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Supplemental Methods 121 

Cohort and sample characteristics 122 

Inclusion criteria for this study were; all acute myeloid leukemia (AML; excluding acute 123 

promyelocytic leukemia [APL]) cases with available relapse- or primary resistant (PR) RNA 124 

material of sufficient quality and yield from the Nordic countries. Samples were collected from 125 

1995 through 2016 from the following biobanks: U-CAN1; Clinical Pathology, Uppsala 126 

University Hospital, Sweden; Nordic Society of Paediatric Haematology and Oncology 127 

(www.nopho.org), with all of these sample collections being part of Uppsala Biobank; as well 128 

as a sample collection at Astrid Lindgren’s Children’s Hospital, Stockholm, Sweden, part of 129 

the Karolinska Institute Biobank. Further details on clinical and biological characteristics are 130 

summarized in Supplemental Tables 2-3. Genomic characterization of the entire study cohort 131 

was reported previously2 (data available via controlled access: 132 

doi.org/10.17044/scilifelab.12292778), including bone marrow (BM) derived normal stromal 133 

cells as well as complete remission BM samples as a source of germline DNA. 134 

All patients were diagnosed according to the WHO criteria for AML3,4, and classified according 135 

to the ELN-risk classification5 for adult AML and the NOPHO-DBH AML 2012 Protocol 136 

(EudraCT Number 2012-002934-35) for pediatric AML. Event-free survival (EFS) was defined 137 

as the time from initial diagnosis to first relapse or initial treatment failure. Short EFS was set 138 

at <6 months for adults and <12 months for pediatric patients. PR was defined as treatment 139 

failure without reaching first complete remission, while persistent relapse (R-P) samples were 140 

acquired post-relapse treatment from patients not achieving complete remission after the 141 

respective relapse. For the pediatric cohort, a sample was defined as treatment resistant if the 142 

patient did not achieve complete remission after intensive treatment. Corresponding resistance 143 

data were largely missing for the adult cohort. 144 

Next-generation transcriptomic sequencing 145 

Transcriptomic analysis was performed by RNA-sequencing (RNA-seq) on 122 tumor samples 146 

(Supplemental Table 1) and five CD34+ BM control samples (from here-on referred to as 147 

BM-controls; Supplemental Table 4). Extracted RNA was qualified by automated 148 

electrophoresis using a TapeStation 4200 (Agilent Technologies, Santa Clara, CA, USA) and 149 

quantified by a NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA). Except for 150 

AML008-PR (RNA integrity number [RIN]=5.8), AML017-R2 (RIN=6.9) and AML043-D 151 
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(RIN=7.5), only RNA samples with a RIN≥8 were included in the study. Library preparation 152 

and sequencing were carried out at the SNP&SEQ Technology Platform, SciLifeLab, National 153 

Genomics Infrastructure (NGI), Uppsala, Sweden. 154 

RNA-seq libraries were prepared from 500ng total RNA for 75 samples from 47 adult patients, 155 

and from 450ng total RNA for 47 samples from 23 pediatric patients (Supplemental Table 2), 156 

using the TruSeq stranded total RNA library preparation kit with ribosomal depletion by 157 

RiboZero Gold (Illumina, San Diego, CA, USA) according to the manufacturer’s protocol 158 

(#15031048). Sequencing of adult samples was carried out on the Illumina HiSeq2500 platform, 159 

generating paired-end 125 base pair (bp) reads using v4 sequencing chemistry. An average of 160 

40.1 million reads per sample was generated (range: 15.9 – 64.7; median: 38.4). Sequencing of 161 

pediatric samples was carried out on the Illumina NovaSeq6000 platform (S2 flowcell), 162 

generating paired-end 100bp reads using the v1 sequencing chemistry. An average of 43.1 163 

million reads per sample was generated (range: 10.5–160.2; median: 29.3). BM-control samples 164 

from five individual healthy donors were sequenced in technical duplicates using both platforms 165 

(Illumina HiSeq2500 and NovaSeq6000). 166 

Raw paired-end sequencing reads were aligned using the nf-core/rnaseq (v.1.0; ref. 6) pipeline 167 

written in Nextflow7. Briefly, raw reads were adapter trimmed with the help of trim-galore 168 

(v.0.5.0; ref.8) using standard parameters and mapped to the reference genome (hg19) using 169 

STAR (v.2.6.1; ref.9). Duplicate reads were estimated with Picard´s MarkDuplicates (v.2.18.14; 170 

ref.10) and Dupradar (v.1.8.0; ref.11) and marked for downstream processing. Gene counts were 171 

retrieved with the help of FeatureCounts (v.1.6.2; ref.12). Spanning splicing events were hard-172 

clipped utilizing the GATK (v.4.0.12; ref.13) tool SplitNCigarReads and mapping qualities were 173 

reassigned by the GATK tool ReassignOneMappingQuality. Quality of reads was determined 174 

using fastqc (v.0.11.7; ref.14,15) and RSeQC (v.2.6.4; ref.16) and quality metrics were 175 

summarized with the help of MultiQC (v.1.6). Single nucleotide variants (SNVs) and small 176 

insertion and deletion mutations (InDels; <50bp) were called by HaplotypeCaller (GATK) 177 

using default settings for RNA-seq data, and further filtered utilizing VariantFiltration (GATK). 178 

SNVs and small InDels were filtered against: (i) filtering clusters of at least three SNVs within 179 

a window of 35 nucleotides, (ii) Fisher Strand values greater than 30.0, and (iii) low quality 180 

reads with quality score less than 30. RNA-seq fusion transcripts were called via STAR-Fusion 181 

(v.1.5.0; ref.17) following pre-defined settings. 182 
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Filtering and manual curation of transcriptomic variants  183 

First, known common single nucleotide polymorphisms (SNPs) were excluded by filtering the 184 

RNA-seq HaplotypeCaller (GATK) output against dbSNP (build 138; ref.18). In a second step, 185 

variants were removed unless they fulfilled the following criteria: (i) variant allele frequency 186 

(VAF) greater than or equal to 0.1; (ii) present in less than three Swegen19 samples; (iii) present 187 

in less than 10 reads in all BM-controls; (iv) present in less than two normal samples from the 188 

pool of all whole genome sequencing (WGS) normal controls within our cohort (n=60; ref.2). 189 

Rescuing was performed for variants that were flagged according to Cosmic70 (ref.20) or 190 

ClinVar21, or were validated as somatic on the genomic level by WGS or whole exome 191 

sequencing (WES), or were present in another sample that passed the above filtering criteria. 192 

Finally, for the current study, we focused solely on protein-coding variants. 193 

Subsequently, all potential somatic variants were manually validated utilizing the UCSC 194 

genome browser22 and by inspecting the sequencing reads at the respective region, for which a 195 

genomic and/or transcriptomic variant was reported, using Integrative Genomics Viewer (IGV, 196 

v.2.5.3; ref.23). Remaining normal variants were identified and removed by comparing the data 197 

against their respective patient-matched normal WGS or WES sample and the BM-control 198 

samples (Supplemental Tables 7 and 8). 199 

Manual curation and technical validation of RNA fusions 200 

The output of STAR-fusions was further filtered, and transcript fusions characterized by one or 201 

more of the following criteria were excluded from the study: (i) Fusion transcripts involving 202 

uncharacterized genes, immunoglobulin genes or long noncoding RNA genes; (ii) Fusion 203 

transcripts that were also found in BM-control samples; (iii) Fusion transcripts with a minimum 204 

FFPM (fusion fragments per million total reads) <0.1; and (iv) Fusion transcripts identified in 205 

healthy tissue based on FusionHub (https://fusionhub.persistent.co.in/home.html as of October 206 

17 2020). Fusion transcripts were rescued if present in a patient-matched sample that passed 207 

the above stated FFPM filtering criterion. See Supplemental Table 9 for the final fusion list. 208 

Technical validation of a subset of putative fusion transcripts was performed by reverse 209 

transcriptase (RT)-PCR using primers targeting the respective area of interest on cDNA from 210 

leukemia cells (Supplemental Table 20). 211 

Fusion genes were visualized at the cohort level using Circos (v.0.63-9; ref.24), while fusions, 212 

copy number alterations and sequence mutations were visualized in a sample specific manner 213 
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using Shinycircos25 (as of September 7, 2020) for AML028 and AML071, incorporating data 214 

also from WGS analysis. 215 

Pre-processing of RNA read counts for gene expression- and machine learning analysis 216 

Gene count matrices for each cohort were first filtered for protein-coding genes. Genes that had 217 

low expression across most samples were investigated and removed using R v.4.0.1 (ref.26). To 218 

compute a threshold for filtering out the non- and lowly expressed genes, library sizes of each 219 

gene were estimated for each sample using edgeR R package v.3.28.1 (ref.27). The median of 220 

the library sizes for each gene was then computed and normalized by dividing the median over 221 

one million. Following the edgeR best practices, a gene was deemed as expressed if it had five 222 

or more samples with greater than or equal to 10/(Median of the library size of the gene). After 223 

filtering away the non- and lowly expressed genes, the gene expression matrix was normalized 224 

using the trimmed mean of M-values normalization method (TMM28). 225 

Validation cohorts 226 

The Cancer Genome Atlas (TCGA) AML cohort29 was used to validate the association between 227 

disease outcome among adult AML patients and the expression levels of DEGs as well as genes 228 

identified through machine learning-based analysis in our study. Gene expression profiles for 229 

TCGA LAML (phs000178) were downloaded from the National Cancer Institute GDC data 230 

portal using the RTCGAToolbox30. In total, 162 samples with available RNA-seq data were 231 

included, while APL-samples and samples from patients below the age of 19 at initial diagnosis, 232 

were excluded (Supplemental Table 10F). 233 

The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) AML 234 

cohort (phs000465) was utilized for validation purposes among pediatric AML patients. 235 

Expression data for 316 AML tumor samples were downloaded through 236 

https://portal.gdc.cancer.gov/projects as of November 16 2018. Twenty-two samples were 237 

excluded from the analysis according to one of the following reasons: (i) patient age at AML 238 

onset ≥19; and/or (ii) insufficient metadata for the respective analysis. In total, 254 diagnosis 239 

samples were used to generate Kaplan-Meier plots for investigation of association between with 240 

gene expression levels and EFS as well as OS (Supplemental Table 10E). Further, 29 241 

diagnosis samples and 38 relapse samples, including 29 patient-matched diagnosis-relapse 242 

pairs, were utilized for machine learning-based analysis (Supplemental Table 10D). 243 
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Raw counts from both validation cohorts were further processed and analyzed as described 244 

above for the local adult and pediatric cohorts. 245 

Differential gene expression analysis using Qlucore 246 

Pre-processed and normalized genes were annotated, and the gene length for each gene was 247 

calculated from the union of all isoforms of each gene via the corresponding GTF-file utilizing 248 

GenomicRanges (v.1.40.0; ref.31), rtracklayer (v.1.48.0; ref.32), and Rsamtools (v.2.4.0; ref.33). 249 

The calculated gene lengths were subsequently used to adjust the TMM-normalized data for the 250 

gene length, utilizing Qlucore omics explorer v.3.6 (Qlucore AB, Lund, Sweden). Thereafter, 251 

read counts for a total of 15546 protein-coding genes identified for the local adult and pediatric 252 

R/PR AML cohorts were log2 transformed using Qlucore (normalization Z-score [mean=0, 253 

var=1]). Normalization was performed separately for each conducted analysis as detailed in 254 

Supplemental Table 10. The resulting data were batch corrected (ref.34 applied through 255 

Qlucore) for the applied sequencing method (Illumina HiSeq2500 vs Illumina NovaSeq6000) 256 

and patient sex. No further confounding effects were detected. 257 

Gene ontology enrichment analysis 258 

Gene Ontology (GO) enrichment analysis was carried out using Gene Ontology enRIchment 259 

anaLysis and visuaLizAtion tool (GOrilla35,36; http://cbl-gorilla.cs.technion.ac.il/ as of October 260 

17, 2020). A target list of up- or downregulated genes (|log2 fold change [log2FC]|>1; 261 

corresponding to a minimum fold change of +/-2) was compared to the background of all 262 

expressed, protein-coding genes (n=15546) using the standard Hyper Geometric statistics with 263 

a P-value threshold of 0.01. To correct for multiple comparisons, the Benjamini-Hochberg37 264 

method was used. 265 

Interpretable supervised learning to obtain rule-based classifiers for disease states 266 

Overview of the analysis pipeline 267 

A graphical overview of the analysis pipeline is given in Supplemental Figure 10. In brief, 268 

RNA-seq data for the local adult cohort (diagnosis: n=22; relapse: n=42), the local pediatric 269 

cohort (diagnosis: n=17; relapse: n=22), and a pediatric validation cohort (TARGET; diagnosis 270 

[n=29] and relapse [n=38] samples part of phs000465 at https://portal.gdc.cancer.gov/projects) 271 

were individually used as training data to create three machine learning models to discern 272 

between diagnosis and relapse states (Supplemental Table 10C and D). The results from the 273 

models using the local cohorts were analyzed individually and the co-predictive interactions 274 
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between features and their values were visualized in the form of rule networks (Figure 4 and 275 

Supplemental Figure 13) using VisuNet (v.1.3.5; ref.38). A rule network is constructed from 276 

nodes that represent genes, and edges that represent connections between genes. Within a 277 

network, co-predictive genes are visible as highly connected nodes, which also are called hubs. 278 

This graphic representation is a way to visualize a rule-based model and its statistics.  279 

Importantly, rule-based networks differ from co-expression networks in that each decision 280 

class, here diagnosis and relapse, have separate networks and use genes with different 281 

expression levels. Genes in rule-based networks are co-predictors of a certain decision class, 282 

meanwhile genes in co-expression networks are co-expressed but not necessarily co-related to 283 

the decision class. Due to the small number of samples for the local pediatric cohort, the 284 

predictive features from the models on the local pediatric- and TARGET data were merged in 285 

order to increase the power of the machine learning models. Following merging, new models 286 

were created for the local pediatric- and TARGET cohorts, utilizing the newly merged 287 

predictive features for the respective dataset. Rule-based networks were then built for the new 288 

models and network analysis approaches were used to compare the similarity of networks for 289 

the models to discover co-predictive patterns that are comparable in both cohorts (Figure 5 and 290 

Supplemental Figure 14). More details for each of these steps are given in the following seven 291 

sub-sections below. 292 

Pre-processing of RNA-seq data 293 

Genes were pre-processed and near zero variance genes were removed. Removal of near zero 294 

variance genes was based on the following characteristics: (i) if they had very few unique 295 

expression values relative to the number of samples based on calculating a unique expression 296 

value percentage, and (ii) if the frequency ratio of the most common expression value to the 297 

frequency of the second most one was large. The function nearZeroVar in the R caret package 298 

version 6.0-86 with default values for cutoff was used39. The pre-processed gene expression 299 

data were checked and corrected for any batch effects and other sources of variation using SVA 300 

v.3.34.0 (Ref.40) and variancePartition v.1.19.17 (Ref.41) R packages. Correction was performed 301 

for sequencing lane batches for the adult cohort. No further confounding effects were detected. 302 

Data discretization and feature selection 303 

The expression values thereafter underwent data discretization. Equal frequency binning was 304 

used to discretize the data into three levels. To convert continuous features into discrete ones, 305 

equal frequency binning first sorts the values, and then divides them into equally sized bins. 306 
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Importantly, during the machine learning process, discretization is performed on the training 307 

set and then cuts are applied on the test set. Data discretization is an essential step in rough sets 308 

theory that is a basis in the R.ROSETTA algorithm. Subsequently, the Monte Carlo Feature 309 

Selection algorithm (MCFS; rmcfs R package v.1.2.5 [Ref.42]) was used for feature selection, 310 

as it is well-suited for data that have small numbers of samples but thousands of features (here; 311 

genes). This step is essential to reduce the noise in the data and rank the most important features 312 

for classification. The relative importance of a specific feature was assessed over multiple 313 

classification trees, which were built from randomly sampled training sets. Then the features 314 

were ranked based on their highest relative importance, which represents the feature’s 315 

classification ability. 316 

Optimizing number of selected features for rule-based learning 317 

The number of significant features based on the cutoff methods used by MCFS highly differed, 318 

ranging from 0 to 600 features. In order to select the optimal number of significant features for 319 

building a predictive model for each dataset using the MCFS ranked list, iterative computational 320 

rounds were performed (referred to in Supplemental Figure 10 as Feature Boosting), resulting 321 

in a minimum set of significant features required to distinguish between disease states (i.e. 322 

diagnosis and relapse). The features were incrementally added to build several rule-based 323 

models for each dataset (i.e. cohort), and the selected features that were used to build the model 324 

with the best overall accuracy were chosen for downstream analysis. The highest accuracy was 325 

gained for the models built with 50 features for the local adult cohort and 60 features for the 326 

local pediatric cohort (Supplemental Figure 16). 327 

Constructing rule-based models 328 

Rule-based models were built using the R.ROSETTA R package (v.2.2.9; ref.43). A rule-based 329 

model is a set of transparent IF-THEN rules calculated from reducts that are minimal subsets 330 

of features maintaining the indiscernibility44. For estimating reducts, R.ROSETTA may use 331 

several different algorithms, which from here-on are referred to as reducers. In this work, the 332 

Genetic and Johnson reducers43 were applied. These reducers allow for estimating co-predictive 333 

rules and were successfully applied in previous studies43,45-47. In brief, the Genetic reducer is an 334 

evolutionary-based optimization algorithm, while the Johnson reducer is a greedy algorithm. 335 

The main difference between these algorithms is that the Genetic approach is stochastic, while 336 

Johnson is deterministic. Herein, the Genetic reducer was used in order to interpret the models 337 

for the local adult and pediatric cohorts (Supplemental Tables 16 and 17). Models used for 338 
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merging features and network comparisons were based on the Johnson reducer (Supplemental 339 

Tables 18 and 19). The performance of each rule generated depends on the number of samples 340 

in the dataset that support both the antecedent and the consequence of the rule (left-hand side 341 

and right-hand side, respectively), in addition to the accuracy of the rule. The rule accuracy is 342 

computed by dividing the number of objects that satisfy the consequence of the rule by the 343 

number of objects that satisfy the antecedent part of the rule, as further detailed by Garbulowski 344 

et al.43. The model performance was based on the total mean accuracy and the area under the 345 

receiver operating characteristic curve of the model generated from five-, and three-fold cross-346 

validations for the adult and pediatric cohort, respectively (Supplemental Figure 16). Such a 347 

rule-based model from each dataset was used for further analysis and visualization. 348 

Validating rule-based models 349 

Model validation was performed by applying a permutation test. This was done by randomly 350 

shuffling the decision label (Diagnosis or Relapse) 1000 times for the decision table used to 351 

build the models utilized for network comparisons. Each time the shuffled decision table was 352 

used to build a rule-based model. The accuracies from each run were used to build a distribution. 353 

A threshold of 0.05 and confidence interval of 0.95 were used to determine the significance of 354 

the P-value. The mean and standard deviation and the standard error for the normal distribution 355 

were computed. The accuracy of the original model was compared to the mean (M) and standard 356 

error (SE) of the distribution as M±SE. If the accuracy of the original model was <M-SE or 357 

>M+SE, the P-value in this case was P<0.05 and proven to be significant. 358 

Rule-based heat maps for evaluating classifiers  359 

A binary matrix was constructed, where rules were oriented as the columns and samples as the 360 

rows. The matrix was used to cluster samples and construct a heat map  using the pheatmap R 361 

package (v1.0.12; ref.48) based on the rules using asymmetric binary distance as a distance 362 

measure with hierarchical clustering. Hierarchical clustering on the support of each object per 363 

rule showed visible clusters of diagnosis and relapse samples for both the adult and pediatric 364 

models (Supplemental Figures 17 and 18). 365 

Network-based comparisons and hubs visualization 366 

To perform a comparison between cohorts, rule-based network structures were evaluated. 367 

Connection values of nodes were used for clustering of the decision classes for each dataset as 368 

proposed by Garbulowski et al.45.  The node connection value reflects a co-predictive strength 369 
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of each node in the network. The clustering was performed on the most informative nodes, 370 

using Kendall rank correlation coefficient as a distance metric. Additionally, based on the 371 

clustering, topmost hubs were selected from the network and visualized as arc diagrams using 372 

the R package arcdiagram (v.0.1.12; ref.49). Here, an arc diagram displays a hub gene and all 373 

its associations estimated by the rule model. Importantly, a hub was defined as a gene with a 374 

high number of connections in the network that indicates appearance in a great number of rules. 375 

For each arc diagram values of nodes and arcs reflected values of nodes and edges from the 376 

network. In this study, by visualizing hubs, arc diagrams allowed for investigation of specific 377 

co-predictive mechanisms. To visualize hubs in the form of arc diagrams, an additional R 378 

function was implemented based on a VisuNet output. The function is attached to the VisuNet 379 

R package and publicly available at https://github.com/komorowskilab/VisuNet. To the best of 380 

our knowledge, we show the application of arc diagrams as a novel way of visualizing selected 381 

fragments of rule-based networks. 382 

Tumor purity assessment 383 

Next-generation sequencing-based tumor purity assessment was manually performed based on 384 

patient-matched genomic material2 that was extracted together with the RNA from the 385 

respective samples (Supplemental Tables 1 and 2). Purity for whole genome sequenced 386 

samples were assessed manually based on their available somatic genomic aberrations, and how 387 

the relative effect on sequence coverage (deletion from two to one copy), the allele ratio of 388 

heterozygous SNPs (in regions with copy-neutral loss-of-heterozygosity) and somatic SNVs (in 389 

diploid regions) would theoretically scale with tumor purity. The estimated purity for whole 390 

exome sequenced samples was based on solely somatic SNVs present in diploid regions. The 391 

next-generation sequencing-based purity results were further compared to morphology-based 392 

purity assessment information on May Grünwald and Giemsa stained cells post 393 

cryopreservation and, if applicable, post immune-based depletion of non-tumor cells 394 

(Supplemental Table 2). 395 

Calculation and visualization of statistical significance 396 

The following statistical calculations were performed using Qlucore omics explorer v.3.6 with 397 

default settings, if not otherwise specified. Principal Component Analysis (PCA; according to 398 

ref.50-52) and t-Distributed Stochastic Neighbor Embedding (t-SNE; according to ref.53,54) were 399 

used to visualize the high-dimensional and unsupervised data, after centering and scaling the 400 

variables to zero mean and unit variance (mean=0, variance=1). Hierarchical clustering was 401 
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performed using log2-transformed normalized values following the Euclidean metric on 402 

normalized variables (mean=0, variance=1). Hierarchical clustering and associated heat maps 403 

were constructed following ref.55. Further, genes were ranked according to their R/R2-statistic 404 

values (R-statistics; Supplemental Tables 11 and 14), which Qlucore computes according to 405 

the coefficient of partial determination. Volcano plots were used to identify the highest ranked 406 

differentially expressed genes among sample groups. Venn diagrams were utilized to inspect 407 

the intersection of differentially expressed genes between the cohorts. Qlucore applies the 408 

Benjamini-Hochberg37 method to correct for multiple testing and calculates the fold change 409 

(FC) from the difference between the arithmetic averages over each group. 410 

In order to calculate significant differences observed in gene expression levels between two or 411 

more groups, GraphPad Prism version 7.02 and 9.0.2 were used and results were visualized in 412 

the form of scatter plots with mean and standard deviation, or spaghetti plots. First, normality 413 

was tested for sample groups containing more than 30 values following the D´Agostino & 414 

Pearson calculation. Next, one of the following statistical tests was performed: (i) Unpaired t-415 

test for a two-group comparison on dichotomous variables; (ii) Mann-Whitney test for a two-416 

group comparison on non-parametric data; (iii) Kruskal-Wallis test for multi-group 417 

comparisons on non-parametric data followed by Dunn´s correction for multi-group 418 

comparisons; or (iv) Wilcoxon matched-pairs significant rank test for a patient-matched two-419 

group comparison on non-parametric data. All P-values are given for two-sided tests. Kaplan-420 

Meier plots were used to visualize EFS and 5-year overall survival rates, and putative 421 

differences between low- and high-expression of the respective genes were calculated using 422 

Log-rank (Mantel-Cox) test (Supplemental Table 13). 423 

Sample usage for various analyses 424 

Different sample sets were exploited in the respective analyses, in order to maximize the 425 

number of samples included for each investigation. Detailed information regarding samples 426 

included in each of the sub-groups is present in Supplemental Table 10.  427 
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Supplemental Results 428 

Genomic and transcriptomic landscape of R/PR AML 429 

We previously analyzed the composition of genomic alterations via WGS or WES for all 122 430 

leukemia samples included in this study2. As a means to investigate the potential of using RNA-431 

seq as an alternative to WGS/WES with regards to detection of SNVs and small InDels, we 432 

examined the overlap between alterations identified at the DNA- and RNA levels 433 

(Supplemental Tables 7 and 8). Thirty-nine percent (715/1841) of somatic protein-coding 434 

SNVs and small InDels detected at the genomic level were located in regions not being 435 

expressed at a sufficient level (<3 reads), and could thus not confidently be identified by RNA-436 

seq (Supplemental Figure 1). Out of the remaining 1126 variants, 117 genomic variants 437 

(10.4%) could not be validated at the transcriptomic level, including sub-clonal variants in 438 

GATA2, KMT2A and NF1, as well as clonal frameshift variants in TP53 and WT1. The variants 439 

not validated at the RNA-level showed a lower median variant allele frequency at the DNA 440 

level (VAFDNA) compared to variants identified also by RNA-seq (median VAFDNA: 0.32 and 441 

0.46, respectively). Approximately half (n=535) of the remaining 1009 genomic variants were 442 

correctly called by HaplotypeCaller (GATK13) at the RNA level, while the rest were identified 443 

by manual inspection of the corresponding region in the RNA-seq reads utilizing Integrative 444 

Genomics Viewer (IGV23). The main difference between these two groups was a lower 445 

frequency of small InDels among the variants reported by HaplotypeCaller compared to those 446 

solely detected via IGV (11.4% and 37.8%, respectively). Nonsense- and frameshift variants 447 

with a premature stop codon, potentially resulting in nonsense-mediated RNA decay, were as 448 

expected more often not detected at the transcriptomic level. We found 17 additional somatic 449 

protein-coding, non-recurrent variants at the RNA level that were not reported by WGS/WES, 450 

all of which belonged to one of the following three groups: 1) variant region not covered by 451 

WES (n=6), 2) missed by WES variant calling (n=8), or 3) mitochondrial variant (n=3; filtered 452 

out due to criteria regarding normal DNA controls, not customized to the in general very high 453 

coverage seen for mitochondrial genes in WGS/WES data). 454 

This analysis revealed the feasibility of RNA-seq to determine the mutational status of R/PR 455 

AML. Nevertheless, accurate variant detection by RNA-seq requires deeper coverage as well 456 

as improvement in variant calling from RNA-seq data to confidently perform classification and 457 

prognostication based on that data.  458 
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Supplemental Table legends 459 

Supplemental Tables 1-20 are present in a separate Supplemental document, including a 460 

content list, abbreviations and a legend regarding color coding on the first sheet of that 461 

document. 462 

Supplemental Table 1: Study cohort sample overview. Summary of patient-matched 463 

longitudinal AML samples and normal control samples included in the study cohort, as well as 464 

overlapping genomic sequencing methods performed for the respective samples. BMS, Bone 465 

marrow derived stromal cells; CR, Complete remission; D, Diagnosis; G, Genomic data 466 

availability; PR, Primary resistant; R1/2/3, Sequential relapses; R1/2-P, Persistent relapse 467 

sample; T, Transcriptomic data availability; WES, Whole exome sequencing; WGS 30X, 468 

Whole genome sequencing, aiming at >30X coverage; WGS 90X, Whole genome sequencing, 469 

aiming at >90X coverage. 470 

Supplemental Table 2: Study cohort sample characteristics. Detailed information regarding 471 

the characteristics of the 122 tumor samples and five healthy control samples included in the 472 

current study. Sample purity and cell viability are given in intervals of 10 and 25%, respectively. 473 

BM, Bone marrow; D, Diagnosis; HSCT, Hematopoietic stem cell transplantation; NOPHO, 474 

Nordic Society of Paediatric Haematology and Oncology; PB, Peripheral blood; PR, Primary 475 

resistant; R1/2/3, Sequential relapses; R1/2-P, Persistent relapse sample; RIN, RNA integrity 476 

number (Agilent Tape Station); U-CAN, Uppsala Umeå Comprehensive Cancer Consortium, 477 

Sweden; WES, Whole exome sequencing; WGS 30X, Whole genome sequencing, aiming at 478 

>30X coverage; WGS 90X, Whole genome sequencing, aiming at >90X coverage. 479 

Supplemental Table 3: Clinical information. Summary of the clinical characteristics of 480 

patients included in the local AML study cohort. Allo, Allogeneic; Auto, Autologous; CR, 481 

Complete remission; D, Diagnosis; F, Female; HSCT, Hematopoietic stem cell transplantation; 482 

M, Male; M0-M7, The French-American-British (FAB) classification of AML; MDS, 483 

Myelodysplastic syndromes; NOS, Not otherwise specified; R1/2/3, Sequential relapses; t-484 

AML, Treatment related AML; WBC, White blood cell count; VP, Current treatment protocol. 485 

Supplemental Table 4: Characteristics of CD34+ BM-control samples. Summary of the 486 

characteristics of CD34+ BM samples from five individual healthy donors used as normal 487 

counterparts throughout the study. Cell viability is given in intervals of 25%. CD34+ BM cells 488 
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were purchased through AllCells Inc via Nordic BioSite. BM, Bone marrow; F, Female; M, 489 

Male. 490 

Supplemental Table 5: Antibody information. Antibodies (BD Biosciences, San Jose, CA, 491 

USA; Thermo Fisher Scientific, Waltham, MA, USA) used for purification of patient-derived 492 

AML samples by immune-based depletion of non-tumor cells. 493 

Supplemental Table 6: RNA-seq statistics. Sequencing statistics and QualiMap results for 494 

samples analyzed by RNA-seq (Adult cohort: Illumina HiSeq2500; Pediatric cohort: 495 

NovaSeq6000). D, Diagnosis; PR, Primary resistant; R1/2/3, Sequential relapses; R1/2-P, 496 

Persistent relapse sample. 497 

Supplemental Table 7: SNVs and small InDels detected by RNA-seq. Manually curated 498 

somatic single nucleotide variants (SNVs) and small insertions and deletions (InDels; <50bp) 499 

derived from the RNA-seq analysis (HaplotypeCaller) and the overlap with analysis on whole 500 

genome- and whole exome sequenced samples. D, Diagnosis; PR, Primary resistant; R1/2/3, 501 

Sequential relapses; R1/2-P, Persistent relapse sample; VAF, Variant allele frequency; WES, 502 

Whole exome sequencing; WGS, Whole genome sequencing. 503 

Supplemental Table 8: Comprised metadata and RNA-seq- and WGS/WES results. 504 

Various sample- and clinical information, combined with data regarding variants recurrently 505 

identified in the R/PR cohort, on a per sample basis. Both transcriptomic and genomic results 506 

are overlaid. CNA, Copy number alteration; CN-LOH, Copy-neutral Loss-of-heterozygosity; 507 

D, Diagnosis; F, Female; FAB, The French-American-British classification of AML; InDel, 508 

Insertion or Deletion mutation; M, Male; N/A, Data not available; PR, Primary resistant; 509 

R1/2/3, Sequential relapses; R-P, Persistent relapse sample; WES, Whole exome sequencing; 510 

WGS-30X, Whole genome sequencing, aiming at >30X coverage; WGS-90X, Whole genome 511 

sequencing, aiming at >90X coverage. 512 

Supplemental Table 9: Fusion transcripts in R/PR AML. Summary of manually curated 513 

fusion transcripts detected by StarFusion. Chr, Chromosome; D, Diagnosis; FFPM, Fusion 514 

fragments per million total reads; gPCR; Polymerase chain reaction on genomic DNA; INV, 515 

Inversion; PR, Primary resistant; R1/2/3, Sequential relapses; R1/2-P, Persistent relapse 516 

sample; WES, Whole exome sequencing; WGS, Whole genome sequencing. 517 
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Supplemental Table 10: Sample usage for generation of various analyses. Tumor samples 518 

included for various analyses. (A) Differential gene expression analysis between samples 519 

associated with short versus long EFS for the local cohort. (B-D) Diagnosis versus relapse 520 

samples for the local cohort (B and C), and the TARGET cohort (D). (E-F) Diagnosis samples 521 

used to generate Kaplan-Meier plots for EFS and OS assessments for the TARGET (E) and 522 

TCGA (F) cohorts. D, Diagnosis; EFS, Event-free survival; OS, Overall survival; PR, Primary 523 

resistant; R1/2/3, Sequential relapses; R-P, Persistent relapse sample; TARGET, 524 

Therapeutically Applicable Research to Generate Effective Treatments; TCGA, The Cancer 525 

Genome Atlas. 526 

Supplemental Table 11: DEGs associated with short vs. long EFS. Summarized are all 527 

differentially expressed protein-coding genes between samples associated with short versus 528 

long EFS with a P-value <0.05. A fold change >1.0 indicates up-regulation in samples 529 

associated with short EFS, while a fold change <1.0 indicates down-regulation. Only diagnosis 530 

samples were included in the comparison, and adult and pediatric cases were combined. See 531 

Supplemental Table 10A for details regarding samples included for generating the data in this 532 

table. DEGs, Differentially expressed genes; EFS, Event-free survival. FDR, False discovery 533 

rate; R-statistic, Square roots of the R2-statistics (coefficient of determination). 534 

Supplemental Table 12: GO-analysis of DEGs between short vs. long EFS-associated 535 

samples. Detailed results of the GO enrichment analysis, utilizing GOrilla, for samples 536 

associated with short versus long EFS. DEGs with a P-value <0.05 and a |log2 fold change| >1 537 

were analyzed against the background of all expressed protein-coding genes included in this 538 

study. B, Total number of genes associated with a specific GO term; b, Number of genes in the 539 

intersection; DEG, Differentially expressed gene; EFS, Event-free survival; FDR, False 540 

discovery rate; GO, Gene ontology; N, Total number of protein-coding genes (background list); 541 

n, Number of genes in the target set. 542 

Supplemental Table 13: Statistics associated with survival analyses. Survival analysis-543 

associated statistics for Kaplan-Meier plots depicting EFS and overall survival with regards to 544 

low versus high expression of CD6, GLI2, IL1R1, INSR, ST18, and ZNF773. Local, TARGET 545 

and TCGA refer to the respective analyzed cohort. EFS, Event-free survival; OS, Overall 546 

survival. 547 
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Supplemental Table 14: DEGs between patient-matched diagnosis and relapse samples. 548 

Summarized are all differentially expressed protein-coding genes between diagnosis and 549 

relapse samples with a P-value <0.05. A fold change >1.0 indicates up-regulation at diagnosis 550 

compared to relapse, while a fold change <1.0 indicates down-regulation. Only patient-matched 551 

diagnosis and relapse samples were included in the comparison (adult: n=22 diagnosis-relapse 552 

pairs; pediatric: n=17 diagnosis-relapse pairs). See Supplemental Table 10B for details 553 

regarding samples included for generating the data in this Table. DEGs, Differentially 554 

expressed genes; FDR, False discovery rate; R-statistic, Square roots of the R2-statistics 555 

(coefficient of determination). 556 

Supplemental Table 15: GO-analysis of DEGs between patient-matched diagnosis and 557 

relapse samples. Detailed results of the GO enrichment analysis, utilizing GOrilla, for 558 

diagnosis versus relapse samples. DEGs with a P-value <0.05 and a |log2 fold change| >1 were 559 

analyzed against the background of all protein coding expressed genes included in this study. 560 

B, Total number of genes associated with a specific GO term; b, Number of genes in the 561 

intersection; DEG, Differentially expressed gene; FDR, False discovery rate; GO, Gene 562 

ontology; N, Total number of protein-coding genes (background list); n, Number of genes in 563 

the target set. 564 

Supplemental Tables 16-19: Machine learning model rules for diagnosis and relapse in 565 

various cohorts and comparisons. The respective table describes the generalized rules output 566 

from training the machine learning model on the respective cohort samples to differentiate 567 

between diagnosis and relapse. The features column describes the left-hand side of the rule 568 

(LHS; The genes), the levels describe the discretized gene expression value for each feature in 569 

the rule (1, low; 2, medium; 3, high), and the decision is the right-hand side (RHS) or the 570 

consequence of the rule. The rules quality is represented mainly by SupportLHS and 571 

SupportRHS, which represent the number of samples supporting the rule, the rule accuracy and 572 

the P-value of the rule. 573 

Supplemental Table 16: Machine learning model rules for diagnosis and relapse in adult 574 

AML. The table describes the generalized rules output from training the machine learning 575 

model on the adult AML cohort samples to differentiate between diagnosis and relapse. The 576 

Genetic reducer was applied. See Supplemental Table 10C-upper for details regarding 577 

samples included for generating the data in this table.  578 
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Supplemental Table 17: Machine learning model rules for diagnosis and relapse in 579 

pediatric AML. The table describes the generalized rules output from training the machine 580 

learning model on the local pediatric AML cohort samples to differentiate between diagnosis 581 

and relapse. The Genetic reducer was applied. See Supplemental Table 10C-lower for details 582 

regarding samples included for generating the data in this table. 583 

Supplemental Table 18: Machine learning model rules for diagnosis and relapse in 584 

pediatric AML (features merged with TARGET). The table describes the generalized rules 585 

output from training the machine learning model on samples from the local pediatric AML 586 

cohort using the merged MCFS features from both the local pediatric cohort and the TARGET 587 

cohort to differentiate between diagnosis and relapse in the local pediatric cohort. The Johnson 588 

reducer was applied. See Supplemental Table 10C-lower and D for details regarding samples 589 

included for generating the data in this table. 590 

Supplemental Table 19: Machine learning model rules for diagnosis and relapse in the 591 

TARGET AML cohort (features merged with Local pediatric). The table describes the 592 

generalized rules output from training the machine learning model on samples from the 593 

TARGET cohort using the merged MCFS features from both the local pediatric AML cohort 594 

and the TARGET cohort to differentiate between diagnosis and relapse in the TARGET cohort. 595 

The Johnson reducer was applied. See Supplemental Table 10C-lower and D for details 596 

regarding samples included for generating the data in this table. 597 

Supplemental Table 20: Verification of transcriptomic fusion events and associated 598 

primer information. Detailed information of primers used for technical verification of putative 599 

fusion transcripts. D, Diagnosis; ITD, Internal tandem duplication; PR, Primary resistant; R1, 600 

Sequential relapses; R1-P, Persistent relapse sample; RT-PCR, Reverse transcriptase 601 

polymerase chain reaction; WT, wild type.  602 
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Supplemental Figures 603 

 604 
Supplemental Figure 1. Detection of SNVs and small InDels by RNA-seq. The overlap of 605 

protein-coding variants detected via WGS/WES and RNA-seq is shown. Variants with a 606 

minimum coverage of three reads surrounding the variant location based on RNA-seq are 607 

highlighted in blue color, and the remaining variants are shown in grey. IGV23, Integrative 608 

genomics viewer; InDel, Insertion or deletion mutation; SNV, Single nucleotide variant; WES, 609 

Whole exome sequencing; WGS, Whole genome sequencing; . 610 
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Supplemental Figure 2. Changes in the mutational landscape during AML progression. 611 

A-B) Circos plots of sequential AML samples represented by the adult case AML028 (A), with 612 

samples from diagnosis and primary resistance, as well as the pediatric case AML071 (B), with 613 

samples at diagnosis and first relapse. Copy number alterations, derived by WGS analysis, are 614 

plotted in the inner ring, including heterozygous deletions (light blue) and amplifications (red). 615 

Genes affected by sequence mutations (black; data derived from WGS- and RNA-seq analysis) 616 

and gene fusion events (brown for in-frame fusions and blue for frameshift fusions; data derived 617 

from RNA-seq analysis) are plotted inside the circle. The outer ring depicts chromosome 618 

idiograms (based on Circos package data UCSC.hg19.chr), with the chromosomal numbers 619 

indicated. D, Diagnosis; PR, Primary resistant; R1, Relapse 1; WGS, Whole genome 620 

sequencing.  621 
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 622 

Supplemental Figure 3. BCR-ABL1 fusions in treatment persistent AML. RT-PCR for 623 

investigation of the presence of BCR-ABL1 fusion transcripts in R/PR AML, with primers used 624 

listed in Supplemental Table 20. bp, Base pairs; D, Diagnosis; NTC, Non-template PCR 625 

control; PR, Primary resistant; R1-P, Persistent relapse sample.  626 
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 627 
Supplemental Figure 4. Unsupervised clustering of the R/PR AML cohort. A) 628 

Identification of sequential tumor samples from case AML008 as outliers via principal 629 

component analysis (PCA). B) PCA analysis of all combined adult (light gray) and pediatric 630 

(dark gray) samples, post exclusion of AML008-D/PR, with a distinct cluster of BM-control 631 

samples (yellow; including two technical replicates each). C-F) Neighboring information in the 632 

form of PCA plots and T-distributed stochastic neighbor embedding plots (t-SNE; 633 

perplexity=7) showing similarity between sequential patient-matched tumor samples in adults 634 
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(C and E) and children (D and F). Visualization and underlying calculations were performed 635 

using Qlucore omics explorer v.3.6. BM-controls, normal CD34 expressing bone marrow cell 636 

control samples; D, Diagnosis; PR, Primary resistant; R1, First relapse; R1-P, Treatment 637 

persistent first relapse.  638 
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 639 

Supplemental Figure 5. Differential gene expression between short versus long EFS-640 

associated samples. Heat map and hierarchical cluster analysis of the top 60 differentially 641 

expressed genes (DEGs; corresponding to: P ≤0.0071 and |FC|≥2.5) between samples 642 

associated with short versus long EFS. Adult and pediatric diagnosis samples are combined (X-643 

axis). Genes are ranked according to their R-statistic values (Y-axis), with upregulated genes 644 

depicted in red and downregulated genes in blue. Visualization and underlying statistical 645 

calculations were performed using Qlucore omics explorer v.3.6. EFS, Event-free survival; FC, 646 

Fold change. See Supplemental Table 10A for details regarding samples included in this 647 

figure, and Supplemental Table 11 for all DEGs.  648 
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 649 

Supplemental Figure 6. Expression levels of GLI2, IL1R1 and ST18 correlate with 650 

outcome in adult and pediatric AML. A) Scatter plots with mean and SD presenting gene 651 

expression data of GLI2, IL1R1 and ST18 comparing samples associated with short versus long 652 

EFS within the local cohort. Samples highlighted in red for ST18 harbor an inversion on 653 
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chromosome 16, leading to a CBFB-MYH11 gene fusion. The expression values for the BM-654 

control samples are given as the average of two technical replicates. Applied statistical test: 655 

Kruskal-Wallis test followed by Dunn´s correction for multi-group comparisons. The Y-axis 656 

represents log2 transformed, TMM normalized expression of mRNA. B-E) Kaplan-Meier plots 657 

depicting EFS (B and D) and overall survival (C and E), comparing high and low GLI2, IL1R1 658 

and ST18 expression within the TCGA (B and C) and TARGET (D and E) cohorts. High and 659 

low gene expression was discretized based on the mean expression for the respective gene over 660 

all samples included in the analysis. Applied statistical test: Log-rank (Mantel-Cox) test. EFS, 661 

Event-free survival; SD, Standard deviation; TMM, Trimmed mean of M-values. See 662 

Supplemental Table 10A and E-F for details regarding samples included in this figure, and 663 

Supplemental Table 13 for accompanied statistical results.  664 
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 665 

Supplemental Figure 7. Elevated GLI2 expression is associated with poor outcome 666 

independent of FLT3-ITD status. A-B) Scatter plots with mean and SD depicting GLI2 667 

normalized expression values within the local cohort of (A) samples according to their FLT3-668 

ITD mutational status, and (B) comparing FLT3-ITD-negative samples associated with short 669 

versus long EFS. Applied statistical test: Mann-Whitney test. The Y-axis represents log2 670 

transformed, TMM normalized mRNA expression. C-E) Kaplan-Meier plots presenting the 671 

EFS and overall survival, comparing high and low GLI2 expression in FLT3-ITD-negative 672 

cases within the local (C), TCGA (D) and TARGET (E) cohorts. High and low gene expression 673 

was discretized based on the mean expression over all samples included in the analysis. Applied 674 

statistical test: Log-rank (Mantel-Cox) test. EFS; event-free survival; FLT3-ITD, FLT3 internal 675 
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tandem duplication; neg, negative; pos, positive; SD, Standard deviation; TMM, Trimmed 676 

mean of M-values.  677 
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 678 

Supplemental Figure 8. Differential gene expression between paired diagnosis and relapse 679 

samples. A) Heat maps and hierarchical cluster analysis of the top ranked DEGs between paired 680 

diagnosis and relapse samples for adult (P≤0.03, |FC|≥2; n=54 genes) and pediatric (P≤0.03, 681 

|FC|≥2; n=45 genes) samples (X-axis). Genes are ranked according to their R-statistic values 682 
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(Y-axis), with upregulated genes depicted in red and downregulated genes in blue. B) Venn 683 

diagram of diagnosis versus relapse specific DEGs in the local adult and pediatric cohorts. 684 

Included are all DEGs with a P-value <0.05, independent of their respective fold change. Genes 685 

that form the intersection between the adult and pediatric cohorts are indicated, with arrows 686 

depicting directionality of expression at relapse. Visualization and underlying statistical 687 

calculations were performed using Qlucore omics explorer v.3.6. D, Diagnosis; DEGs, 688 

Differentially expressed genes; FC, Fold change; R1/2/3, Relapse 1/2/3; R1/2-P, Persistent 689 

relapse sample. See Supplemental Table 10B for details regarding samples included in this 690 

figure, and Supplemental Table 14 for all DEGs.  691 
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Supplemental Figure 9. Gene expression of highly ranked genes associated with diagnosis 693 

or relapse. A-B) GO-analysis of DEGs between diagnosis and paired relapse samples for (A-694 

upper) adult and (A-lower) pediatric samples. GO-terms presented above the X-axis are 695 

enriched among genes upregulated at diagnosis compared to relapse, while pathways below the 696 

X-axis are enriched among downregulated genes. B-C) Scatter plots with mean and SD 697 

presenting gene expression data comparing diagnosis and relapse samples for CR1 (B) and 698 

DPEP1 (C) among the local adult and pediatric cohorts, including the BM-control samples. 699 

Applied statistical test: Kruskal-Wallis test followed by Dunn´s correction for multi-group 700 

comparisons. The Y-axis represents log2 transformed, TMM normalized expression of RNA. 701 

DEGs, Differentially expressed genes; FDR, False discovery rate (* FDR<0.25, ** FDR<0.1, 702 

*** FDR<0.05; Benjamini–Hochberg correction); SD, Standard deviation; TMM, Trimmed 703 

mean of M-values. # CR1, ¤ DPEP1. See Supplemental Table 10B for details regarding 704 

samples included in this figure, and Supplemental Table 14 for all DEGs.  705 
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 706 

Supplemental Figure 10. Workflow for feature prediction using machine learning-based 707 

analysis. The top level of the workflow shows the number of samples used for each cohort. 708 

Initial data filtration steps are depicted on the left-hand side as detailed in Supplemental 709 

Methods – “Interpretable supervised learning to obtain rule-based classifiers for disease states” 710 

– “Pre-processing of RNA-seq data”. The upper middle level of the workflow shows four 711 

sequential steps for analyzing the data for each cohort and biological interpretation. The lower 712 

middle level shows the pipeline for constructing new models based on a merged list of features. 713 

This step was performed in order to validate cohorts and reveal common co-predictors. Detailed 714 

description of the steps included in the middle level of this figure are given in the following 715 

sub-sections in the Supplemental Methods: “Data discretization and feature selection”, 716 
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“Optimizing number of selected features for rule-based learning”, “Constructing rule-based 717 

models”, and “Validating rule-based models”. The right-hand side depicts generation of rule-718 

based networks, heat maps, arc plots, as well as network comparisons, with detailed description 719 

of these steps given in the Supplemental Methods sub-sections “Overview of the analysis 720 

pipeline”, “Rule-based heat maps for evaluating classifiers“, and “Network-based comparisons 721 

and hubs visualization”. This figure was designed using resources from www.flaticon.com. See 722 

Supplemental Table 10C and D for details regarding samples included in the machine 723 

learning-based analyses, and Supplemental Tables 16-19 for all rules generated through these 724 

analyses.  725 
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 726 

Supplemental Figure 11. Relapse-specific differential expression of CD6, INSR and 727 

ZNF773 in adult AML. Scatter plots with mean and SD depicting CD6 (A), INSR (B) and 728 

ZNF773 (C) expression between diagnosis, relapse and BM-control samples, for adult (left) 729 

and pediatric (right) cases. Applied statistical test: Kruskal-Wallis test followed by Dunn´s 730 

correction for multi-group comparisons. The Y-axis represents log2 transformed, TMM 731 

normalized expression of mRNA. SD, Standard deviation; TMM, Trimmed mean of M-values. 732 

See Supplemental Table 10C for details regarding samples included in this figure.  733 
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Supplemental Figure 12. Low INSR expression is associated with worse disease outcome 734 

for the TCGA cohort. A-C) Kaplan-Meier plots depicting event-free survival (left) and overall 735 

survival (right), comparing high and low CD6 (A), INSR (B) and ZNF773 (C) expression within 736 

the TCGA cohort. High and low gene expression was discretized based on the mean expression 737 

for the respective gene over all samples included in the analysis. Applied statistical test: Log-738 

rank (Mantel-Cox) test. See Supplemental Table 10F for details regarding samples included 739 

in this figure, and Supplemental Table 13 for accompanied statistical results.  740 
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 741 

Supplemental Figure 13. Co-predictive features detected by machine learning-based 742 

analysis in pediatric AML. Relationships between co-predictive features associated with 743 

diagnosis (left) and relapse (right) among pediatric AML cases are visualized utilizing VisuNet. 744 

The Genetic reducer was applied. The color of the nodes shows the expression level, with three 745 

bins for high (orange), medium (grey) and low (blue) expression. The rule support is shown by 746 

the size of the respective node, while the support for each connection is visualized by the 747 

thickness and color of the connective line. Rules were filtered according to FDR <0.05. See 748 

Supplemental Table 10C-lower for details regarding samples included for generating the data 749 

in this figure. FDR, False discovery rate.  750 
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 751 

Supplemental Figure 14. Co-predictive features detected by machine learning-based 752 

analysis in local pediatric and TARGET AML cohorts. A-B) Relationships between top 10 753 

co-predictive genes associated with diagnosis (left) and relapse (right) among pediatric local 754 

(A) and TARGET (B) AML cases are visualized utilizing VisuNet. The Johnson reducer was 755 

applied on the respective dataset after merging features identified for the separate datasets. The 756 

color of the nodes shows the expression level, with three bins for high (orange), medium (grey) 757 

and low (blue) expression. The rule support is shown by the size of the respective node, while 758 

the support for each connection is visualized by the thickness and color of the connective line. 759 

See Supplemental Table 10C-lower and D for details regarding samples included for 760 

generating the data in this figure.  761 
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 762 

Supplemental Figure 15. Downregulation of NFATC4 and KATNAL2 at diagnosis in 763 

pediatric AML. Scatter plots with mean and SD showing the log2 transformed, TMM 764 

normalized expression values in diagnosis-, unpaired relapse- and BM-control samples for 765 

NFATC4 (A) and KATNAL2 (B) for the adult (left) and local pediatric (right) AML cohorts. 766 

Applied statistical test: Kruskal-Wallis test followed by Dunn´s correction for multi-group 767 

comparisons. SD, Standard deviation; TMM, Trimmed mean of M-values. See Supplemental 768 

Table 10C for details regarding samples included for generating the data in this figure.  769 
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 770 

Supplemental Figure 16. Statistical evaluation of machine learning-based results. A) 771 

Model performance based on the area under the receiver operating characteristic curves (AUCs) 772 

for rule based models for the adult cohort (mean AUC = 0.84) and for the pediatric cohort (mean 773 

AUC = 0.96). B) Accuracies for all the models built using the first 200 top features from MCFS. 774 

The highest accuracy is shown for the models built with 50 features for the adult cohort and 60 775 

features for the local pediatric cohort. FPR, False positive rate; MCFS, Monte Carlo feature 776 

selection; TPR, True positive rate.  777 
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 778 

Supplemental Figure 17. Heat map showing clustering of adult AML diagnosis and 779 

relapse samples based on the Genetic reducer rule model. The heat map is based on a binary 780 

matrix for supported samples per each rule from the rule-based model. The samples that belong 781 

to the support set of the rule is given 1 and the rest are assigned 0. An asymmetric binary 782 

distance is computed using the matrix for the hierarchical clustering. The heat map shows a 783 

good separation of diagnosis and relapse samples based on the rules. The heat map was 784 

constructed using the pheatmap R package (v1.0.12). D, Diagnosis; R1/2/3, Relapse 1/2/3. See 785 

Supplemental Table 16 for all the rules that this heat map is based on, and Supplemental 786 

Table 10C-upper for details regarding samples included in this figure.  787 



44 
 

 788 

Supplemental Figure 18. Heat map showing clustering of pediatric AML diagnosis and 789 

relapse samples based on the Genetic reducer rule model. The heat map is based on a binary 790 

matrix for supported samples per each rule from the rule-based model. The samples that belong 791 

to the support set of the rule is given 1 and the rest are assigned 0. An asymmetric binary 792 

distance is computed using the matrix for the hierarchical clustering. The heat map shows a 793 

perfect separation of diagnosis and relapse samples based on the rules. The heat map was 794 

constructed using the pheatmap R package (v1.0.12). D, Diagnosis; R1/2, Relapse 1/2; R1/2.P, 795 

Persistent relapse sample. See Supplemental Table 17 for all the rules that this heat map is 796 

based on, and Supplemental Table 10C-lower for details regarding samples included in this 797 

figure.  798 
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