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A B S T R A C T   

The discovery of oncogenic driver mutations rendering non-small cell lung cancer (NSCLC) targetable by small- 
molecule inhibitors, and the development of immunotherapies, have revolutionised NSCLC treatment. Today, 
instead of non-selective chemotherapies, all patients with advanced NSCLC eligible for treatment (and increasing 
numbers with earlier, less extensive disease) require fast and comprehensive screening of biomarkers for first-line 
patient selection for targeted therapy, chemotherapy, or immunotherapy (with or without chemotherapy). To 
avoid unnecessary re-biopsies, biomarker screening before first-line treatment should also include markers that 
are actionable from second-line onwards; PD-L1 expression testing is also mandatory before initiating treatment. 

Population differences exist in the frequency of oncogenic driver mutations: EGFR mutations are more 
frequent in Asia than Europe, whereas the converse is true for KRAS mutations. In addition to approved first-line 
therapies, a number of emerging therapies are being investigated in clinical trials. Guidelines for biomarker 
testing vary by country, with the number of actionable targets and the requirement for extensive molecular 
screening strategies expected to increase. To meet diagnostic demands, rapid screening technologies for single- 
driver mutations have been implemented. Improvements in DNA- and RNA-based next-generation sequencing 
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technologies enable analysis of a group of genes in one assay; however, turnaround times remain relatively long. 
Consequently, rapid screening technologies are being implemented alongside next-generation sequencing. 

Further challenges in the evolving landscape of biomarker testing in NSCLC are actionable primary and sec
ondary resistance mechanisms to targeted therapies. Therefore, comprehensive testing on re-biopsies, collected 
at the time of disease progression, in combination with testing of circulating tumour DNA may provide important 
information to guide second- or third-line therapies. Furthermore, longitudinal biomarker testing can provide 
insights into tumour evolution and heterogeneity during the course of the disease. We summarise best practice 
strategies for Europe in the changing landscape of biomarker testing at diagnosis and during treatment.   

1. Introduction 

Lung cancer remains the leading cause of cancer mortality world
wide [1]. Across Europe in 2018, there were an estimated 388,000 lung 
cancer-related deaths, which was higher than those related to colorectal 
cancer and breast cancer combined [2]. Non-small cell lung cancer 
(NSCLC) accounts for ~84 % of all lung cancer cases [3], imposing a 
substantial social and financial burden in Europe [4,5]. 

The treatment landscape for NSCLC is rapidly evolving and, 
following the principles of precision medicine, is becoming increasingly 
biomarker driven with new targeted therapies used in concert with 
companion molecular diagnostics [6,7]. ‘Precision medicine’ refers to 
the use of therapeutics that are more likely to confer benefit to a sub
group of patients whose cancer shows certain molecular or 
morpho-phenotypical characteristics [8,9]. NSCLC is associated with 
several addictive oncogenic driver alterations, e.g. epidermal growth 
factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS 
proto-oncogene 1 (ROS1), B-Raf proto-oncogene (BRAF) and neuro
trophic tyrosine receptor kinase (NTRK), which are relevant for selecting 
the most beneficial regimen [8,10,11]. New NSCLC biomarkers continue 
to emerge, including rearranged during transfection (RET), hepatocyte 
growth factor receptor (MET) exon 14 (ex14) skipping mutations and 
MET fusions, receptor tyrosine-protein kinase erbB-2 (ERBB2/HER2), 
Kirsten rat sarcoma viral oncogene homolog (KRAS) exon 2 G12C, 
neuregulin (NRG1), fibroblast growth factor receptor (FGFR) fusions and 
activating point mutations, and EGFR exon 20 insertions. Additionally, 
programmed death receptor ligand 1 (PD-L1) and tumour mutational 
burden (TMB) can predict a favourable response to immune checkpoint 
inhibitors in NSCLC [12,13]. 

The growing number of licensed and emerging therapies targeted to 
NSCLC genetic alterations, combined with continuously evolving mo
lecular biology technologies, has resulted in rapid change. This is 
challenging for formulating and implementing guidelines for biomarker 
testing. Therefore, despite serving as the foundation for NSCLC precision 
medicine, molecular testing rates remain suboptimal [14]. 

In this review, we outline the rapidly evolving diagnosis and treat
ment landscape for NSCLC in Europe, which has become increasingly 
biomarker driven over the last decade. We provide a comprehensive 
overview of established and emerging NSCLC biomarkers in Europe, 
including state-of-the-art scientific knowledge around biomarker testing 
and current best practice recommendations for biomarker testing. 
Emerging developments and implications for future practice are also 
discussed. 

2. Overview of current and emerging biomarkers for NSCLC 

Somatic alterations in NSCLC can lead to oncogenic activation through 
several mechanisms, including point mutations, insertions/deletions and 
rearrangements [10]. Broadly, actionable mutations guiding targeted 
therapy can be classified according to gene rearrangements (e.g. ALK, 
ROS1, RET, NTRK, FGFR1/2/3, NRG1) or variants including point mu
tations, insertions/deletions and amplifications (e.g. EGFR, BRAF, 
mitogen-activated protein kinase kinase [MEK], KRAS, MET, 
ERBB2/HER2). We use the term ‘targeted therapies’ in this article for 
therapies targeting actionable mutations, whereas ‘immunotherapies’ 

target immune checkpoint proteins (programmed cell death protein 
1/programmed cell death ligand 1 [PD-L1] or cytotoxic T-lymphocy
te-associated protein 4). TMB (the number of non-synonymous mutations 
per coding area of a genome) has also been shown to predict objective 
response rates and improvement in progression-free survival to immu
notherapy [13,15–17]. Overall, outcomes for patients with actionable 
oncogenic driver mutations when receiving targeted therapy tend to be 
improved versus those without actionable mutations [18]. Molecular 
testing to detect these ‘actionable targets’ therefore plays a key role in the 
diagnostic work-up for NSCLC patients to guide therapy choices and 
improve outcomes. Table 1 [6,13,19–43] provides an overview of current 
and emerging biomarkers in NSCLC in Europe, their frequency and 
associated approved targeted therapies. 

3. Guidelines for biomarker testing for NSCLC 

3.1. International guidelines 

Rates of oncogenic driver mutations in different populations with 
NSCLC can vary; for example, populations in Asia have higher rates of 
EGFR mutations and lower rates of KRAS mutations than those in Europe 
[44,45]. Hence, guidelines may have different priorities according to the 
region represented. 

European Society for Medical Oncology (ESMO) NSCLC guidelines 
state that molecular subtyping is necessary for therapeutic decision 
making and should be performed whenever possible [6]. For patients 
with advanced NSCLC, ESMO recommend systematic testing of EGFR 
and BRAF mutations, analysis of ALK, ROS1 and NTRK rearrangements, 
and determination of PD-L1 expression [6]. ESMO also recommends the 
routine use of next-generation sequencing (NGS) in advanced 
non-squamous NSCLC, and that large multi-gene panels could be used if 
additional costs are considered acceptable compared versus small panels 
[46]. Generally, there is consensus across international guidelines 
around the need for EGFR, BRAF, ALK and ROS1 testing in advanced 
NSCLC and all of these have approved first-line targeted therapies in 
Europe (Fig. 1A) [6,24,28,47,48]. Similarly, ESMO, National Compre
hensive Cancer Network (NCCN) and Pan-Asian NSCLC guidelines [6, 
24,47] recommend PD-L1 testing, and expanded panel testing for NTRK 
is recommended by the NCCN [24]; both biomarkers have approved 
therapies in Europe. Expanded panel testing recommendations for the 
emerging biomarkers KRAS, MET, RET and ERBB2/HER2 alterations are 
currently only included in NCCN, American Society of Clinical Oncology 
(ASCO), and College of American Pathologists (CAP)/International As
sociation for the Study of Lung Cancer (IASLC)/Association for Molec
ular Pathology (AMP) guidelines (Fig. 1B) [24,28,48]. 

3.2. National guidelines 

International guidelines often form the basis of regional/national 
guidelines. While most European pathologists/oncologists refer to 
ESMO/NCCN guidelines, national guidelines tailor these for compati
bility with local healthcare models/resources [49–59]. National guide
lines are thus reflective of ‘best practice’ in individual countries. 
Accordingly, testing algorithms vary across Europe (Fig. 2 [49–59]). All 
national guidelines recommend testing for EGFR, ALK, ROS1 and PD-L1, 
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and most recommend BRAF and NTRK. The biomarkers KRAS, MET, RET 
and ERRB2/HER2 are recommended in the Netherlands and Sweden. 
Additional molecular testing may be performed on request or for 
research/clinical trial enrolment purposes, using NGS, or in subsequent 
testing rounds after determination of more commonly assessed bio
markers using rapid techniques (e.g. single-gene tests/low multiplex 
assays, immunohistochemistry, fluorescence in situ hybridisation 
[FISH]). TMB is not routinely assessed in most European countries. 

A challenge in NSCLC is keeping pace with rapidly evolving molec
ular testing technologies for the growing number of targeted agents. 
Developing new guidelines and reaching consensus takes time, resulting 
in a lag behind scientific developments. Countries where NGS is rec
ommended and reimbursed may find it easier to add new biomarker 
genes to an NGS panel, in contrast to countries where only single-gene 
testing for named biomarkers is reimbursed. 

Although a large number of biomarkers are recommended by 
guidelines in some countries, this does not necessarily translate into 
their uptake in everyday clinical practice: there are barriers to uptake, 

not least reimbursement challenges (see Section 4). 

4. Challenges/barriers to biomarker testing for NSCLC 

4.1. Uptake of biomarker testing in Europe 

Across Europe, there is considerable variability in uptake of 
biomarker testing technologies [60–64]. For example, the proportion of 
patients with advanced non-squamous NSCLC who received a molecular 
test varied between 65 % and 85 % across Germany, Italy and Spain 
(2011–2016) [64]. For advanced non-squamous NSCLC, EGFR testing 
rates ranged from ≥65 % in Central/Eastern European countries (2014) 
to 79 % in Switzerland (2014) [60,62]. Molecular testing typically in
creases with time: a Swiss observational study highlighted an increase 
from 32 % in 2009 to 79 % in 2014 for EGFR [60]. Similarly, in five 
countries (France/Germany/Italy/Spain/UK), EGFR testing increased 
from 71 % to 81 % during 2014–2017 [65]. This was also observed with 
KRAS testing, which increased from 38 % to 59 % in those countries over 

Table 1 
Established and emerging biomarkers for NSCLC in Europe.  

Predictive 
biomarkers [6] 

Estimated frequency in NSCLC 
adenocarcinomae [19,43] 

Guideline recommended testing technologies [6,20] EMA-approved targeted therapy (first-line)i [6,21] 

EGFR mutationsa 15 %f Any appropriate, validated technology, subject to external 
quality assurance 

Afatinib, dacomitinib, erlotinib, gefitinib, osimertinib 

ALK 
rearrangementsa 

5 % FISH (historical standard); IHC (validated against FISH); 
NGSh 

Alectinib, brigatinib, ceritinib, crizotinib, lorlatinib 

ROS1 
rearrangementsa 

2 % FISH (trial-validated standard); IHC to select for 
confirmatory FISH; NGSh 

Crizotinib, entrectinib 

NTRK 
rearrangementsa 

<1 % IHC, FISH, RT-PCR, NGS Entrectinib, larotrectinib 

BRAF mutationsb 2 % Any appropriate, validated technology, subject to external 
quality assurance 

Dabrafenib/trametinib 

PD-L1 expression 
levelsc 

33 %: ≥50 % TPS 
30 %: 1–49 % TPS 
37 %: <1 % TPS 

IHC Immune checkpoint inhibitors  

Emerging 
biomarkersd [22–26] 

Estimated frequency in NSCLC 
adenocarcinoma [19,25,27] 

Potential testing technology [28] Targeted therapies under investigation [6,13,29–41] 

RET 
rearrangements 

2 % FISH, RT-PCR, NGS Alectinib, cabozantinib, lenvatinib, nintedanib,  
ponatinib, pralsetinibj, regorafenib, selpercatinibj,  
sorafenib, sunitinib, vandetanib 

MET mutations 3 % IHC, FISH, NGS Cabozantinib, capmatinibj,k, crizotinib, MGCD265,  
tepotinibj 

ERBB2/HER2 
mutations 

2 % NGS Ado-trastuzumab emtansine, afatinib, dacomitinib,  
fam-trastuzumab deruxtecan-nxkil, trastuzumab 

KRAS mutations 25–33 %g RT-PCR, pyrosequencing, NGS Direct KRASG12C inhibitors: adagrasib (MRTX 849),  
sotorasib (AMG510), GDC-6036 

NRG1 
rearrangements 

<1 % NGSh Afatinib 

FGFR1 Data not available NGSh BGJ398, rogaratinib 
TMB Data not available Whole exome sequencing Immune checkpoint inhibitors 

ALK, anaplastic lymphoma kinase; BRAF, B-Raf proto-oncogene; EGFR, epidermal growth factor receptor; EMA, European Medicines Agency; ERBB2, Erb-B2 receptor 
tyrosine kinase 2; FDA, Food and Drug Administration; FGFR1, fibroblast growth factor receptor-1; FISH, fluorescence in situ hybridisation; HER2, human epidermal 
growth factor receptor 2; IHC, immunohistochemistry; KRAS, Kirsten rat sarcoma viral oncogene homolog; MEK, mitogen-activated protein kinase kinase; MET, 
hepatocyte growth factor receptor; NGS, next-generation sequencing; NRG1, neuregulin-1; NSCLC, non-small cell lung cancer; NTRK, neurotrophic tyrosine receptor 
kinase; PD-L1, programmed cell death ligand 1; RET, rearranged during transfection; ROS1, ROS proto-oncogene 1; RT-PCR, real-time polymerase chain reaction; 
TMB, tumour mutational burden; TPS, tumour proportion score. 

a Predicts response to targeted therapy with tyrosine kinase inhibitors. 
b Predicts response to BRAF with/without MEK inhibitors. 
c Predicts response to immunotherapy. 
d Under investigation as predictive biomarkers with the goal of identifying appropriate therapies for patients. 
e No specific driver known in in over one-third of cases [19]. 
f Exon 19 deletions, exon 21 L858R mutations, and exon 20 insertions comprise approximately 10 %, 6%, and 2.5 % of all mutations [42]. 
g Exon 2 G12C mutations comprise approximately 13 % of all mutations [27]. 
h Emerging technology. 
i As of October 2020. 
j FDA approved. 
k Approved in Japan. 
l FDA Breakthrough Therapy designation. 
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the same 3-year period [65]. In Sweden, EGFR testing rates in patients 
with advanced non-squamous NSCLC increased from 49 % in 
2011–2012 [63] to 84 % in 2019 [66], and the coverage of emerging 
targets, including KRAS, was likely similar due to a nationwide imple
mentation of NGS. For some of the newer predictive biomarkers (e.g. 
BRAF and NTRK), which are recommended by national guidelines in 
some European countries, testing rates may be lower than those for the 
more established predictive markers (EGFR, ALK, and ROS1). For 
example, in Germany between 2015 and 2019, BRAF testing rates were 
53.0 % versus 72.5 %, 74.5 % and 66.1 % for EGFR, ALK, and ROS1, 
respectively [67]. As seen with the recent addition of a recommendation 
for NTRK testing in the ESMO guidelines [6], the biomarker landscape in 
European countries is rapidly evolving. However, there are inevitable 
delays in rolling out these changes in routine clinical practice. 

4.2. Resource and organisational barriers 

In a resource-limited healthcare environment, oncologists and pul
monologists must determine which biomarkers and test types to pri
oritise for patients with lung cancer. Bureaucratic and organisational 
considerations, encompassing drug approval by regulatory authorities 
(including local formulary approval), regulatory approval of tests, 
availability of tests (particularly for emerging biomarkers) and reim
bursement/insurance coverage, complicate decision making. Reim
bursement is a key determinant of drug and testing availability in 
Europe, and discrepancies exist between Western and Central/Eastern 
Europe regarding availability of targeted therapies [68] and molecular 
testing [62]. Limited reimbursement was identified as a significant 
barrier to molecular testing in Central/Eastern Europe, serving to 

Fig. 1. Guideline recommendations for (A) predictive biomarkers and (B) emerging biomarkers, to guide selection of precision therapies [6,24,28,47,48]. 
ALK, anaplastic lymphoma kinase; AMP, Association for Molecular Pathology; ASCO, American Society of Clinical Oncology; BRAF, B-Raf proto-oncogene; CAP, 
College of American Pathologists; EGFR, epidermal growth factor receptor; ESMO, European Society for Medical Oncology; HER, human epidermal growth factor 
receptor; IASLC, International Association for the Study of Lung Cancer; KRAS, Kirsten rat sarcoma viral oncogene homolog; MET, hepatocyte growth factor receptor; 
NCCN, National Comprehensive Cancer Network; NTRK, neurotrophic tyrosine receptor kinase; PD-L1, programmed cell death ligand 1; RET, rearranged during 
transfection; ROS1, ROS proto-oncogene 1; TMB, tumour mutational burden. 
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Fig. 2. Summary of country-specific guidelines for biomarker testing of advanced or recurrent NSCLC [49–59]. 
ALK, anaplastic lymphoma kinase; BRAF, B-Raf proto-oncogene; EGFR, epidermal growth factor receptor; HER, human epidermal growth factor receptor; KRAS, 
Kirsten rat sarcoma viral oncogene homolog; MET, hepatocyte growth factor receptor; NGS, next-generation sequencing; NSCLC, non-small cell lung cancer; NRG1, 
neuregulin-1; NTRK, neurotrophic tyrosine receptor kinase; O, optional; P, preferred; PD-L1, programmed cell death ligand 1; RET, rearranged during transfection; 
ROS1, ROS proto-oncogene 1; TMB, tumour mutational burden. 
aConsider other molecular tests, depending on clinic or drug availability. 
bNTRK, KRAS, MET, RET and ERBB2/HER2 will be included in the current revision. 
cThe use of these biomarkers as individual tests is currently not indicated; instead, it is advised to include in extended panels performed either initially in all advanced 
NSCLCs or when previous EGFR/ALK/ROS1/BRAF testing is negative. 
dLiquid biopsy testing recommended if the patient cannot undergo biopsy or if tissue molecular analysis results were uninformative. 
eLiquid biopsy for EGFR assessment only when tissue biopsy is not available. 
fOn-demand testing for cases not fulfilling the reflex criteria (e.g. for squamous carcinomas with some suggestive clinical features – young age, non-smokers, etc.). 
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impede the use of reflex testing and favouring on-demand testing [69, 
70]. A further layer of complexity is provided by country differences in 
reimbursement for liquid biopsy versus tissue testing strategies. 
Furthermore (e.g. in parts of the UK’s National Health Service), testing 
for molecular targets that are part of clinical trials is not supported. 

Low-frequency biomarkers such as NTRK fusions pose particular 
economic challenges. A conservative testing approach (e.g. screening by 
immunohistochemistry followed by sequencing of positive cases) may 
be cost-effective [20]. However, given the often limited quantity of 
tumour tissue for patients with advanced-stage NSCLC, NGS panel 
multi-gene testing may prove valuable [71]. Indeed, for testing more 
than four targets in parallel, NGS is usually more cost-effective than 
single-gene testing. Furthermore, this approach may facilitate an in
crease in life-years gained for patients with advanced-stage NSCLC [72]. 
A model in the USA compared the value of an NGS panel (EGFR, ALK, 
ROS1, BRAF, RET, MET, and NTRK) with single-gene testing (EGFR and 
ALK) in NSCLC; a 10 % increase in NGS use over single-gene testing 
resulted in an additional 2630 life-years gained, with a saving of 
$49–109 per life-year gained. 

4.3. Practical challenges (turnaround time, test complexity, reflex testing) 

Turnaround time (TAT) can be an important barrier to molecular 
testing: oncologists/pulmonologists and patients may be reluctant to 
delay treatment initiation, given the potential risk for clinical deterio
ration [73,74]. To minimise TAT, molecular testing should ideally be 
carried out in the same centre where the patient was pathologically 
diagnosed, and using standard operating procedures (SOPs). However, 
on-site testing is dependent on local and regional efficiencies and is only 
feasible where adequate patient throughput means that appropriate 
equipment/expertise are available (including training on interpretation 
of test results). The complexity of test technologies may influence local 
availability. ASCO/CAP/IASLC/AMP guidelines recommend a TAT of 10 
working days between sample receipt and reporting of molecular test 
results [28]; a recent European Expert Group suggests a general time
frame of 5 working days for molecular test results [75]. Delays in TAT 
can lead to less efficient use of targeted therapies; for example, initiating 
immunotherapy before mutation test results are received can mean 
EGFR tyrosine kinase inhibitors are used as second-line versus first-line 
agents [76,77]. 

Reflex testing, where molecular testing is ordered by pathologists 
immediately after histological diagnosis of advanced non-squamous 
NSCLC, can reduce the time to treatment initiation versus on-demand 
testing, where tests are ordered by treating physicians. Reflex testing 
is particularly relevant for biomarkers essential for immediate decision 
making in an aggressive disease like NSCLC [78]. Reflex testing may 
facilitate the optimal use of tissue (and save tissue if all relevant bio
markers are analysed simultaneously); it can also increase testing rates 
over on-demand testing [79]. However, testing algorithms need to 
reflect the complexities of clinical management, and pathologists may 
not have access to sufficient clinical information to guide their evalua
tion. CAP/IASLC/AMP recommend that pathologist-directed reflex 
testing is reasonable if the testing programme includes open commu
nication between pathologists and the oncology team [28]. Reflex 
testing could increase costs if used inappropriately, and may be con
strained by reimbursement considerations (i.e. requiring oncologist 
recommendation). Reflex testing with NGS covers a broader set of bio
markers, but potentially longer TAT, and it is currently difficult to 
achieve 10 working days even in ideal circumstances. Another solution 
is a two-stage approach: polymerase chain reaction for a rapid answer on 
key mutations for single genes, followed by a broader NGS panel. This 
approach could, however, underutilise tissue and monetary resources. 

4.4. Decentralised versus centralised biomarker testing 

In the absence of local facilities, many pathologists in Europe 

outsource testing to independent laboratories, or to regional specialist 
centres within the public health care system. Centralised testing offers 
efficiency (pooling of resources) and standardisation via SOPs (which 
may be less well developed in local laboratories). In contrast, centralised 
biomarker testing logistics (e.g. sample transfer) can negatively impact 
timelines. Moreover, pre-analytical conditions, which can vary from one 
laboratory to another, may influence centralised testing. While central 
laboratories generally meet TAT recommendations from receipt of 
sample, there can be delays between request and delivery of the sample. 
Additionally, the requirement for a minimum number of samples in 
batch testing may cause delays at local laboratories that receive few 
samples. 

The use of centralised molecular testing laboratories varies greatly 
across Europe. For example, some countries such as Italy still predom
inantly perform in-house biomarker testing. Other countries such as the 
Czech Republic utilise a mixed approach, whereby a national network of 
10 larger laboratories has been established to perform molecular testing; 
thus, small departments are outsourcing and larger laboratories are 
testing in-house. Finally, some countries, such as Germany, Sweden, the 
Netherlands and England, have set up centralised national networks for 
biomarker testing as part of an effort to increase testing rates. With the 
increasing use of NGS, it is expected that molecular testing will become 
more centralised in the future to facilitate the high throughput analysis 
of material and management of data. Overall, centralised high 
throughput analysis may also improve the quality of testing and reduce 
costs through improved efficiency. 

4.5. Tissue biopsy constraints 

Historically, a key barrier to molecular testing in NSCLC was the 
amount of tumour tissue in biopsy samples. Improvements in tissue 
collection and management mean that the availability of biopsy tissue is 
less often a limiting factor. Proactive management of small biopsies may 
maximise molecular testing [80]. Initial NGS approaches required 
greater tissue input, but improving technology and the large number of 
targets for molecular testing have moved the balance in favour of NGS 
rather than standalone tests [80,81]. 

For optimal molecular testing, sampling regimens and biopsies (tis
sue or liquid) would ideally account for any clonal evolution leading to 
intra-tumour heterogeneity (genomic/biological variations within a 
tumour) and inter-tumour heterogeneity (genomic/biological variation 
in multiple small primary tumours or multiple metastatic nodules from 
the same primary tumour) [82], although this has not yet been achieved. 
Together, intra- and inter-tumour heterogeneity are key factors 
contributing to therapeutic failure and drug resistance; therapeutic 
strategies for targeting resistance mechanisms will be important for 
improving clinical outcomes in the future [82–84]. Serial sampling of 
tumour genomes from liquid biopsies is increasingly used to monitor 
clonal evolution, and may help identify targetable mutations arising in 
the tumour to guide second-line therapy [85]. 

4.6. Technical considerations 

Choice of test can be influenced by diagnostic sensitivities, run time, 
differences in performance of an assay from different suppliers (e.g. 
sensitivities, reference ranges and cut-offs), and preference for com
mercial kits versus laboratory-developed tests [86,87]. Table 2 sum
marises available molecular testing technologies in terms of their 
detection capabilities, sensitivity and TAT [14,88]. Further consider
ations are that tumour cell enrichment for DNA extraction is necessary in 
samples where their proportion is below the recommended threshold 
[80]. Cut-off/scoring systems can also vary between technologies, 
particularly for emerging biomarkers without commercial tests [28]. 
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4.7. Reporting and interpretation 

Accurate reporting of biomarker test results is crucial; it should be 
completed promptly and allow easy retrieval of biomarker status for 
future reference. The European Committee for Standardization has set 
out key reporting criteria for medical laboratories, to reduce lack of 
clarity (ISO 15189) [89]; these are summarised in Table 3 [89], along 
with some additional considerations for reporting results. Guidance on 
the format of typical clinical reports has previously been described [90, 
91]. 

As the use of NGS increases, oncologists/pulmonologists need 
appropriate training to interpret results for clinical care. A recent survey 

suggested that oncologists were most confident in using single-gene tests 
and least confident in using whole-genome or whole-exome sequencing 
to guide patient care. In adjusted models, training in genomics predicted 
higher confidence with the tests [92]. Developing a real-world knowl
edge database could help to address some interpretation issues among 
clinicians. 

4.8. Classification of molecular alterations 

To facilitate implementation of precision medicine through intro
duction of new biomarkers into clinical practice, the reporting and 
interpretation of genomics data must be standardised. Several groups 

Table 2 
Characteristics of common assays for biomarker testing.  

Molecular technology 
Variant types 

Sensitivity (%) Turnaround time 
Point mutations Small deletions, insertions Copy number alterations Rearrangements 

Sizing assays +/− ✓    2–3 days 
PCR and Sanger sequencing ✓ ✓   20–50 3–4 days 
PCR and pyrosequencing ✓ +/− 20–50 3–4 days 
PCR and mass spectrometry ✓ +/− 1–10 3–4 days 
PCR and single-base extension ✓    1–10 3–4 days 
qPCR and digital PCR ✓ ✓  ✓ 0.00001 2–3 days 
Allele-specific PCR ✓     1–2 days 
FISH   +/− ✓ <1 2–3 days 
NGS: targeted amplicon capture ✓ ✓   1–10 7–10 days 
NGS: targeted hybridisation capture ✓ ✓ ✓ +/− 1 1–5 15–20 days 
NGS: whole exome ✓ ✓ ✓ +/− 1 Variable Weeks 
NGS: whole genome ✓ ✓ ✓ ✓ Variable Weeks 

Reproduced from N.A. Pennell et al. [14], Biomarker testing for patients with advanced non-small cell lung cancer: real-world issues and tough choices, Am. Soc. Clin. 
Oncol. Educ. Book 39 (2019) 531–542. Reprinted with permission. © 2019 American Society of Clinical Oncology. All rights reserved. 
FISH, fluorescence in situ hybridisation; NGS, next-generation sequencing; PCR, polymerase chain reaction; qPCR, quantitative PCR. 
Note: FISH cannot assess complex copy number alterations because of low multiplexing capabilities [88]. 

Table 3 
Reporting criteria for medical laboratories, adapted from ISO 15189 and additional considerations for biomarker testing.   

Minimum ISO 15189 criteria [89] Additional considerations for biomarker testing 

General  ▪ Results should be reported accurately, clearly, 
unambiguously and in accordance with specific procedural 
instructions  

▪ The laboratory should define the format and medium of the 
report and the manner in which it is to be communicated  

▪ The laboratory should have a procedure to ensure the 
correctness of transcription of laboratory results  

▪ The laboratory should have a process for notifying the 
requester when an examination is delayed  

▪ Molecular test data should be reported in the context of the histo/cytopathology 
findings so that clinical relevance is assured  

▪ Provide the report within 5–10 working days  
▪ A tabulated format is recommended for multiplexed analyses of NGS results  
▪ Test results should be discussed with the MTB 

Report 
attributes  

▪ Comment on sample quality that might compromise 
examination results  

▪ Comment on sample suitability with respect to acceptance/ 
rejection criteria  

▪ Contain critical results  
▪ Interpret comments on results  

▪ Include a statement around the probability of the cancer responding to (or resisting) 
a specific target therapya 

Report 
content 

The report should include:  
▪ A clear, unambiguous identification of the examination 

including, where appropriate, the examination procedure  
▪ Identification of the laboratory that issued the report  
▪ Identification of all examinations that have been performed 

by a referral laboratory  
▪ Type of primary sample and date of collection  
▪ Measurement procedureb  

▪ Examination results reported in SI units, units traceable to 
SI units, or other applicable units  

▪ Biological reference intervals, clinical decision values, or 
diagrams/nomograms supporting clinical decision valuesb  

▪ Interpretation of results, where appropriate  
▪ Identification of examinations undertaken as part of a 

research or development programme 

The report should include:  
▪ A description of the material used for analysis including pre-analytical parameters 

such as cold ischaemia time, fixative and fixation time, tumour cell enrichment 
method and final content of tumour cells and/or amount of DNA  

▪ The analytical technology used, details of tests used, known limitations of tests and 
corresponding positive/negative predictive values if published 

NGS, next-generation sequencing; MTB, molecular tumour board. 
a Where applicable; countries may vary with respect to treatment guidance. 
b Where applicable. 
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have proposed classification schemes that assign clinical utility to the 
molecular alterations used for selecting targeted therapies [93–98]. The 
ESMO Scale of Clinical Actionability of molecular Targets (ESCAT) 
provides evidence-based criteria to prioritise markers and to select pa
tients for targeted therapies [98]. ESCAT defines six levels of clinical 
evidence for targets in relation to their implications for patient man
agement, ranging from tier I (ready for implementation in routine 
clinical decisions) to tier X (lack of evidence for actionability). The 
AMP/ASCO/CAP guidelines provide evidence-based categorisation of 
somatic variants into four tiers based on their clinical significance in 
cancer diagnosis, prognosis and/or therapeutics [97]. The Precision 
Oncology Knowledge Base (OncoKB) defines four levels of evidence that 
support the use of a drug in an indication harbouring that mutation [96]. 
Finally, the MURIEL database from the German consortium das natio
nale Netzwerk Genomische Medizin is continuously updated to give 
harmonised clinical recommendations on actionability of genomic 
alterations. 

Although frameworks for classification of biomarkers are theoreti
cally desirable, limitations exist. Substantial emerging data, especially 
from NGS assays, show that scores can change quickly, and it is often 
difficult to assess the relevance of novel findings. Additionally, the ev
idence base for emerging biomarkers may vary across indications. For 
example, KRAS (and NRAS) mutations are potentially prognostic in 
NSCLC, with KRASG12C inhibitors showing promise and currently un
dergoing investigation in clinical trials in patients with KRASG12C- 
mutated tumours [99,100]. On the other hand, in metastatic colorectal 
cancer, KRAS mutations are already established negative predictors for 
anti-EGFR antibodies [101]. Therefore, each biomarker cannot be 
assigned one individual score and must be evaluated in the context of 
cancer type. Finally, with the extensive adoption of sequencing, clini
cians will have to interpret oncogenic driver mutations found in the 
primary clone and subclonal mutations that may arise as a resistance 
mechanism. The interpretation of the clinical relevance of subclonal 
mutations may be challenging, but could be important in guiding choice 
of second-line therapies. In practice, ESCAT may be more relevant to a 
molecular tumour board (MTB) setting, or to support policymakers in 
reimbursement decisions. At a more prosaic level, many molecular 
laboratories will sometimes confirm NGS findings by alternate, orthog
onal testing, as recommended in CAP/IASLC/AMP guidelines [28], and 
there is an emerging practice of biologically validating fusion gene 
findings using immunohistochemistry [6,20]. 

5. Best practice for biomarker testing in NSCLC 

5.1. Multidisciplinary management 

Tumour boards are important for optimal diagnosis and treatment of 
patients [6]. A multidisciplinary approach can provide more complete 
staging and better adherence to guidelines, resulting in improved pa
tient survival [102]. For example, access to a MTB (distinct from the 
multidisciplinary team) comprising clinicians, molecular pathologists, 
clinical molecular biologists, geneticists and bioinformaticians can 
improve the application of genetics-guided cancer care [103,104]. MTBs 
were shown to influence providers’ initial management plans in 40 % of 
lung cancer cases [105]. Multidisciplinary management facilitates reflex 
testing [75]. However, this approach may be limited to centres with 
in-house laboratories; implementation may be more challenging if 
testing is outsourced. 

5.2. Tissue and liquid biopsy considerations 

A multidisciplinary approach is vital to obtain an appropriate diag
nostic sample, as tissue can be acquired through a multitude of pro
cedures involving different healthcare professionals [106]. Tumour 
samples are required at baseline (diagnosis/evaluation of predictive 
markers) and often at the time of disease progression (to identify 

mechanisms of resistance to targeted therapies). Samples from the pri
mary tumour or an accessible metastatic site are usually sufficient for 
diagnosis. When choosing the appropriate site, the safest and most 
accessible site for the patient should be balanced against getting the 
largest tumour yield. European Expert Group recommendations state 
that at least five endobronchial/transbronchial forceps biopsies should 
be obtained and an additional five forceps biopsies or two cryo-biopsies 
could be considered; at least four endobronchial ultrasound/endoscopic 
needle aspiration passes per target needle are recommended; and at least 
two percutaneous core needle biopsies (18- to 20-gauge needle) or three 
to six core needle biopsies [75]. However, to ensure sufficient cancer 
cells for testing, such numbers are best regarded as a minimum. Rapid 
on-site evaluation (ROSE) is a useful approach allowing rapid assess
ment of the suitability of material obtained by tissue biopsy [107]. The 
use of ROSE has several advantages (see Fig. 3) and it should therefore 
be considered as part of the NSCLC biomarker workflow. 

Transthoracic fine-needle aspiration (FNA) under imaging guidance 
may be a reliable alternative to core needle biopsy [108] in the case of 
mid-to-peripheral lesions [6]. Cytological specimens may be easier to 
collect, cause less patient discomfort, and are routinely used in clinical 
practice when tissue is unavailable. Cytological diagnosis of NSCLC is 
usually based on endobronchial ultrasound-guided FNA, bronchial 
cytology, pleural effusions and FNA from distant metastases [75]. 
Sample formats for molecular testing include previously stained 
air-dried or alcohol-fixed smears, cell blocks and liquid-based samples, 
provided the quality and percentage of tumour cells is adequate [109]. 
Cell blocks provide the greatest flexibility; existing laboratory tissue 
SOPs will usually apply. Finally, the German S3 guidelines recommend 
re-biopsies and to have liquid diagnostics available for testing. 

Where the amount of tissue available might prohibit molecular 
testing, pathologists can maximise its use [106]. Morphological analysis 
can be sufficient to define histology, but if immunohistochemistry is 
needed for subtyping, most tumours can be classified using a single 
adenocarcinoma marker (e.g. TTF-1) and a single squamous marker (e.g. 
p40) [110,111]. Cell-block preparation of cytology samples is recom
mended, to retain tissue architecture and provide multiple sections of 
varying thickness for various analyses including morphology and 
DNA/RNA testing [106]. Pathologists should mark the most suitable 
area on the slide to optimise extraction of tumour content, ideally on the 
blank sections taken for extraction. Microdissection, ideally within a 
molecularly sterile environment, can be used to achieve a 
tumour/non-tumour cell ratio above the required threshold for the test. 
This ‘tumour enrichment’ is necessary for direct sequencing and NGS 
[106]. With reflex testing, storing sections at the moment of diagnostic 
cutting avoids the need to cut new sections from the tissue block for 
additional testing. Only reflex testing conducted in a molecularly sterile 
environment, however, should be used for later DNA/RNA extraction 
and analysis, due to contamination risks. Cytological material (e.g. 
smears) for isolating DNA can also be used as another approach to 
maximise tissue [80]. 

Tissue biopsy remains the ‘gold standard’ for biomarker testing in 
NSCLC [75]. Though liquid biopsy can be useful if there is insufficient 
tumour tissue at diagnosis, services should not accept poor biopsy 
sampling/handling procedures as a reason to rely on blood testing. 

Liquid biopsy may be advantageous if there is a contraindication for 
biopsy (e.g. bleeding risk), or if re-biopsy is not possible during first-line 
treatment and there is a need to test for a biomarker relevant to second- 
line treatment (e.g. EGFRT790M testing upon progression with EGFR 
tyrosine kinase inhibitors) [112]. Additionally, with the disruption to 
routine clinical practice resulting from the severe acute respiratory 
syndrome coronavirus 2 pandemic, liquid biopsies could minimise the 
requirement for invasive tissue-biopsy procedures. The IASLC recom
mend the use of plasma over serum for DNA (ctDNA) extraction, a 
maximum time from blood withdrawal to plasma extraction of 2 h 
(EDTA tubes) or 3 days (preservative tubes), and that blood should never 
be frozen before plasma extraction [112]. The volume of blood required 
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Fig. 3. Best practice recommendations for the treatment of patients with (A) advanced treatment-naïve NSCLC and (B) progressive or recurrent NSCLC during 
treatment with a tyrosine kinase inhibitor. 
aConsider the use of ROSE to rapidly assess the suitability of material obtained by tissue biopsy. ROSE may help to improve diagnostic yield, reduce the need for 
additional procedures, obtain additional passes for molecular testing (if needed) and allow optimal use of laboratory resources [107]. ALK, anaplastic lymphoma 
kinase; BRAF, B-Raf proto-oncogene; ctDNA, circulating tumour cell DNA; ddPCR, digital droplet PCR; EGFR, epidermal growth factor receptor; IHC, immunohis
tochemistry; KRAS, Kirsten rat sarcoma viral oncogene homolog; MTB, molecular tumour board; NGS, next-generation sequencing; NSCLC, non-small cell lung 
cancer; PD-L1, programmed cell death ligand 1; ROS1, ROS proto-oncogene 1; ROSE, rapid on-site evaluation; SOC, standard of care; TAT, turnaround time; VAF, 
variant allele frequency. 
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depends on institutional SOPs and the size of panel to be tested, 
although many European laboratories request two standard 10-mL tubes 
[112]. Targeted assays currently approved in Europe for liquid biopsies 
are limited to EGFR mutation testing with the cobas EGFR Mutation Test 
v2 and Therascreen [113]. New NGS-based companion diagnostics are 
on the horizon in Europe (see Section 6.3), with Guardant360® CDx and 
FoundationOne® Liquid CDx already approved by the US Food and Drug 
Administration (FDA) in 2020 [41,114]. 

5.3. Next-generation sequencing 

The adoption of NGS into routine practice should facilitate 
comprehensive characterisation of current and emerging targetable 
genomic alterations from available volumes of tumour tissue [106,115]. 
NGS can sequence a whole genome or exome, transcriptomic RNA, or 
panels of a few to several hundred regions of exons or, to a lesser extent, 
introns [112], from tumour tissue and from ctDNA (liquid biopsy). NGS 
does not address biomarkers that require measurement of protein 
expression (e.g. PD-L1). Single molecular tests or low multiplex assays 
are typically faster to perform than NGS (thus shortening overall TAT) 
and are individually less expensive; however, technological advances 
have reduced NGS run time [116], and it may offer overall cost savings 
[72]. Given the high number of currently actionable driver mutations 
with approved treatments in Europe (EGFR, ALK, ROS1, NTRK, BRAF), 
and with others on the horizon (KRAS, MET, RET, ERBB2/HER2, NRG1, 
FGFR1), it seems that an expanded NGS testing panel at diagnosis (rather 
than 8–12 different tests) could be the most efficient way of identifying 
optimal therapeutic approaches and thus improving outcomes for pa
tients while avoiding unnecessary re-biopsies. As noted previously, the 
use of NGS in conjunction with existing testing methodology is still 
evolving. Overall, limitations to the use of NGS across Europe may 
include run-time (which is improving), lack of reimbursement of treat
ments and testing in some countries (which may reflect the economic 
situation in each individual country), validation of results, and the 
interpretation and management of large datasets. 

5.4. External quality assessment programmes 

Acceptable quality control and internal validation procedures must 
be established and laboratories should participate in external quality 
assessment (EQA) programmes [6]. EQA is important for achieving ac
curacy and standardisation across laboratories [75]. Furthermore, 
adequate performance in EQA schemes is important for comparing 
global predictive studies of biomarkers [75]. Guidelines for EQA 
schemes are available [117]. 

Implementation of EQA has been shown to be clinically beneficial 
and improve reporting [118,119]. In Europe, several EQA programmes 
relevant to NSCLC are established, most notably The European Molec
ular Genetics Quality Network (EMQN) [119–125], and UK NEQAS 
immunocytochemistry (ICC) and in situ hybridisation (ISH) [126]. 

5.5. Summary of best practice recommendations 

Based on expert opinion consensus, current best practice recom
mendations for the diagnosis and management of treatment-naive 
advanced NSCLC and progressive/recurrent treated NSCLC are sum
marised in Fig. 3 [112,127,128]. Best practices require the application 
of current scientific knowledge to clinical practice in the context of 
available resources. Therefore, the optimal selection of biomarkers is 
likely to vary according to country-specific availabilities of the tests and 
corresponding targeted therapies. 

6. Future developments in biomarker testing for NSCLC in 
Europe 

6.1. New and emerging targeted therapies for NSCLC 

Selpercatinib and pralsetinib were FDA approved for RET fusion- 
positive NSCLC in May and September 2020, respectively [40,41]; 
both drugs are under review in Europe. Tepotinib and capmatinib were 
approved in 2020 in Japan for NSCLC with METex14 skipping alter
ations [38,129]. In May 2020, the FDA granted accelerated approval to 
capmatinib for NSCLC with METex14 skipping alterations [130]. 

Historically, KRAS—the most frequently mutated oncogene in 
human cancer [131], and a key regulator of cellular proliferation and 
differentiation [132]—has proven difficult to target. The majority of 
KRAS mutations in lung adenocarcinoma are thought to be clonal 
oncogenic drivers arising early in tumour evolution, and while 
sub-clonal KRAS mutations can occur, these events may be fairly rare 
[133–135]. KRAS mutations rarely overlap with other actionable 
oncogenic driver mutations (e.g. EGFR, ALK, ROS-1), so patients with 
KRAS-mutant NSCLC are unlikely to benefit from therapies targeted to 
these mutations [11,136]. The majority of patients with KRAS-mutant 
NSCLC are current or former smokers; however, as approximately 5–10 
% of patients are never or light smokers, all patients should be tested for 
KRAS mutations regardless of smoking history [137]. In the absence of 
KRAS-specific agents, patients with KRAS-mutant solid tumours have 
limited treatment options. Up to one-third of NSCLC adenocarcinoma 
cases in Europe have KRAS mutations [138,139]. KRASG12C is the most 
common, comprising ~40–46 % of KRAS mutations and ~13 % of all 
NSCLC adenocarcinoma cases [27,140–144]. However, the independent 
prognostic impact of KRAS mutation status has been difficult to assess as 
it is confounded by association with smoking and concurrent 
smoking-related co-mutations (e.g. TP53/STK11) [145]. 

Advances in understanding the structure of KRAS have led to the 
development of sotorasib (AMG 510), a small molecule that covalently 
and irreversibly binds to the cysteine amino acid of KRASG12C-mutant 
protein, locking it in its inactive state and preventing KRAS-dependent 
oncogenic signalling without affecting wild-type KRAS signalling (thus 
inhibiting cancer cell growth and survival) [146–148]. Sotorasib 
demonstrated anti-tumour activity in patients with NSCLC in the Phase 1 
dose-escalation part [100] and registrational Phase 2 part [149] of the 
CodeBreaK 100 study; Phase 2 and 3 clinical studies are ongoing 
(NCT03600883, NCT04303780) in patients with locally advanced and 
unresectable/metastatic NSCLC. Another agent targeting KRASG12C 

(adagrasib; MRTX 849) has demonstrated objective responses in patients 
with NSCLC in an ongoing Phase 1/2 trial [36,99]. Other direct in
hibitors of KRASG12C are in earlier-stage clinical trials (e.g. GDC-6036 
[150]) or preclinical testing. Several other targeted therapies are 
under clinical evaluation for NSCLC, and pan-RAS/SOS mutation in
hibitors are also in the very early stages of clinical development [151] 
(Table 1). Overall, the published Phase 1 data for sotorasib and ada
grasib are encouraging and suggest that long-awaited targeted therapies 
for patients with KRAS-mutant NSCLC may be on the horizon. The data 
support the testing of KRASG12C in a broad molecular panel before 
first-line therapy to identify patients that may benefit from emerging 
KRAS-targeted therapies. 

6.2. Technological developments 

The plethora of targeted NSCLC therapies currently under evaluation 
emphasises the need to continually validate and revise molecular testing 
strategies. An increase in the number of actionable targets confers a cost- 
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effectiveness benefit favouring NGS [72]. The anticipated increase in 
NGS in NSCLC will permit concomitant testing of multiple actionable 
targets while minimising additional tissue requirements. Ultimately, 
uptake of NGS is likely to depend on the availability of appropriate 
technologies (e.g. combined RNA/DNA testing capabilities and fully 
automated platforms), as well as reimbursement and organisational 
considerations [152]. Equally, an increased use of liquid biopsies is 
anticipated. The IASLC recently concluded that ‘liquid biopsy ap
proaches have significant potential to improve patient care, and im
mediate implementation in the clinic is justified in a number of 
therapeutic settings relevant to NSCLC’ [112]. However, given its 
significantly lower overall test sensitivity [112], liquid biopsy is unlikely 
to replace molecular testing of tissue in the near future. It is more likely 
that liquid biopsy will complement tissue assessment in a combined 
approach, mitigating the limitations associated with either type of 
testing material. It remains to be seen how such an approach will be best 
implemented. 

6.3. Legislative changes in Europe 

Preference in Europe will likely remain for accredited laboratory- 
developed tests over commercial kits, although this depends on how 
the new European Regulation for IVD Medical Devices (2017/746) [86, 
153] is implemented over the coming years. If implemented in its pre
sent form, this would favour the use of commercial tests as manufac
turers will need to perform clinical performance analyses and 
demonstrate safety and performance according to the risk class of the 
test. Although a step towards standardisation, this is not without prob
lems: currently, laboratories providing predictive testing must be 
accredited, or at least have an implemented quality management system 
(including internal and external quality assurance). On the other hand, 
higher-priced CE-IVD kits, as well as a need to upgrade reagents and 
existing platforms, could increase costs and limit access to testing in 
countries with limited resources. Finally, for diagnostic testing com
panies, the effort required to get CE-IVD accreditation for each iteration 
of a test may discourage development of new or improved tests. 

7. Conclusions 

All patients with unresectable NSCLC require fast-track screening of 
biomarkers (results within 5–10 days) for selection of first-line targeted 
therapy, immunotherapy, or immunotherapy/chemotherapy combina
tions. In Europe, national clinical guidelines for molecular testing and 
targeted therapies reflect ESMO/NCCN guidelines and are tailored for 
compatibility with national healthcare models and resources. Molecular 
testing for EGFR, ALK and PD-L1 is widespread across Europe, with some 
countries additionally testing for ROS1, BRAF and NTRK. Currently, 
testing of KRAS, MEK, MET, ERBB2/HER2, RET, FGFR1/2/3 and NRG1 is 
generally limited to academic institutions or clinical trial settings. 
Country-specific differences concerning the availability of molecular 
tests and corresponding targeted therapies partly reflect reimbursement 
status and/or insurance coverage at the national or regional level. 

To improve the application of genetics-guided lung cancer care, 
ESMO guidelines recommend the use of MTBs involving clinicians, 
molecular pathologists, molecular biologists, geneticists and bio
informaticians. Where institutional structures permit, reflex testing in 
patients with advanced disease is desirable to minimise the interval 
between histological diagnosis and initiation of first-line targeted ther
apies. Improvements in NGS technology have enhanced the analysis of 
driver mutations in a group of genes together in one assay; however, the 
run time for NGS remains relatively long (1–2 weeks), even in optimal 
settings [154]. Currently, NGS alongside rapid screening technologies 
for single-driver mutations are being implemented to circumvent this. 
Thus, further improvements in NGS are needed to reduce run time and to 
avoid double testing. NGS testing with liquid and tissue biopsies can be 
considered complementary, with liquid biopsy giving quicker results but 

tissue biopsy having a lower false-negative rate. Furthermore, the 
combined use of tissue and liquid biopsies may permit extensive testing 
of re-biopsies to provide insights into tumour evolution and heteroge
neity during the course of NSCLC. This may identify targetable bio
markers arising and guide subsequent lines of therapy, and also support 
the discovery of new biomarkers and therapeutic agents; however, as the 
complexity of testing increases, it is important to ensure that reported 
results are fully understood by clinicians. 
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Aleš Ryška has received honoraria from Amgen, AstraZeneca, BMS, 
Boehringer Ingelheim, MSD, Novartis, Pfizer, and Roche, and grants 
from AstraZeneca and Pfizer. 

Jürgen Wolf has received advisory board and lecture fees from 
Amgen, AstraZeneca, Bayer, Blueprint, BMS, Boehringer Ingelheim, 
Chugai, Daiichi Sankyo, Ignyta, Janssen, Lilly, Loxo, MSD, Novartis, 
Pfizer, Roche, Seattle Genetics and Takeda. He has also received 
research support (to institution) from BMS, Janssen Pharmaceutica, 
Novartis and Pfizer. 
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