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A B S T R A C T   

Base rate neglect refers to people’s apparent tendency to underweight or even ignore base rate information when 
estimating posterior probabilities for events, such as the probability that a person with a positive cancer-test 
outcome actually does have cancer. While often replicated, almost all evidence for the phenomenon comes 
from studies that used problems with extremely low base rates, high hit rates, and low false alarm rates. It is 
currently unclear whether the effect generalizes to reasoning problems outside this “corner” of the entire 
problem space. Another limitation of previous studies is that they have focused on describing empirical patterns 
of the effect at the group level and not so much on the underlying strategies and individual differences. Here, we 
address these two limitations by testing participants on a broader problem space and modeling their responses at 
a single-participant level. We find that the empirical patterns that have served as evidence for base-rate neglect 
generalize to a larger problem space, albeit with large individual differences in the extent with which partici-
pants “neglect” base rates. In particular, we find a bi-modal distribution consisting of one group of participants 
who almost entirely ignore the base rate and another group who almost entirely account for it. This heteroge-
neity is reflected in the cognitive modeling results: participants in the former group were best captured by a 
linear-additive model, while participants in the latter group were best captured by a Bayesian model. We find 
little evidence for heuristic models. Altogether, these results suggest that the effect known as “base-rate neglect” 
generalizes to a large set of reasoning problems, but varies largely across participants and may need a reinter-
pretation in terms of the underlying cognitive mechanisms.   

1. Introduction 

The question of whether the human mind adheres to the rules of 
probability theory has been debated ever since probability theory itself 
was developed a couple of hundred years ago. Since then the view has 
shifted drastically from Laplace’s idea that probability theory is, in 
essence, common sense reduced to calculus (Brookes, Simon, de Laplace, 
Truscott, & Emory, 1953) to Kahneman’s and Tversky’s claim that 
people are unable to follow the rules of probability and instead have to 
rely on simple heuristics which often lead to fairly accurate answers but 
at other times produce large biases (Kahneman & Tversky, 1973). A 
more recent suggestion is that people use an adaptive toolbox of fast and 
frugal heuristics (Gigerenzer & Todd, 1999) that takes advantage of 
information in real environments to make accurate (ecologically 
rational) inferences, applicable also in states of uncertainty and 
incomplete knowledge, where “optimization” is often not computable. 

A phenomenon that has inspired, and been used to exemplify, this 

research on heuristics and biases is base-rate neglect, people’s tendency to 
respond to the evidence immediately at hand, while ignoring the base- 
rate (or: prior) probability of an event. Although the original context 
of base-rate neglect emphasized that it is caused by people’s reliance on 
simplifying heuristics (Kahneman & Tversky, 1973), the explanation 
and interpretation of the phenomenon remains debated to this day. 
Another approach emphasizes that people address base-rate problems 
much like any other multiple-cue judgment task (Brehmer, 1994; Kar-
elaia, Hogarth, & Bulletin, 2008). On this view, people typically have a 
qualitative understanding that both the evidence and base-rate is rele-
vant in base-rate problems, but they typically add up these cues, rather 
than multiply them as prescribed by probability theory (Juslin, Nilsson, 
& Winman, 2009). A third proposal is that the underlying information 
integration is in fact consistent with probability theory, but corrupted by 
random noise in the process (e.g., Costello & Watts, 2014) or dampened 
with prior beliefs (Sanborn & Chater, 2016), which appears as base-rate 
neglect in the empirical data. 
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1.1. Base-rate neglect 

One task that often has been used to argue both for and against ra-
tionality in human probabilistic reasoning strategies, is the medical 
diagnosis task. Since the introduction of this task (Casscells, Schoen-
berger, & Graboys, 1978) it has been formulated in many different ways. 
A typical example is the following: 

Suppose that 0.1% of all people in a population carry a virus. A 
diagnostic test for this virus detects it in 100% of the people who 
have the virus, but also gives “false alarms” on 5% of the people who 
do not have the virus. What is the chance that a person with a pos-
itive test result actually has the virus, assuming you know nothing 
about the person’s symptoms or signs? 

The correct answer can be computed using Bayes’ theorem and gives 
a probability of ~2%. In the formulation above, the problem is specified 
in a “normalized” format, meaning that the information about the base 
rate (prevalence), hit rate (probability that a carrier of the virus is tested 
positive), and false alarm rate (probability that a non-carrier of the virus 
is tested positive) is given as percentages or single-event probabilities. 
People tend to overestimate the correct answer substantially, presum-
ably due to putting too much weight on the hit rate and false alarm rate, 
while largely ignoring the base rate – a phenomenon commonly referred 
to as base-rate neglect or the base rate fallacy (Meehl & Rosen, 1955) (see 
Koehler, 1996 for a review and a critical discussion of the phenomenon). 

Evidence for base-rate neglect has been found in numerous studies, 
using different variations of Bayesian inference tasks (see Bar-Hillel, 
1980; Barbey & Sloman, 2007; Kahneman & Tversky, 1973, for a few 
highly influential examples). The level of neglect varies, but the number 
of correct responses is seldom above 20% (see McDowell & Jacobs, 2017 
for a meta-analysis of 35 studies). A complicating factor in explaining 
the effect is that its magnitude depends on the structure of the task. A 
number of facilitating factors has been explored that increase partici-
pants’ use of base rates in Bayesian inference tasks, such as manipulating 
the base rate within subjects (Ajzen, 1977; Birnbaum & Mellers, 1983; 
Fischhoff, Slovic, & Lichtenstein, 1979), emphasizing the relevance of 
the base rate by highlighting a causal link to the inference task (Ajzen, 
1977; Bar-Hillel, 1980; Fishbein, 2015), by providing explicit feedback, 
and by training (Goodie & Fantino, 1999). What these manipulations 
have in common is that they make decision makers more sensitive to 
base rates. 

Although base-rate neglect is a well-established fallacy in the deci-
sion making literature, there are also studies that have found that people 
do respond to both the base rate and the hit rate, and instead are 
neglecting false alarm rates (Juslin, Nilsson, Winman, & Lindskog, 
2011). This relates to the tendency of people to be influenced by diag-
nostically irrelevant information and disregarding relevant information 
(but see also Crupi et al., 2009), a phenomenon known as “pseudo- 
diagnosticity” (Ofir, 1988). In the medical diagnosis task, this could be 
manifested as being influenced by a high hit rate without taking a high 
false-alarm rate sufficiently into account. 

There are also findings suggesting that the severity of base-rate 
neglect depends on the numerical format of the presented informa-
tion. In particular, people are better able to reason in accordance with 
Bayes’ rule when all information is given in terms of naturally sampled 
frequencies (e.g. “95 out of 100 tested people” instead of “95%”),1 

possibly because cognitive algorithms have evolved to compute with 
counts and not with probabilities or percentages (Gigerenzer & Hof-
frage, 1995). The medical diagnosis problem above can be translated to 
a natural frequency format as follows: 

Suppose that one person in a population of 1000 people carries a 
particular virus. A diagnostic test for this virus gives a positive test 
result on the person carrying the virus as well as for 50 of the 999 
healthy persons. What is the chance that a person with a positive test 
result actually has the virus, assuming you know nothing about the 
person’s symptoms or signs? 

Gigerenzer and Hoffrage found that in this format the proportion of 
correct answers increased to approximately 50% compared to 16% with 
the normalized format. The reason why a natural frequency format is 
beneficial is still debated. Besides the proposal by Gigerenzer and Hof-
frage, there is a dual-process theory (Evans & Stanovich, 2013; Sloman, 
1996) that proposes that natural frequencies make people shift from 
using a primitive associative judgment system to a deliberate rule-based 
system (Barbey & Sloman, 2007; Sloman, Over, Slovak, & Stibel, 2003). 

In addition to using different numerical formats in Bayesian infer-
ence tasks, some studies have also used different visual formats to pre-
sent the relevant information, for example by using Venn diagrams to 
represent normalized frequencies or collections of dots to represent 
counts. Adding a pictorial representation of the information has in some 
cases been shown to enhance participant’s performance (Brase, 2009; 
Garcia-Retamero & Hoffrage, 2013). However, the results are mixed and 
it is clear that not all visual representations are helpful (Khan, Breslav, 
Glueck, & Hornbæk, 2015). Importantly, pictorial representations can 
also be used as a way of providing probability information to partici-
pants without giving them exact numbers (see, e.g., Harris, Corner, & 
Hahn, 2009; Harris, De Molière, Soh, & Hahn, 2017). The sense of un-
certainty that this produces may make the experimental paradigm more 
representative for human reasoning in natural environments, where 
knowledge about base rates, hit rates, and false alarm rates is rarely 
exact (Juslin et al., 2009). 

1.2. Explanations of base-rate neglect 

Although the phenomenon of base-rate neglect has been known since 
at least the 1950s (Meehl & Rosen, 1955) the psychological explanation 
behind it is still a subject of discussion. 

1.2.1. Representativeness heuristic 
A first theory was put forth by Kahneman and Tversky, who sug-

gested that the phenomenon is caused by people relying on the repre-
sentativeness heuristic (Kahneman & Tversky, 1973). They used a task 
in which participants were presented with personality descriptions of 
people drawn from a population with a known proportion of lawyers 
and engineers. Based on the personality descriptions the participants 
had to predict if the randomly drawn individual was a lawyer or an 
engineer. People often seemed to disregard the base rate proportions of 
lawyers and engineers and to base their predictions only on the per-
sonality descriptions. Kahneman and Tversky’s explanation was that 
people assess the representativeness (or similarity) of the personal 
description to the prototypical member of the professional categories (e. 
g., of a lawyer). Similarly, in the medical diagnosis task the probability 
assessment could be based on how representative a positive test outcome 
is for a diseased versus a healthy person. If it is considered more 
representative for a diseased person then the probability that the person 
has the virus is predicted to be high. Although there have been attempts 
to formulate the representativeness heuristic into a computational 
model (Bordalo, Gennaioli, & Shleifer, 2020; Dougherty, Gettys, & 
Ogden, 1999; Juslin & Persson, 2002; Nilsson, Juslin, & Olsson, 2008), 
its application to the sort of base-rate task considered here has not been 
examined. A problem with the representative heuristic is that it predicts 
that base rates are always ignored entirely. However, many empirical 
findings suggest that it is not an all-or-nothing phenomenon, but can 
differ in severity based on moderating factors, such as the format in 
which the problem is presented. While the representativeness heuristic 
can possibly account for base-rate neglect in some tasks, it is unclear 

1 For notational convenience, we will refer to this as “natural frequencies” 
throughout the rest of the paper. 
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how it would account for moderating factors. 

1.2.2. Heuristic toolbox 
Gigerenzer and colleagues claim that as long as information is pre-

sented in the natural frequency format, people often make the appro-
priate computations and do not commit the base rate fallacy (Gigerenzer 
& Hoffrage, 1995). If, however, the information is presented in a 
normalized format, people will rely on heuristics, such as reporting the 
hit rate or the difference between the hit rate and the false alarm rate, 
some of which will lead to base-rate neglect effects. The effects of 
moderating factors on base-rate neglect can, in principle, be accounted 
for by shifts between different heuristics, although the specific mecha-
nism for choice between heuristics in the base-rate task remain un-
specified (but see Rieskamp & Otto, 2006 and Marewski & Schooler, 
2011 for models of selection of heuristics in related domains). 

1.2.3. Linear-additive integration 
In sequential belief revision tasks it has long been known that rather 

than relying on Bayesian integration people tend to average the “old” 
and the “new” data (Hogarth & Einhorn, 1992; Lopes, 1985; Shanteau, 
1975). This work suggests that people have a tendency to combine in-
formation in a linear-additive fashion even when multiplicative inte-
gration is the normative solution, which is a model that has also found 
support in more recent work (Juslin et al., 2011; Juslin, Karlsson, & 
Olsson, 2008). On this view, biases are due to people using strategies 
that are well adapted to cognitive constraints and constraints of a noisy 
real-life environment. In the context of the medical diagnosis task, this 
means that the participants may understand that the base rate and the 
hit rate should be used, but without sufficient appreciation for the 
functional form implied by Bayes’ theorem, they integrate them in an 
additive rather than multiplicative manner. Base-rate neglect arises 
when a participant assigns too little weight to the base rate in compar-
ison to the optimal weight (i.e., the weight that produces the best linear- 
additive approximation of the Bayesian responses). The moderating 
factors on base-rate neglect are accounted for by people using various 
contextual cues to determine the weighting of the base-, hit-, and false 
alarm rate. The linear additive account of base-rate neglect is both 
indirectly supported by the literature on multiple-cue judgment 
(Brehmer, 1994) and directly by the results from computational 
modeling on base-rate problems (Juslin et al., 2011). It resembles the 
Bayesian model in the sense that it assumes that participants appreciate 
that multiple cues should be considered and that they should be inte-
grated in a manner that puts higher weight on more informative cues. It 
is, however, ‘heuristic’ in its integration stage, where the (non-linear) 
Bayesian rule is replaced by a simple (linear) rule. 

1.2.4. Explanations based on probability theory 
Another class of explanations of base-rate neglect is based on prob-

ability theory. This class consists of two conceptually very different 
models. The first is based on the idea that cognitive judgments are 
corrupted by random error (Erev, Wallsten, & Budescu, 1994; Hilbert, 
2012). Based on this idea, Costello and Watts (Costello & Watts, 2014, 
2016, 2017, 2018, 2019) proposed the “Probability theory plus noise” 
model, which produces regression-like effects that may make it look as if 
base rates are being neglected. The effects of moderating factors can to 
some extent be accounted for by changes in the magnitude of the 
random noise. The other type is based on the idea that people use 
Bayesian judgment strategies that incorporate prior beliefs. In this 
model, regressive effects are largely the result of the “dampening” of the 
responses, caused by the prior. A recent example is the “Bayesian 
sampler” model (e.g., Sanborn & Chater, 2016; Zhu, Sanborn, & Chater, 
2020). The effects of moderating factors can be accounted for by dif-
ferences in the strength of prior beliefs. 

1.3. Limitations in current literature 

While previous studies have provided key insights into how humans 
reason with probabilities, they have also left many questions 
unanswered. 

Firstly, many of the previous studies have only examined problems 
similar to the ones used in the examples above, that is, problems with an 
extremely low base rate, a hit rate close or equal to one, and a false alarm 
rate close to zero (e.g., Khan et al., 2015; Sloman et al., 2003). Although 
there are studies that have tested participants on more than one trial (e. 
g., Fischhoff et al., 1979; Gigerenzer & Hoffrage, 1995; Juslin et al., 
2011), none so far have performed a systematic exploration of the space 
of possible stimulus values. Consequently, it remains unknown how 
representative the results obtained in a rather extreme “corner” of this 
space are for human reasoning in general. 

Secondly, since many studies used only one trial per participant, 
hardly any modeling has been performed at the level of individual 
participants. An exception is Juslin et al. (2011), where it was reported 
that most participants used a linear additive integration to approximate 
Bayes theorem, both when naively addressing the base-rate problems 
and after explicit instruction on Bayes theorem. Little is however 
currently known about individual judgment strategies. 

Lastly, biological information processing is constrained by various 
factors, such as neural noise (Faisal, Selen, & Wolpert, 2008), the cost-
liness of neural computation (Lennie, 2003), and limits on the precision 
with which neural systems can approximate optimal solutions (Beck, 
Ma, Pitkow, Latham, & Pouget, 2012). The imperfections caused by 
these limitations can be modelled as “decision noise”, which is believed 
to be a major source of errors in perception (e.g., Drugowitsch, Wyart, 
Devauchelle, & Koechlin, 2016; Stengard & van den Berg, 2019) and 
may potentially also explain biases in cognition (Erev et al., 1994; Hil-
bert, 2012). At present, models based on probability theory are the only 
ones incorporating a form of noise. To properly compare competing 
theories about cognitive strategies, they need to be equalized in terms of 
their noise assumptions. 

1.4. Purpose of the present study 

To address these limitations, we tested participants on a broad range 
of cases of the medical diagnosis task, in which we systematically varied 
the base rate, hit rate, and false alarm rate. The participants were tested 
on one out of four tasks, which differed in the frequency format of the 
provided information (normalized vs. natural frequencies) and the vi-
sual presentation format (symbolic vs. pictorial). Finally, we used a 
cognitive modeling approach to try gain insight into the cognitive 
strategies employed by the participants and the role of noise in ac-
counting for their responses. 

2. Methods 

2.1. Data sharing 

The data are available at https://osf.io/3vkad/. Modeling code will 
be made available upon publication of the paper. 

2.2. Participants 

Forty lab participants (31 females, 9 males; mean age 25.6 years, age 
span 20–45 years) were recruited from the student population at the 
Department of Psychology at Uppsala University and 289 online par-
ticipants were recruited on the crowd-sourcing service Amazon Me-
chanical Turk (MTurk). The lab participants were compensated with 
cinema tickets or gift vouchers with a value equivalent to approximately 
$10 per hour. The qualification requirement for participating in the 
study on MTurk were a Human Intelligence Task (HIT) approval rate 
greater than 98% and Number of HITs approved greater than 5000. The 
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online participants in the control experiment were compensated $0.30 
for approximately 2 min of work and online participants in the main 
experiment were compensated $5 for approximately 30 min of work. 

2.3. Materials and design 

2.3.1. Control experiment 
To verify that our paradigm replicates the original findings of base- 

rate neglect, we tested 100 of the online participants on a task with a 
single question, formulated in the same way as in many earlier experi-
ments: “A new disease that is transmitted via a virus has been discov-
ered. Researchers have developed a test that indicates whether a person 
has the virus or not. A person who has the virus will always get a positive 
test result. However, the test is not perfect and sometimes a perfectly 
healthy person still gets a positive test result. 0.1% of people have the 
virus. Among those who don’t have the virus there is a 5% chance of 
getting an incorrect positive test result. Imagine meeting a randomly 
chosen person who has gotten a positive test result. What is the proba-
bility that this person actually has the virus, assuming that you know 
nothing about their health status?”. Participants gave their answer as a 
percentage, typed in a text field. They could give the answer in decimal 
precision but all of them provided an integer answer. 

2.3.2. Main experiment 
On every trial, participants received information about the base rate 

of a fictitious virus in a fictitious hospital. They were also informed 
about the hit- and false-alarm rates of a medical test designed to detect 
the existence of the virus. The task was to estimate the probability that a 
randomly chosen person from the hospital who had received a positive 
test result actually had the virus. Participants provided their answer in 
percentages in all of the conditions. In the symbolic tasks the response 
was given by typing the numbers on a keyboard and in the pictorial tasks 
by clicking on a number line. Within each participant, we factorially 
crossed five base rates (0.1, 0.3, 0.5, 0.7, 0.9), three hit rates (0.5, 0.7, 
0.9), and three false alarm rates (0.1, 0.3, 0.5), resulting in a total of 45 
trials. Note that the stimulus values were restricted to the “sensible” part 
of the stimulus space in which the hit rates were at least 50% and false 
alarm rates were at most 50%. Between participants, we factorially 
crossed two frequency formats (“natural frequency” and “normalized 
frequency”) and two visual presentation formats (“symbolic” and 
“pictorial”). 

The two conditions with symbolic presentation format (Fig. 1A-B) 
were performed by 189 online participants. These conditions were 
similar to how information was presented to participants in most pre-
vious studies using the medical diagnosis task. In this presentation 

format, base rates, hit rates, and false alarm rates were all presented 
numerically. Seven participants were excluded because they did not 
complete the whole experiment. All analyses were performed on the 
data from the remaining 182 participants (65 female, 115 male, 2 other; 
mean age 34.1 years, age span 19–70). 

The two conditions with the pictorial presentation format 
(Fig. 1C–D) were performed by the 40 lab participants. In these con-
ditions, the information was represented by means of “probability 
matrices” similar to the ones used by Harris et al. (Harris et al., 2009, 
2017). In these matrices, every single square represents a person. The 
color of the square signaled whether the person had the virus (red) or not 
(green) and the presence of a plus sign represented a positive result on 
the medical test. Each matrix consisted of 27 by 27 squares, which 
presumably was large enough to discourage participants from explicitly 
counting them. Stimuli were generated using the Psychophysics Toolbox 
(Brainard, 1997) for Matlab. In the tasks with normalized format, the 
participants were shown three matrices, separately representing the 
base rate, hit rate, and false alarm rate (Fig. 1C). For the natural- 
frequency format, all the information could in principle be presented 
within a single matrix, but to increase visibility the hit rate and the false 
alarm rates were separated on the screen (Fig. 1D). 

2.4. Procedure 

2.4.1. Symbolic task conditions 
Data for these two conditions were collected online, using the 

Amazon Turk platform. The task consisted of 45 trials in which infor-
mation was presented either as natural frequencies (91 participants; 
Fig. 1A) or as proportions (91 participants; Fig. 1B). We randomized the 
trial sequence and then kept it the same for all participants. The starting 
point in this sequence varied between participants, in such a way that 
every test item was presented as the first trial for at least two partici-
pants. The participants in these conditions received general information 
about the experiment and gave informed consent before starting the 
task. They were encouraged to make their best judgments and per-
formed the 45 trials in a self-paced manner. They were also informed 
that they were not allowed to use any kind of calculator. Completion 
time varied strongly across participants, from 5 to 76 min (Mdn = 16 
min). 

2.4.2. Pictorial task conditions 
The conditions with pictorial stimulus presentations were conducted 

in the lab. At the start of the session, the participant received general 
information about the experiment and gave informed consent. There-
after, the experimenter left the room and the participant would start the 

Fig. 1. Experimental design. Illustration of one trial in each of the four conditions. Top left: symbolic normalized format. Top right: symbolic natural frequency 
format. Bottom left: pictorial normalized format. Bottom right: pictorial natural frequency format. The pictorial examples are screenshots from the actual experiment, 
while the symbolic examples are translations of the original stimuli (which were presented in Swedish). 
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experiment. Each participant performed the experiment with informa-
tion presented to them either in natural frequency format (20 partici-
pants; Fig. 1C) or in normalized format (20 participants; Fig. 1D). The 
same 45 items as in the symbolic task were used, but now presented 
twice and with the trial order randomized per participant. Participants 
performed the experiment in a self-paced manner. Completion times 
varied from 6 to 69 min (Mdn = 17 min). 

2.4.3. Discrimination task 
After the main task, the participants in the pictorial conditions per-

formed an additional discrimination task with 200 trials in which they 
were shown a single matrix (identical to the ones used in the main task) 
and were asked to estimate the proportion of squares that had plus signs 
on them. This task was used to assess the level of noise in the partici-
pant’s estimations of the base rates, hit rates, and false alarm rates and 
was later used to put a constraint on the model parameters in the main 
task. 

2.5. Computational modeling 

We fit four models that represent the three generic theories in regard 
to the cognitive processes that underlie these judgments. Heuristic 
Toolbox Theory claims that people forego part of the information and 
avoid integration of the normative cues (Gigerenzer & Hoffrage, 1995). 
Linear additive models claim that, even if people have learned to 
appreciate the relevance of base rates and hit rates, they lack insight 
about the functional form of Bayes’ theorem, and – as in other multiple- 
cue judgment tasks – they default to additive cue integration (Juslin 
et al., 2009). The third theory is that the cognitive processes integrate 
the cues according to Bayes’ theorem, but there is random noise in the 
process that appears as biases in data (Costello & Watts, 2014). The first 
theory emphasizes heuristic selection of cues, the second theory em-
phasizes heuristic integration of cues, and the third theory highlights 
normative but noisy integration of the cues. While it would be naïve to 
expect the fitting of these models to 48 responses to precisely identify 
the exact parameters used by each individual participant, as illustrated 
in Figs. A1 and A5 in the Appendix, the models make clearly distin-
guishable predictions. The results can therefore be informative with 
regard to the kind cognitive of strategies used. For example, evidence in 
favor of the Bayesian and linear additive models over the heuristic 
models suggests that people do integrate the cues into a posterior 
probability. Likewise, evidence for the Bayesian over the linear additive 
model that the integration respects the functional form of Bayes’ 
theorem. 

Each model implements a decision process that takes the base rate 
(BR), hit rate (HR) and false-alarm rate (FAR) as input and maps this to a 
predicted response, R. This mapping consists of two stages (Fig. 2). First, 
a deterministic integration rule is applied to map the input triplet to a 
decision variable d. This rule represents the cognitive strategy imple-
mented by the model. Thereafter, the decision variable is mapped to a 
response R by adding Gaussian noise to its log-odds representation 
(Zhang & Maloney, 2012). The standard deviation of this noise distri-
bution, denoted σ, was a free parameter in all models. The models 
differed only with respect to the strategy of the integration rule – the 
decision noise stage was identical in all of them. 

2.5.1. Model 1: Bayesian integration with a prior 
This model originates in a long tradition of normative theories 

arguing that human cognition is based on Bayesian inference strategies 
(Griffiths & Tenenbaum, 2006; Oaksford & Chater, 1994; Tenenbaum, 
Kemp, Griffiths, & Goodman, 2011). The Bayesian strategy for the 
experimental task can be formulated in multiple ways. One way is to 
assume that the Bayesian observer simply applies Bayes’ rule to the 
provided BR, HR, and FAR information. The response of this model is 

R =
BR × HR

BR × HR + (1 − BR) × FAR 

Even though this model uses the Bayesian judgment strategy, one 
could argue that it is non-Bayesian in the sense that it ignores any prior 
information it may have about base rates, hit rates, and false alarm rates 
of viruses and medical tests. Since we cannot rule out that participants 
have such priors, a proper Bayesian model should take this information 
into account. However, incorporating a prior for each of the three var-
iables would introduce a relatively large number of free parameters to 
the model and make it overly flexible with respect to the other models. 
Therefore, we tested a simplified version in which the observer has a 
prior directly on the target probability (“the probability of having the 
virus given a positive test outcome”) rather than on the three input cues 
(BR, HR, FAR). We model this prior as a Beta distribution with param-
eters a and b, representing the number of previously observed number of 
positively tested people that do and do not carry the virus, respectively. 
Without additional information, this observer’s best estimate of the 
target probability is a/(a + b). To illustrate how this model updates its 
estimate after being presented with new information, consider the 
example in Fig. 1B: 70 out of 100 people have the virus; 35 of the 70 
persons with the virus got a positive test result; 9 of the 30 persons 
without the virus also got a positive test result. The observer would now 
have seen another V = 35 cases of positively tested people who carry the 
virus and X = 9 positively tested people who do not carry the virus. The 
new estimate of the target probability then is 

R =
a + V

a + b + V + X
.

In the tasks where information is presented in the normalized format, 
we obtained V and X by transforming the stated proportions to fre-
quencies under the assumption that they represent a sample of 100 
cases. Although this may seem somewhat arbitrary, we note that 
increasing or decreasing the assumed sample size has a similar effect as 
decreasing or increasing, respectively, the values of a and b, which are 
fitted as free parameters. Hence, fixing the assumed sample size to an 
arbitrary value (rather than fitting it) is not expected to greatly affect the 
model fits, as long as we do not choose an extremely small or large value. 
Note that while this model captures the generic formulation of Bayes’ 
theorem stated above as a special case (at a = b = 0), it also allows re-
sponses that deviate from this equation to be considered normative, in 
the sense that they take the uncertainty of the stated values into account. 

Fig. 2. Schematic overview of the process models considered in this study. On 
each trial, the model receives three inputs (BR, HR, FAR). These inputs are 
mapped to a decision variable, d, through a deterministic integration process 
that differs between models. Finally, the decision variable is mapped to a 
response, R, by corrupting it with Gaussian noise. Vector θ specifies the model 
parameters related to the integration process and σ is the standard deviation of 
the late noise distribution. Note that in the tasks with the pictorial input format, 
we assume that there is also noise on the stimulus inputs before they are in-
tegrated (see text for details). 
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2.5.2. Model 2: linear additive integration 
The second model is based on findings from research on multiple-cue 

judgment tasks, such as estimating the price of an apartment based on its 
size, number of rooms, and distance to the city center (Brehmer, 1994; 
Juslin et al., 2008). This research suggests that people tend to combine 
cues by linearly weighting and adding them. Since the task in the present 
study can be seen as such a task – With BR, HR, and FAR as cues – It is 
conceivable that participants used this strategy. Under a linear-additive 
integration rule, the process model takes the form 

R = wBRBR+wHRHR+wFARFAR,

where the weights wBR, wHR and wFAR determine how much each piece of 
information contributes to the estimate of the posterior. The weights are 
fitted as free parameters with an unconstrained range. 

2.5.3. Model 3: An adapted heuristic toolbox 
The third model is based on four heuristics that Gigerenzer and 

Hoffrage (Gigerenzer & Hoffrage, 1995) derived from self-reported 
strategies of a large number of participants performing a task similar 
to the one we use here. The first of these is the “joint occurrence” heu-
ristic, which approximates the posterior as the product of the base rate 
and the hit rate, d = BR×HR. This will generally underestimate the true 
posterior, but can serve as a decent approximation when BR is high, 
which according to Gigerenzer and Hoffrage is the kind of situation in 
which people use this heuristic. The second heuristic entirely ignores BR 
and FAR and simply approximates the posterior as the HR, d = HR. This 
“Fisherian” heuristic leads to the same result as Bayes’ theorem when 
the base rate of the virus is equal to the base rate of positive test out-
comes. Therefore, Gigerenzer and Hoffrage argue that people use this 
heuristic more frequently when the difference between these rates is 
small. The final two heuristics – referred to as “Likelihood subtraction” – 
are variants of an algorithm that ignores the base rate and seems to have 
been the predominant choice by participants in previous studies (Cos-
mides & Tooby, 1996). The first variant takes the difference between the 
hit rate and the false alarm rate, d = HR − FAR. The second variant is a 
simplification of this rule, in which the hit rate is assumed to be equal to 
1, such that d = 1 − FAR. 

A challenge when implementing Heuristic Toolbox Theory is that 
there is no theory or proposed mechanism for how participants select the 
heuristic in each specific situation. This is a well-known problem, often 
referred to as the strategy selection problem. In related domains it has been 
suggested that people learn when to use what heuristic by feedback and 
reinforcement learning at the strategy level (Rieskamp & Otto, 2006), or 

that the ecological niches sometimes uniquely identify what heuristic 
that is applicable (Marewski & Schooler, 2011). Since this non-trivial 
problem has not yet been resolved for the base rate heuristics sug-
gested by Gigerenzer and Hoffrage (1995), we decided to side-step it and 
focus on the more basic question of whether there is support for people 
using these heuristics, when they are evaluated in comparison with the 
other models. We do this in three ways: i) we consider a model assuming 
that people have learned to select for each situation the heuristic that 
best approximates the output of Bayes’ theorem (as inspired by Rie-
skamp & Otto, 2006). ii) In order to relax this ideal assumption of “well- 
adapted selection of heuristics”, we also consider a lexicographic version 
of the model that is more in line with the information integration 

emphasized in the Adaptive Toolbox program (Gigerenzer & Todd, 
1999), and where the selection is based on how informative each cue 
appears in each situation (more in the spirit of Marewski & Schooler, 
2011). iii) In the data analysis below, we finally also consider the most 
liberal application of the Heuristic Toolbox model that is possible, a 
disjunctive model, by allowing each response post hoc to be any of the 
five heuristics. 

The model assuming that people have (somehow, to a decent 
approximation) learned to select the heuristic that best coincides with 
the output of Bayes’ theorem in each situation is, 

R = argmin
dheuristic

i

⃒
⃒dheuristic

i − dBayes
⃒
⃒,

where di
heuristic, 1 ≤ i ≤ 4, refers to the decision variables related to the 

four heuristic rules and dBayes is the optimal (correct) decision variable 
and |∙| is the absolute value operator. The argmin operator selects the 
heuristic that most closely approximates the output of Bayes’ theorem. 

2.5.4. Model 4: A lexicographic heuristic toolbox 
The final model that we tested is a “lexicographic” variant of the 

Heuristics Toolbox model (see Brandstätter, Gigerenzer, & Hertwig, 
2006; Gigerenzer & Goldstein, 1996, for models in this spirit). It uses the 
same four heuristics, but instead of choosing the heuristic that best ap-
proximates Bayes’ theorem in the given situation (model 3), the lexi-
cographic model assumes that participants consider the informativeness 
of each cue (HR, BR, FAR), in turn, until a sufficiently informative cue is 
found. The model takes an input probability as informative about the 
event’s occurrence when it deviates from 0.50 by more than a criterion 
value δ, which is fitted separately for HR, BR, and FAR. The order in 
which the model considers the cues is informed by the general pattern in 
the literature, which has shown that people respond strongly to hit rates, 
to some extent to the base rates, but rarely to the false-alarm rates 
(Juslin et al., 2011).2 therefore, the model first checks the value of HR. if 
it is considered to be informative (i.e., deviates by more than δHR from 
0.50), the participant reports HR, in accordance with the Fisherian 
heuristic introduced above. Otherwise, it next considers whether BR is 
informative about whether the event will happen and reports it if it is. If 
neither HR nor BR is sufficiently informative by itself and also the FAR is 
uninformative, the participant reports HR×BR, as according to the joint 
occurrence heuristic introduced above. Finally, if, on the other hand, 
FAR is informative, the participant reports HR – FAR, as according to the 
likelihood subtraction heuristic above. Formally, this model is formu-
lated as   

In this formulation, the informativeness of each cue is a step function 
of the possible cue-values: it is 0 when it deviates by less than δ from 
0.50 and 1 otherwise. As a final step, we replace the step function with a 
sigmoid function, such that each cue has a certain probability of being 
considered informative. This probabilistic variant adds another param-
eter, σsigmoid, that determines how quickly the probability of considering 
a cue as informative increases with its deviation from 0.50 (σsigmoid =

R =

⎧
⎪⎪⎨

⎪⎪⎩

HR if HR ∕∈ 0.50 ± δHR
BR if HR ∈ 0.50 ± δHR & BR ∕∈ 0.50 ± δBR

BR × HR if HR ∈ 0.50 ± δHR & BR ∈ 0.50 ± δBR & FAR ∈ 0.50 ± δFAR
HR − FAR otherwise.

2 The data in the present study show the same pattern (Figure 9) 
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0 gives the original step-function formulation). This probabilistic 
formulation provides some additional flexibility to the model and can be 
interpreted as if participants have trial-to-trial noise in their informa-
tiveness criteria or do not apply them in a fully consistent manner. 

2.5.5. Decision noise 
We added “late noise” to all models to account for various imper-

fections in neural information processing. We implemented this noise as 
a zero-mean Gaussian random variable with a free variance parameter, 
σ2. The noise was drawn independently on each trial and added to the 

log odds ratio of the model prediction on that trial, log
(

R
1− R

)

, which was 

then transformed back to a probability.3 Since the noise is implemented 
identically in all models, differences in goodness-of-fit are expected to 
reflect differences that models make in their assumptions about the 
judgment process. 

Note that thanks to this noise, the “Probability theory plus noise” 
model suggested in earlier studies (Costello & Watts, 2014, 2016, 2017, 
2018, 2019) is a special case of the Bayesian model we test here, namely 
the case of having no prior information (a = b = 0). A novelty of the 

present work is that we allow the same kind of noise to corrupt judg-
ments in the other models (“Linear-Additive Integration plus Noise”, 
“Heuristic Toolbox plus Noise”, and “Lexicographic Heuristic plus 
Noise”). This way, we can quantify evidence for the judgment mecha-
nisms independently of the noise assumption. 

2.5.6. Parameter fitting and model comparison 
We fitted the model parameters by using maximum-likelihood esti-

mation, that is, by finding for each model the parameter vector θ that 

maximized 
∏#trials

i=1
p(Di|θ,BRi,HRi, FARi), where Di, BRi, HRi, FARi, are the 

participant’s response and the presented base rate, hit rate, and false 
alarm rate on trial i, respectively. This maximization was done numer-
ically, by using an optimization algorithm based on Bayesian direct 
search (Acerbi & Ma, 2017). Likelihoods were computed using Inverse 
Binomial Sampling (IBS) (van Opheusden, Acerbi, & Ma, 2020). This is a 
numerical method that samples responses from the model until it 
matches the participant’s response; likelihoods are computed from the 
expected number of required samples until a match is found. An 
advantage of this method is that it guarantees the likelihood estimates to 
be unbiased. However, a disadvantage is that it can get stuck on 
parameter combinations that are unable to reproduce one or more of the 
participant’s responses in a reasonable amount of time. To avoid this, we 
added a freely fitted lapse rate λ to each model. 

Fig. 3. Analysis of participants’ sensitivity to base rates. (A) Distribution of responses in the control experiment. (B) Subject-averaged response accuracy in the main 
experiment, split by condition. MAE = Mean Absolute Error. (C) Left: Subject-averaged responses binned by the correct response and split by condition. Right: 
Subject-averaged responses for each base rate, collapsed across hit rates and false alarm rates and split by condition. (D) Subject-averaged response accuracy for each 
base rate, collapsed across hit rates and false alarm rates and split by condition. (E) Left: an example of a participant whose average response was independent of the 
base rate; the base rate sensitivity, SBR, was computed as the ratio between the linear fit slopes. Right: an example of a participant who responded to the base rate 
almost equally strongly as the normative observer. (F) Distribution of sensitivity values across all subjects. BRN = Base Rate Neglect. 

3 As a robustness check, we also fitted the models using a Beta noise distri-
bution, which gave similar results (see Results). Hence, our modeling results do 
not critically depend on the shape of the chosen noise distribution. 
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To avoid overfitting and account for differences in flexibility be-
tween models during model comparison, we fitted them using five-fold 
cross-validation. In each of the five runs, a unique subset of 20% of the 
trials was left out during parameter fitting. The log likelihood values of 
the left-out trials were summed across the five runs, providing a single 
“cross-validated log likelihood” value per model fit. For model com-
parison we computed the relative goodness-of-fit for each model as the 
difference in log likelihood with the best-fitting model. Since the opti-
mizer may sometimes return a local maximum instead of a global 
maximum, we performed each fit 20 times with different starting points. 
We verified with a model recovery analysis that the models are distin-
guishable (see Fig. A1 in Appendix). 

2.5.7. Estimating noise levels in the pictorial conditions 
In the pictorial conditions, participants estimated the base rate, hit 

rate, and false alarm rate from the presented “probability matrices” 
(Figs. 1C–D). Previous research suggests that the amount of noise on 
these estimates scales with the numerosity of the estimated set (Piazza, 
Izard, Pinel, Le Bihan, & Dehaene, 2004; Pica, Lemer, Izard, & Dehaene, 
2004), which can be modelled using Weber’s law (Shepard, Kilpatric, & 
Cunningham, 1975). Instead of modeling this noise as an additional free 
parameter in the models for the pictorial conditions, we estimated it 
using an independently performed discrimination task (see Procedure 
above) and fitting a model that assumed that people’s observations of 
numerosity are corrupted by Gaussian noise that scales with the 
magnitude of the numerosity. 

3. Results 

3.1. Effect of base rate on responses 

3.1.1. Control experiment 
The control experiment consisted of a single trial in which partici-

pants were presented with the classic formulation of the base-rate 
neglect task (base rate: 0.1%; hit rate: 100%; false alarm rate: 5%; 
correct answer: 1.96%). When counting all answers between 1.8% and 
2.2% as correct (Sloman et al., 2003), 9% of the participants were 
classified as giving the correct answer (Fig. 3A). This is consistent with a 
meta-analysis of 115 previously reported experiments, where the ma-
jority of the observed proportions of correct answers on his task was 
below 20% (McDowell & Jacobs, 2017). The modal response in our 
control task was “95%” (~20% of the responses), which is also consis-
tent with previous findings and which is often interpreted as base-rate 
neglect (Sloman et al., 2003). Hence, the control experiment success-
fully replicated earlier findings of base rate neglect. It is important to 
note, however, that while the modal response was 95%, the majority of 
the participants gave a correct or near-correct answer and were, thus, 
not neglecting the base rate. 

3.1.2. Main experiment 
The task in the main experiment was the same as in the control 

experiment, except that it consisted of multiple items that varied in the 
presented base rates, hit rates, and false alarm rates. Since participants 
performed multiple trials, it is possible that they adjusted their responses 
based on their previous trials, which may have led to patterns in the data 
that might not have been there if they had performed only one trial. 
However, we found no evidence for such carry-over effects (Fig. A2 in 
Appendix). 

The response distributions (Fig. A3 in Appendix) were similar to that 
of the single-item control experiment (Fig. 3A), in the sense that for each 
item there was a large spread in responses but also a clear cluster of 
correct or near-correct responses. 

Accuracy levels differed slightly between the four conditions 
(Fig. 3B–C). Bayesian t-tests (JASP Team, 2020) confirmed that the 
participants’ average accuracy was reliably higher than that of a 
participant making a random guess on every trial (BF10 > 1.9∙1017 in all 

four conditions).4 A two-way Bayesian ANOVA with mean absolute error 
as the dependent variable and task format and presentation format as 
independent variables revealed strong evidence for an effect of task 
format (BFinclusion = 23.2), consistent with previous reports (Gigerenzer 
& Hoffrage, 1995) that people are more accurate when the information 
is presented as natural frequencies (M = 18.0, SD = 12.3) compared to 
normalized formats (M = 23.2, SD = 10.2). Moreover, the same test 
showed anecdotal evidence against both an effect of presentation format 
(BFinclusion = 0.46) and an interaction effect (BFinclusion = 0.37). Hence, 
somewhat unexpectedly, performance was comparable between the 
pictorial and symbolic conditions and the advantage of presenting the 
information as natural frequencies was also comparable between these 
two conditions. 

If participants used a judgment strategy that ignored the base rate, 
then we should find that their average responses are similar across sets 
of trials with the same hit- and false-alarm rate values. Our data show 
that this is clearly not the case (Fig. 3C right). In all four conditions, 
participants on average increased their responses in reaction to an in-
crease in the base rate and hit rate and decreased their response in re-
action to an increase in the false alarm rate (three-way repeated 
measures ANOVA5; BFinclusion > 1000 for all main effects). Nevertheless, 
they did not adjust their responses as much as would be predicted from a 
normative perspective (dashed line in Fig. 3C). 

To examine base rate sensitivity at the level of single participants, we 
computed a sensitivity index, denoted SBR, as the slope of the linear fit to 
their responses divided by the slope of the linear fit to the responses from 
a Bayesian observer without a prior. A participant who entirely ignores 
the base rate has a sensitivity of 0, while a participant who reacts equally 
strongly to changes in the base rate as the Bayesian observer has a 
sensitivity of 1 (Fig. 3E).6 We found that the participants’ sensitivity 
values are largely clustered around 0 and 1 (Fig. 3F), which suggests that 
many of them either fully ignored or fully accounted for the base rate. 
This finding is qualitatively consistent with the data obtained using the 
classic base-rate neglect task, where we found a similar kind of clus-
tering (Fig. 3A). In addition, we found that the base-rate sensitivity 
index correlates with median log response times (r = 0.20, p = 0.004). 
Such a correlation is expected when considering that heuristics are 
supposed to be “fast and frugal” (Gigerenzer & Todd, 1999) but also 
ignore part of the provided information. 

Finally, we noticed that some of the participants had extremely short 
or extremely long median response times (range: 3.08 to 69.1 s). We 
suspect that extremely fast participants might have been “clicking 
through” the task and extremely slow ones might have been using 
external resources. To verify that our results do not critically depend on 
data from such participants, we redid the analyses after filtering out 
participants with extreme median reaction times and found that the 
results are similar and lead to the same conclusions (see Fig. A4 in 
Appendix). 

We draw two conclusions from the results so far. First, there are 
considerable individual differences in how participants behave in both 
the classic formulation of the task and our generalization of it: in both 

4 All reported Bayesian statistics were obtained using the default prior set-
tings in JASP.  

5 The different values of the base rate, hit rate and false alarm rate were 
entered as repeated measures factors and individual subject responses as 
dependent variable.  

6 Note that a sensitivity of 1 does not necessary mean that the participant 
performed perfectly in accordance with Bayes’ theorem, because it is possible to 
produce incorrect responses while still adjusting the responses correctly to 
changes in the base rate (see Figure 3E for an example). Likewise, a BR sensi-
tivity smaller than 1 does not necessarily mean that a participant was non- 
Bayesian: it could be a Bayesian observer with a prior belief about base rates. 
While the sensitivity index is useful for quantifying how strongly participants 
reacted to changes in the base rate, care should be taken when drawing con-
clusions about underlying cognitive mechanisms from this index. 
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tasks, there is a group of participants that almost entirely seems to ac-
count for base rates in their judgments and another group that almost 
entirely neglects them. This heterogeneity in behavior warrants caution 
when attempting to make population-level statements about base rate 
neglect. Second, the base-rate neglect effect does not seem to be limited 
to inference problems with a high hit rate and extremely low base rate. 

3.2. Model comparison 

To get more insight into the kind of judgment strategies that the 
participants may have been using, we fitted four models to their indi-
vidual data sets: a Bayesian model, a linear-additive integration model, 
and two heuristic models. These models represent distinct theories 
about cognitive strategies and make clearly distinguishable predictions 
(Fig. A1 in Appendix). A key difference is that the former two models 
integrate the cues while latter tend to simply report one of the cues 
rather than integrate them. While it would be overambitious to expect 
that fitting 4 models to 48 responses can reveal the exact strategy used 
by each participant, it can still provide useful insights into the kind of 
strategies they were using. For example, a participant who integrated 
the three cues is expected to be captured well by the Linear-Additive 

model and, possibly, also by the Bayesian model (if the integration 
rule is close to the Bayesian one), but not by the heuristic models. 
Likewise, participants using a non-integration strategy are expected to 
be captured very poorly by the Bayesian model and, possibly, well by the 
heuristic models. 

Most participants in the experiment with symbolic stimuli were best 
captured by the Bayesian and Linear-Additive models, a few of them 
were best captured by the Lexicographic Heuristic, and almost no 
participant was described well by the Heuristic Toolbox model (Figs. 4A 
and 5A). Moreover, all models did a good job at capturing the partici-
pants’ group-averaged responses as a function of the base rate (Figs. 4B 
and 5B). However, consistent with the model comparison results, the 
Linear-Additive and Bayesian models clearly outperformed the heuristic 
models when considering fits at a much more fine-grained level (Figs. 4C 
and 5C). These results thus suggest that most participants integrated the 
cues, with some participants apparently using an integration rule that 
resembled the Bayesian one. 

Just as in the base-rate sensitivity analysis above, we found large 
individual differences in model preference. Part of this variability may 
be due to model evidence itself being a random variable, in the sense 
that measuring the same participant twice on the exact same task will 

Fig. 4. Modeling results for the condition with symbolic stimuli presented in normalized format. (A) Left: Cross-validated model log likelihoods relative to the best 
model. The preferred model for each participant is indicated in blue and the worst models are indicated in yellow. For visualization purposes, participants were 
sorted in such a way that all participants on which a particular model was the preferred one would line up (blue areas). Right: Cross-validated model log likelihoods 
relative to the best-fitting model, averaged across all participants. Errors bars indicate 1 s.e.m. (B) Participant-averaged responses as a function of the base rate. Error 
and shaded areas indicate 1 s.e.m. (C) Simulated model responses (including late noise) under maximum-likelihood parameters plotted against participants re-
sponses. Each point represents the average response across the 9 trials within a base rate (color-coded); r indicates the Pearson correlation coefficient and n the 
number of points in each plot. The model order is the same as in panel B. 
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not result in identical log likelihood values. However, for many partic-
ipants one model was preferred strongly over the other three models, 
which suggests that at least part of the variability in model evidence is 
due to different participants using different strategies. While not of 
primary interest in the present study, it is interesting to note that more 
participants were classified as a Bayesian in the natural frequency 
format (46 out of 91) compared to the normalized frequency format (31 
out of 91), p = 0.035 (Fisher’s exact test). This is consistent with earlier 
literature as well as with the accuracy difference reported above 
(Fig. 3B). 

The modeling results in the pictorial conditions were very similar to 
those in the symbolic conditions. The Bayesian and Linear-Additive 
models again captured the data convincingly better than the heuristic 
models (Figs. 6A and 7A) and provided good fits to the data (Fig. 6B, 6C, 
7B, 7C). Moreover, there were quite a few participants for whom the 
three non-winning models provided substantially worse accounts of the 
data than the winning model, which is suggestive of individual differ-
ences in strategies. However, we do not see a shift towards the Bayesian 
model in the task with the natural frequency format (11 out of 20) 
compared to the normalized frequency format (10 out of 20), p = 1.00 
(Fisher’s exact test). 

To further verify that the Linear-Additive model and Bayesian model 
represent mathematically distinctive decision strategies, we examined 
the correlation between their predictions under maximum-likelihood 
parameter estimates. The results (Fig. A5 in Appendix) show that the 
predicted responses are highly correlated, which was expected, because 
both models were fitted to follow the empirical responses. Importantly, 

however, on many trials the models make quite different predictions, 
which verifies that they implement mathematically distinct strategies.7 

This is consistent with the observation of many participants with quite 
distinct differences in model fit between the two models in Figs. 4 to 7. 

Finally, we verified that the modeling results do not critically depend 
on the chosen noise distribution, by rerunning it using a different noise 
distribution. This gave very similar results (see Fig. A6 in Appendix). 

The modeling results support our earlier conclusion that there are 
individual differences in the strategies employed by the participants. 
Moreover, they provide very little evidence for heuristic judgment 
strategies. 

3.3. Analysis of the relation between judgment strategies and base rate 
sensitivity 

The results so far suggest that there are individual differences both in 

Fig. 5. Modeling results for the condition with symbolic stimuli presented in natural frequency format. This figure follows the same layout as Fig. 5.  

7 A classic illustration of the divergence of the predictions by these two sorts 
of models is that the interaction plots for multiplicative models (like the 
Bayesian model) should yield fan patterns with diverging lines, whereas linear 
additive integration should produce parallel lines (see, e.g., the work by Nor-
man H. Anderson (1996). In practice, when applied to probability, where all 
predictions have to be truncated to the 0 to 1 probability interval, these plots 
become messy and the complex patterns are better evaluated formally in terms 
of model fit than by testing specific interaction terms or visual inspection, and 
this is the line pursued here. 
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the extent to which participants accounted for base rates in their judg-
ments (Fig. 3F) and in the preferred cognitive model fitted to their data. 
We next investigated whether these two findings may be related: is there 
any evidence in the modeling results to suggest that participants with 
little base rate neglect were using a categorically different strategy than 
participants with strong base rate neglect? To examine this, we replotted 
the distribution of sensitivity values shown in Fig. 3F, but now color- 
coded by the best-fitting model for each participant (Fig. 8). While 
both models span a broad range of sensitivity values, we found that the 
Bayesian model was preferred mainly for participants with little or no 
base-rate neglect (i.e., SBR values close to 1), while the Linear-Additive 
model was more successful in capturing data from participants with 
strong base-rate neglect (i.e., SBR values close to 0). This finding suggests 
that participants with little base-rate neglect may have been using a 
categorically different reasoning strategy than those with strong base- 
rate neglect. 

3.4. Analysis of model parameter estimates 

To further evaluate the model fits, we next looked at the estimated 
parameter values. We limited this analysis to the key parameters in the 
Bayesian and the Linear-Additive integration models, which together 
accounted for 80% of the participants in terms of the best-fitting model. 

3.4.1. Weights in the Linear-Additive model 
According to the fits of the Linear-Additive model, participants gave 

on average too little weight to both the base rate and false-alarm rate in 

all four conditions when compared to the optimal weights (i.e., the 
weights that would have minimized the RMSE in our task). In particular 
the false-alarm rate was underweighted, which is a finding that can be 
linked to several other robust phenomena in psychology, such as 
pseudo-diagnosticity (Ofir, 1988) and subadditivity (Tversky & Koehler, 
1994). The hit rate, on the other hand, was on average weighted close to 
optimally. 

3.4.2. Prior in the Bayesian model 
In the Bayesian model, the estimated median number of previously 

observed cases (i.e., the median of the sum of the a and b parameters) 
was 62.6 (Q1 = 9.30; Q3 = 335) when considering all participants and 
10.2 (Q1 = 0.51; Q3 = 422) when considering only the participants for 
whom the Bayesian model was the best-fitting model (Q1 and Q3 refer to 
the first and third quartile). According to these results, participants 
either had a very weak prior or one of a strength corresponding to 
having observed a few hundred earlier cases. Simulation results (see 
Fig. A7C in Appendix) show that priors in this range can produce 
regressive effects of similar magnitude as observed in the data (Fig. 3C). 
Hence, a deterministic “dampening with a prior” seems a more plausible 
explanation for the regressive effects found in our data than a classical 
regression effect caused by random noise. 

Fig. 6. Modeling results for the condition with pictorial stimuli presented in normalized format. This figure follows the same layout as Fig. 5.  
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3.4.3. Noise levels in both models 
The median of the estimated noise parameter σ was 0.37 (IQR =

0.54) for participants best fitted by the Bayesian model and 0.43 (IQR =
0.48) for those best fitted by the Linear-Additive model.8 This may seem 
large, but we remind the reader that the noise was applied to the log- 
odds ratio of the predicted responses. For comparison, a noise value of 
0.37 on the log-odds ratio corresponds to Gaussian noise with a standard 
deviation of 0.09 on the raw response. Simulation results (see Fig. A7B 
Appendix) show that this amount of noise is far too small to cause 
regressive effects of the magnitude seen in the data (Fig. 3C). Hence, 
decision noise does not seem to be a plausible explanation for the 
regressive effects found in our data, but they seem better accounted for 
by a dampening with a prior. 

3.5. Frequency of heuristic judgments 

The Heuristic Toolbox and Lexicographic models tested above 
incorporate a variety of heuristic judgment rules (“Report HR”, “Report 
1 − FAR”, etc). We found that both models provide relatively poor de-
scriptions of the data. One possible explanation is that participants did 
generally not use the tested heuristics in their judgments. However, 
another possibility is that participants used a selection rule (which 
heuristic to use on a given trial) that differed from the selection rules in 

Fig. 7. Modeling results for the condition with pictorial stimuli presented in natural frequency format. This figure follows the same layout as Fig. 5.  

Fig. 8. Distribution of base-rate sensitivity split by best-fitting model. Partici-
pants who showed little or no base-rate neglect are generally best accounted for 
by the Bayesian model, while participants with strong base-rate negelect are 
generally better accounted for by the Linear-Additive model. 

8 If all participants are included, Mdn = 0.67, IQR = 0.53 for the Bayesian 
model and Mdn = 0.55, IQR = 0.35 for the linear model. 
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the Heuristic Toolbox and Lexicographic models. To investigate this, we 
evaluated a post hoc disjunctive model and counted for each participant 
in the two conditions with symbolic stimuli how many of their responses 
coincided with the output of any out of five heuristics. Even though not 
used in any of the tested models, we added “Report FAR” as an addi-
tional heuristic in this analysis. The results (Fig. 10) showed that in both 
conditions approximately half of the responses were consistent with the 
disjunction of the five heuristics, while the other half were inconsistent 
with all five heuristics. Hence, the best-fitting model of all possible 
models based on these five heuristics can explain at most half of the 
responses. Because several of the heuristics coincide with merely 
reporting one of the numbers stated in the problem it may also be hard to 
verify that all of these responses are deliberate and intentional in-
ferences referring to the posterior probability, as opposed to more su-
perficial response biases. Or, put differently, if participant responses are 
exclusively based on heuristic strategies, then there must exist other, yet 
to be discovered heuristics that were not included in the current 
analysis. 

4. Discussion 

In this study, we examined the generality and cognitive basis of the 
base-rate neglect phenomenon in the context of the medical diagnosis 
task. To this end, we tested participants on the medical diagnosis task 
under a large range of different combinations of base rates, hit rates, and 

false alarm rates. Our empirical results indicated large individual dif-
ferences in the degree with which participants neglected base rates. This 
heterogeneity was reflected in the cognitive modeling results, where the 
evidence was divided mainly between the Bayesian and Linear-Additive 
models and provided little evidence for heuristic strategies. 

4.1. Generality of the base-rate neglect effect 

We found that signs of base rate neglect were present throughout the 
tested space of problems and to a similar degree as found in the classical 
task. Hence, the phenomenon known as base-rate neglect does not seem 
to be limited to inference problems with extremely low base and false- 
alarm rates in combination with a high hit rate. Taken as a whole, 
participants on average seemed to make proper use of the hit rate but 
underused the base rate and false-alarm rate. 

Interestingly, however, we found large individual differences in 
behavior. In particular, both in the control experiment (using the clas-
sical task) and in the main experiment (using the generalized task), we 
found two clusters of participants: those who seemed to largely ignore 
the base rate and those who seemed to account for it well. This het-
erogeneity suggests that there may be true individual differences in 
rational thought (Stanovich & West, 2000), which would warrant 
caution in drawing strong group-level conclusions about base rate 
neglect. Instead, the phenomenon may be best studied at the level of 
individuals. 

Fig. 9. Estimated weights of the linear additive model. Estimated weights for the base rate, hit rate and false-alarm rate for the linear additive model. Black error bars 
and dots indicate the mean and individual weights of participants for whom the linear additive model provided the best fit. Red error bars and dots indicate the mean 
and individual weights of all other participants. The dashed lines indicate the weights of an additive integration model fitted to responses from a Bayesian decision 
maker (i.e., the linear additive weights that best approximates the Bayesian solution). 

Fig. 10. Distribution of participant responses in the 
two conditions with symbolic stimuli. The propor-
tion of participant responses that were equal (in two 
decimal places, when expressed as a probability) to 
a response predicted by one of the heuristic rules. 
Each bar corresponds to one participant. Responses 
that corresponded with more than one heuristic 
were counted multiple times, which means that 
some of the counts may be slightly overestimated. 
The black rectangles indicate the mean for each 
group of responses. In both conditions, approxi-
mately half of the responses coincided with one of 
the heuristics.   
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Finally, even though the symbolic and pictorial tasks at first glance 
might seem rather different, the participants on average seemed to use 
the same kind of strategies to solve the tasks. This is an interesting 
finding since even though the underlying task structure was identical in 
the symbolic and the pictorial versions of the task, the judgments were 
based on exactly stated numbers in the symbolic condition and on un-
certain assessments in the pictorial condition demanding the partici-
pants to reason under uncertainty. 

4.2. Cognitive basis of the base-rate neglect effect 

The heterogeneity in empirical estimates of the degree of base-rate 
neglect was reflected in the model comparison results. Even though 
we found little evidence for the heuristic models, evidence between the 
Linear-Additive and Bayesian models was divided: the data of some 
participants were better accounted for by the former model, while data 
for others were better accounted for by the latter. 

More specifically, participants who showed little or no base-rate 
neglect were generally best described by the Bayesian model. The esti-
mated prior counts in this model varied from near-zero to a few hundred 
cases, which suggests that people had weak to moderately strong priors, 
but rarely so strong that they completely dominated the data given in the 
experimental trials. Interestingly, the noise levels were estimated to be 
relatively small. Simulations revealed that much higher noise levels 
would have been required to explain the typical regressive effects found 
in empirical data. Hence, our results suggest that those effects were 
largely caused by “dampening” due to the prior, which is consistent with 
a proposal in other recent papers (e.g., Zhu et al., 2020). 

Participants who showed strong base-rate neglect effects were 
generally best described by the linear-additive model. From the 
perspective of that model, participants have a qualitative understanding 
that both the evidence and base-rate is relevant in base-rate problems, 
but – as often observed in other multiple-cue judgments tasks (Juslin 
et al., 2008, 2011) – they spontaneously add up the cues, rather than 
engaging in the multiplication prescribed by probability theory (Juslin 
et al., 2009). This suggests that from their experience with the world, 
people may have obtained normative insights at a general qualitative 
level, but they are unable to perform the normative mathematical 
integration when presented with symbolic representations of probabil-
ity. This interpretation is vindicated by the observation that even after 
explicit tutoring and instruction on how to compute the posterior 
probability from Bayes’ theorem in base-rate problems, people are still 
better described by linear additive integration models than by the 
normative integration model (Juslin et al., 2011). One potential criti-
cism of the Linear-Additive model concerns its flexibility, in the sense 
that it can produce a wide array of apparently different strategies, 
ranging from exclusively weighting the hit rate or base rate, to inte-
grating pairs of components, to integrating all three components in 
approximating to Bayes’ theorem. One could, however, argue that this 
captures the richness and variety of the strategies found in human par-
ticipants and could reflect individual differences in, for example, their 
knowledge of probability theory and their judgment of the relevance of 
various contextual cues (Ajzen, 1977; Bar-Hillel, 1980; Birnbaum & 
Mellers, 1983; Fischhoff et al., 1979; Fishbein, 2015; Goodie & Fantino, 
1999). The strategies are effectively identified by the parameters of the 
model and the common cognitive claim by the model is that people have 
difficulty with “number-crunching” symbolic representations of proba-
bility according to Bayes’ theorem, but rather often default to linear 
additive integration of the components. 

Data from the remaining ~20% were best captured by the heuristic 

models. Heuristics come in many varieties and the individual strategies 
(e.g., “multiply hit rate with base rate”) are not assumed to be used for 
all tasks but rather to be picked when the structure of the task at hand 
fits some criteria (e.g., “use the joint occurrence heuristic if the base rate 
is high” (Gigerenzer & Hoffrage, 1995). However, the exact conditions 
for when the different heuristics should be used are difficult to establish 
and have not been specified for the heuristics in these base-rate prob-
lems. For example, how high does the base rate has to be for it to be 
considered high? In this study we used two different heuristic models 
that circumvented this problem in different ways. While there may 
remain untested heuristic models with selection rules that differ from 
the ones we tested here, we could see from the distribution of responses 
(Fig. 10) that any heuristic model using the strategies considered in the 
present study can account for at most approximately 50% of the re-
sponses. Hence, if judgments in the medical diagnosis task are mainly 
driven by heuristics, there must be additional, yet-to-be-discovered 
strategies that participants were using. A challenge for the heuristics 
program is to uncover these strategies as well as the mechanism that 
determines which strategy to use in which situation. 

Another challenge is to find the source of the individual differences 
in the strategies. These individual differences may involve different 
choices of strategies (e.g., report of a single cue vs Bayesian integration 
of all cues) as well as differences in how a specific strategy is applied (e. 
g., what cue is selected or what priors are entered in the Bayesian 
integration). These differences may, in turn, derive from differences in 
how the participants represent the task and in what they consider to be 
important aspects in the task (Szollosi & Newell, 2020), as well as from 
individual differences in fundamental cognitive abilities, such as intel-
ligence or working memory (Conway & Kovacs, 2013) or differences in 
how much experience participants had with this kind of task, with 
novices relying more on heuristics than experienced participants. In the 
present study, however, we are not in the position to further explore this 
important question. 

4.3. Effect of frequency format and presentation format 

In the symbolic conditions, using a natural-frequency format led to 
slightly better task accuracy. In addition, more participants in those 
conditions were classified as Bayesian when presented with information 
in the natural-frequency format (21 vs 11). Nevertheless, the differences 
were not as drastic as in some previous studies. The original study by 
Gigerenzer and Hoffrage found that changing from a normalized fre-
quency format to a natural frequency format increased the performance 
rate from 16% correct responses to 46% correct responses (Gigerenzer & 
Hoffrage, 1995). A later study by Cosmides and Tooby found similar 
results, with a performance increase from 12% to 56% correct responses 
(Cosmides & Tooby, 1996). One explanation for why the increase in the 
present study was smaller is that our participants were required to give 
their answer in percentages rather than a ratio. An alternative expla-
nation is that the task structure did not make the set relations between 
base rate, hit rate and false-alarm rate transparent enough (Barbey & 
Sloman, 2007; Sloman et al., 2003). The nested-sets hypothesis stem 
from the dual-process model and – in contrast to Gigerenzer and col-
leagues’ view that people are helped by the natural-frequency format in 
and of itself – the proponents of this hypothesis argue that the format is 
only beneficial because it can make the task structure more transparent. 
In this view people use two systems to reason, one primitive associative 
judgment system that sometimes leads to errors in judgment and a 
second more deliberate rule-based system. The use of the second system 
is only induced if the task is represented in a way that is compatible with 
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the rules. In this case the rules are elementary set operations which 
means that the problem needs to be readily formulated in terms of sets. 
The problem becomes even easier if the relevant sets are all nested 
(Sloman et al., 2003). In other words, if the chance of having the disease 
is nested within the chance of testing positive which in turn is nested 
within the set of all possible cases. Since in our task the hit rate was 
unequal to 1 it means that the sets are not nested (the chance of having 
the disease is not a subset of having a positive test) and therefore the task 
structure was less beneficial for the participants. 

4.4. Symbolic vs pictorial presentation 

Even though the pictorial format introduced uncertainty in the task 
by forcing the participants to make their own estimations, this did not 
affect the overall performance. There is a trend towards better perfor-
mance in the pictorial format (Fig. 3), but all in all there was anecdotal 
evidence against an effect of presentation format. This also means that 
the pictorial format did not function as a visual aid benefiting the par-
ticipants as some previous studies has found (unless these two effects 
happened to cancel each other out). However, previous studies on the 
effects of visual representations have received mixed results and in the 
cases where a pictorial representation has been beneficial it was only 
presented as an addition to the question already using symbolic for-
mulations (Brase, 2009; Garcia-Retamero & Hoffrage, 2013) and never 
by itself as was the case in our task. We can only speculate about the 
reason that the two formats did not lead to large differences in perfor-
mance. One intriguing possibility is that the mental representations of 
the symbolic numbers may have been just as uncertain as those of the 
pictorial estimates. It is also possible that there are multiple factors 
working against each other. The task given in the symbolic format is 
similar to a typical math word problem and could therefore cause people 
with high levels of math anxiety to perform worse than they would have 
if they had received the pictorial task instead (Luttenberger, Wimmer, & 
Paechter, 2018). 

4.5. Limitations and future directions 

The results of the linear-additive model fits suggested that partici-
pants – on average – strongly underweighted false-alarm rates, possibly 
even more so than base rates. The fallacy of false-alarm-rate neglect has 
received support in previous studies (Ofir, 1988) and it would have been 
interesting to investigate in a more extensive stimulus space. The current 
design, however, was tailored to studying sensitivity to base rates and 
was less suitable for studying sensitivity to hit rates and false alarm 
rates, because of the more limited ranges for those two rates included in 
our experiments. 

Since there are a number of factors that differ between data collected 
in a lab and data collected online, one has to be careful when comparing 
the results. Even though it is impossible to make sure that the data has 
been collected under similar conditions it is at least possible to compare 
the data after it is collected. In a separate data collection for a different 
study (not reported here), lab participants were presented with the exact 
same task as we presented to the online participants in the present study, 
which enables a direct comparison between the two data collection 
methods. A Bayesian independent t-test showed anecdotal evidence in 

favor of there being no difference in the mean absolute error between 
the two groups (BF01 = 1.45), which suggests that performance levels 
are comparable between the two kinds of participants. 

Just as in previous work, we found a benefit of the natural frequency 
format on performance. This effect has been explained by either refer-
encing how during the evolution of the human race, naturally sampled 
frequencies is what we have been exposed to and subsequently evolved 
to use, or one has attributed the beneficial properties to the clarification 
of the task and thus making it easier for people to use deliberate thought 
instead of associative decision making. These two accounts are focused 
on how the difference in format makes people switch from one strategy 
towards using another one. There is, however, also a possibility that the 
switch in format does not cause people to switch strategies but to use the 
same strategy with better tuned parameters. For example, a participant 
might shift from using a heuristic to a Bayesian strategy when the format 
changes from normalized frequencies to natural frequencies, or they 
might use a linear additive strategy in both formats but use better tuned 
weights. Our use of a between-subject design is a limitation in this 
respect. Future work could study the effect of frequency format using a 
cognitive-modeling approach applied to within-subject data. That would 
allow getting a more detailed insight into the nature of the reasoning 
strategies people use. 

4.6. Conclusion 

In this paper, we investigated the generality and cognitive strategies 
responsible for the phenomenon known as “base-rate neglect”. We found 
that the phenomenon generalizes to reasoning problems beyond those 
typically used in previous studies. However, we also found evidence for 
substantial individual differences in the degree of base-rate neglect. Our 
modeling results suggest that these individual differences may reflect 
individual differences in the cognitive strategies employed by the par-
ticipants. An interesting direction for future research is to investigate 
this possibility in more detail. 

Credit author statement 

Elina Stengård: conceptualization, methodology, software, formal 
analysis, investigation, writing – original draft, writing - review and 
editing. Peter Juslin: conceptualization, methodology, formal analysis, 
writing - review and editing, supervision, funding acquisition. Ulrike 
Hahn: conceptualization, methodology, writing – review and editing. 
Ronald van den Berg: conceptualization, methodology, software, formal 
analysis, writing – original draft, writing - review and editing, supervi-
sion, funding acquisition. 

Declarations of Competing Interest 

None. 

Acknowledgements 

Juslin was supported by the Marcus and Amalia Wallenberg Foun-
dation (MAW 2016.0132) and van den Berg was supported by the 
Swedish Research Council (2018-01947).  

E. Stengård et al.                                                                                                                                                                                                                                



Cognition 226 (2022) 105160

16

Appendix 

A.1. Model recovery analysis 

We performed a model recovery analysis to examine how well the models can be distinguished from each other. In this analysis, we generated 20 
synthetic datasets from each model by simulating responses to the same 45 trials as were shown to our human participants. To make synthetic datasets 
representative of the empirical data, we performed these simulations with parameter values set to the maximum likelihood estimates of randomly 
chosen participants. If two or more of the models make very similar predictions, then the recovery analysis will have difficulties in determining which 
model generated which dataset. The results (Fig. A1) show that this is not the case: for each of the four groups of synthetic datasets, the model that 
generated the data is reliably selected as the one that best accounts for them. This indicates that the models make clearly different predictions and that 
our methods are adequate in detecting these differences.

Fig. A1. | Model recovery. Average cross-validated log likelihood values across twenty generated datasets from each model, relative to the best-fitting model. To 
ensure that the generated datasets were representative for empirical data, they were generated with maximum-likelihood parameters from randomly selected human 
participants and consisted of the same 45 trials as presented to the human participants. The results show that the models make clearly distinct predictions: each 
model is the best-fitting model for its own data and provides a poor fit to the data from other models. 

A.2. Analysis of carry-over effects in the main experiment 

Since the participants performed multiple trials, it is possible that they adjusted their responses based on their previous trials, which may have led 
to patterns in the data that might not had been there if they had performed only one trial. To examine whether this was the case we analyzed per-
formance as a function of trial number in the MTurk data. These data had been collected in such a way that every item was presented as the first trial 
for at least two participants, as the second trial for two other participants etc. If performing multiple trials improved performance, the correlation 
between participants’ responses and the correct responses should increase over trials. This was not the case (Fig. A2). We also compared the RMSD of 
the first trial with that of all consecutive trials. For both the normalized- and natural frequency format, a one sample Bayesian t-test showed that the 
RMSD of the first trial is not larger than the rest (BF0− = 19.70 and BF0− = 61.86 in favor of the null hypothesis). Both these results suggest that the 
judgment strategies employed by the participants were stable over trials, including the first one.
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Fig. A2. | Pearson product-moment correlation coefficients between the participants’ responses and the correct responses, as a function of trial number. Correlations 
were computed separately for every trial number. Left: Normalized format. Right: Natural frequency format. 
A.3. Response distributions in the main experiment 

Fig. A3 presents the response distributions in the main experiments, separately for each of the 45 items.

Fig. A3. | Distribution of participant responses in the main experiment. Histograms of participant responses on each of the 45 items in the main experiment, pooled 
across all four conditions. Each of the 45 items had of a unique combination of base rate (BR), hit rate (HR), and false-alarm rate (FAR) values. The red bar indicates 
the bin with the correct answer. 
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A.4. Robustness check: re-analysis of base-rate sensitivity after excluding participants with extreme response times 

Some of the participants in our experiment were suspiciously fast or slow. The median response time of the fastest participant was only 3.4 s, which 
seems barely enough to read the information on the screen, let alone to provide a serious response. On the other extreme, the longest participant had a 
median response time of 69 s, which suggests that external resources may have been used to solve the task. To verify that the individual differences in 
base-rate sensitivity were not solely due to participants with extreme responses times, we reanalysed the data with inclusion of only participants with 
median response times between 5 and 20 s, which corresponds to roughly 75% of the data. Both the distribution of sensitivity values (Fig. A4, top) and 
the correlation between median response times and sensitivity index (r = 0.18, p = 0.02) were very similar as in the original analyses. The same holds 
when reducing the data further to include only the 50% most central median response times, albeit with a noisier pattern in the sensitivity distribution 
(Fig. A4, bottom) and a further decrease in the strength of the statistical evidence for a correlation (r = 0.17, p = 0.08).

Fig. A4. | Base-rate sensitivity index distributions after filtering out participants with extreme response times. Top: the distribution of sensitivity indices for the 
central 75% of participants based on their median response times (12.5% percentile = 5.6 s; 87.5% percentile = 24 s). Bottom: the distribution for the central 50% of 
participants (25% percentile = 7.2 s; 75% percentile = 17 s). 
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A.5. Comparison of predictions between the Linear-Additive model and the Bayesian model 

To examine if the Linear-Additive model and Bayesian model represent mathematically distinctive decision strategies, we scattered the predictions 
of both models against each other. While the results show a high level of correlation (Fig. A5), they make quite different predictions on a large number 
of trials. This suggests that they implement mathematically distinct strategies.

Fig. A5. | A comparison of the predictions by the Bayesian model and Linear-Additive model under maximum-likelihood parameter values. Each point represents the 
predicted response under both models on one of the 48 experimental trials. No early or late noise was included in these predictions. To avoid clutter, predictions are 
shown for only the first ten participants in each condition. Even though the model predictions are correlated – as expected since both were fitted to follow the 
empirical responses – on many of the trials they make quite distinct predictions. 

A.6. Robustness check: model comparison with a different decision noise distribution 

To verify that the main modeling results do not critically depend on the specific choice for the decision noise distribution, we reran the model 
comparison with a Beta noise distribution, in which the mean on each trial was fixed to the model’s predicted response and the variance was fitted as a 
free parameter. The results of this analysis were highly similar to that of the main analysis (Fig. A6). 
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Fig. A6. | Model comparison results using an Beta distribution for decision noise. The model comparison results under this noise distribution look almost identical to 
those obtained using a Gaussian distribution on the log-odds model predictions (Figs. 4–7 in the Main text). 

A.7. Simulation results 1: how well do the heuristic models approximate the optimal strategy? 

To assess the ecological plausibility of the three non-Bayesian models, we examined how well they were able to approximate the Bayes-optimal 
responses. To this end, we optimized their parameters with respect to minimizing the root mean squared error (RMSE) between their predicted re-
sponses and the correct (Bayesian) responses on the 45 trials in our experimental task. Under these optimal parameters, all three models perform 
reliably better than a randomly guessing observer and an observer who always responds 0.50 (Fig. A7A). This suggests that they are – in principle – 
viable strategies from an ecological perspective. The optimized linear additive model consistently outperforms the two heuristic models and has a 
relatively small error compared to a randomly responding observer and an observer who always responds 0.50. The optimal weights in the linear- 
additive model are wBR = 1.11, wHR = 0.52, and wFAR = − 0.71, which means that the best performance is achieved by giving most weight to the 
base rate and least (in absolute terms) to the hit rate. According to the criterion estimates in the lexicographic model, the best possible performance is 
achieved when always considering the BR to be informative and to consider the HR and FAR informative when they deviate by more than approx-
imately 0.30 from 0.50. 

It is notable how well the heuristic toolbox model performs, given that it has no free parameters. This shows that heuristic-based strategies can 
indeed be highly accurate, if participants know which heuristic to choose in any given situation. It is also striking how poorly the Lexicographic model 
performs, given that it has one more free parameter than the Linear-Additive model and four more than the Heuristic Toolbox model. 
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A.8. Simulation results 2: regressive effects due to noise and priors 

In probability judgment tasks it is often found that human responses are biased towards 0.50. Two different mechanisms have been proposed to 
explain this bias, both of which appear in the models that we test here. First, it has been found that certain forms of noise can drive the average 
response towards 0.50 (Costello & Watts, 2014, 2016, 2017, 2018, 2019). We find that the “late noise” included in the models tested here indeed 
causes this kind of bias (Fig. A7B, left panel). Importantly, however, the effects are negligible unless noise levels are so high that the predicted re-
sponses are almost completely random (Fig. A7B right panel). Another way to explain regressive effects in probability estimation tasks is to assume 
that participants have a prior belief in central values or, similarly, against extreme values (Zhu et al., 2020). Indeed, we find that the Bayesian model 
produces regressive effects when it has an “uninformative” prior (i.e., a = b), with the strength of the effect depending on the strength of the prior 
(Fig. A7C). An important difference, however, is that the Bayesian model does not need any form of noise to produce these effects. Hence, while noise 
and priors can both explain regressive effects in average responses, the two proposals make very distinct trial-to-trial predictions.

Fig. A7. | Analysis of model predictions. (A) Accuracy of the three non-Bayesian models on our experimental task, after optimizing their parameters with respect to 
minimization of the root mean squared error (RMSE). All models perform better than a randomly guessing observer (green) or an observer who responds 0.50 on each 
trial (purple), but with clear differences between them. (B) Regressive effects of late noise. Left: Mean response as a function of the decision before adding noise, for 
five different noise levels. Right: response distributions for the same five noise levels as in the left panel, for a trial in which the decision before adding noise was 0.50. 
Note that in order to obtain reasonably strong regression effects (yellow, purple, green in the left plot), noise levels are required that are so high that individual 
responses will have little connection with the initial decision. (C) Regressive effects of uninformative priors in the Bayesian model. The plot shows simulated re-
sponses for the medical diagnosis task in which the Bayesian observer is presented with the information that “V out of 100 positively tested people carried the virus”, 
under 5 different priors (different colors). In each case, the prior is “uninformative” (a = b). The stronger the prior (i.e., the higher the pseudo-counts), the stronger 
the response regresses towards 0.50. 
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