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Abstract Empirical relationships for estimating

Uniaxial Compressive Strength (UCS) of rock from

other rock properties are numerous in literature. This

is because the laboratory procedure for determination

of UCS from compression tests is cumbersome, time

consuming, and often considered expensive, espe-

cially for small to medium-sized mining engineering

projects. However, these empirical models are scat-

tered in literature, making it difficult to access a

considerable number of them when there is need to

select empirical model for estimation of UCS. This

often leads to bias in estimated UCS data as there may

be underestimation or overestimation of UCS, because

of the site-specific nature of rock properties. There-

fore, this study develops large database of empirical

relationships between UCS and other rock properties

that are reported in literatures. Statistical analysis was

performed on the regression equations in the database

developed. The typical ranges and mean of data used

in developing the regressions, and the range and mean

of their R2 values were evaluated and summarised.

Most of the regression equations were found to be

developed from reasonable quantity of data with

moderate to high R2 values. The database can be easily

assessed to select appropriate regression equation

when there is need to estimate UCS for a specific site.

Keywords Regression analysis � Uniaxial
compressive strength � Rock properties � Models �
Database

1 Introduction

The uniaxial compressive strength (UCS) is a mechan-

ical property of intact rocks that is important in civil

and mining engineering works (Aladejare 2020;

Aladejare et al. 2020; Wang and Aladejare 2016a).

Design and stability analysis of underground excava-

tions and other geotechnical structures require the

input of data like UCS on the geomechanical

behaviour of rocks (Ulusay et al. 1994). Adebayo

and Aladejare (2013) explained that UCS of rock has

effect on excavation-loading operation of rock frag-

ments. According to Hoek (1977), UCS is a required

property when considering a variety of problems

encountered during blasting, excavation, and support
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in engineering works. In addition, UCS is essential for

classification of rock masses into different groups for

engineering applications, and these classifications are

used to determine their suitability for different

construction purposes (Sachpazis 1990). For example,

UCS is used as input in rock mass classification

systems like rock mass rating (RMR) (Bieniawski

1974; Aladejare and Wang 2019a; Aladejare and

Idris 2020) and rock mass index (RMi) (Palmstrøm

1996), and in predicting strength parameters of rock

masses through Hoek–Brown failure criterion (Hoek

et al. 2002). In the probabilistic characterization of

Hoek–Brown mi, Aladejare and Wang (2019b) used

UCS data in a Bayesian framework to simulate

samples of Hoek–Brown mi, which are useful for

probability-based estimation of rock mass properties

through the Hoek–Brown failure criterion. The UCS

also serve as input data when using empirical equa-

tions to predict deformation modulus of rock masses

(Aladejare and Wang 2019b) and characteristic impe-

dance of rocks (Zhang et al. 2020). All these make

UCS an important parameter to most rock and mining

engineering designs and analyses. According to a

survey reported by Bieniawski (1976), mining engi-

neers request the UCS more often than any other rock

material property. From surface to underground mine

design and construction, UCS is a key parameter and it

is required that UCS be known with certainty to a great

extent for engineering analysis.

The guidelines and method for laboratory determi-

nation of UCS have been suggested by International

Society of Rock Mechanics (ISRM) (Ulusay and

Hudson 2007). However, the laboratory determination

of UCS is expensive and time consuming. Therefore,

for most mining projects, especially small to medium-

sized projects, data of UCS are not often available

(Aladejare 2016). For this reason, numerous regres-

sion equations have been developed in literature for

estimation of UCS, when they cannot be directly

obtained through laboratory testing (Sachpazis 1990;

Gökçeoglu 1996; Chatterjee and Mukhopadhyay

2002; Yılmaz and Sendır 2002; Dincer et al.

2004, 2008; Gokceoglu and Zorlu 2004; Hudyma

et al. 2004; Sabatakakis et al. 2008; Tiryaki 2008;

Diamantis et al. 2009; Khandelwal and Singh 2009;

Moradian and Behnia 2009; Yasar et al. 2010; Mishra

and Basu 2012; Khandelwal 2013; Minaeian and

Ahangari 2013; Mohamad et al. 2015; Kallu and

Roghanchi 2015; Fereidooni 2016; Sharma et al. 2017;

Heidari et al. 2018; Aliyu et al. 2019). Results of some

physical and mechanical tests have been recom-

mended for indirect estimation of UCS. Numerous

studies of empirical equations developed for indirect

estimation of UCS in the literature generally include

those using physical properties such as Schmidt

hardness number, shore hardness, density, water

content, porosity, P-wave velocity, S-wave velocity,

unit weight, Equotip hardness number (also referred to

as Leeb hardness number) and slake durability index,

and mechanical properties such as block punch index,

Young’s modulus, Brazilian tensile strength, and point

load strength as inputs (Tugrul and Zarif 1999;

Vasarhelyi 2005; Shalabi et al. 2007; Cobanoglu and

Celik 2008; Török and Vasarhelyi 2010; Mishra and

Basu 2013; Tandon and Gupta 2015; Mohamad et al.

2015; Najibi et al. 2015; Kahraman et al. 2016;

Sharma et al. 2017; Uyanik et al. 2019). Simple and

multiple regressions are available in literature for

estimating UCS from these properties. In the recent

past, artificial intelligence has been used to develop

models for estimation of UCS, using techniques such

as artificial neural network (ANN), support vector

machine (SVM), Fuzzy inference system (FIS),

genetic programming (GP) and hybrid ANN (Monjezi

et al. 2012; Rezaei et al. 2014; Jalali et al. 2017;

Aboutaleb et al. 2018; Armaghani et al. 2018;

Mohamad et al. 2018; Ren et al. 2019).

With the numerous regression equations available

in literature, there is a need to systematically select

equations which suit specific sites. Wang and Alade-

jare (2015, 2016a) developed methods for selecting

models and estimation of UCS. The Bayesian frame-

works developed in studies such as Wang and

Aladejare (2015, 2016a, b) need empirical equations

as input. However, lack of accessibility to a great

number of equations is a drawback. This is because

when decision is to be made on the regression equation

to be used for estimation of UCS, only equations that

are readily assessed in literatures are considered. The

regression equations developed are scattered in liter-

atures, with no study yet that has systematically

compiled them together for use during selection and

estimation of UCS of rock. In order to solve this

problem, this paper develops a database, which is a

global compilation of empirical equations for estimat-

ing UCS from physical and mechanical properties of

rocks. To provide a global compilation of different

forms of regression equations, an extensive review of
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previous studies is performed to collect and compile

information of different regression equations for

estimation of the UCS of rock. This study is partic-

ularly beneficial for engineering projects when con-

sidering any analysis that involves the use of UCS as

an input. This is because it serves as the equations

bank from which different regression equations can be

assessed for selection and their subsequent use for

estimation of UCS.

2 Database Development and Description

A total of 163 research articles from internationally

leading journals such as International Journal of Rock

Mechanics and Mining Sciences, Rock Mechanics and

Rock Engineering, Bulletin of Engineering Geology and

the Environment, Journal of Rock Mechanics and

Geotechnical Engineering, Engineering Geology, Neu-

ral Computing and Applications, Geotechnical and

Geological Engineering, Applied Soft Computing,

Environmental Earth Sciences, International Journal of

Mining Science and Technology, Tunnelling and

Underground Space Technology, Measurement, and

Engineering with Computers were used to compile

information of regression equations for estimating UCS,

ranging from simple to multiple regression and artificial

intelligence-based models. The regression equations

that are documented in the database only includes those

whose datawere obtained according to testing procedure

standards set by ISRM or American Society for Testing

andMaterials (ASTM). This ensures that all equations in

the database were developed from test results involving

consistent sample length to diameter ratio and testing

conditions (Aladejare and Wang 2017). Note that only

equations developed for rocks are considered in the

database, soil and other weathered rocks which behave

as soil are not considered in the database. Geo-materials

whose equations are included in the database are

generally referred to as rock samples in the original

literatures. They generally include grade I–III weathered

rocks (i.e., ranging from fresh rocks to slightly weath-

ered rock and moderately weathered rocks. Grade IV or

above weathered geo-material is generally referred to as

soil (e.g. Ehlen 2002; Aladejare andWang 2017) and are

not considered in the database.

In the database, there are different types of regression

equations ranging from simple to multiple regressions

and artificial intelligence-based regressions such as

ANN, SVM, FIS, GP, and hybrid ANNs. In addition,

there are different modes of equations such as linear,

power, exponential, logarithmic and polynomial func-

tions in the database. The equations contained in the

database include those developed for estimating UCS

from rock properties such as Schmidt hardness number

(N), shore hardness (SH), density (q), porosity (n),

P-wave velocity (Vp), S-wave velocity (Vs), unit weight

(c), equotip hardness number (LD), slake durability

index (Id2), block punch index (BPI), Young’s modulus

(E), Brazilian tensile strength (BTS) and point load

strength (Is(50)). Equations between UCS and other less

frequently measured rock properties such as grain size

(GS), shape factor (SF), quartz content (Qtz), particle

diameter (D), single compressive strength index (SCSI)

among others that are available in literature are also

included in the database.

For each regression equation, number of data from

which it was developed and the correlation coefficient

(R2) are documented. The mean (l) of a group of data

is calculated as:

l ¼ 1

nt

Xnt

i¼1

hi; for i ¼ 1; 2; 3; . . .nt ð1Þ

where hi is a set of rock property data and nt is the total
number of rock data present in a group of data. The

range and mean of number of data used in equation

development and their R2 for each regression equation

are also included in the database.

3 Simple Regression

Simple regression is a statistical method for studying

relationships between two continuous variables, in

which one variable is regarded as the predictor or

independent variable, and the other variable is

regarded as the outcome or dependent variable

(Freedman 2009). Assuming two groups of data (Yi;

Xai); i = 1, …, n, where Xai = (Xa1,…Xan) is a vector

of independent variable and Yi a real-valued dependent

variable for the ith observation, a regression equation f

is a model that makes a prediction _Y of Y for a

potentially new input vector Xa, written as:

_Y ¼ f Xað Þ ð2Þ

Simple regression for estimating UCS can take any

form such as linear, logarithmic, exponential, power,
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and polynomial forms (Diamantis et al. 2009; Yasar

et al. 2010; Nefeslioghu 2013; Azimian et al. 2014;

Kallu and Roghanchi 2015), and the difference in the

models is the way that f(Xa) in Eq. (2) is expressed for

each regression equation. In this study, the simple

regressions are grouped under two headings into those

regressions derived from physical properties and those

derived frommechanical properties as discussed in the

following subsections.

3.1 Simple Relationship Between UCS

and Physical Properties

Physical tests are generally easier and less expensive to

perform, and for this reason many simple regressions

are available in literature for estimating UCS from

physical properties of rock (Cobanoglu and Celik 2008;

Heidari et al. 2018; Aliyu et al. 2019; Aladejare 2020).

Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9 list regression equations

for estimating UCS based on equotip number, Schmidt

rebound number, shore hardness, density, porosity,

P-wave velocity, S-wave velocity, unit weight, and

slake durability index, respectively. For each regression

equation listed in the tables, the number of data used to

develop them, R2 value and the rock type from which

the equation was developed are presented. The

tables show that regression equations using physical

properties to estimate UCS for the three types of rock

(i.e., igneous, sedimentary, and metamorphic rocks) are

numerous and also for cases where different rock types

aremixed together to develop regression equations. The

different regression equations available in literature as

can be observed from Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9

indicate that not all equations will be suitable for

specific site. Having database of regression equations

will give mining engineers and other practitioners the

opportunity to fairly assess all regression equations

before deciding on the regression equations for a

specific site. Recent studies in mining and geotechnical

engineering have developed model selection

approaches to select appropriate model from candidate

models (e.g., Wang and Aladejare, 2015, 2016a). With

many regression equations available in a paper, mining

practitioners can subject many regression equations to

assessment before deciding on the appropriate regres-

sion equation. Table 10 shows the information about

the statistics of the regression equations in Tables 1, 2,

3, 4, 5, 6, 7, 8, and 9 that were used to develop the

regression equations and the range and mean of their R2

values. The mean of group data ranges from 24 to 210,

while the lowest and highest R2 values are 0.11 and

0.98, respectively. The quantity of data in a group and

R2 values shows that the equations collated in Tables 1,

2, 3, 4, 5, 6, 7, 8, and 9 may produce satisfactory

estimation of UCS when they are used to estimate UCS

for deposits of similar rock type.

Table 1 Empirical equations for estimating UCS based on Equotip hardness number (Ls, or LD)

S/

N

Relationship No of

data

R2 Rock types Country of

origin

References

1 UCS ¼ 8� 10�6Ls
2:5 33 0.77 Mixed Japan and

Indonesia

Aoki and Matsukura (2008) Based on part of

dataset by Verwaal and Mulder (1993)

2 UCS ¼ 15:7LD
2:42 � 10�6 31 0.70 Mixed Various

countries

Corkum et al. (2018)

3 UCS ¼ 0:1LD
3:18 � 10�6 31 0.71 Sedimentary Various

countries

Corkum et al. (2018)

4 UCS ¼ 0:3LD
2:98 � 10�6 31 0.79 Metamorphic Various

countries

Corkum et al. (2018)

5 UCS ¼ 3LD
2:64 � 10�6 31 0.65 Igneous Various

countries

Corkum et al. (2018)

6 UCS ¼ 1:75� 10�9LD
3:8 194 0.81 Mixed Spain Meulenkamp (1997)

7 UCS ¼ 4:906� 10�7LD
2:974 28 NA Mixed Netherlands Verwaal and Mulder (2000)

8 UCS ¼ 2:3007e0:0057LD 62 0.82 Mixed USA Lee et al (2014) exclusive of shale rocks

9 UCS ¼ 2:1454e0:0058LD 86 0.81 Mixed USA Lee et al (2014) inclusive of shale rocks

10 UCS ¼ 4:5847LD � 142:22 18 0.82 Sedimentary Turkey Yilmaz (2013)
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Table 2 Empirical equations for estimating UCS based on Schmidt Hammer rebound number

S/

N

Relationship No of

data

R2 Rock types Country of

origin

References

1 UCS ¼ 6:59N � 212:63 150 0.65 Sedimentary Turkey Cobanoglu and Celik (2008)

2 UCS ¼ 2N 30 0.72 Sedimentary USA Singh et al. (1983)

3 UCS = 0.4 N-3.6 20 0.94 Sedimentary USA Shorey et al. (1984)

4 UCS ¼ 0:994N � 0:383 10 0.7 Sedimentary USA Haramy and DeMarco (1985)

5 UCS ¼ 0:88N � 12:11 13 0.87 Sedimentary India Ghose and Chakraborti (1986)

6 UCS ¼ 4:85N � 76:18 NA 0.77 Sedimentary USA O’Rourke (1989)

7 UCS ¼ 2:98eð0:06NÞ NA 0.95 Metamorphic NA Xu et al. (1990)

8 UCS ¼ 1:31N � 2:52 30 0.55 Igneous Greece Aggistalis et al. (1996)

9 UCS ¼ 0:0001N3:2658 NA 0.84 Sedimentary Japan Gökçeoglu (1996)

10 UCS ¼ exp 0:818þ 0:059Nð Þ 20 0.98 Sedimentary Turkey Yilmaz and Sendir (2002)

11 UCS ¼ 2:75N � 36:83 24 0.95 Igneous Turkey Dincer et al. (2004)

12 UCS ¼ 104:3ln Nð Þ � 308:6 24 0.96 Igneous Turkey Dincer et al. (2004)

13 UCS ¼ 13:02e0:0414N 24 0.96 Igneous Turkey Dincer et al. (2004)

14 UCS ¼ 0:267N � 2:210 19 0.64 Sedimentary Turkey Dincer et al. (2008)

15 UCS ¼ 7:044lnN � 17:96 19 0.60 Sedimentary Turkey Dincer et al. (2008)

16 UCS ¼ 4:6� 10�2N1:406 19 0.66 Sedimentary Turkey Dincer et al. (2008)

17 UCS ¼ 1:143e0:051N 19 0.65 Sedimentary Turkey Dincer et al. (2008)

18 UCS ¼ 1246N � 34890 257 0.88 Mixed USA Deere and Miller (1966) (UCS

in psi)

19 UCS ¼ 4:29N � 67:52 29 0.96 Sedimentary Greece and

England

Sachpazis (1990)

20 UCS ¼ 4:5� 10�4N2:46 10 0.93 Mixed Turkey Kahraman (1996)

21 UCS ¼ 8:36N � 416 19 0.87 Igneous Turkey Tugrul and Zariff (1999)

22 UCS ¼ 6:97e0:014N 48 0.78 Mixed Turkey Kahraman (2001)

23 UCS ¼ 4� 10�6N4:2917 9 0.89 Mixed Turkey Yasar and Erdogan (2004a, b)

24 UCS ¼ 1:4459e0:0706N 40 0.92 Igneous Hong Kong Aydin and Basu (2005)a

25 UCS ¼ 3:20N � 46:59 58 0.76 Sedimentary USA Shalabi et al. (2007)

26 UCS ¼ 0:0028N2:584 9 0.92 Mixed Turkey Yagiz (2009)

27 UCS ¼ 2:262N � 29:38 21 0.91 Metamorphic India Tandon and Gupta (2015)

28 UCS ¼ 2:729N � 41:78 9 0.96 Igneous

(Granitoid)

India Tandon and Gupta (2015)

29 UCS ¼ 2:547N � 33:08 12 0.71 Igneous

(Gneiss)

India Tandon and Gupta (2015)

30 UCS ¼ 2:722N � 30:19 12 0.93 Metamorphic India Tandon and Gupta (2015)

31 UCS ¼ 1:233N � 2:846 6 0.89 Sedimentary India Tandon and Gupta (2015)

32 UCS ¼ 1:910N � 10:30 60 0.75 Mixed India Tandon and Gupta (2015)

33 UCS ¼ 0:994N � 0:383 10 0.70 Mixed USA Haramy and DeMarco (1985)

34 lnUCS ¼ 1:8X10�2ðN � qdÞ þ 2:9 14 0.98 Sedimentary USA Cargill and Shakoor (1990)c

35 UCS ¼ expð1:332þ 0:053NÞ 99 0.94 Sedimentary Spain Morales et al. (2004)

36 UCS ¼ 3:1e0:09N 75 0.79 Sedimentary Greece Sabatakakis et al. (2008)

37 UCS ¼ 3:201N � 46:59 58 0.76 Sedimentary USA Shalabi et al. (2007)

38 UCS ¼ 3:6468N � 98:777 1700 0.81 Metamorphic Turkey Yavuz et al. (2005)

39 UCS ¼ expð0:818þ 0:059NÞ 20 0.98 Metamorphic Turkey Yilmaz and Sendir (2002)

40 UCS ¼ 5:3466N � 99:878 53 0.76 Sedimentary Iran Heidari et al (2017)
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3.2 Simple Relationship Between UCS

and Mechanical Properties

Mechanical tests are generally more difficult and

expensive to perform than physical tests, because most

mechanical tests require rigorous sample preparation.

Despite the difficulties in performing the mechanical

tests, some of these tests are easier to be performed

than UCS. For this reason, researchers have developed

simple regressions for estimating UCS from mechan-

ical properties of rock (Kahraman and Gunaydin 2009;

Mishra and Basu 2012; Moradian and Behnia 2009;

Fereidooni 2016). Tables 11, 12, 13 and 14 list

regression equations for estimating UCS based on

Table 2 continued

S/

N

Relationship No of

data

R2 Rock types Country of

origin

References

41 UCS ¼ 0:25N1:77 200 0.88 Igneous USA Kallu and Roghanchi (2015)

42 InUCS ¼ 0:792þ 0:067N � 0:231 7 0.96 Mixed Israel and USA Katz et al. (2000)

43 UCS ¼ 0:0137N2:2721 19 0.94 Mixed Turkey Kılıç and Teymen (2008)

44 UCS ¼ 0:64N þ 37:5 3 0.96 Metamorphic India Gupta (2009)

45 UCS ¼ expð�4:04þ 2:28:lnNÞ 95 0.97 Sedimentary Various

countries

Bruno et al. (2012)

46 UCS ¼ 4:24e0:059N 11 0.81 Mixed Turkey Fener et al. (2005)

47 UCS ¼ 0:02N2:28 8 0.92 Metamorphic Iran Fereidooni (2016)

48 UCS ¼ 0:0465N2 � 0:1756N þ 27:682 41 0.86 Metamorphic Iran Torabi et al. (2010)

49 UCS ¼ 1:15N � 15 7 0.91 Igneous India Gupta (2009)

50 UCS ¼ 0:9165e0:0669N 40 0.94 Igneous Hong Kong Aydin and Basu (2005)b

51 lnUCS ¼ 4:3X10�2ðN � qdÞ þ 1:2 14 0.93 Sedimentary USA Cargill and Shakoor (1990)c

psi pounds per square inch
aL-type Schmidt Hammer
bN-type Schmidt Hammer
cDry density is in Mg/m3

Table 3 Empirical equations for estimating UCS based on Shore hardness

S/

N

Relationship No of

data

R2 Rock types Country of

origin

References

1 UCS ¼ 0:397SH þ 0:332 19 0.71 Sedimentary Turkey Dincer et al. (2008)

2 UCS ¼ 4:830ln SHð Þ � 6:546 19 0.67 Sedimentary Turkey Dincer et al. (2008)

3 UCS ¼ 0:461SH0:957 19 0.72 Sedimentary Turkey Dincer et al. (2008)

4 UCS ¼ 1:918e0:074SH 19 0.68 Sedimentary Turkey Dincer et al. (2008)

5 UCS ¼ 514SH � 6213 275 0.90 Mixed USA Deere and Miller (1966)

6 UCS ¼ 3:54 SH � 12ð Þ NA 0.57 – USA Atkinson (1993)

7 UCS ¼ 0:895SH þ 41:977 30 0.57 Sedimentary USA Koncagul and Santi

(1999)

8 UCS ¼ 1� 10�8ðSHÞ5:555 9 0.91 Mixed Turkey Yasar and Erdogan

(2004a, b)

9 UCS ¼ 3:326SH � 79:76 8 0.80 Sedimentary (high density

dolomite)

USA Shalabi et al. (2007)

10 UCS ¼ 1:581SH � 62:2 9 0.85 Sedimentary (Shale rock) USA Shalabi et al. (2007)

11 UCS ¼ 14:868e0:042SH 1700 0.84 Metamorphic Turkey Yavuz et al. (2005)
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Table 4 Empirical equations for estimating UCS based on Density

S/

N

Relationship No of

data

R2 Rock types Country of origin References

1 UCS ¼ 55:57q� 100:75 22 0.89 Sedimentary India (Krishna-

Godavari basin)

Chatterjee and

Mukhopadhyay (2002)

2 UCS ¼ 37:47q� 63:11 22 0.98 Sedimentary India (Cauvery basin) Chatterjee and

Mukhopadhyay (2002)

3 UCS ¼ 178:33� q� 384:65 44 0.11 Mixed England and Turkey Tiryaki (2008)

4 UCS ¼ ð28812:5q� 52:586Þ � 0:0069 257 0.90 Mixed USA Deere and Miller (1966)

5 UCS ¼ 10�5q16:7 12 0.97 Igneous

(basalts)

Turkey Tugrul and Gurpinar

(1997)

6 UCS ¼ 139:34q� 272:25 94 0.87 Sedimentary India Sharma et al. (2017)

7 UCS ¼ �47454:4þ 35905:6q� 671:68q2 7 0.90 Sedimentary UK, France and

Denmark

Aliyu et al. (2019)

Table 5 Empirical equations for estimating UCS based on Porosity

S/

N

Relationship No of

data

R2 Rock types Country of origin References

1 UCS ¼ 34:44e�0:044n 22 0.83 Sedimentary India (Krishna–

Godavari basin)

Chatterjee and

Mukhopadhyay (2002)

2 UCS ¼ 64:23e�0:085n 22 0.92 Sedimentary India (Cauvery basin) Chatterjee and

Mukhopadhyay (2002)

3 UCS ¼ �33:13ln nð Þ þ 64:6 32 0.82 Metamorphic Greece Diamantis et al. (2009)

4 UCS ¼ 97:77exp�0:40n 32 0.76 Metamorphic Greece Diamantis et al. (2009)

5 UCS ¼ �21:58nþ 91:87 32 0.80 Metamorphic Greece Diamantis et al. (2009)

6 UCS ¼ �49:36ln nð Þ þ 189:35 8 0.62 Igneous tuff USA Hudyma et al. (2004)

7 UCS ¼ 78:22nþ 201 19 0.81 Igneous Turkey Tugrul and Zarif (1999)

8 UCS ¼ 274� 8:51n 20 0.98 Igneous Saudi Arabia Al-Harthi et al. (1999)

n\ 20%

9 UCS ¼ 104� 1:01n 33 0.96 Igneous Saudi Arabia Al-Harthi et al. (1999)

n[ 20%

10 UCS ¼ �0:439nþ 16:717 19 0.78 Sedimentary Turkey Dincer et al. (2008)

11 UCS ¼ �10:960ln nð Þ � 40:826 19 0.80 Sedimentary Turkey Dincer et al. (2008)

12 UCS ¼ 3439:38n�2:02 19 0.76 Sedimentary Turkey Dincer et al. (2008)

13 UCS ¼ 42:111e�0:083n 19 0.77 Sedimentary Turkey Dincer et al. (2008)

14 UCS ¼ 149:33n�0:53 8 0.89 Metamorphic Iran Fereidooni (2016)

15 UCS ¼ �2:270n2 þ 33:88nþ 16:30 11 0.96 Sedimentary

(sandstone)

Australia Yasar et al. (2010)

16 UCS ¼ �2:135n2 þ 28:74nþ 18:82 11 0.90 Sedimentary

(siltstone)

Australia Yasar et al. (2010)

17 UCS ¼ �0:663n2 þ 9:648nþ 21:01 11 0.92 Sedimentary

(mudstone)

Australia Yasar et al. (2010)

18 UCS ¼ 123exp�0:12n 95 0.63 Sedimentary Greece Sabatakakis et al. (2008)

19 UCS ¼ 16:55nþ 183 19 0.83 Igneous Turkey Tugrul and Zarif (1999)
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Table 6 Empirical equations for estimating UCS based on P-wave Velocity

S/

N

Relationship No of

data

R2 Rock types Country of origin References

1 UCS ¼ 56:71Vp � 192:93 150 0.67 Sedimentary Turkey Cobanoglu and Celik (2008)

2 UCS ¼ 6� 10�3Vp � 0:556 19 0.91 Sedimentary Turkey Dincer et al. (2008)

3 UCS ¼ 5:136ln Vp

� �
� 28:337 19 0.91 Sedimentary Turkey Dincer et al. (2008)

4 UCS ¼ 9� 10�3Vp
0:963 19 0.89 Sedimentary Turkey Dincer et al. (2008)

5 UCS ¼ 2:054e0:001Vp 19 0.82 Sedimentary Turkey Dincer et al. (2008)

6 UCS ¼ 0:0642Vp � 117:99 49 0.90 Mixed India Sharma and Singh (2008)

7 UCS ¼ 9:95Vp
1:21 27 0.83 Mixed Turkey Kahraman (2001)

8 UCS ¼ 165:05e �4:452=Vp½ � 64 0.70 Sedimentary Iran Moradian and Behnia (2009)

9 UCS ¼ 0:033Vp � 34:83 13 0.87 Mixed India Khandelwal (2013)

10 UCS ¼ 133:3Vp � 227:19 12 0.96 Mixed India Khandelwal and Singh (2009)

11 UCS ¼ 0:005Vp 140 0.94 Sedimentary Iran Minaeian and Ahangari (2013)

12 UCS ¼ 110Vp � 515:56 32 0.81 Metamorphic Greece Diamantis et al. (2009)

13 UCS ¼ 0:78e 0:88Vp½ � 171 0.53 Igneous United Kingdom Entwisle et al. (2005)

14 UCS ¼ 0:032Vp � 44:227 40 0.83 Mixed Malaysia Mohamad et al. (2015)

15 UCS ¼ 64:2Vp � 117:99 49 0.90 Mixed India Sharma and Singh (2008)

16 UCS ¼ 35:54Vp � 55 19 0.80 Igneous Turkey Tugrul and Zariff (1999)

17 UCS ¼ 31:5Vp � 63:7 9 0.80 Mixed Turkey Yasar and Erdogan (2004a, b)

18 UCS ¼ 0:14Vp � 899:23 32 0.90 Metamorphic Greece Diamantis et al. (2011)

19 UCS ¼ 0:0675Vp � 245:13 20 0.92 Igneous Turkey Kurtulus et al. (2012) (across

foliation)

20 UCS ¼ 0:0188Vp � 71:04 20 0.83 Igneous Turkey Kurtulus et al. (2012) (along

foliation)

21 UCS ¼ 0:005Vp 140 0.94 Sedimentary Iran Minaeian and Ahangari (2013)

22 UCS ¼ 6:6Vp
1:6 46 0.92 Sedimentary Turkey Uyanik et al. (2019)

23 UCS ¼ 0:11Vp � 515:56 32 0.81 Metamorphic Greece Diamantis et al. (2009)

24 UCS ¼ 2:6� 10�3exp0:0019V 32 0.80 Metamorphic Greece Diamantis et al. (2009)

25 UCS ¼ 570:94ln Vp

� �
� 4840:1 32 0.79 Metamorphic Greece Diamantis et al. (2009)

26 UCS ¼ 0:457983e1:504268ðVpÞ 66 0.82 Sedimentary Turkey Nefeslioglu (2013)

27 UCS ¼ 2:258013 Vp

� �
þ 0:060749 66 0.92 Sedimentarya Turkey Nefeslioglu (2013)

28 UCS ¼ 0:499138e1:575579ðVpÞ 66 0.91 Sedimentary
b

Turkey Nefeslioglu (2013)

29 UCS ¼ 3:313262 Vp

� �
� 0:814776 66 0.92 Sedimentaryc Turkey Nefeslioglu (2013)

30 UCS ¼ 1:779459ðVpÞ1:409563 66 0.96 Sedimentaryd Turkey Nefeslioglu (2013)

31 UCS ¼ 1:902589ðVpÞ1:031474 66 0.87 Sedimentarye Turkey Nefeslioglu (2013)

32 UCS ¼ 4:751294 Vp

� �
� 2:354974 66 0.92 Sedimentaryf Turkey Nefeslioglu (2013)

33 UCS ¼ 4:585574 Vp

� �
� 2:230556 66 0.87 Sedimentaryg Turkey Nefeslioglu (2013)

34 UCS ¼ 1:642474ðVpÞ1:277730 66 0.87 Sedimentaryh Turkey Nefeslioglu (2013)

35 UCS ¼ 35:54Vp � 55 19 0.64 Igneous Turkey Tugrul and Zarif (1999)

36 UCS ¼ 0:026Vp � 20:207 40 0.91 Sedimentary Iran Azimian et al. (2014)

37 UCS ¼ 0:0375Vp � 50:969 53 0.67 Sedimentary Iran Heidari et al. (2018)

38 UCS ¼ 22:032Vp
1:247 9 0.72 Igneous Portugal Sousa et al. (2005)

39 UCS ¼ 0:039Vp � 50:01 94 0.93 Mixed India Sarkar et al. (2012)
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Table 6 continued

S/

N

Relationship No of

data

R2 Rock types Country of origin References

40 UCS ¼ 12:743Vp
1:194 72 0.76 Sedimentary Several countries Altindag (2012)

41 UCS ¼ 0:026Vp � 20:47 40 0.91 Sedimentary Iran Abdolazim and Rassoul (2015)

42 lnUCS ¼ 3:94InVp � 28:12 10 0.92 Igneous USA Kallu and Roghanchi (2015)

43 UCS ¼ 165:05expð�4:452=Vp) 64 0.70 Mixed Iran Moradian and Behnia (2009)

44 UCS ¼ 0:0389Vp � 50:009 94 0.93 Sedimentary India Sharma et al. (2017)

45 UCS ¼ 0:91Vp � 4500:6 7 0.87 Sedimentary UK, France and

Denmark

Aliyu et al. (2019)

a–hGenetic rock type codes representing varying spectral absorptions using reflectance spectroscopy

Table 7 Empirical equations for estimating UCS based on S-wave Velocity

S/N Relationship No of data R2 Rock types Country of origin References

1 UCS ¼ 16Vs
1:6 46 0.82 Sedimentary Turkey Uyanik et al. (2019)

2 UCS ¼ 0:14Vs � 336:05 32 0.80 Metamorphic Greece Diamantis et al. (2009)

3 UCS ¼ 0:057e0:0025Vs 32 0.79 Metamorphic Greece Diamantis et al. (2009)

4 UCS ¼ 391:38ln Vsð Þ � 3043:2 32 0.79 Metamorphic Greece Diamantis et al. (2009)

Table 8 Empirical equations for estimating UCS based on unit weight/dry unit weight

S/

N

Relationship No of

data

R2 Rock types Country of

origin

References

1 UCS ¼ 56:71cþ 16:471 19 0.79 Sedimentary Turkey Dincer et al. (2008)

2 UCS ¼ 21:035lnc� 56:81 19 0.76 Sedimentary Turkey Dincer et al. (2008)

3 UCS ¼ 2:60� 10�5c4:108 19 0.80 Sedimentary Turkey Dincer et al. (2008)

4 UCS ¼ 0:0737e0:217c 19 0.81 Sedimentary Turkey Dincer et al. (2008)

5 UCS ¼ 0:0574e2:9168cd 154 0.74 Sedimentary Turkey Cobanoglu and Celik (2012)

6 UCS ¼ 0:0063e3:813c 40 0.90 Sedimentary Hungary Török and Vasarhelyi (2010)

7 UCS ¼ 0:4182c6:037 15 0.97 Sedimentary France Moh’d (2009)

8 UCS ¼ 42:63cd � 1057:8 32 0.80 Metamorphic Greece Diamantis et al. (2009)

9 UCS ¼ 2� 10�7exp0:75cd 32 0.79 Metamorphic Greece Diamantis et al. (2009)

10 UCS ¼ 1115:6ln cdð Þ � 3558:2 32 0.79 Metamorphic Greece Diamantis et al. (2009)

11 UCS ¼ 461c� 52586 257 0.60 Mixed USA Deere and Miller (1966) (UCS in psi, c in
pcf)

12 UCS ¼ 7:3c� 110:32 43 0.62 Sedimentary USA Shalabi et al. (2007)

13 UCS ¼ 60:75c� 1430 19 0.81 Igneous Turkey Tugrul and Zarif (1999)

14 UCS ¼ 57:72cd � 1347 19 0.82 Igneous Turkey Tugrul and Zarif (1999)

Dry density indicated by subscript d

psi pounds per square inch

pcf pounds per cubic feet
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block punch index, Young’s modulus, tensile strength

and point load strength, respectively. The tables show

that regression equations using mechanical properties

for estimating UCS for the three types of rock are also

numerous like those using physical properties.

Table 15 shows the information about the statistics

of the regression equations in Tables 11, 12, 13 and

14, which includes the range and mean of group of

data that were used to develop the regression equations

and the range and mean of their R2 values. The mean

of group data ranges from 46 to 150, while the lowest

and highest R2 values are 0.33 and 0.99, respectively.

The R2 value for regression equations using physical

properties are higher than those using mechanical

properties. This may indicate that the regression

equations using physical properties produce low errors

when they are used to estimate UCS.

4 Multiple Regression

Multiple regression is an extension of simple regres-

sion. It is used to predict the value of a variable based

on the value of two or more other variables. The

concept of multiple regression reflects the likelihood

that a variable may have relationship with more than

one variable. In such case, all the independent

variables can be systematically combined to estimate

a dependent variable (Aiken et al. 1991). Assuming

groups of data (Yi; Xai…Xzi); where Xai…Xzi are vector

of independent variables from Xa. . .Xz, i = 1, …, n

Table 9 Empirical equations for estimating UCS based on slake durability index

S/N Relationship No of data R2 Rock types Country of origin References

1 UCS ¼ 0:211Id2 � 13:815 19 0.47 Sedimentary Turkey Dincer et al. (2008)

2 UCS ¼ 16:636ln Id2ð Þ � 69:552 19 0.43 Sedimentary Turkey Dincer et al. (2008)

3 UCS ¼ 4:9� 10�7Id2
3:578 19 0.55 Sedimentary Turkey Dincer et al. (2008)

4 UCS ¼ 0:084e0:45Id2 19 0.58 Sedimentary Turkey Dincer et al. (2008)

5 UCS ¼ 0:6581Id2 þ 9:081 30 0.63 Sedimentary USA Koncagul and Santi (1999)

6 UCS ¼ 29:631Id4 � 2858 10 0.94 Sedimentary Turkey Yagiz (2011)

7 UCS ¼ 0:047e0:065Id4 31 0.92 Igneous Turkey Kahraman et al (2016)

8 UCS ¼ 0:453Id4 � 26:22 31 0.89 Igneousa Turkey Kahraman et al (2016)

9 UCS ¼ 7:751Id4 � 711:4 31 0.93 Igneousb Turkey Kahraman et al (2016)

10 UCS ¼ 26:21Id2 � 2476:20 94 0.86 Sedimentary India Sharma et al. (2017)

Subscript figure denote the number of cycles for the SDI
a,bRepresent Igneous with UCS below and above 20 MPa respectively

Table 10 Statistics of regression equations for estimating UCS from Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9

S/N Input property for regression equations No of data Range of R2

Range Mean

1 Equotip number 18–194 55 0.65–0.82

2 Schmidt hardness number 3–1700 73 0.55–0.98

3 Shore hardness 9–1700 210 0.57–0.91

4 Density 7–257 65 0.11–0.98

5 Porosity 8–95 24 0.62–0.98

6 P-wave velocity 7–171 51 0.53–0.96

7 S-wave velocity 32–46 36 0.79–0.82

8 Unit weight 15–257 51 0.64–0.97

9 Slake durability index 10–94 30 0.43–0.93
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representing the number of data for each independent

variable, and Yi a real-valued dependent variable for

the ith observation, a regression equation f is a model

that makes a prediction _Y of Y for a potentially new

input vectors Xa…Xz, written as:

_Y ¼ f Xa. . .Xzð Þ ð3Þ

Like simple regression, multiple regression for

estimating UCS can take any form such as linear,

logarithmic, exponential, power, and polynomial

forms (Majdi and Rezaei 2013; Cheshomi et al.

2015; Ng et al. 2015; Madhubabu et al. 2016;

Armaghani et al. 2018), and the difference in the

models will reflect how f(Xa…Xg) f Xa. . .Xzð Þ in

Eq. (3) is expressed for each regression equation.

Table 16 lists multiple regression equations for

estimating UCS based on different properties of rock,

including physical and mechanical properties. The

number of data per group for the equations ranges

between 5 and 600 with a mean of 78 data per group.

The R2 values for the equations range from 0.53 to

0.99. The table shows that multiple regressions for

estimating UCS for the three types of rock are

numerous, and for cases where different rock types

are mixed to develop multiple regressions.

5 Artificial Intelligence

Artificial intelligence refers to the simulation of

human intelligence in machines that are programmed

Table 11 Empirical equations for estimating UCS based on block punch index

S/

N

Relationship No of

data

R2 Rock types Country of

origin

References

1 UCS ¼ 8:9217BPI � 1:2334 53 0.77 Sedimentary Iran Heidari et al. (2018)

2 UCS ¼ 23:49BPI0:68 55 0.82 Igneous USA Kallu and Roghanchi (2015)

3 UCS ¼ 6:1BPI � 3:3 1150 0.86 Mixed Netherlands Van der Schrier (1988)

4 UCS ¼ 5:5BPI 23 0.94 Mixed Turkey Ulusay and Gokceoglu

(1997)

5 UCS ¼ 5:25BPI 127 0.95 Mixed Turkey Gokceoglu and Aksoy

(2000)

6 UCS ¼ 5:1BPI 41 0.90 Mixed Turkey Sulukcu and Ulusay (2001)

7 UCS ¼ 2:72BPI þ 13:7 82 0.71 Sedimentary

(Greywacke)

Turkey Gokceoglu and Zorlu (2004)

8 UCS ¼ 4:93BPI 60 0.93 Mixed India Mishra and Basu (2012)

9 UCS ¼ 4:02BPI þ 36:16 20 0.89 Igneous India Mishra and Basu (2012)

10 UCS ¼ 1:35BPI þ 10:89 20 0.85 Metamorphic India Mishra and Basu (2012)

11 UCS ¼ 4:99BPI þ 10:69 20 0.87 Sedimentary India Mishra and Basu (2012)

Table 12 Empirical equations for estimating UCS based on Young’s modulus

S/N Relationship No of data R2 Rock types Country of origin References

1 UCS ¼ 4:31� E
10

� �1:705 152 0.33 Mixed Canada King (1983)a

2 UCS ¼ 122:11�E
39:37þE

64 0.59 Sedimentary Iran Moradian and Behnia (2009)

3 UCS ¼ 12:8� E
10

� �1:32 45 0.88 Sedimentary Iran Najibi et al. (2015)b

4 UCS ¼ 0:0084E 10 0.66 Sedimentary (sandstone) Pakistan Malik and Rashid (1997)

5 UCS ¼ 0:0073E 10 0.43 Sedimentary (siltstone) Pakistan Malik and Rashid (1997)

6 UCS ¼ 0:0072E 10 0.35 Sedimentary (claystone) Pakistan Malik and Rashid (1997)

7 UCS ¼ 0:0033E � 2886 28 0.83 Mixed USA Deere and Miller (1966)

a,bE is dynamic elastic modulus
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to think like humans and mimic their actions (Car-

bonell 2003; Cawsey and Aylett 2009; Lawal and

Kwon 2020). This reasoning capability is valuable in

applications where repetition, complexity, or tedious-

ness makes human-like intervention impractical. Der-

showitz and Einstein (1984) explained that artificial

intelligence is applicable in rock mechanics, even

where some complex decision-making is required.

There are many approaches of artificial intelligence

that are being used in rock mechanics and mining

engineering, such as ANN, SVM, FIS, GP, and hybrid

artificial intelligence such as Genetic Algorithm

Artificial Neural Network (GA-ANN), Particle Swarm

Optimisation Artificial Neural Network (PSO-ANN),

Particle Swarm Optimisation Artificial Neural Net-

work (PSO-ANN), Imperialist Competitive Algorithm

Artificial Neural Network (ICA-ANN) and Adaptive

neuro-fuzzy inference system (ANFIS) (Majdi and

Beiki 2010; Manouchehrian et al. 2012; Beiki et al.

2013; Rezaei et al. 2014; Mohamad et al. 2015;

Sharma et al. 2017; Aboutaleb et al. 2018; Lawal and

Kwon 2020).

5.1 Artificial Neural Network

ANN is an approach of artificial intelligence, intro-

duced by McCulloch and Pitts (1943). ANN is trained

using a set of real inputs and their corresponding

outputs. A neural network must be trained so that a

known set of inputs produces the desired outputs.

Once the network is trained with enough sample

dataset, for a new input of relatively similar patterns,

predictions can be made based on previous learning.

Many researchers have used ANN to predict UCS

from other rock properties (Yagiz et al. 2012; Jalali

et al. 2017; Aboutaleb et al. 2018; Ren et al. 2019).

Table 17 presents some ANN-based models for pre-

diction of UCS for different types of rock and when

different types of rock are mixed. It can be deduced

that ANN provide promising performances with most

R2 values in the database greater than 0.86. However,

the performance of an ANN model depends on many

factors including the number of dataset and the

training algorithm of ANN used.

Table 13 Empirical equations for estimating UCS based on Brazilian tensile strength

S/

N

Relationship No of

data

R2 Rock types Country of origin References

1 UCS ¼ 10:33TS0:89 22 0.94 Sedimentary India Chatterjee and Mukhopadhyay

(2002)

2 UCS ¼ 6:89TSþ 5:39 22 0.93 Sedimentary India Chatterjee and Mukhopadhyay

(2002)

3 UCS ¼ 10:61BTS 46 0.54 Mixed Turkey Kahraman et al. (2012)

4 UCS ¼ 7:86BTS� 447:63 37 0.92 Sedimentary USA Farah (2011)

5 UCS ¼ 6:8TSþ 13:5 82 0.65 Sedimentary

(Greywacke)

Turkey Gokceoglu and Zorlu (2004)

6 UCS ¼ 12:308TS1:0725 143 0.90 Mixed Several countries Altindag and Guney (2010)

7 UCS ¼ 9:25TS0:947 20 0.90 Sedimentary Malaysia Nazir et al. (2013)

8 UCS ¼ 15:361TS� 10:303 40 0.82 Mixed Malaysia Mohamad et al. (2015)

9 UCS ¼ 12:195BTS 406 NA Sedimentary Nigeria Clifford (1991)

10 UCS ¼ 7:53BTS 60 0.45 Sedimentary Pakistan Tahir et al. (2011)

11 UCs ¼ 6:75BTS1:08 22 0.80 Igneous USA Kallu and Roghanchi (2015)

12 UCS ¼ 10:03BTSþ 55:19 8 0.92 Metamorphic Iran Fereidooni (2016)

13 UCS ¼ 10:4TSþ 18:2 7 0.63 Sedimentary UK, France and

Denmark

Aliyu et al. (2019)

14 UCS ¼ 12:4TS� 9 10 0.76 Sedimentary USA Gunsallus and Kulhawy (1984)

TS tensile strength, BTS Brazilian tensile strength
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Table 14 Empirical equations for estimating UCS based on Point load strength

S/

N

Relationship No

of

data

R2 Rock types Country of

origin

References

1 UCS ¼ 8:66Is 50ð Þ þ 10:85 75 0.76 Sedimentarya Turkey Cobanoglu and Celik (2008)

2 UCS ¼ 7:18Is 50ð Þ þ 27:78 15 0.80 Sedimentaryb Turkey Cobanoglu and Celik (2008)

3 UCS ¼ 11:78Is 50ð Þ � 9:17 15 0.91 Sedimentaryc Turkey Cobanoglu and Celik (2008)

4 UCS ¼ 10:73Is 50ð Þ � 5:50 15 0.88 Sedimentaryd Turkey Cobanoglu and Celik (2008)

5 UCS ¼ 8:87Is 50ð Þ þ 4:11 15 0.86 Sedimentarye Turkey Cobanoglu and Celik (2008)

6 UCS ¼ 8:25Is 50ð Þ þ 14:02 15 0.67 Sedimentaryf Turkey Cobanoglu and Celik (2008)

7 UCS ¼ 5:0961Is 50ð Þ � 0:533 19 0.83 Sedimentary Turkey Dincer et al. (2008)

8 UCS ¼ 6:088 ln Is 50ð Þ
� �

þ 4:833 19 0.81 Sedimentary Turkey Dincer et al. (2008)

9 UCS ¼ 4:413Is1:162
50ð Þ 19 0.82 Sedimentary Turkey Dincer et al. (2008)

10 UCS ¼ 1:662e0:932Is 50ð Þ 19 0.77 Sedimentary Turkey Dincer et al. (2008)

11 UCS ¼ 8:41Is 50ð Þ þ 9:51 27 0.85 Mixed Turkey Kahraman (2001)

12 UCS ¼ 15:31Is 50ð Þ 23 0.83 Mixed Turkey Sulukcu and Ulusay (2001)

13 UCS ¼ 7:3I1:71s 50ð Þ 188 0.82 Sedimentary Greece Tsiambaos and Sabatakakis

(2004)

14 UCS ¼ 10:22Is 50ð Þ þ 24:31 23 0.75 Mixedg Turkey Kahraman et al. (2005)

15 UCS ¼ 24:83Is 50ð Þ � 39:64 15 0.72 Mixedh Turkey Kahraman et al. (2005)

16 UCS ¼ 18Is 50ð Þ 40 0.97 Igneous Hong Kong Basu and Aydin (2006)

17 UCS ¼ 13:4Is 50ð Þ 39 0.89 Mixed Indonesia Agustawijaya (2007)

18 UCS ¼ 12:4Is 50ð Þ � 9:0859 39 0.81 Sedimentary

(gypsum)

Turkey Yilmaz and Yuksek (2008)

19 UCS ¼ 19:79Is 50ð Þ 32 0.74 Metamorphic Greece Diamantis et al. (2009)

20 UCS ¼ 14:63Is 50ð Þ 60 0.88 Mixed India Mishra and Basu (2012)

21 UCS ¼ 16:4Is 50ð Þ 329 0.92 Mixed Japan Kohno and Maeda (2012)

22 UCS ¼ 12:291Is 50ð Þ þ 5:892 40 0.96 Mixed Malaysia Mohamad et al. (2015)

23 UCS ¼ 20:7Is 50ð Þ þ 4:299 22 0.92 Mixed USA Deere and Miller (1966)

24 UCS ¼ 12:5Is 50ð Þ 21 0.73 Igneous Hong Kong Chau and Wong (1996)

25 UCS ¼ 22:792Is 50ð Þ þ 13:295 35 0.88 Sedimentary (hard

rocks)

Pakistan Akram and Bakar (2007)

26 UCS ¼ 11:076Is 50ð Þ 16 0.89 Sedimentary (soft

rocks)

Pakistan Akram and Bakar (2007)

27 UCS ¼ 10:92Is 50ð Þ þ 24:24 52 0.56 Mixed Turkey Kahraman and Gunaydin

(2009)

28 UCS ¼ 22:8Is 50ð Þ 7 0.99 Metamorphic

(quartzite)

India Singh et al. (2012)

29 UCS ¼ 15:8Is 50ð Þ 19 0.91 Metamorphic

(khondalite)

India Singh et al. (2012)

30 UCS ¼ 22:2Is 50ð Þ 6 0.78 Metamorphic

(quartzitel)

India Singh et al. (2012)

31 UCS ¼ 21:9Is 50ð Þ 10 0.89 Sedimentary

(sandstone)

India Singh et al. (2012)

32 UCS ¼ 16:1Is 50ð Þ 7 0.71 Sedimentary (rock

salts)

India Singh et al. (2012)

33 UCS ¼ 14:4Is 50ð Þ 6 0.82 Sedimentary (shale) India Singh et al. (2012)
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Table 14 continued

S/

N

Relationship No

of

data

R2 Rock types Country of

origin

References

34 UCS ¼ 23:3Is 50ð Þ 21 0.97 Igneous (gabbro) India Singh et al. (2012)

35 UCS ¼ 23:5Is 50ð Þ 7 0.98 Metamorphic

(amphibolite)

India Singh et al. (2012)

36 UCS ¼ 21Is 50ð Þ 6 0.96 Metamorphic

(epidiorite)

India Singh et al. (2012)

37 UCS ¼ 22:3Is 50ð Þ 8 0.68 Sedimentary

(limestone)

India Singh et al. (2012)

38 UCS ¼ 22:7Is 50ð Þ 9 0.82 Sedimentary

(dolomite)

India Singh et al. (2012)

39 UCS ¼ 10:99Is 50ð Þ þ 7:042 15 0.92 Sedimentarym Iran Heidari et al. (2012)

40 UCS ¼ 11:96Is 50ð Þ þ 10:94 15 0.94 Sedimentaryn Iran Heidari et al. (2012)

41 UCS ¼ 13:29Is 50ð Þ þ 5:251 15 0.90 Sedimentaryo Iran Heidari et al. (2012)

42 UCS ¼ 4:792Is 50ð Þ þ 44:37 21 0.75 Metamorphic India Tandon and Gupta (2015)

43 UCS ¼ 5:602Is 50ð Þ þ 4:380 9 0.96 Igneous (granitoid) India Tandon and Gupta (2015)

44 UCS ¼ 3:103Is 50ð Þ þ 17:95 12 0.40 Igneous (gneiss) India Tandon and Gupta (2015)

45 UCS ¼ 2:479Is 50ð Þ þ 24:68 12 0.37 Metamorphic India Tandon and Gupta (2015)

46 UCS ¼ 10:53Is 50ð Þ þ 7:615 6 0.91 Sedimentary India Tandon and Gupta (2015)

47 UCS ¼ 3:125Is 50ð Þ þ 40:08 60 0.41 Mixed India Tandon and Gupta (2015)

48 UCS ¼ 24Is 390 NA Mixedp Several countries Bieniawski (1975)

49 UCS ¼ 21Is 240 NA Mixedq Several countries Bieniawski (1975)

50 UCS ¼ 18Is 255 NA Mixedr Several countries Bieniawski (1975)

51 UCS ¼ 17:81I1:06s 50ð Þ 32 0.82 Metamorphic Greece Diamantis et al. (2009)

52 UCS ¼ 16:45exp0:39Is 32 0.80 Metamorphic Greece Diamantis et al. (2009)

53 UCS ¼ 21:54Is 50ð Þ � 6:02 32 0.74 Metamorphic Greece Diamantis et al. (2009)

54 UCS ¼ 7:62I1:74s 50ð Þ 240 0.81 Sedimentary (general) Greece Sabatakakis et al. (2008)

55 UCS ¼ 25:3Is 50ð Þ 240 0.71 Sedimentary Greece Sabatakakis et al. (2008)

56 UCS ¼ 13Is 50ð Þ 240 0.49 Sedimentaryi Greece Sabatakakis et al. (2008)

57 UCS ¼ 24Is 50ð Þ 240 0.36 Sedimentaryj Greece Sabatakakis et al. (2008)

58 UCS ¼ 28Is 50ð Þ 240 0.53 Sedimentaryk Greece Sabatakakis et al. (2008)

59 UCS ¼ 15:25Is 50ð Þ 19 0.98 Igneous Turkey Tugrul and Zarif (1999)

60 UCS ¼ 56:939 ln Is 50ð Þ
� �

� 1:6551 40 0.93 Sedimentary Iran Azimian et al. (2014)

61 UCS ¼ 43:8981Is 50ð Þ � 57:134 53 0.76 Sedimentary Iran Heidari et al. (2018)

62 UCS ¼ 90:14I0:92s 50ð Þ 143 0.91 Igneous USA Kallu and Roghanchi (2015)

63 UCS ¼ 16:5Is 50ð Þ þ 51 10 0.69 Sedimentary USA Gunsallus and Kulhawy

(1984)

64 UCS ¼ 16Is 50ð Þ 11 NA Igneous India Ghosh and Srivastava

(1991)

65 UCS ¼ 23Is 50ð Þ 30 NA Sedimentary USA Smith (1997)

66 UCS ¼ 9:08Is 50ð Þ þ 39:32 11 0.85 Mixed Turkey Fener et al. (2005)

67 UCS ¼ 8:2Is 50ð Þ þ 36:43 17 0.68 Igneous Turkey Kahraman and Gunaydin

(2009)

68 UCS ¼ 18:45Is 50ð Þ � 13:63 16 0.77 Metamorphic Turkey Kahraman and Gunaydin

(2009)
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Table 14 continued

S/

N

Relationship No

of

data

R2 Rock types Country of

origin

References

69 UCS ¼ 29:77Is 50ð Þ � 51:49 19 0.78 Sedimentary Turkey Kahraman and Gunaydin

(2009)

70 UCS ¼ 11:103Is 50ð Þ þ 37:659 34 0.86 Metamorphic India Basu and Kamran (2010)

71 UCS ¼ 17:6Is 50ð Þ þ 13:5 7 0.88 Sedimentary UK, France and

Denmark

Aliyu et al. (2019)

72 UCS ¼ 24Is 50ð Þ 15 0.88 Igneous United Kingdom Broch and Franklin (1972)y

73 UCS ¼ 9:459Is 50ð Þ 419 0.68 Mixed United Arab

Emirates

Salah et al. (2014)

74 UCS ¼ 18:71Is 50ð Þ 35 0.60 Mixed Several countries Thuro et al. (2001)

75 UCS ¼ 2:59Is 50ð Þ þ 0:21 t 22 0.65 Sedimentary UAE Elhakim (2015)

76 UCS ¼ 2:86Is 50ð Þ
u 22 0.64 Sedimentary UAE Elhakim (2015)

77 UCS ¼ 24:36Is 50ð Þ � 2:14 8 0.99 Metamorphic Iran Fereidooni (2016)

78 UCS ¼ 5:575Is 50ð Þ þ 21:92 15 0.93 Sedimentaryv Iran Heidari et al. (2012)

79 UCS ¼ 7:557Is 50ð Þ þ 23:68 15 0.94 Sedimentaryw Iran Heidari et al. (2012)

80 UCS ¼ 3:495Is 50ð Þ þ 24:84 15 0.89 Sedimentaryx Iran Heidari et al. (2012)

81 UCS ¼ 23Is 54ð Þ þ 13 14 0.94 Sedimentary

(Limestone)

USA Cargill and Shakoor (1990)

aCombination of 54, 48, 42, 30 and 21 mm core diameter sizes
b54 mm core diameter size only
c48 mm core diameter size only
d42 mm core diameter size only
e30 mm core diameter size only
f21 mm core diameter size only
gRocks with porosity[ 1%
hRocks with porosity\ 1%
iRocks with Is\ 2 MPa
jRocks with Is = 2–5 MPa
kRocks with Is[ 5 MPa
lQuartzite sample is finer-grained with higher porosity when compared to the other quartzite sample considered in that study
mPoint load determined axially for saturated state
nPoint load determined diametrically for saturated state
oPoint load determined using irregular samples for saturated state
pCore diameter size is 54 mm (NX)
qCore diameter size is 42 mm (BX)
rCore diameter size is 21.5 mm (EX)
sRocks with Is(50)[ 3.5 MPa
tLinear correlation with non-zero intercept
uLinear correlation with zero intercept
vPoint load determined axially for air-dried state
wPoint load determined diametrically for air-dried state
xPoint load determined using irregular samples for air-dried state
yUCS and Is(50) in MN/m2
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5.2 Support Vector Machine

SVM models are supervised learning models with

associated learning algorithms that analyse data used

for classification and regression analysis (Aboutaleb

et al. 2018). It is an approach of artificial intelligence

that enables non-linear mapping of an n-dimensional

input space into a higher-dimensional feature space

where, for example, a linear classifier can be used. The

method can train non-linear models based on the

structural risk minimization principle that seeks to

minimize an upper bound of the generalization error

rather than minimize the empirical error as imple-

mented in other neural networks (Khandelwal et al.

2010). The approach has been used in rock mechanics

to estimate UCS (Ceryan 2014; Ren et al. 2019).

Table 18 lists some SVM-based estimation of UCS

from other rock properties. The analysis of the R2 of

the studies compiled show that SVM models have R2

value ranging from 0.60 to 0.99.

5.3 Fuzzy Inference System

A fuzzy inference system (FIS) is a system that uses

fuzzy set theory to map inputs to outputs (Gokceoglu

and Zorlu 2004). Fuzzy logic accomplishes machine

intelligence by providing a mean for representing and

reasoning about human knowledge that is imprecise

by nature (Gupta and Kulkami 2013). Fuzzy inference

is a method that interprets the values in the input

vector and based on some sets of rules, assigns values

to the output vector. In fuzzy logic, the truth of any

statement becomes a matter of a degree. FIS has been

used in rock mechanics to estimate rock properties.

Specifically, the technique has been to estimate UCS

from other rock properties (Grima and Babuška 1999;

Gokceoglu and Zorlu 2004; Karakus and Tutmez

2006; Heidari et al. 2018). Table 19 lists some FIS-

based estimation of UCS of different rock types from

other rock properties. The analysis of the R2 of the

studies compiled show that FIS models have R2 values

ranging from 0.64 to 0.98.

5.4 Genetic Programming

Genetic programming (GP) is a technique of evolving

programs, starting from a population of usually

random programs, fit for a task by applying operations

analogous to natural genetic processes to the popula-

tion of programs. It is a technique for the automatic

generation of computer programs by means of natural

selection (Beiki et al. 2013). The GP process starts by

creating a large initial population of programs that are

random combinations of elements from the problem-

specific function sets and terminal sets. Improvements

are made possible by stochastic variation of programs

and selection according to pre-specified criteria for

judging the quality of a solution (Brameier and

Banzhaf 2001). GP has been used in rock mechanics

for estimating UCS from other properties (Canakci

et al. 2009; Armaghani et al. 2018). Table 20 lists

some studies where GP has been used to estimate UCS

from other rock properties. The statistics of the R2

values of the models generated for the studies listed in

the table shows a range of 0.63–0.97.

5.5 Hybrid Artificial Neural Network

ANN has several disadvantages such as long training

time, unwanted convergence to local instead of global

optimal solution, and large number of parameters

(Liou et al. 2009). To overcome these drawbacks,

there have been attempts to remedy some of these

disadvantages by combining ANN with another algo-

rithm that can take care of a specific problem. Hybrid

forms of ANN such as ANFIS, PSO-ANN, ICA-ANN,

Table 15 Statistics of regression equations for estimating UCS from Tables 11, 12, 13, and 14

S/N Input property for regression equations No of data Range of R2

Range Mean

1 Block punch index 23–1150 150 0.71–0.95

2 Young’s modulus 10–152 46 0.33–0.88

3 Brazilian tensile strength 7–406 66 0.45–0.94

4 Point load strength 6–419 58 0.36–0.99
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Table 16 Multiple regression equations for estimating UCS from other rock properties

S/

N

Relationship No

of

data

Input parameters R2 Rock types Country of

origin

References

1 UCS ¼ �6:319þ 4:27qþ
4:418Vp þ 0:427c

19 Density q, P-wave velocity
Vp, unit weight c

0.90 Sedimentary Turkey Dincer et al.

(2008)

2 UCS ¼ 142:47� e�9:561=q:Vp 64 Density q, P-wave velocity
Vp

0.56 Sedimentary Iran Moradian

and Behnia

(2009)

3 UCS ¼ �7:708þ 92:722vþ 0:866Ed 482 Poisson ratio vð Þ, dynamic

Young’s modulus Edð Þ
0.897 Sedimentary Iran Aboutaleb

et al.

(2018)

4 UCS ¼ 0:079e�0:039nL1:1s
9 Porosity n, equotip

hardness number Ls

0.88 Mixed Japan and

Indonesia

Aoki and

Matsukura

(2008)

5 UCS ¼ 69:505qdry þ 0:025Vp

�0:479Qtz� 1:439Plg� 158:796

45 Dry density ðqdryÞ, P-wave
velocity Vp, quartz

content Qtzð Þ,
plagioclase content Plgð Þ

0.55 Igneous Malaysia Armaghani

et al.

(2015)

6 UCS ¼ 6:24Is 50ð Þ þ 25:8Vp � 90:3 150 Point load strength Is(50),

P-wave velocity

0.85 Sedimentary Turkey Cobanoglu

and Celik

(2008)

7 UCS ¼ 4:14Is 50ð Þ þ 29:8Vp

þ0:54 Nð Þ � 116

150 Point load strength Is(50),

P-wave velocity Vp,

Schmidt hardness

rebound (N)

0.99 Sedimentary Turkey Cobanoglu

and Celik

(2008)

8 UCS ¼ 6:9� 10 0:0087cNþ0:16½ � 28 Schmidt hardness rebound

(N), unit weight c
0.94 Mixed USA Deere and

Miller

(1966)

9 UCS ¼ 6:9� 10 1:348 log cNð Þ�1:325½ � 25 Unit weight c, Schmidt

hardness number

0.80 Mixed USA Aufmuth

(1973)

10 UCS ¼ 12:74e 0:185cNð Þ 20 Unit weight c, Schmidt

hardness Rebound (N)
NA Mixed USA Berverly

et al.

(1979)

11 UCS ¼ 0:447e 0:045 Nþ3:5ð Þþc½ � 5 Unit weight c, Schmidt

hardness rebound (N)
Sedimentary USA Kidybinski

(1980)

12 UCS ¼ 4:5� 10�4 Ncð Þ2:46 10 Unit weight c, Schmidt

hardness rebound (N)
0.93 Sedimentary Turkey Kahraman

(1996)

13 UCS ¼ �6:319þ 4:418

�10�3Vp þ 0:427c
19 P-wave velocity Vp, unit

weight c
0.95 Sedimentary Turkey Dinçer et al.

(2008)

14 UCS ¼ 3V4
pV

�2:85
s

46 P-wave Vp and S-wave Vs

velocities

NA Sedimentary Turkey Uyanik et al.

(2019)

15 UCS ¼ 52:214� 527:77GS

þ80:86SF þ 0:526Qtz2
30 Grain size GSð Þ, shape

factor SFð Þ, quartz
content (QtzÞ

0.84 Metamorphic China Ali et al.

(2014)
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Table 16 continued

S/

N

Relationship No

of

data

Input parameters R2 Rock types Country

of origin

References

16 UCS ¼ ð�25:8 ln Dð Þ þ 153:5Þ ln SCSIð Þ
�ð83:51 ln Dð Þ þ 310:2Þ

600 Particle diameter Dð Þ,
single compressive

strength index SCSIð Þ

0.91 Sedimentary Iran Cheshomi

and

Sheshde

(2013)

17 UCS ¼ �0:3Dþ 1:92ð ÞSCSI
þ 1:24Dþ 6:72ð Þ

300 Particle diameter (D),

single compressive

strength index (SCSI)

0.96 Sedimentary Iran Cheshomi

et al.

(2015)

18 UCS ¼ 0:121SCSI � 7:462Dþ 63:98 10 Single compressive strength

index, particle diameter

0.66 Sedimentary Iran Ashtari

et al.

(2019)

(D = 3-

10 mm)

19 UCS ¼ 10:61Is 50ð Þ
þ6:8710�2Vp � 339:48

32 Point load strength, P-wave

velocity

0.88 Metamorphic Greece Diamantis

et al.

(2009)

20 UCS ¼ 10:51Is 50ð Þ þ 27:45cd � 675:50 32 Point load strength, dry unit

weight

0.86 Metamorphic Greece Diamantis

et al.

(2009)

21 UCS ¼ 12:15Is 50ð Þ � 1:78bþ 169:72 32 Point load strength, degree

of serpentinization bð Þ
0.83 Metamorphic Greece Diamantis

et al.

(2009)

22 UCS ¼ 8:0710�2Vp � 0:92b� 295:49 32 P-wave velocity, degree of

serpentinization

0.82 Metamorphic Greece Diamantis

et al.

(2009)

23 UCS ¼ 6:5710�2Vp þ 17:50cd � 739:38 32 P-wave velocity, dry unit

weight

0.81 Metamorphic Greece Diamantis

et al.

(2009)

24 UCS ¼ 36:31cd � 0:59b� 821:85 32 Dry unit weight, degree of

serpentinization

0.80 Metamorphic Greece Diamantis

et al.

(2009)

25 UCS ¼ 5:01Is 50ð Þ
þ5:52e0:0004Vp � 3:53

85 Point load strength, P-wave

velocity

0.83 Igneous

(Grade 3

weathering)

Macau Ng et al.

(2015)

26 UCS ¼ expð�0:08008hþ 0:01630e
�0:28813d þ 4:12057

65 Nail penetration depth

(h) (mm), NailGun energy

(e) (J), nail diameter

(d) (mm)

0.95 Mixed Turkey Selcuk and

Kayabali

(2015)

27 UCS ¼ 0:88� q2:24 � SH0:22 � CI0:89 44 Density, shore hardness

(SH), cone indenter CIð Þ
0.55 Mixed England

and

Turkey

Tiryaki

(2008)

28 lnUCS ¼ 4:3� 10�2 Ncdð Þ þ 1:2 7 Schmidt hardness number,

Dry density

0.93 Sedimentary

(sandstones)

USA Cargill and

Shakoor

(1990)

29 lnUCS ¼ 1:8� 10�2 Ncdð Þ þ 2:9 7 Schmidt hardness number,

Dry density

0.98 Sedimentary

(carbonates)

USA Cargill and

Shakoor

(1990)

30 UCS ¼ 0:476PD� 0:017CC
�0:049Qþ 0:065

138 Packing density ðPD),
concavo-convex CCð Þ,
quartz content Qð Þ

0.53 Sedimentary

(sandstones)

Turkey Zorlu et al.

(2008)
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Table 16 continued

S/

N

Relationship No

of

data

Input parameters R2 Rock types Country

of origin

References

31 UCS ¼ 13:244Is 50ð Þ þ 0:13Vp � 16:987 40 Point load index,

P-wave velocity

0.94 Sedimentary

(marlstone)

Iran Azimian et al.

(2014)

32 UCS ¼ 1:277N þ 2:186BPI þ 16:41Is 50ð Þ
þ0:011Vp � 82:436

108 Schmidt hardness

number, Block punch

index, point load

strength, P-wave

velocity

0.91 Sedimentary Iran Heidari et al.

(2018)

33 UCS ¼ 47:11Is 50ð Þ þ 0:006iþ 1:59JO 5 Point load strength,

asperity angle ið Þ,
joint orientation JOð Þ

0.68 Mixed India Kabilan et al.

(2017)

JO = 0�
34 UCS ¼ 13:371Is 50ð Þ þ 0:005iþ 0:62JO 5 Point load strength,

asperity angle, joint

orientation

0.90 Mixed India Kabilan et al.

(2017)

JO[ 0�
35 UCS ¼ �595:303� 442:363Vp

þ45:338V2
p � 6:1nþ 0:52n2

þ28:314Is 50ð Þ � 4:061I2s 50ð Þ
þ115:822N � 2:007N2

30 P-wave velocity,

porosity, point load

strength, Schmidt

hardness number

0.64 Sedimentary Iran Dehghan et al.

(2010)

36 UCS ¼ 38� 352:26n� 5:3Cfc
þ10:67Cf þ 93:15M

44 Void Percent, ferroan

calcitic cement Cfcð Þ,
ferruginous cement

Cfð Þ mica percentage

Mð Þ

0.57 Sedimentary Nepal Manouchehrian

et al. (2012)

37 UCS ¼ 0:035Vp þ 3:158Id2
�0:954q� 342:729

94 P-wave velocity, slake

durability index (2nd

cycle), density

0.94 Sedimentary

(coal)

India Sharma et al.

(2017)

38 UCS ¼ �727þ 0:0427UPV
þ19:3WAþ 33DD
þ95SDþ 86BD

52 Ultrasound pulse

velocity UPVð Þ;
water absorption

(WA), dry density

(DD), saturated

density (SDÞ, bulk
density BDð Þ

0.64 Igneous Turkey Canakci et al.

(2009)

39 UCS ¼ �229þ 3:74N þ 76:2q� 3:24n 93 Schmidt hardness

number, density,

porosity

0.90 Mixed Iran Majdi and

Rezaei (2013)

40 UCS ¼ 1:277N þ 2:86BPI
þ16:41Is 50ð Þ þ 0:011Vp � 82:436

53 Schmidt hardness

number, Block punch

index, point load

strength, P-wave

velocity

0.91 Sedimentary Iran Jalali et al

(2017)

41 UCS ¼ �11:813� 2:572nþ 23:665Is 50ð Þ
þ41:654vþ 12:197q� 0:001Vp

163 Porosity, point load

strength, Poisson’s

ratio, density and

P-wave velocity

0.91 Sedimentary India Madhubabu

et al (2016)

42 UCS ¼ 34:186DDþ 0:838Id2
þ2:308BTS� 109:184

47 Dry Density, Slake

durability Index,

Brazilian Tensile

Strength

0.93 Sedimentary Malaysia Armaghani

et al. (2018)
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Table 17 ANN-based models for prediction of UCS from other rock properties

S/

N

Output Input No

of

data

R2 Rock types Country

of origin

References

1 UCS Dynamic poisson ratio 425 0.56 Sedimentary Iran Aboutaleb et al.

(2018)

2 UCS Dynamic poisson ratio 425 0.58 Sedimentary Iran Aboutaleb et al.

(2018)

3 UCS Dynamic poisson ratio; Young’s modulus 425 0.90 Sedimentary Iran Aboutaleb et al.

(2018)

4 UCS Dynamic poisson ratio; Young’s modulus 425 0.92 Sedimentary Iran Aboutaleb et al.

(2018)

5 UCS Equotip number, porosity, density, grain size 33 0.97 Mixed Spain Meulenkamp

and Grima

(1999)

6 UCS Petrography study values (mineral composition, grain

size, aspect ratio, form factor, area weighting and

orientation of foliation planes of weakness

112 NA Metamorphic India Singh et al.

(2001)

7 UCS Quartz content, packing density, concavo convex 138 0.87 Sedimentary Turkey Zorlu et al.

(2008)

8 UCS P-wave velocity, point load strength, Schmidt hardness

number, porosity

30 0.86 Sedimentary Iran Dehghan et al.

(2010)

9 UCS Porosity, bulk density, water saturation 5000 0.98 Mixed Iran Rabbani et al.

(2012)

10 UCS Porosity, slake durability index, P-wave velocity in solid

part of the sample, effective porosity, petrography

study values

55 0.88 Sedimentary Turkey Ceryan et al.

(2012)

11 UCS Dry density, P-wave velocity, quartz content,

plagioclase content

45 0.99 Igneous Malaysia Armaghani

et al. (2015)

12 UCS Density, shore hardness, cone indenter hardness 0.40 Mixed England

and

Turkey

Tiryaki (2008)

13 UCS Effective porosity, slake durability index, point load

strength

39 0.93 Sedimentary Turkey Yilmaz and

Yuksek

(2008)

14 UCS Origin of rocks, two/four-cycle slake durability index

and clay content

56 0.98 Sedimentary Turkey Cevik et al.

(2011)

15 UCS Unit weight, shore hardness, porosity, P-wave velocity,

slake durability index

54 0.50 Sedimentary Turkey Yagiz et al.

(2012)

16 UCS Porosity, density, P-wave Velocity, Poisson ratio, point

load strength

NA 0.97 - India Madhubabu

et al. (2016)

17 UCS Grain size, shape factor, quartz content 30 0.95 Metamorphic China Ali et al. (2014)

18 UCS Cone indenter, density and Shore hardness 44 0.63 Mixed England

&

Turkey

Tiryaki (2008)

19 UCS Packing density, concavo-convex, quartz content 138 0.82 Sedimentary

(sandstones)

Turkey Zorlu et al.

(2008)

20 UCS Amplitude attenuation coefficient, high and low

frequency ratio

1614 0.99 Mixed China Ren et al.

(2019)

21 UCS P-wave velocity, porosity, point load strength 30 0.93 Sedimentary Iran Dehghan et al.

(2010)

22 UCS Void percent, ferroan calcitic cement, ferruginous

cement, mica percentage

44 0.77 Sedimentary Nepal Manouchehrian

et al. (2012)
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and GA-ANN have been used to predict UCS of rocks

bymany studies (Monjezi et al. 2012; Armaghani et al.

2016; Jalali et al. 2017; Mohamad et al. 2018).

Table 21 lists some studies where Hybrid forms of

ANN have been used to estimate UCS from other rock

properties. The statistics of the R2 values of the models

generated for the studies range from 0.60 to 0.99.

Compared to other forms of artificial intelligence

approaches, the hybrid ANNs produced higher R2

values, indicating that they have more prediction

capability compared to those forms of artificial

intelligence that are not hybrid.

6 Summary and Conclusions

This study made a compilation of empirical relations

for estimating UCS from other rock properties

reported in the literature for the three types of rock

and for cases where different rock types are mixed.

Table 17 continued

S/

N

Output Input No

of

data

R2 Rock types Country

of origin

References

23 UCS P-wave velocity, porosity, density 133 0.96 Sedimentary

(Sandstones)

UAE Jahanbakhshi

et al. (2011)

24 UCS P-wave velocity, density, porosity 105 0.95 Sedimentary Iran Torabi-Kaveh

et al. (2015)

25 UCS P-wave velocity, point load strength, Schmidt hardness

number, porosity

30 0.86 – NA Garret (1994)

26 UCS Density, P-wave velocity, point load strength, Schmidt

hardness number

66 0.71 Mixed Malaysia Momeni et al.

(2015)

27 UCS P-wave velocity, slake durability index, density 70 0.95 Sedimentary

(Coal)

India Sharma et al.

(2017)

28 UCS Ultrasound pulse velocity, water absorption, dry density,

saturated density, bulk density

52 0.98 Igneous Turkey Canakci et al.

(2009)

29 UCS Schmidt hardness number, density, porosity 93 0.97 Mixed Iran Majdi and

Rezaei (2013)

30 UCS Schmidt hardness number, Block punch index, Point

load strength, P-wave velocity

106 0.96 Sedimentary Iran Jalali et al

(2017)

31 UCS Dry density, moisture content, P-wave velocity, point

load strength, slake durability index

228 0.94 Sedimentary Malaysia Mohamad et al.

(2018)

Table 18 Support vector machine

S/

N

Output

layer

Input layer No of

data

R2 Rock types Country of

origin

References

1 UCS Poisson ratio, Young’s modulus 397 0.60 Sedimentary Iran Aboutaleb et al.

(2018)

2 UCS Young’s modulus 397 0.85 Sedimentary Iran Aboutaleb et al.

(2018)

3 UCS Poisson ratio, Young’s modulus 397 0.92 Sedimentary Iran Aboutaleb et al.

(2018)

4 UCS Porosity, durability index 47 0.77 Mixed Turkey Ceryan (2014)

5 UCS Amplitude attenuation coefficient, high and low

frequency ratio

1614 0.99 Mixed NA Ren et al. (2019)

123

Geotech Geol Eng (2021) 39:4427–4455 4447



Table 19 Fuzzy inference system

S/

N

Output

layer

Input layer No of

data

R2 Rock types Country

of origin

References

1 UCS Schmidt hardness number, density, porosity 93 0.95 Sedimentary Iran Rezaei et al.

(2014)

2 UCS Petrographic composition 102 0.92 Igneous Turkey Gokceoglu

(2002)

3 UCS P-wave velocity, block punch index, point load

strength, tensile strength

82 0.67 Sedimentary Turkey Gokceoglu and

Zorlu (2004)

4 UCS Petrographic composition NA 0.64 Igneous Turkey Sonmez et al.

(2004)

5 UCS Point load strength, shore hardness, P-wave velocity NA 0.97 Mixed Karakus and

Tutmez (2006)

6 UCS Clay content, slake durability index 68 0.88 Sedimentary Turkey Gokceoglu et al.

(2009)

7 UCS Block punch index, point load strength, shore

hardness, P-wave velocity

60 0.98 Mixed India Mishra and Basu

(2012)

8 UCS Grain size, shape factor, quartz content 30 0.91 Metamorphic China Ali et al. (2014)

9 UCS Block point index, Schmidt hardness number, point

load strength, P-wave velocity

288 0.91 Sedimentary Iran Heidari et al.

(2018)

10 UCS Density, Equotip value, porosity 226 NA Mixed Grima and

Babuška

(1999)

11 UCS Schmidt hardness number, Block punch index, Point

load strength, P-wave velocity

106 0.91 Sedimentary Iran Jalali et al

(2017)

Table 20 Genetic programming

S/

N

Output

layer

Input layer No

of

data

R2 Rock types Country

of origin

References

1 UCS Density, porosity, P-wave velocity 72 0.83 Sedimentary Iran Beiki et al.

(2013)

2 UCS P-wave velocity, water absorption, density 106 0.86 Sedimentary Turkey Baykasoğlu

et al. (2008)

3 UCS Quartz content, density, porosity, shore hardness, cone

indenter hardness

44 0.63 Sedimentary Nepal Manouchehrian

et al. (2013)

4 UCS Dry density, slake durability index, Brazilian tensile

strength

47 0.97 Sedimentary Malaysia Armaghani

et al. (2018)

5 UCS Ultrasound pulse velocity, water absorption, dry density,

saturated density, bulk density

52 0.88 Igneous Turkey Canakci et al.

(2009)

6 UCS Origin of rocks, two-cycle slake durability index and

clay content

56 0.96 Sedimentary Turkey Cevik et al.

(2011)

7 UCS Origin of rocks, four-cycle slake durability index and

clay content

56 0.97 Sedimentary Turkey Cevik et al.

(2011)

8 UCS Bottom ash dosage, dry unit weight, relative compaction,

brittleness index, energy absorption capacity

70 0.85 Sedimentary Turkey Güllü (2014)
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Based on the database developed, typical ranges and

mean of data used in developing the regressions, and

the range and mean of the R2 values of regressions for

estimating UCS from other rock properties were

evaluated and summarised. The empirical relation-

ships considered in this study include simple

Table 21 Hybrid based ANN for prediction of UCS from other rock properties

S/

N

Model type Output

layer

Input layer No

of

data

R2 Rock types Country

of origin

References

1 Genetic Algorithm

Artificial Neural

Network (GA-ANN)

UCS Density, rock quality designation

(RQD), porosity, number of

joints per meter, geological

strength index,

120 NA Sedimentary Iran Majdi and

Beiki

(2010)

2 UCS Porosity, density, Shore hardness 93 0.96 Mixed Iran Monjezi

et al.

(2012)

3 Particle Swarm

Optimisation Artificial

Neural Network

(PSO-ANN)

UCS Density, P-wave velocity, point

load strength, Schmidt hardness

number

66 0.97 Mixed Malaysia Momeni

et al.

(2015)

4 UCS Point load strength, Brazilian

tensile strength, bulk density,

P-wave velocity

40 0.97 Mixed Malaysia Mohamad

et al.

(2015)

5 UCS Dry density, moisture content,

P-wave velocity, point load

strength, slake durability index

228 0.96 Sedimentary Malaysia Mohamad

et al.

(2018)

6 UCS Dry density, moisture content,

P-wave velocity, point load

strength, slake durability index

228 0.92 Sedimentary Malaysia Mohamad

et al.

(2018)

7 Imperialist Competitive

Algorithm Artificial

Neural Network (ICA-

ANN)

UCS Shore hardness, point load

strength, P-wave velocity

124 0.94 Mixed Malyasia Armaghani

et al.

(2016)

8 UCS Porosity, shore hardness, P-wave

velocity, point load strength

124 0.92 Mixed Malyasia Armaghani

et al.

(2016)

9 Adaptive neuro-fuzzy

inference system

(ANFIS)

UCS P-wave velocity, point load

strength, Schmidt hardness

number, water content

121 0.94 Sedimentary Turkey Yilmaz and

Yuksek

(2008)

10 UCS Brazilian tensile strength, P-wave

velocity

75 0.60 Igneous Turkey Yesiloglu-

Gultekin

et al.

(2013)

11 UCS Petrographic composition 75 0.83 Igneous Turkey Yesiloglu-

Gultekin

et al.

(2013)

12 UCS Dry density, P-wave velocity,

quartz content, plagioclase

content

45 0.99 Igneous Malaysia Armaghani

et al.

(2015)

13 UCS P-wave velocity, slake durability

index, density

70 0.98 Mixed India Sharma

et al.

(2017)

14 UCS Schmidt hardness number, block

punch index, point load strength,

P-wave velocity

106 0.99 Sedimentary

(coal)

Iran Jalali et al

(2017)
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regressions, multiple regressions, and artificial intel-

ligence-based relations for estimating UCS using

approaches such as ANN, SVM, FIS, GP, and hybrid

ANN like ANFIS, PSO-ANN, ICA-ANN, and GA-

ANN.

The database of regression equations between UCS

and other rock properties provides a systematic and

logical assemblage of empirical relations that can be

used in mining engineering practice. The relationships

between UCS and other rock properties can be

assessed to decide on the regression equation to be

used for estimation of UCS at a specific site for a rock

type. This will eliminate the problem of overestima-

tion or underestimation of rock properties often

encountered when regression equations are used to

estimate the UCS. In addition, the database will serve

as a useful companion to rock characterization

approaches developed for mining and geotechnical

application, especially when there is need to perform

model selection and when quantifying the variability

of UCS at a project site. The database will be

particularly beneficial at small to medium-sized

project sites, where rock properties data are often too

sparse and there is need to estimate UCS of rock for

mine planning and design purposes. A future study can

investigate the possibility of developing an approach

to rank the reliability of the regression equations in the

database when they are used for estimation of UCS.
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Ulusay R, Türeli K, Ider MH (1994) Prediction of engineering

properties of a selected litharenite sandstone from its pet-

rographic characteristics using correlation and multivariate

statistical techniques. Eng Geol 38(1–2):135–157

Uyanik O, Sabbag N, Uyanik NA, Oncu Z (2019) Prediction of

mechanical and physical properties of some sedimentary

rocks from ultrasonic velocities. Bull Eng Geol Environ

78(8):6003–6016

Van der Schrier JS (1988) The block point index test. Bull Int

Assoc Eng Geol 38:121–126

Vasarhelyi B (2005) Statistical analysis of the influence of water

content on the strength of the Miocene limestone. Rock

Mech Rock Eng 38:69–76

Verwaal W, Mulder A (1993) Estimating rock strength with the

Equotip hardness tester: technical note. Int J Rock Mech

Min Sci Geomech 30:659–662

Verwaal W, Mulder A (2000) Rock and aggregate test proce-

dures. Rock Aggreg Lab Man 13:14

Wang Y, Aladejare AE (2015) Selection of site-specific

regression model for characterization of uniaxial com-

pressive strength of rock. Int J Rock Mech Min Sci

75:73–81

Wang Y, Aladejare AE (2016a) Bayesian characterization of

correlation between uniaxial compressive strength and

Young’s modulus of rock. Int J Rock Mech Min Sci

85:10–19

Wang Y, Aladejare AE (2016b) Evaluating variability and

uncertainty of geological strength index at a specific site.

Rock Mech Rock Eng 49(9):3559–3573

Xu S, Grasso P, Mahtab A (1990) Use of Schmidt hammer for

estimating mechanical properties of weak rock. In: Pro-

ceeding of 6th international IAEG Congress, Balkema,

Rotterdam, pp 511–519

Yagiz S (2009) Predicting uniaxial compressive strength,

modulus of elasticity and index properties of rocks using

the Schmidt hammer. Bull Eng Geol Environ 68(1):55–63

Yagiz S (2011) P-wave velocity test for assessment of

geotechnical properties of some rock materials. Bull Mater

Sci 34(4):947–953

Yagiz S, Sezer EA, Gokceoglu C (2012) Artificial neural net-

works and nonlinear regression techniques to assess the

influence of slake durability cycles on the prediction of

uniaxial compressive strength and modulus of elasticity for

carbonate rocks. Int J Numer Anal Methods Geomech

36(14):1636–1650

Yasar E, Erdogan Y (2004a) Estimation of rock physio-me-

chanical properties using hardness methods. Eng Geol

71:281–288

Yasar E, Erdogan Y (2004b) Correlating sound velocity with the

density, compressive strength and Young’s modulus of

carbonate rocks. Int J Rock Mech Min Sci 5:871–875

Yasar E, Ranjith PG, Perera MA (2010) Physico-mechanical

behaviour of southeastern Melbourne sedimentary rocks.

Int J Rock Mech Min Sci 47(3):481–487

Yavuz AB, Turk N, Koca MY (2005) Geological parameters

affecting the marble production in quarries along the

southern flank of the Menderes Massif, Turkey. Eng Geol

80:214–241

Yesiloglu-Gultekin N, Gokceoglu C, Sezer EA (2013) Predic-

tion of uniaxial compressive strength of granitic rocks by

various nonlinear tools and comparison of their perfor-

mances. Int J Rock Mech Min Sci 62:113–122

Yilmaz N (2013) The influence of testing procedures on uniaxial

compressive strength prediction of carbonate rocks from

Equotip hardness tester (EHT) and proposal of a new

testing methodology: hybrid dynamic hardness (HDH).

Rock Mech Rock Eng 46(1):95–106

Yılmaz I, Sendır H (2002) Correlation of Schmidt hardness with

unconfined compressive strength and Young’s modulus in

gypsum from Sivas (Turkey). Eng Geol 66(3–4):211–219

Yılmaz I, Yuksek AG (2008) An example of artificial neural

network (ANN) application for indirect estimation of rock

parameters. Rock Mech Rock Eng 41(5):781–795

Zhang ZX, Hou DF, Aladejare AE (2020) Empirical equations

between characteristic impedance and mechanical prop-

erties of rocks. J Rock Mech Geotech Eng 12(5):975–983

Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S

(2008) Prediction of uniaxial compressive strength of

sandstones using petrography-based models. Eng Geol

96(3–4):141–158

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

Geotech Geol Eng (2021) 39:4427–4455 4455


	Empirical Estimation of Uniaxial Compressive Strength of Rock: Database of Simple, Multiple, and Artificial Intelligence-Based Regressions
	Abstract
	Introduction
	Database Development and Description
	Simple Regression
	Simple Relationship Between UCS and Physical Properties
	Simple Relationship Between UCS and Mechanical Properties

	Multiple Regression
	Artificial Intelligence
	Artificial Neural Network
	Support Vector Machine
	Fuzzy Inference System
	Genetic Programming
	Hybrid Artificial Neural Network

	Summary and Conclusions
	Open Access
	References




