
instance represented an analysis (e.g. drug analysis, fingerprint analysis and DNA anal-
ysis) with a unique analysis ID, a code for the type of analysis, a case ID indicating which
case the analysis belonged to, and other features such as the places where the case and
analysis were performed and the names of the persons that performed them. In NFC’s
system each analysis belongs to a case, i.e. all cases consist of one or more analyses. It
can be seen as a one-to-many relationship. The 643,527 analyses belonged to 530,661
different cases.

After filtering instances, removing features and creating new features from the original
ones, the number of instances was 552,448 and the features were 11 (excluding the target;
analysis length). The features case place and analysis place were used to create a third
feature called same place, with values “Yes” and “No”. If one or both of the values
were missing the value was set to “No”. The feature no of order codes was calculated
from final order codes, and the missing values were set to 0. After the feature selection
(see subsection 3.4.3), five features remained for predicting the target. See Table 3 for
descriptions of all features.
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Table 3: Names, descriptions, data types, and examples of the 11 features of the case data set. The
features selected for machine learning prediction are marked with an asterisk. Analysis ID was
not used, instead the row number was set as index (instance ID). Some of the features had many

missing values. The numbers in parentheses are the numbers of categories.

Name Description Data type Example

Analysis ID Unique ID for each analysis Num 1
Analysis type* Type of analysis Cat (290) N15

Case ID ID of the case that analysis belongs to Num 1
Case type* Type of case Cat (3) Drug

No of analyses* Number of analyses case is related to Num 2
Analysis place Where the analysis is performed Cat (5) West

Case place Where the case is performed Cat (4) West
Same place Yes if analysis place equals case place Cat (2) Yes
Order codes Which analyses that are ordered Cat N15,S21

No of order codes* Number of order codes Num 2
Priority* Decides if the case is prioritised Cat (4) Yes

num: numerical, cat: categorical

The distribution of different analysis types was very uneven; some types were much
more common than other. The high number of different analysis types (290) could be
problematic when using machine learning. To decrease this number the values were
grouped based on similarity so that similar analyses that were run at the same place
belonged to the same group.

Some analysis types occurred often together with certain case types. For example, N-
analyses (drugs and doping analyses) occurred most often with case type “1” (drug case).
About 10% of all cases had the priority “Yes”, and the remaining had “No”, “No, down-
classified”, or “Yes, upclassified”, or the value was missing.

In Table 4, the minimum and maximum values for the analysis length and the case length
are shown, together with the mean, median and standard deviation. The distribution
of the analysis length is shown in Figure 2. The range was large and the distribution
uneven; most cases and analyses were short but some were very long. This could make
the prediction more difficult, since there are few long examples for the model to learn
from.
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Table 4: Statistics of analysis length and case length for the raw case data set, in days.

Length Minimum Maximum Mean Median Std

Analysis 1 1569 14 4 39
Case 1 1645 38 8 80

std: standard deviation

Figure 2: Histogram of the analysis length of the case data set, showing the lengths from 0 to 40
days. The analyses longer than that are not shown in this window.

3.1.2 The fingerprint data set

The fingerprint data set consisted of the instances of analysis type “S21” from October
2019 to April 2020, with all features included in Table 3 plus seven additional features,
shown in Table 5. The additional features contained information about the weekly oc-
cupancy rate and weekly analysis queue, for the four different regional NFC offices
(Linköping, Malmö, Gothenburg, and Stockholm). The code “S21” means fingerprint
developing on objects. The data set contained 3,390 rows and 18 columns. The feature
incoming forecast was 0 for some weeks, but this was probably due to that the values
were unknown or not calculated, not that the actual forecasts were 0 cases. The features
selected for machine learning prediction of the target value analysis length were no of
analyses, no of order codes, priority, and all features in Table 5 except for available YL
to production, since it had high correlation with time production. The features analysis
type and case type had the same values for all instances, and were therefore not selected.
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Table 5: Names and descriptions of the seven additional features of the fingerprint data set, that
were not available for the whole case data set. There were no missing values for these features, and

all were of numerical data type.

Feature name Description

Time available Average working rate for employees
Time production Available production time (hours)

Time production fraction Fraction of available time towards production
Time not production Allocated time beyond production (hours)

Available YL to production Available yearly labour towards production
Queue The number of analyses in queue

Incoming forecast Expected number of analyses to come next week

3.1.3 New data from May 2020

To simulate how the machine learning would predict on new data, the latest data available
when starting the project – data from May 2020 – was extracted and put aside until the
end of the project as an extra holdout data set. This was done for both the case data set
and for the fingerprint data set.

3.1.4 The data set for process mining

For the process mining part of the project, the selected data set had 613,920 rows and
seven columns. Descriptions and names of the columns are shown in Table 6
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Table 6: Names, descriptions, and amount of missing values for the data columns used for process
mining.

Feature name Description Missing (%)

Analysis ID Unique ID for each analysis 0
Case created Date for case creation 0

Material received Date when last material for analysis came in 1.9
Analysis created Date for analysis creation 2.7
Analysis started Date analysis starting 3.2

Analysis completed Date for analysis completion 2.8
Case completed Date for case completion 0

3.2 Examining data

Before moving the data from NFC’s databases to an external computer the columns
with employee names and registration numbers had to be anonymised. This was done
in Microsoft Excel. The data sets were then examined in Python (version 3.8) with
the Python packages pandas (McKinney 2010), matplotlib (Hunter 2007), and pandas-
profiling (Brugman 2020), to assess the quality of the data, to see the distributions of
features and to find potential correlations between features.

3.3 Visualising the process with MPM

The software packages Qlik Sense (QlikTech International AB 2020) and MPM (Mehrw-
erk GmbH 2020) were used to visualise the case administration process based on the case
data set. The case data set in CSV format was imported to Qlik Sense and a script was
written in Qlik Sense that defined how the data set should be used to create the MPM
model. Since analysis started and analysis completed could be seen as two timestamps
of the same activity, they were used to create the activity analysing with a defined length.
All other activities had only one timestamp and therefore no length (or length 0 seconds).
By MPM algorithms the data set was transformed into the required shape and a MPM
model was created.
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Before importing the data set into Qlik Sense some filtering was done in Microsoft Excel.
The instances with negative analysis length or negative case length were removed.

3.4 Pre-processing for machine learning

To fit for machine learning prediction of analysis length, the two raw data sets were fil-
tered and pre-processed and additional features were created. The software for this was
Python, and the Python packages used were pandas (McKinney 2010), numpy (Har-
ris et al. 2020), imblearn (Lemaitre 2017), matplotlib (Hunter 2007), and scikit-learn
(Pedregosa et al. 2011). Most of the pre-processing functions came from scikit-learn.

3.4.1 Filtering

Instances with values that were assumed to be incorrect due to human error when manu-
ally filling in values or assumed to be unrepresentative of the cases were removed, after
discussion with NFC. The instances removed had at least one of the following proper-
ties: negative case length, negative analysis length, a missing value for analysis length
(the target value). Instances with analysis length, number of order codes, or number of
analyses longer than a defined 95%-shortest cutoff were also removed (i.e. the longest
5% of each feature was removed).

The 95%-shortest cutoff on the three numerical features analysis length, no of order
codes, and no of analyses was motivated by the fact that the 5% highest values were very
high and seen as unrepresentative of the data (extreme values). These three numerical
features mentioned all have mostly small values; large values are rare. In addition, the
model would probably have easier to learn to predict the more common values than the
very uncommon, and predict better if the most rare values were removed. Normally
in a machine learning project, the model is designed to be able to predict all data, but
in this project it was assumed that it would be more useful for NFC to have a model
that can predict the common cases well, than a model that predicts all cases with lower
accuracy. For the case data set, the 95%-shortest cutoff values were calculated to 65
days for analysis length, 6 order codes and 7 analyses. For the fingerprint data set the
cutoff values were 108, 8 and 13.

26



3.4.2 Pre-processing

Before the pre-processing, the prediction target (analysis length) was extracted from the
data sets and put in a separate variable, since it did not need to be pre-processed. The
following pre-processing steps were made on the case data set:

• Instances with a missing category for analysis type were given the new category
“missing”.

• Instances with a missing category for priority were given the new category “miss-
ing”.

• The 290 different categories of analysis type were grouped into 17 groups, based
on similarity of the analyses. Values that started with the same letter represented
similar analyses and were therefore grouped together, i.e. “S21” and “S22” were
grouped into category “S”.

• The categorical features were converted into numbers by one-hot encoding. For
each original feature, one of the resulting features was removed, to reduce corre-
lation between features.

• The data sets were randomly split into two sets, a training set (80% of all instances)
for training models and a test set (20%) for evaluating the models.

• The numerical features of the data set were normalised (min-max scaled), based
on the training set’s maximum and minimum values. The same values were used
to normalise the test set. Normalisation was not necessary when using a Random
Forest model.

For the fingerprint data set the same steps were made except for the grouping, which
was not needed since the fingerprint data set only contained one analysis type category.
The training set of the fingerprint data set was resampled by an oversampling technique,
to make the distribution of the analysis length more even; instances with less common
analysis lengths were sampled again to be more represented in the data. This could not
be done for the case data set, due to lack of computer memory and time. Two example
instances of the fingerprint data set after pre-processing and feature selection are visible
in Table 7. The training instances had this format when fed to the machine learning
models.
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Table 7: Example of instances of the fingerprint data set, after filtering, pre-processing, and
feature selection. Not all features are shown.

INDEX FEATURES TARGET
ID Time production ... Priority Yes Priority No Analysis length

1 0.80 ... 1 0 3
2 0.65 ... 0 1 7

3.4.3 Feature selection

It was assumed that not all features of the data sets would be informative for predicting
analysis length. To select the most important features, a feature importance analysis was
made. This was done both for the case data set and the fingerprint data set, using Python
and the package scikit-learn (Pedregosa et al. 2011).

The filtering and pre-processing steps described in the subsections above were used,
but no normalisation of numerical features was needed. A Random Forest model called
ExtraTreesRegressor was built and fit to the training set. The model consisted of 250 es-
timators (n estimators = 250). Only 50% of the case data set was used; the whole data set
would take too much time. The relative importance for each feature was extracted from
the model, the standard deviation was calculated, and the features were ordered based on
their impurity-based importance. In addition, a permutation importance analysis based
on the test set was made using the function permutation importance from scikit-learn.
The function compares the performance on the test set of a trained model that uses all
features with the performance on the test set where a feature column has been permuted.
The difference between the performances defines the permutation importance of the fea-
ture (Pedregosa et al. 2011).

3.5 Training and evaluation of machine learning models

This subsection explains how the training and evaluation of machine learning regres-
sion models was made. The Python packages used were pandas (McKinney 2010),
numpy (Harris et al. 2020), joblib (Joblib Development Team 2020), and scikit-learn
(Pedregosa et al. 2011). Training was done directly after the pre-processing. First,
different models were trained and evaluated on the training set using CV. The follow-
ing models were tested: Linear Regression (with the ordinary least squares method),
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the regularised linear regression models Lasso and Ridge, SGD Regressor (linear re-
gression with the stochastic gradient descent method), Decision Tree, Random Forest,
Support Vector Regressor (SVR), Multilayer Perceptron, and Linear SVR. The default
parameters of the models were used.

The best performing models for the case data set and for the fingerprint data set were
selected and fine-tuned. The performance was quite similar for all models, but for both
data sets the Random Forest performed a bit better. The two Random Forest models
were fine-tuned, first by a Randomised Search using CV on a 50 different combinations
of hyperparameters, and then with a following Grid Search using CV based on the results
from the Randomised Search. The set of hyperparameters used included n estimators,
max depth, min samples split, min samples leaf, max features, and bootstrap. These
hyperparameters decide the size of the trees of the Random Forest and also constrain
the model. The bootstrap parameter decides if different subsamples of the training data
set should be used to train the trees or all training data. The best hyperparameter val-
ues according to the searches did not increase the performance very much, but these
hyperparameter values were still chosen to continue with.

The two models with the selected hyperparameter values were evaluated, both on the
training set by CV and on the test set by predicting the test set and calculating the error
using RMSE and MAE as error measures. Finally, the two models were evaluated on
the small new data sets from May 2020.

4 Results

Here, the results from the different parts of the project are presented. First, the process
model from the process discovery part is described, and then the results from the feature
importance analysis and the machine learning modelling are presented.

4.1 Process model

The software MPM calculated a process model from the data sets’ timestamps, which
showed the activities, the average lag time between activities and the different process
variants. In the Qlik Sense environment, different subsets of the data set could be se-
lected, and the MPM algorithms recalculated the model in real-time for the selected
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subset. Figure 3 shows the three most common process variants for the full case data set
in two different views.

Figure 3: Process model of the three most common process variants, generated by Mehrwerk
Process Mining. 95.4% of all analyses (rows) in the case data set follow these process variants. The
paths between nodes are called edges. The nodes represent activities, and the numbers at each
node are the number of analyses passing that activity and the median time for the activity. Left:
the edges are labelled with the fraction of analyses that cover each edge. Right: the edges are

labelled with median time between activities. Since all activities except for Analysing only have one
timestamp, the activity length is 0 seconds. s: seconds, d: days.

Much information could be gathered from different subsets and views of the process
model. To summarise the results from the process discovery, the process models showed
that there were 25 different process variants discernible in the data, and 83.5% of all
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instances followed the main variant. The main variant is the process variant that NFC
expects. Some rare process variants are used by only one instance. The number of
instances that pass at all activities is not constant (not visible in the view in Figure 3),
which means some timestamps are missing in this data.

Of all instances (analyses) in the data set, about 76% belong to cases that consist of only
one analysis. The remaining 24% are instances belonging to cases with two or more
analyses. When comparing the most common process variants for these two groups of
instances (not shown here) it is visible that a higher number of instances pass Analysing
before Material received for the cases with two or more analyses. Another difference
between the two groups is that the median time before the analysis is started and after
it is completed is longer for the instances belonging to cases with many analyses. This
is natural, since these instances can have another analysis being performed during the
case, before the case can be completed.

4.2 Feature importance analysis

The feature importance analysis was done to decide which features to use for predic-
tion, but also for understanding what factors that affect the analysis length. It showed
that for both data sets, the number of order codes and the number of analyses for the
instances were important features. For the fingerprint data set, the features covering oc-
cupancy rate of the analysis departments were important, as expected. Full results from
the feature importance analysis are found in the Appendix.

4.3 Machine learning models

Evaluation of the Random Forest models trained and fine-tuned on the case data set
and on the fingerprint data set is presented in this section. Because of stochasticity in
machine learning performances the models may differ between trainings, since they use
randomness in learning.

4.3.1 Random Forest model trained on the case data set

First, the fine-tuned Random Forest model’s performance was evaluated by using CV
on the training data, i.e. to iteratively train the model on one part of the data and then
evaluate on the other part. This gave a stable estimate of the performance without us-
ing the test set. The training set contained 441,958 instances and the test set 110,490
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instances. To judge if the model was overfitting or underfitting the data set, a learning
curve for the model was calculated when using CV on different sizes of the training set,
see Figure 4. To compare with, the learning curve for a SGD Regressor was calculated
also. When comparing the training score and the validation score, it becomes clear that
the Random Forest model is affected by the number of training examples to learn from.
The difference between the training score and validation score decreases when more
training data is added, which indicates less overfitting of the model. Adding more data
makes the model better at generalising and then it predicts better at the validation data.

Figure 4: Learning curves for a Random Forest model (left) and a SGD Regressor model (right),
trained on the case data set using 3-fold cross-validation on the training data for different data set
sizes. The red curve is the training error and the green curve the validation error. The Python

code for generating the figure was inspired by an example called “Plotting Learning Curves” from
the scikit-learn package webpage (Pedregosa et al. 2011). MAE: mean absolute error.

To understand how large errors the Random Forest made, a histogram of the errors on
the test set was created, see Figure 5. Once again the Random Forest was compared with
an SGD Regressor. Both error distributions are reasonably good, the errors are centred
around zero. The average error by the Random Forest on the test set was –0.03 days, the
standard deviation was 7.8 days, and the errors were in the range of –35 and 62 days.
75% of all errors were within ± 4.2 days.
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Figure 5: Histograms showing the distribution of the errors made on the test set by Random
Forest (left), and SGD Regressor (right). The error is measured in days and calculated as the

actual value subtracted with the predicted value.

The Random Forest was then evaluated on the test set. In Table 8, different performance
measures are shown. The average RMSE after 3-fold CV shows that the standard devia-
tion is quite low; the performance is stable across different folds. The reason to calculate
the performance on both the test set and the training set is to see over- or underfitting.
If the training error is much better than the test error, the model is too well fitted to the
training data. Here, the model is not overfitting.

Are the RMSE and MAE errors on the test set high or low? As a baseline model to
compare with, the mean and median values for each analysis type were calculated on
the training set, shown in Table 9. When using these means on the test set, the errors
were as follows: RMSE 8.7 days, and MAE 5.0 days. And when using the median values
instead, the errors were: RMSE 9.3 days, and MAE 4.4 days. So, the Random Forest
model gave somewhat better predictions than using the mean or median values for each
analysis type.
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Table 8: Performance measures for a Random Forest model trained on case data set. The average
root mean square error (RMSE) after 3-fold cross-validation on the training set is shown, together

with the RMSE and the mean absolute error (MAE) on the training and test sets.

Training set Test set
avg RMSE CV (std) RMSE MAE RMSE MAE

7.79 (0.014) 7.70 4.20 7.80 4.24

RMSE: root mean square error, MAE: mean absolute error, CV: cross-validation, avg: average, std:
standard deviation

Table 9: Calculated mean and median values from the training set for each analysis type.

Type Mean Median Std

A 12 1 18
B 8.9 6 10
D 10 3 13
E 15 9 15
F 21 16 16
G 19 13 16
I 20 14 18
K 6.6 3 9.4
L 6.1 2 9.1

Type Mean Median Std

M 18 12 17
N 4.4 3 4.4
O 25 22 18
P 34 35 16
S 17 12 16
U 6.0 2 9.2
V 16 8 17
X 18 11 18

std: standard deviation

4.3.2 Models trained on the fingerprint data set

A Random Forest model was selected and fine-tuned for this part of the project. The
model was then evaluated with CV on the training data and on the test data. The training
set contained 3,569 instances and the test set 594 instances. The model was overfitting
badly, therefore I chose to compare with other, more simple models. I chose a Linear
Regression and a SVR model with a radial basis function (not explained here). The
learning curves for different training sizes for the three models are shown in Figure 6.
The Random Forest model was overfitting according to the figure, even when using all
training data available; the training curve was much better than the validation curve. The
model was overfitting despite the regularisation with the chosen hyperparameter values.
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With more training data, the model overfits less and the validation score was higher. The
SVR model and the Linear Regression model were not overfitting the training data; they
were less complex models and would not benefit from more training data.

Figure 6: Learning curves for Random Forest (left), SVR (middle), and Linear Regression (right)
models trained on the fingerprint data set, for different training sizes using 5-fold cross-validation

on the training data. The score is negative mean absolute error (MAE). The green line is the
validation curve and the red line the training curve. The Python code for generating the figure
was inspired by an example called “Plotting Learning Curves” from the scikit-learn package

webpage (Pedregosa et al. 2011).

Figure 7 shows that the different models made different errors on the test set. The Ran-
dom Forest centred its errors closer to zero than the other two models; the SVR and the
Linear Regression models often overestimated their predictions. 50% of all errors by the
Random Forest are within ± 10 days, and the errors range from –85 to 105 days. The
average error is –1.4 days and the standard deviation is 24 days for the Random Forest.
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Figure 7: Histograms showing the distribution of the errors made on the test set by Random
Forest (left), SVR (middle), and Linear Regression (right). The error is measured in days and

calculated as the actual value minus the predicted.

A summary of the performance measures is shown in Table 10. The average RMSE
after CV shows that the variation is large between iterations. The Random Forest is
overfitting very much, while SVR is overfitting slightly and Linear Regression not at
all. SVR has in general lower MAE than Linear Regression, but the opposite is true
for RMSE. This indicates that the models make different errors, since RMSE is more
sensitive to extreme errors that MAE.

The mean analysis length for S21-analyses is 24.3 days and the median analysis length
is 15 days, based on the training data. When using only the mean value to “predict” all
instances in the test set, the RMSE was calculated to 25.3 days, and the MAE to 19.7.
And with only the median value, the RMSE was 25.8 days and MAE was 16.6 days.
This implies that the model predictions are about as good as using the mean and median
to estimate the length.
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Table 10: Performance measures for a Random Forest model trained on case data set. The
average root mean square error (RMSE) after 3-fold cross-validation on the training set is shown,

together with the RMSE and the mean absolute error (MAE) on the training and test sets.

Model Training set Test set
avg RMSE CV (std) RMSE MAE RMSE MAE

Random Forest 17.5 (2.8) 9.99 5.56 23.5 15.9
SVR 26.3 (5.2) 25.6 16.3 24.6 15.3

Linear Regression 25.0 (2.0) 24.0 18.1 23.9 18.5

RMSE: root mean square error, MAE: mean absolute error, CV: cross-validation, avg: average, std:
standard deviation

4.4 Predictions of new data

To see how the trained models performed on new data, a small case data set and a small
fingerprint data set with cases from May 2020 were used. The first had 5,972 instances
and the second 31 instances. The data was filtered using the same maximum values
(cutoffs), normalised using the same maximum and minimum values as when normal-
ising the training set, and one-hot encoded using the categories that were present in the
training set.

In Figure 8, 20 predictions on new data made by the Random Forest trained on the case
data set are shown. Since the data contained analyses started and completed in May,
the lengths were expected to be quite short. The actual values were all between 1 and
10 days in this subset of the new data, but the model predicted all values to around 25
days. The RMSE after predicting the new case data was 16.9 days for the Random Forest
model, and MAE was 14.6 days – much higher than on the test set.
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Figure 8: Predictions of the 20 first instances of the case data set from May 2020, made by the
Random Forest model.

When the models trained on the fingerprint data set were predicting the fingerprint data
set from May 2020, it resulted in the predictions shown in Figure 9. The actual val-
ues are between 1 and 10 for all those instances, but the models have predicted much
higher values. Random Forest and Linear Regression predicts higher values than the
SVR model, but in general all three models predict badly.
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Figure 9: Predictions of the small fingerprint data set from May 2020, with 31 instances, by the
three models Random Forest, SVR, and Linear Regression.

5 Discussion and conclusions

In this section I discuss the interpretation and usefulness of the results, the decisions
made and alternative methods, and at last, I draw conclusions from this project and
discuss the future work in this field.

5.1 Interpretation and usefulness of results

The project goals were to visualise the process using process mining and to see if a
machine learning model could predict analysis length. Conclusions from the process
mining part of the project are that the data set was in a good format for MPM and that
Qlik Sense and MPM were quite easy to use. The MPM model was easy to adjust and
showed interesting process variants. I expect this to be very useful for NFC, but it will
take time to interpret and fully understand the different variants. An advantage with the
MPM model is that it is easy to choose different subsets of the data, and NFC can for
example choose to look only at short cases (the most common ones), only at cases longer
than desired, or only at certain order codes or analysis categories. In general, I think that
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process discovery tools like MPM can be very helpful for organisations with process-
related data. Another conclusion is that it may be difficult to understand what are true
variants and what are errors and bad data quality; rare process variants that only one or
a few cases follow could occur due to human-made mistakes in the data registration, for
data where the registration is done manually.

In several of the process variants there is a backflow – the instances are not passing
the activities in the expected order. But it is important to know that when for example
instances go to Analysis created and Analysing before Material received (as for 6.66%
in Figure 3, it may be due to the fact that Material received is the timestamp for the last
material that has been received. The analysis can start before all materials have reached
NFC. Some instances go in ways that are impossible in NFC’s workflow, for example to
Case completed before Analysing for 5.81% of the instances in Figure 3. The reason for
this is unknown, but some of the confusing paths could probably be explained by human
mistakes in the manual registration of timestamps.

My hypothesis for the machine learning part was that the case data set would not have
enough information or patterns that could describe the analysis length, but that the finger-
print data set with the additional features would have. When summarising the machine
learning results, it is clear that the performances of the models were not good, neither on
the case data set or on the fingerprint data set. The errors were high, both on the test set
and on the new data. For the case data set, the data was probably enough in quantity, but
not informative enough. The features did not hold information that the target (analysis
length) depended on, at least not to the extent that a model could predict the target. But
according to the feature importance analysis, the features did affect the analysis length
to some extent. The fingerprint data set, on the other hand, might have had informative
features to use, but the data set was too small for a machine learning model to learn from
how to predict well. By studying the learning curves it was seen that the Random Forest
was overfitting, but if there would have been more data to train on, the model could
probably have performed much better. If more data would have been available for the
fingerprint data set, the performance on the test set could possibly have been as good as
the performance on the training set. The other two models, SVR and Linear Regression,
did not overfit the data but they did not predict well either.

The predictions of the new data sets were worse than the predictions of the test data.
When examining the predictions of the test sets manually, it is clear that the models
predict varying, some high and some low predictions. But the predictions on the new
data sets were almost all in the same range. A reason to this could be that the new data
sets were quite homogeneous and had little variance, so that the Random Forest models
predicted many instances to have the same length (they ended in the same leafs of the
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trees). Another reason to the bad predictions of the new data sets could be that the ”old”
data was not representative for the new data.

How accurate must results be to be useful for an organisation? It depends on the appli-
cation. In most prediction tasks the error should be very small, but for NFC, an error
margin of for example 2-3 days would probably be okay if the purpose would be to dis-
cern short analyses from long analyses. To implement a model in the daily work at NFC
or another organisation should be possible. Every time a new case with one or several
analyses is ordered by a client, the user could input the values of analysis type, case type,
priority, and other values. Then the model would output the expected number of days
the analysis will take, with about 1-2 days margin of error. The client would know from
the start if the analysis will be fast or slow, and the client could ask the organisation to
put in more resources to speed up the processing. Of course, the whole case could take
longer time than the analysis itself (or analyses).

Are the results reliable? Both the MPM model and the machine learning models are
as reliable as the data is. Both are very dependent on the data quality and the degree
of how representative the training data is. Machine learning models are almost always
evaluated on a test set of randomly selected instances from the data set, before model
training. So the test set characteristics and distributions are approximately the same as
for the training data, but will new data have the same properties? The same range of
values and the same patterns? This is important for all organisations to consider when
developing models. The models trained can only be useful in the future if the new data
produced by the organisation still looks the same as the old data. Else, new models
should be trained on the new data or at least updated with new training data once in a
while. NFC has changed a bit during the years from 2015, which makes the older part
of the data less representative than the newer part. It could be interesting to remove the
older part and see if different results were achieved.

5.2 Choices made and alternative methods

There are several decisions made in the project that could have been made differently.
For example, why was the analysis length predicted and not the whole case length? The
first intention was to predict the case length, but when examining the case length and
the analysis length it seemed too difficult to predict the case length based on this data
set. As we know, the majority of all cases consist of only one analysis, and if using only
these one-analysis-cases the case lengths should be similar or a bit longer to the analysis
lengths. But sometimes the case lengths were much longer, for an unknown reason.
Sometimes the cases took very long time, despite that the analyses were completed. If
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there were several analyses and they were performed in serial order, it should take long
for a case to be completed. But it took long time even for cases with only one analysis.
So I assumed that the case length depended on some factors that the data set did not have
information about.

Why was oversampling done of the minority lengths of the fingerprint data set, but not
undersampling of the majority length? Resampling of a data set is made to change the
distribution of the classes or target values and thereby increasing the model’s possibility
to learn more from the minority classes or the rare target values. The aim is that the
model should become almost as good at predicting rare cases as common cases. But the
test set is normally left unchanged, since it should reflect the distribution of new data. In
this project, undersampling of the majority class did not improve the performance of the
model and did not seem to be necessary. Resampling methods could have been useful
for the case data set as well, but the computer memory was not sufficient for that.

Cutoff values were used for filtering out the 5% longest analysis lengths, numbers of
analyses and numbers of order codes. The reason for this, as mentioned earlier, is that
it was assumed be more valuable for NFC to be able to predict the analysis length accu-
rately for common cases than less accurately for all cases, and to get a good representa-
tion of the more common cases. Normally in a machine learning project data should not
be removed if there is not a very good reason. The cutoff values are very important for
the accuracy in the results. With a hard cutoff, the errors might become lower, but the
model cannot be used on all cases. So, depending on how an organisation wants to use
the predictions, they could choose to remove much or little of the less common data. I
tried some different cutoffs, and with a high cutoff (using only common (short) analysis
lengths) the size of the errors become much smaller but the error percentage is not much
lower, and the predictions become less useful for NFC. To predict if an analysis will
take 2, 3 or 6 days is maybe not so interesting, but it is more valuable to say whether
an analysis will take 10 or 20 days. But the analyses that are longer than 10 days are
few. When using 80% cutoffs for the fingerprint data set predictions (up to 40 days long
analyses), the test set prediction errors are still around 10 days.

A change that could have improved the predictions is to make the grouping of analysis
types differently. The analyses that belong to the same group, i.e. have the same first
letter, are not the same analyses. Almost all types are ”K” (42%) or ”N”(39%). I could
have chosen to use only these two type and divided them into other, more specific groups.

When using one-hot encoding on the categorical features, for each original feature one
of the new features created was removed from the data set (called dummy encoding),
since that feature was dependent on the values of the other new features. If a feature with
five categories is encoded into five new features, then if four of the new features have the
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value 0, the fifth new feature must have the value 1. This effect is called multicollinear-
ity, i.e. correlation between one feature and the other features, which is undesirable. On
the other hand, the model could probably be affected by which feature that is removed.
One-hot encoding is not the only method to deal with categorical variables, but in this
project it suited the purpose of dividing categories without defining an order (e.g. red >
blue > green).

In this project the only process mining software used was MPM, but there are many
others. Probably, other process models could have been achieved by other methods. In
the same theme – more different machine learning models, pre-processing steps, and
resampling techniques could have been tried. The purpose of this project was not to
come up with the very best solution, but to show the possibilities and usefulness in these
tools on this type of data and problems.

5.3 Future work and conclusions

In this project, I have investigated if an organisation’s case administration data can be
used by process mining and machine learning, with the aim to improve the understanding
and the efficiency of the organisation’s work. And indeed, it is possible, but there are
challenges. This conclusion is supported by related work made in this research field.
There are many things to consider and many choices to make in a project like this. But
I still think that process mining and machine learning are two great tools for analysing
administration process data sets.

Time predictions and process discovery are likely to be helpful for other organisations as
well, for other authorities in Sweden or organisations with similar process data to NFC’s.
MPM is definitely well adapted to use at other processes, while machine learning models
need to be adjusted to fit new organisations and new tasks. The requirement is high
quality data with informative features for machine learning, or data with timestamps of
the activities for process mining. To record as much data as possible increases the chance
of success.

For future machine learning predictions for NFC, it might be enough information with
the existing features (including the employee occupancy rate and analysis queue) to pre-
dict the analysis length accurately. If NFC would like to use machine learning further,
occupancy rate and work load of the organisation at the departments should be recorded
for all types of analyses, not just for fingerprinting. It could also be good to add more
timestamps and data parameters if possible, and to infer logical controls in the registra-
tion system to ensure high quality of the data. Generally, more data is better. Of course,
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too many features can decrease the performance of a model, but there is always the pos-
sibility to use feature selection and reduce the number of features. Before beginning
a machine learning project, it can be good to check if the data set seem promising; to
check if there are any visible correlations between features and the target. Does it seem
like the features could tell something about the target? In addition, a feature importance
analysis can be run, to see if any features are important for predicting.

There are many other machine learning applications that would be interesting to try on a
process administration data set like this, for example anomaly detection. A model could
learn from high quality training data what the process should look like, and then detect
in real-time deviations and give notifications to the user when a case is stalling in an
activity abnormally long. So that the user can act and maybe add more resources to that
case.

This project has been very interesting for me and hopefully for NFC and Drake Analytics
too. It has shown that for an organisation with this type of data, machine learning and
process mining is definitely worth to try and could give valuable insights in the process.
But this project was only a small study; it takes more knowledge about the process at
NFC, and more time developing and testing, to create a good prediction model that can
be integrated in NFC’s systems.
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Appendix

Figure A1: Feature importances of the features in the case data set, based on mean decrease in
impurity. The Python code for generating the figure was inspired by an example called

“Permutation Importance vs Random Forest Feature Importance (MDI)” from the scikit-learn
package webpage (Pedregosa et al. 2011).
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Figure A2: Permutation importances of the features in the case data set based on the test set. The
Python code for generating the figure was inspired by an example called “Permutation

Importance vs Random Forest Feature Importance (MDI)” from the scikit-learn package webpage
(Pedregosa et al. 2011).
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Figure A3: Feature importances of the features in the fingerprint data set, based on mean
decrease in impurity. The Python code for generating the figure was inspired by an example called
“Permutation Importance vs Random Forest Feature Importance (MDI)” from the scikit-learn

package webpage (Pedregosa et al. 2011).
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Figure A4: Permutation importances of the features in the fingerprint data set based on the test
set. The Python code for generating the figure was inspired by an example called “Permutation

Importance vs Random Forest Feature Importance (MDI)” from the scikit-learn package webpage
(Pedregosa et al. 2011).
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