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ABSTRACT ARTICLE HISTORY

The interdisciplinary field of cognitive science has been and is Received 29 January 2016
becoming increasingly central within human factors and ergonomics Accepted 19 October 2016
(HF&E) and, since at the same time, there has long been a call for a KEYWORDS

more systems perspective in the area with a somewhat wider unit Distributed cognition: DCog;
of analysis. This paper argues that the theoretical framework of  sffolding; socio-technical
distributed cognition would greatly benefit the application of HF&E systems; human-based

to manufacturing and would offer a more holistic understanding of assembly; manufacturing
the interactions between different entities within a greater context,

including the social, cultural and materialistic. We aim to characterize

and analyse manufacturing as a complex socio-technical system from

a distributed cognition perspective; focusing on the use, mediation

and integration of different forms of representations, tools and

artefacts in this domain. We present illustrative examples from

authentic manual assembly, showing the cognitively distributed

nature of the work, ranging from scaffolding strategies of the

individual worker to the emergent properties of a whole assembly

line. The paper further proposes and provides benefits of using a

distributed cognition framework as a novel approach in the toolbox

for the HF&E discipline, where it may have been found before, but the

application to manufacturing has been absent.

1. Introduction

It has been widely acknowledged that an increasing number of researchers are calling for
a more unified view of human cognition in the fields of Human Factors and Ergonomics
(hereafter abbreviated HF&E) (Feyen, 2007; Karltun, Karltun, Berglund, & Eklund, 2017;
Marras & Hancock, 2014; Thorvald, Hogberg, & Case, 2012). However, many authors,
while claiming to be champions for a more systems view of human cognition (e.g. Marras &
Hancock, 2014), still use and refer to traditional information processing models of human
cognition. Theories and models that view the human brain as central and the body as
well as the social and material environment as mere problem spaces, or as best as external
resources. This is opposed to studying the processes humans enact when interacting with
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real material media when they cognize in the world, and how interconnected humans and
their social and material environment are and strongly influence each other. Marras and
Hancock’s (2014) human-systems approach, for example, seems at a first glance to take a
systems perspective, but when taking a closer look, we argue that this is merely putting an
embodied icing on the traditional ‘mental gymnastics’ (Chemero, 2009) cake of traditional
cognitive psychology, by only focusing on the individual cognizer.

For quite some time, the late prominent scholar Wilson (2000, 2014) has called for a more
systems view of HF&E where humans and their actions should be understood within their
contexts. Generally speaking, he questions several significant assumptions and perspec-
tives in the HF&E community, and among many things, he specifically argues against the
traditional dismissal of, primarily social, context within HF&E. He addresses the necessity
to widen the unit of analysis, and the need for adding and complementing theoretical and
methodological approaches within HF&E, in particular with contributions from the cog-
nitive science field. He emphasizes that the (re)discovery of the importance of context also
has parallels in the new advances within cognitive science that moves away from explaining
and studying cognition as purely bounded ‘within the skull’ to being a science of mind that
‘puts brain, body and world together again’ (Clark, 1997). One of Wilson’s (2000, 2014) main
points is the change in the unit of analysis from the traditional cognitive psychologist’s view
where the individual is the focus of research whereas the topic of HF&E calls for a more
systems approach. He argues that the unit of analysis should be expanded and should focus
on the interactions between individuals, tools and contexts, i.e. having more in common
with anthropology, where the unit of analysis is often at the level of interactions, than with
traditional cognitive psychology. Consequently, he emphasizes that ‘Within ergonomics, the
unit of analysis should be the distributed cognition, the thinking which goes on amongst
people and their computer systems distributed over space and time’ (Wilson, 2000, p. 562).
This without neglecting the necessity for circumstances where the unit of analysis should be
the individual, given that much may be discovered from individual humans’ behaviour and
performance using scientific methods such as carefully controlled laboratory experiments.
On the other hand, he puts forward that contrived experiments mostly hinder interactions
as they unfold naturally in work practices that may result in reliable findings about a small
feature of human behaviour, but which may have little significance in real-life settings as
the vast amount of real world interactions that influence human performance are factored
out. Wilson (2000) explains that the increased interest of ergonomists in ethnographical
approaches, when the unit of analysis is ‘interactions in the wild; strongly arguing that field
research is fundamental ‘for the core purpose of ergonomics, investigating and improving
interactions between people and the world around them’ (p. 563), which requires integration
both within the HF&E discipline and with other disciplines.

However, Wilson (2000) stresses that there are some identified risks in taking a systems
perspective in HF&E. Firstly, studying and investigating a systems level may mistakenly
imply that researchers are dealing with a number of constituent parts rather than being
holistic, thereby neglecting the emergent properties at the systems level. Emergence can
be characterized as a process where larger patterns and regularities arise via interactions
among smaller entities that themselves do not exhibit such properties. An emergent property
of a socio-technical system, in the context of manufacturing, is one that is not a property
of any entity of that system, but is still a feature of the system as a whole. This means that
an emergent behaviour can occur when a number of smaller entities (e.g. humans and
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artefacts) operate in an environment, thereby forming more a complex behaviour on a
collective level (e.g. Clark, 1997). Secondly, if the level of analysis is too high and superficial,
then researchers are running the risk that the outcome lacks significant value. Thirdly, the
spectrum from ‘not seeing the trees for the wood’ to ‘not seeing the wood for the trees’ is
an issue that pushes HF&E researchers and practitioners to decide proper levels of analysis
initially. Fourthly, the contemporary view of any work activity should be considered as part
of a network, paying attention to the interactions in the whole network where ‘there is a
team of people, distributed over time, space and function, working with a multiplicity of
display formats and signals to meet a number of different goals and targets’ (p. 563). In other
words, the study of interactions within complex socio-technical systems is the fundamental
and critical focus for ergonomics understanding and contributions.

It should be noted that many models of HF&E have highlighted the interactions between
people, products and environments (e.g. Stanton, Salmon, Walker, Baber, & Jenkins, 2005),
but their major focus on redesigning certain user interfaces, equipment or workspaces,
have resulted in the production of many tools and frameworks in order to examine and
measure interactions, with the intention of doing substantial improvements of the current
work performance. Instead, HF&E practitioners should now study interactions not simply
to design artefacts and workspaces, but also to understand the interactions themselves in
order to grasp and clarify the more diffuse and complex socio-technical systems, which
is the fact in many current work places (Wilson, 2000, 2014). During the years, various
frameworks that present and define elements of complex socio-technical systems in HF&E,
from a so-called Cognitive Systems Engineering (CSA) perspective, have been proposed. To
mention two commonly used; Cognitive Work Analysis (CWA; Rasmussen, Pejtersen, &
Goodstein, 1994; Sanderson, 2003; Vicente, 1999) as well as Joint Cognitive Systems (JCS;
Hollnagel & Woods, 2005; Woods & Hollnagel, 2006) are made rather prominent. On the
one hand, CWA is a broad framework that includes the design, development and anal-
ysis of complex socio-technical systems, assuming that these systems are dynamic with
changing goals, work procedures and unanticipated events. CWA focuses on defining the
boundary of the system rather than characterizing the trajectory of task procedures within
the system. CWA views the system as adaptive, but closed-looped. In order to identify the
boundary of the system, CWA provides five phases of analysis. The main purpose of the
five phases of analysis is to decompose the socio-technical system in terms of its elements
from different perspectives. The phases can be used individually or combined, depending
on the type and scope of study. CWA is considered flexible to use, the various methods
in the phases provide a toolkit to select from, and it has been appreciated in many studies
that have used the framework. However, the flexibility of CWA can make it difficult to
apply in practice, and it has also been criticized for being rather complex to apply as well
as time consuming (Nilsson, 2010; Sanderson, 2003; Stanton et al., 2005). One the other
hand, JCS focuses on the analysis, design and evaluation of complex socio-technical sys-
tems, and considers how external functions of the co-agency of human and machine can
be described and comprehended (i.e. conditions for work, its constraints and resources).
A major focus is on how JCS can be designed to effectively control and function in the
intended work situation. The underlying principle in JCS, according to its founders, is that
cognition is distributed through the operators’ coordination and cooperation with each
other, since they are embedded in larger groups and organizations (Hollnagel & Woods,
2005). The major focus is on what JCS does (performance) and why, in order to improve
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design. However, JCS has been criticized for not including the environment in the unit of
analysis, given that the environment provides an understanding of the content and perfor-
mance characteristics of the JCS. This way of working may result in a difficulty to portray
why a certain joint function happens (Nilsson, 2010; Norros, 2014). It should be noted that
although both CWA and JCS have the word ‘cognitive’ in their designations, they do not
particularly stress either the role and relevance of cognition or the situated context of the
socio-technical system. A promising step towards analysing cognition systems in context
at nuclear power plants was taken by Mumaw, Roth, Vicente, and Burns (2000), although
they are still not fully applying the DCog concepts in their analysis and are therefore not
considered a full blown DCog study.

The manufacturing domain has primarily been researched from a work performance
perspective by HF&E, rather than by human-computer interaction (HCI), cognitive sci-
ence or related areas. Manufacturing can be considered a complex socio-technical domain
where humans, technology and artefacts together form a holistic system. Information at
the shop floor flows between different media, different roles (assembly workers, production
leaders, technicians, maintenance, etc.), and separate locations at different time scales. In
manufacturing, much information is shared, stored and retrieved and it is crucial that cor-
rect information reaches its target at the right time to the right person (Thorvald, 2011).
Moreover, the domain is highly error sensitive, it is therefore critical for work processes
to run satisfactory to avoid errors and other irregularities. It is a fact, whether known or
unknown, that tools and artefacts mediate many of the actions and tasks that we, as HF&E
specialists, investigate on a daily basis. Following the line of arguments put forward by
Nardi (1993), for example, who argues that in reality there are no lonely users struggling
in isolation, instead they make good use of other humans in their social environments to
help them solve problems and compensate for gaps in their knowledge. Similarly, Rogers
and Ellis (1994) argue that generally much work activity is cognitive, there is a major need
to study cognitive and social activities of people that occur in workplaces as well as the
material resources they use while performing their work practices.

This paper aims to characterize and illustrate manufacturing as a complex socio-
technical system from a distributed cognition perspective; focusing on the use, mediation
and integration of different forms of representations, tools and artefacts in this domain. The
theoretical framework of distributed cognition presented by Hutchins (1995a, 1995b, 2010)
suggests that cognition should be studied ‘in the wild’ as it naturally unfolds. Along with
the views proposed by Halverson (2002), from here on we will use Hutchins’s theoretical
framework of distributed cognition (Hutchins, 1995a, 1995b, 2010) abbreviated as DCog to
refer to his theoretical framework, while written out it will refer to the general phenomena
of cognition being distributed. The concepts and arguments put forth in this paper are
true to Hutchins’s original work and omit approaches that deviate significantly from his
original focus on the cognitive system. For example, the DIB method (Galliers, Wilson, &
Fone, 2007) is too constraining to capture the different aspects of DCog because it involves
creating a requirements list that may lose the holistic perspective of DCog. The translational
cognition approch by Patel, Zhang, Yoskowitz, Green, and Sayan (2008) also lacks proper
alignment with the core theoretical concepts of the DCog framework. It should be pointed
out that the original DCog framework views cognition as a socio-cultural process, which
is distributed in complex socio-technical environments. It also offers a shift from studying
individual cognizers to studying the whole functional system, including the people, the tools
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and artefacts that they use in order to perform their work and cognitive activities. In our
opinion, DCog fits hand in glove with Wilson’s request for a systems approach for studying
complex socio-technical systems, offering the desired characteristics by providing a holistic
and emergent perspective. It focuses on interactions between entities, widening the unit
of analysis beyond the ‘individual skull’ combined with a major emphasis on the cognitive
processes and the social context, and is conducted ‘in the wild’ From this perspective, it is
rather surprising that Wilson (2000, 2014) did not mention DCog when he promoted and
favoured the new advances in the cognitive science field. The intended contribution of this
paper is to offer another powerful cognitive framework in the HF&E toolbox for studying
and explaining complex socio-technical systems from an emergent and holistic perspective.
It should be noted that there are past studies applying distributed cognition approaches to
HF&E (i.e. Blandford & Furniss, 2006; Furniss, Masci, Curzon, Mayer, & Blandford, 2014,
2015) but this is done in a medical context and proper application to manufacturing seems
absent.

The remainder of the paper is structured as follows: The next section provides some
historical and conceptual background that will be useful in motivating and framing the
work presented in this paper. We stress the importance of offering a description of the
underlying theoretical and philosophical assumption of the new theoretical advances in
the cognitive science field. Furthermore, we present concrete illustrative examples from
manufacturing, where several examples of how different forms of representations, tools
and artefacts that are used in manual assembly are described and analysed from a DCog
perspective. The final section then summarizes and discusses the work presented here, and
also briefly addresses some future work.

2, Background

This chapter will first describe the theoretical advances in the cognitive science field in
later years. Then the focus is on DCog and how the socio-technical systems perspective of
cognition ‘in the wild’ allows for a wider unit of analysis, which in turn can provide insights
and benefits to the applied study of manufacturing. To our current knowledge, application
of the new advances in cognitive science to the manufacturing domain is scarce, not to say
non-existing.

2.1. Situating cognition in context

How human thinking works is the major research issue addressed in the interdisciplinary
field of cognitive science, which strives to provide explanations of how to characterize and
study human cognitive abilities, e.g. memory, decision-making, reasoning and problem solv-
ing, as well as how these abilities are organized. Traditionally, cognition has been described
as mental information processing that takes place inside the human brain, following the
so-called computer metaphor of mind (Card, Newell, & Moran, 1983; Fodor, 1975; Neisser,
1967, 1976; Pylyshyn, 1984). In the computer metaphor of mind, cognition is considered to
be symbol manipulation of internal mental representations, designed to produce an outcome
on demand, viewing cognition as a kind of ‘mental gymnastics, using Chemero’s (2009)
terms, where the body is reduced to an input and output device. As pointed out by Barrett
(2015), the emphasis on the idea that the brain is a kind of computer (then claiming that
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the ‘brain’ is synonymous with the ‘mind’), detaches the brain from both the body as well as
the material and social environment. By this way of working, the intimate connections that
exist between them is ignored and removed for the level of analysis, which is considered a
theoretical failure of nerve from proponents of alternative explanations of cognition that do
not follow the traditional dichotomy of mind vs. body. Barrett (2015) further emphasizes
that we should be sceptical of relying too heavily on the computer metaphor of mind since
it is not derived from a naturalistic view of cognition and behaviour.

In recent years, the cognitive science field has introduced more elaborate views on
cognition, which Marsh (2006) refers to as DEEDS (Dynamical, Embodied, Extended,
Distributed, and Situated) theories of cognition that have entered the scene. In a similar
vein, Barrett (2015) refers to 4E-cognition (Embodied, Embedded, Enactive, and Extended),
arguing that although they differ from each other in a number of significant ways, all
DEEDS and 4E-approaches share and have in common the idea that cognitive processes
emerge from the unique manner in which an agent’s (either human or robot) morpholog-
ical structure and its sensory and motor capacities enable it to engage successfully with
its social and material environment in order to bring forth adaptive and flexible actions.
According to Hutchins, ‘enaction is the idea that organisms create their own experience
through their actions. Organisms are not passive receivers of input from the environment,
but are actors in the environment such that what they experience is shaped by how they
act’ (Hutchins, 2010, p. 428). Taken together, these theories of cognition are all approaches
to understanding and studying the human mind that challenge the traditional view of
human information processing, following the computer metaphor of mind. Accordingly,
two underlying assumptions for the DEEDS and 4E approaches of cognition are: (1) the
agent’s embodied interactions matter for intelligence and (2) the need of broadening the
focus and scope of the agent’s cognitive system.

This way of thinking was illustrated by Polyani (1966) with the classical example of a blind
man using a stick: What are the bounds of the blind man’s system - does it or does it not
include the stick? In more recent years, the use of strategies such as taking advantage of exter-
nal structures to coordinate perception and action for cognitive activity might be considered
another and complementary way of explaining intelligent behaviour, commonly referred to as
external cognition (Rogers, 2012). These external structures function as a kind of supportive
framework or scaffolding, i.e. external resources to support and simplify cognitive activity for
an individual agent (e.g. Clark, 1997). As pointed out by Rogers (2012), successful scaffolds are
no longer considered merely cognitive amplifiers or aids, since they have become an integral
part of humans’ activities through the multiple ways we interact with the environment and
other humans (there is neurological evidence for the inclusion of external tools into the body
schema in favour for this argument, see Iriki, Anaka, & Iwamura, 1996). In a broad sense,
the human brain and body plus these external factors result in the ‘mind;, the boundary of
which extends further into the world than cognitive science initially assumed (Clark, 1997).
Hence, Clark (1999) claims the environment can be viewed as a ‘source of cognition, since it
complements biological computation and processing, which he states as follows:

The external environment, actively structured by us, becomes a source of cognition — enhanc-

ing ‘wideware’- external items (devices, media, notations) that scaffold and complement (but

usually do not replicate) biological modes of computation and processing, creating extended

cognitive systems whose computational profiles are quite different from those of the isolated
brain (Clark, 1999, p. 349 original emphasis).
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Proponents of DEEDS and 4E-cognition (e.g. Barrett, 2015; Chemero, 2009; Chiel & Beer,
1997; Clancey, 1997; Clark, 1997, 1999; Clark & Chalmers, 1998; Dreyfus, 1992; Hutchins,
1995a, 1995b; Lindblom, 2015a; Norman, 1993; Rogers, 2012; Suchman, 2007; Wilson &
Golonka, 2013) argue that one of the biggest misconceptions of human cognition is that
humans function as computers, i.e. as machines, where cognition happens in the brain alone.
While in certain circumstances, there may be similarities between how humans and com-
puters (machines) function, but recent research provides compelling evidence that human
cognition is the result of humans’ bodily interactions with a social and material environment.
The central idea is that the cognitive system would offer a broader unit of analysis stretching
from the individual, across people, material and technical artefacts to culture, as much of
everyday cognition is embedded and situated in working life practices. Accordingly, the
focus on interactions between the cognitive agents and the social and material environment
is also strongly emphasized in the DEEDS and 4E approaches to cognition. However, it
should be noted that there are several different opinions to what extent these theories differ
significantly from the computer metaphor of mind, ranging from the traditional foundation
of cognitive science (i.e. information-processing and computationalism) being preserved,
and thus the embodied nature of cognition is merely considered a constraint of the ‘inner’
organization and processing, to a more radical view that goes much further and sees a
fundamental shift in the explanation of cognition that is ‘profoundly altering the subject
matter and theoretical framework of cognitive science’ (Clark, 1999, p. 348). Due to space
limitations, we are unable to fully compare and contrast the similarities and differences of
the DEEDS and 4E approaches to cognition, since this is beyond the scope of this paper
(for an extensive review of embodiment, see Lindblom, 2015a).

For the aim of this paper, we follow Rogers and Ellis (1994) suggestion that the theoretical
framework of DCog is a viable approach in order to study cognition and information flow
in complex socio-technical domains. Furthermore, DCog stays rather close to the computer
metaphor of mind, which may make it easier for HF&E specialists trained in that tradition
to grasp the ideas and concepts of DCog than more radical DEEDS and 4E approaches to
cognition, and subsequently offering another powerful cognitive framework in their toolbox
for studying and explaining complex socio-technical systems.

2.3. The theoretical framework of distributed cognition (DCog)

The theoretical framework of DCog, originally presented by Hutchins (1995a, 1995b), pro-
poses that cognition should be studied ‘in the wild’ as it naturally unfolds. DCog offers a
shift from studying individual cognizers to studying the whole functional system, includ-
ing the people, the tools and artefacts that they use in order to perform their work and
cognitive activities. It has been noted that personnel in different domains routinely extend
and distribute their cognition into the environment to perform their given tasks efficiently
and to contentment. The nature of this distribution of cognition differs very slightly from
different domains and tasks where the factory worker might be using external memory
aids to remember the size of the current production batch or, which is not uncommon, to
compensate for poor information interfaces (Thorvald, 2011); the office worker uses post-it
notes to offload memory systems and communicate with colleagues (Kirsh, 2001); and the
ship captain and navigator heavily rely on their crew to fulfil their part in the very complex
task of running a ship (Hutchins, 1995a). These examples are all cases where the cognizers
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use external tools or peers to extend and mediate their cognition into the environment with
the purpose of (1) offloading cognitive load and freeing up cognitive capacity for other tasks
and (2) collaborating with peers and tools to allow for more effective cognitive processing,
with the whole functional system as the unit of analysis.

DCog (Hutchins, 1995a, 1995b) is grounded in the theoretical roots of traditional cogni-
tive science, staying mostly true to the classic assumption of cognition as computation but
slightly modified, and extends the notion of cognition beyond the boundary of the individual
organism’s skull. According to Perry (2003), DCog merely extends the traditional notion
and theoretical framework of cognition as computationalism, since it still uses the notions
of representations and representational transformations for describing human cognitive
activity in larger units of study. Perry (2003, p. 194) points out that ‘researchers trained
in cognitive science do not have to abandon their theoretical knowledge and conceptual
apparatus to understand distributed cognition’ The main difference from computationalism
‘is in its theoretical stance that cognition is not just in the head, but in the world (Norman,
1993) and in the methods that it applies in order to examine cognition “in the wild” (Perry,
2003, p. 194). Accordingly, Hutchins (1995a, 1995b, 2006) argues that cognitive science
made an error when it mistook the properties of a person in interaction with the social and
material world for the cognitive properties that reside inside the person. Instead, cognition is
viewed as creation, transformation, and propagation of representational states within a socio-
technical system (Hutchins, 1995a). The underlying principles from a DCog perspective
are that human cognition is fundamentally distributed in the socio-technical environment
that we inhabit. DCog takes a system’s perspective, and discards the idea that human mind
and environment can be separated and cognition should instead be considered a process,
rather than as something that is contained inside the mind of the individual. Accordingly,
cognition is an emergent phenomenon resulting from the interactions between different
entities in the brain, the body, and the social and material environment. In other words, the
whole is more than the sum of the individual parts. Arguably, DCog can be considered as
a reaction to the traditional view, given that its primary focus is to characterize the general
flow, propagation and transformation of various kinds of representations (internal and exter-
nal) in the distributed system, thus providing a systems view of human cognition (Figure 1).

The DCog framework differs from other cognitive approaches by its commitment to
two theoretical principles (Hollan, Hutchins, & Kirsh, 2000). The first principle concerns
the boundaries of the unit of analysis for cognition, which is defined by the functional
relationship between the different entities of the cognitive system. The second principle
concerns the range of processes that is considered to be cognitive in nature. From a DCog
perspective, cognitive processes are seen as interaction between internal processes, as well as
manipulation of external objects and the propagation of representations across the system’s
entities. When these principles are applied to the observation of human activity in situ, three
kinds of distributed cognitive processes become observable (Hollan et al., 2000, p. 176).

o Cognitive processes may be distributed across the members of a social group.

« Cognitive processes may involve coordination between internal (e.g. decision-making,
memory, attention) and external structures (e.g. material artefacts, computer systems
and social environment).

o Processes may be distributed through time in such a way that the products of earlier
events can transform the nature of later events.
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Figure 1. From a traditional cognitive science perspective (left) the unit of analysis is narrowed to the
inside of the individual’s head, while from a DCog perspective (right) the unit of analysis is expanded
to be distributed across people and artefacts where cognitive processes are the result of the functional
relationships of the entities of the cognitive system.

The DCog approach has since its inception in the mid-1990s gained increased interest and
been used as an analytic tool for capturing the interactions between humans and technology
in various settings and contexts (Rogers, 2012). Major reasons for this development are
DCog’s focus on artefacts and the manner in which information (in form of different kinds
of representations) is propagated and transformed within the cognitive system, its emphasis
to provide detailed analyses of particular tools and artefacts, as coordination between exter-
nal and internal structures are highly stressed. In other words, to study material structures
like tools and tool use reveal properties about cognitive structures that become visible
‘beyond the skull’ Another important aspect of tools is that they may serve as mediators in
social interaction. Thus, it is important to recognize how information is transformed when
mediated through tools and artefacts as well as how they function as scaffolds (Clark, 1997;
Hutchins, 1995a). In a broad sense, the human brain and body plus these external factors
result in the ‘mind; of which the boundary extends further into the world than cognitive
science initially assumed.

Given that DCog treats the work practice as the unit of analysis, it makes human work
performance explicit while portraying how humans handle tasks in action, based on the
spatial, structural, social and temporal distribution, through the use of various coordinating
mechanisms (e.g. rules and legislation, prescribed work procedures and local work prac-
tices, tools and artefacts (for further information regarding the distinction between tools
and artefacts see Susi, 2006)) in order to grasp, access and share information (Clark, 1997;
Hutchins, 1995a, 1995b). This portrayal facilitates identification of workarounds and break-
downs, and therefore highlights different kinds of interruptions in the cognitive system.
Various forms of external tools and cognitive artefacts are considered essential coordinating
mechanisms, given that they carry a portion of the system’s cognitive workload (Hutchins,
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1995a, 1995b; Norman, 1991). Norman (1991, p. 17) defines cognitive artefacts to encompass
‘any artificial device designed to maintain, display, or operate upon information in order to
serve a representational function’

An example used by Hutchins (1995a) is the practical usage of the navigational chart. The
chart is used for offloading cognitive effort to the environment and to present knowledge
that has been accumulated over time. Furthermore, he describes the navigational chart as
an analogue computer where all the problems solved on charts can be represented as equa-
tions and solved by symbol-processing techniques. The chart is also used for representing
additional data that are not present in the represented phenomena itself, and introduces a
bird’s eye perspective of local space, position and motion that is almost never achieved by
any person on the deck of a ship, factors which complicate computation. Hutchins (1995a)
illustrates how multiple embodied biological brains combined with tools (sextants, alidades,
etc.), and artefacts (maps, charts, etc.), interact and collaborate during human performance.
These external resources allow the human users ‘to do the tasks that need to be done while
doing the kinds of things people are good at: recognizing patterns, modeling simple dynam-
ics of the world, and manipulating objects in the environment’ (Hutchins, 1995a, p. 155).
An important insight here is the relationship between the external structure (the chart as
a representation) and the internal structure (the computation). In other words, the study
of external, material and social structures reveals properties about an individual's internal,
mental structures without going inside the skull. Hence, by studying cognition with this
larger scope in mind, it is clear that the system has cognitive properties that cannot be limited
to the cognitive abilities of individuals. Consequently, taking the whole system as the unit
of analysis makes it possible to observe the different kinds of representations, visible (exter-
nal) or invisible (internal), which are fundamental parts in the socio-technical system. As
Halverson (2002) points out, DCog uses the same theoretical concepts for both humans as
well as artefacts and tools, which have led to criticism of DCog (e.g. Nardi, 1996), assuming
that humans are equated with non-biological entities (tools and artefacts), which in some
way denies our human nature. It should be pointed out that this is not the case, but rather
a misunderstanding. Arguably, the various kinds of cognitive artefacts that we use in our
work practices, should be considered scaffolds and coordinating mechanisms in managing
intelligent behaviour, they complement human abilities, aid those activities for which we
are poorly suited cognitively, and enhance and help to develop those cognitive skills which
we are biologically predisposed to process easily (Norman, 1993).

Substantial work has been done to apply the DCog lens in different settings and domains.
This includes, among others, ship navigation (Hutchins, 1995a), aviation (Hutchins,
1995b), Human-Computer Interaction (e.g. Hollan et al., 2000; Perry, 2003; Rogers & Ellis,
1994), heart surgery teams (Hazlehurst, McMullen, & Gorman, 2007), medical informatics
(Hazlehurst, Gorman, & McMullen, 2008), information visualization (Liu, Nersessian, &
Stasko, 2008), technostress in the office (Sellberg & Susi, 2014), and interruptions in manu-
facturing (Andreasson, Lindblom, & Thorvald, 2016).

There are several ways of doing DCog investigations within work settings and common
to all of them is collecting ethnographic data through naturalistic enquiry which are then
analysed and interpreted in terms of work practices, routines and procedures followed
(Rogers, 2012). The primary focus of DCog is on the general flow, propagation and trans-
formation of information in the distributed cognitive system, but less discussed aspects are
what happens when the information flow breaks down or when alternative ways of handling
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the information flow emerge in the system. Rogers (2012) points out that through properly
conducted DCog analyses, problems can be identified and described in terms of information
flows and communication pathways that are being interrupted or hindered due to inefficient
information propagation. Accordingly, different workarounds (i.e. the discrepancy between
the prescribed work practice and the current work practice) that humans develop when
dealing with various demands during work performance become salient through a proper
DCog analysis (Rogers, 2012).

However, DCog and its application power as an analytic tool has been criticized; two
posed forms of criticism regard the DCog view of the very nature of cognitive phenomena
and its utility as an analytic tool (Rogers, 2012). Nardi (1996), for example, criticizes the
need for extensive fieldwork to reach a proper analysis and subsequent results in a given
setting and also the lack of interlinked concepts that can easily be used to identify specific
aspects out of the collected data. In a similar vein, Halverson (2002) argues that few the-
oretical constructs are explicitly named in DCog, which is a drawback. As pointed out by
Rogers (2012), a skilled DCog analyst has to be able to move between the different levels
of analysis. Indeed, a well-executed study of a work setting that results in detailed analyses
can be useful for design, identifying why problems occur, and offering a design of how to
solve the situation (Rogers, 2012). Such detailed and abstract analyses can provide several
suggestions how to change the design to improve user performance and, in the long run,
the work practice (Rogers, 2012). Hence, DCog is not a ‘quick and dirty’ approach but
consequently, the DCog approach has been used as a base for the construction of meth-
ods in areas such as the Resources model (Wright, Fields, & Harrison, 2000), DIB method
(Galliers et al., 2007), CASADEMA (Nilsson, 2010; Nilsson, Laere, Susi, & Ziemke, 2012)
and DiCoT (Blandford & Furniss, 2006). Although these methods have their foundation
in DCog, to varying extent, they oversimplify and sometimes omit several central aspects
of importance for a detailed DCog analysis (Sellberg & Lindblom, 2014). However, DiCoT
has been proven to facilitate the learning of applying the DCog framework (Berndt, Furniss,
& Blandford, 2014), and recently, a lot of work has been performed in health care using
the DiCoT methodology (Furniss et al., 2014, 2015; Rajkomar & Blandford, 2012). While
DiCoT has been successfully applied in health care, there are still issues regarding the
lack of proper notation for changes between representational formats. These changes often
occur between humans and cognitive artefacts and are especially relevant in DCog. Some
initial attempts to overcome this gap are developed in Lindblom and Giindert (2016) in a
manufacturing domain.

3. lllustrative examples from manufacturing

Looking at manufacturing, and perhaps more specifically, manual assembly, a significant
amount of examples of workers externalizing their cognition using different kinds of scat-
folds are evident. The following illustrative examples are gathered through several years
of work and observation in the field as well as from conversations with assembly workers,
mostly collected by the second author, who has both first-hand experiences of manual
assembly in practice as well as a researcher studying assembly work. Please note that these
anecdotal examples are meant as a basis for illustration and discussion rather than as empir-
ical evidence.
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3.1. Example 1 - high or low

At an assembly factory where assembly instructions (i.e. cognitive artefacts) came in the
form of a bunch of clipped together papers, the assembly time for the worker on a specific
product was around 1-1.5 h and the worker usually investigated the instructions first, took
mental note of it, i.e. internalized the symbolic representation (written assembly instruc-
tion), and then commenced work on the product, usually without consulting the instruc-
tions again. This way of working was possible due to limited component variation that
resulted in the workers being able to remember most of the relevant information. Still,
strategies for coping with an increased cognitive load were developed and one of these
strategies dealt with the mounting of a bearing using four bolts. Neither the bearing nor
the bolts ever differed between products but the assembly position did differ. There was an
option between placing the bearing ‘high’ or ‘low, referring to two different hole patterns
and the assembly instructions clearly stated what position the bearing should be mounted
in. The bearing had four holes where the accompanying bolts were placed and the main
product that the bearing should be fitted to have eight threaded holes (Figure 2).

In this case, it would have been optimal to mount the bearing immediately as the instruc-
tions had been read but this was impossible since other assemblies had to be done first.
To avoid having to explicitly remember the position of the bearing solely ‘in the head’
and to avoid having to consult the assembly instructions again, many workers used a felt
pen to mark the high or low position on the product in advance. This way, when it came
time to mount the bearing, it was a simple matter of identifying the hole pattern with the
markings on it.

This is an illustrative example of the offloading of cognitive load onto the environment,
i.e. scaffolding, and shows how cognitive processes may involve coordination between inter-
nal (e.g. memory, attention) and external structures (e.g. markings). More specifically, it is
the cognitive process of externalizing memory into the cognitive system with the ultimate
purpose of the cognizer to free up allocated and limited biological memory processes to
be used elsewhere. With the worker not having to explicitly remember what position the
bearing should have, memory and attention capacity is freed and available for other oper-
ations. By doing so, workers offload their internal memory and move parts of the internal

Figure 2. lllustration of the hole patterns where the grey dots indicate the high hole pattern and the
white dots indicate low. Assembly of the bearing in the high position would make use of holes 1, 2, 5 and
6 (counting top left to right and down), whereas the low position would make use of holes 3, 4,7 and 8.
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memory process onto another, more observable medium outside the ‘skull; i.e. the marking
of the felt pen, which makes it possible to select certain actions over time. An important
insight here is the coordination of cognitive processes between the external structure (the
marking as representations) and the internal structure (the memory process), in which the
knowledge of how to mount the bearing emerges. Moreover, the markings with the pen have
no similarities with the actual assembly instruction since the representation of the informa-
tion (where to mount the bearings) is transformed (from the written text in the instruction
to the marking with the pen). It is also propagated (from instruction to the actual object)
in the information flow of the coordination process of that particular assembly task that
was distributed through time in such a way that the products of earlier events (reading the
instruction and doing the marking with the pen) transforms the nature of the later events
(the actual mounting of the bearings).

3.2. Example 2 - keeping track

At an assembly production line for specialized combustion engine assembly, the overhead
task was to finish 23 products/day. However, there was no easy global way of keeping track
of finished products, which led to workers developing their own strategies. This desire to
use external memory aids (scaffolds) to keep track of produced engines manifested itself
in several ways, two of which are described here.

At one of the workstations, one of the assemblies was the mounting of a so-called ground
washer, a single bolt and a washer with the purpose of providing an electrical ground point.
Many workers, when working at that station therefore started their day by placing 23 washers
on 23 bolts and thus keeping track of products finished by just looking at how many bolts
and washers were still on the working table. Hence, the workers visually and concretely
externalized the amount of products to mount ‘out in the open, releasing cognitive capacity
for performing the ‘real’ assembly task while simultaneously keeping track of the overall
work process status by the creation of external representational states that were transformed
within the functional system.

At another workstation, the task was the assembly of fuel lines for the engine. The con-
necting ends of the fuel lines came with plastic cap covers to ensure the cleanliness of the
fuel line. The plastic caps were removed manually just as the fuel line was fastened to the
engine, thereby minimizing the time that the critical parts of the fuel line were exposed to
dirt and dust particles in the air. To keep track of finished products, many workers employed
a routine to keep one of the plastic caps from each engine as opposed to throwing it into
the plastic recycling bin as was done with the rest. The amount of saved plastic caps would
then serve as an external reminder of how many products had been produced during the
shift. Through employing this strategy, the workers did not have to be remember ‘in the
head’ (internal representation) the current state of production. Hence, the workers generate
cheap and efficient tricks to handle the situation, in order to avoid a decreased cognitive
performance and a high cognitive load.

These illustrations are two sides of the same example, i.e. strategies for counting down
versus counting up the overhead task. The example shows cognitive processes developed
to help meet the desire of the workers to keep track of the day’s work in an easily accessible
way involving coordination between internal (e.g. visual perception, memory, attention)
and external structures (e.g. pairs of washer and bolts as well as plastic caps). Just as in the
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first example, it deals with scaffolding and offloading of cognitive load onto the environ-
ment although the reason for it may differ slightly. In both examples though, the workers
use their limited biological cognitive capabilities (memory, attention) more effectively and
could potentially perform other tasks better, faster or more accurate. These are partly the
humans’ internal cognitive abilities, but other important external resources are material
artefacts and articles used in the assembly examples described above. The two short examples
obviously show that the information flow and the propagation of information are flowing
back and forth between the assembly workers’ internal representations, and the ways the
workers have altered the environment to structure their work practices, where the cognitive
processes are distributed through time.

3.3. Example 3 - minding the body'’s action-perception couplings

An example of using the tactile-kinaesthetic representations of the body and its interac-
tions with the physical environment for making adequate action-perception couplings (e.g.
Dreyfus, 1992; Lindblom, 2015a; Wilson & Golonka, 2013) can be found in a case of mount-
ing fuel pumps on heavy diesel truck engines. The pump had a long, cylindrical rod with
a flat end that should fit into a slit on the inner parts of the engine. This slit was not visible
at the viewing angle of the standing worker but one had to bend down and look through a
hole on the engine block to see the position of the slit which could vary over 180° (Figure 3).

Instead of bending down and looking into the hole, a majority of the workers carefully
inserted the rod into the hole, rotating it slowly when reaching the bottom of the hole until
it fell correctly into the slit. The workers favoured the use of the bodily tactile-kinaesthetic
representation of information and the superior work posture it entails over bending down
and trusting vision (another representational format) to give clues to the angle of the slit.
In so doing, the workers, to various degrees, experienced a wide range of tactile sensations
of the body and its interactions with the physical environment. Considered from this per-
spective, the bodily experience in the course of making action-perception couplings with the

Figure 3. lllustration of the rod being inserted to fitinto the hidden slit. The rod which can be seen closest
in the picture was rotated as it was inserted and the worker used tactile—kinaesthetic representations of
the body to judge when the flat end lined up with the slit, both marked in red.
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environment can be described as an example of ‘embodied representations’ that are some-
times hard to verbalize, i.e. we might lack proper concepts for our embodied knowledge
(e.g. Dreyfus, 1992; Lindblom, 2015a)

The rod provides the worker with additional tactile-kinaesthetic information to decide
whether or not it has been inserted properly in the visibly hidden slit, represented in an
embodied, felt tactile experience. This is similar to the classical example of a blind man using
a stick (as presented earlier). When using the rod to fit into the slit, it ceased to be an object
and instead became part of the body for the accustomed worker. As a result, the bounds of
the actual body can be extended beyond the skin, being regarded as part of the functional
system. Accordingly, the assembly activities and the embodied practices described in this
episode clearly show the transformation, propagation, distribution and interpretation of
different representational formats (visual, tactical) in the information flow. This emphasizes
the great importance of tactile-kinaesthetic and sensory-motor coordinations in time-
locked activities such as inserting the rod into the hidden slit.

3.4. Example 4 - socially distributed assembly and competence

So far, the earlier examples have focused on single agent-environment interactions as the
unit of analysis, but this last example includes several interacting peers, all distributed over
time and space, widening the unit of analysis. The example takes place at a major automotive
industry facility, although the example is gathered from one of the minor lines, feeding a
larger one, the minor line being the chosen socio-technical system at this level of analysis.
This line had eight workstations and assembled some of the outer parts of the engine, such
as the air intake, oil cooler and oil pan among other things. The cognitive processes are dis-
tributed across time, space and the members of the group during the coordination of their
individual, but cooperative work activities. In order to achieve this joint result, different
coordination mechanisms at the line are needed that have the capacity to handle the prop-
agation of representational states through the system.

At this time, the current generation of engines being assembled was called the C engine.
Earlier generations of the same engine were consequently called the A and B engines. The
B engines had been quite short lived and were no longer in production but on occasion,
the odd A engine was still being produced and, being a much earlier generation than the
present C engine, its assembly was much more complex and required a much higher degree
of expertise for assembly on around 50% of the workstations of the line. Since the A engine
was quite rare and really only occurred perhaps once every two or three weeks, it was not
deemed cost efficient to train all workers on all workstations for this specialized assembly.
Instead, once an A engine was to be produced, the workers quickly communicated (utter-
ances as external representations) what was coming between each other and subsequently
reorganized themselves into positions (workstations) where they had training for the old
A engine. This means that the A engine functioned as a coordination mechanism for this
reorganization of the workers at the critical workstations. This usually meant that experi-
enced personnel who had worked at the facility for a long time took up position at one of
the workstations that included complex assembly for the A engine. Newly hired personnel
or personnel without specialized training for the A engine, took up position at one of the
‘simpler’ workstations where assembly for A and C engines was the same or very similar. The
workers then remained at this workstation until the A engine had passed through the entire
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line (usually less than 30 min from start to end), being the central bearer of information
and functioning as the coordination mechanism for the emerging distributed work process
(both in time and between humans) at that line, and then the workers proceeded to move
back to the workstation that they had occupied before the move. This example shows socially
distributed cognition over time and space and how the whole cognitive system, which in
this case would include the entire line and the personnel and tools in it, is capable of much
more than the individual worker itself, given that the functional system as a whole could
rearrange and handle different types of engines and assembly operations.

Taken a broader unit of analysis, while this example is described at a more organizational
level, there is potential to combine this level of analysis with the lower level for each and
every assembly worker on the particular line, as in the previously presented illustrative
examples, in order to obtain more detailed levels of analysis of the information flow of the
whole line. In other words, and as briefly mentioned in Section 2.2, one of the main benefits
with DCog is the possibility to vary the level of granularity and thus move continuously
between the different levels of analysis. Hence, the boundary of, what we analyse as, the
system can be anything from the individual level in the first examples to the organizational
one described here, and beyond. From the combined effort of the individual workers, each
not sufficient for achieving the task goals alone, an emergent phenomenon arises from the
combined effort, allowing the system to be self organizing and thus reach task goals that
the sum of the individual efforts would not have achieved.

Finally, the coordination of different representations (external and internal) is an emer-
gent property of the system as a whole, not easily reduced to an evident property of a
certain entity (human or cognitive artefact). This holistic and emergent view is the central
foundations of the DCog approach; the total sum is more than the sum of the individual
parts since the socio-technical system has emergent properties. Thus, cognition is viewed as
creation, transformation, and propagation of representational states within a socio-technical
system (Hutchins, 1995a, 1995b).

4. Discussion and conclusions

This mostly conceptual paper has attempted to both motivate and show concrete examples
of how and why a systems perspective must be applied within manufacturing, and in the
long run to be more prominent in HF&E. The inclusion of DCog may be a promising
step in that direction given the absence of relevant cognitive frameworks that provides a
systems perspective in theory and practice in HF&E applications to manufacturing. In an
effort to stay true to Hutchins’s original concept of distributed cognition (DCog), we have
had no intention of investigating all the different adaptations that have been derived from
Hutchins’s work in the past 20 years. We believe that we have chosen some of the most
prominent advocates for Hutchins’s original thoughts, which are Hutchins himself along
with his colleagues Hollan and Kirsh, and also Rogers, who has successfully applied DCog
in HCI, thereby narrowing the gap towards the HF&E application of manufacturing. The
reason for addressing JCS and CWA specifically was that they are commonly used in HF&E
and thus in manufacturing and we wanted to point to the differences from DCog and the
shortcomings of the two from a cognitive science perspective.

Applying a systems perspective would allow us to recognize that the HF&E discipline
... only makes sense in the full richness of the social setting in which people work’ (Moray,
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1994, p. 529). In line with this remark, Hollnagel and Woods (2005), for example, report that
since there has traditionally been a distinction between technology (i.e. external resources)
and humans, not conceptually questioned in HF&E, the theories and practices of the dis-
cipline focus on the internal processes of the brain, occasionally including the external
resources and the connections there between but not from a systems perspective. Therefore,
the HF&E discipline has some problems to consider the ‘bigger picture; i.e. the wider web
of connections that the more traditionally ‘narrow perspective’ of human-machine inter-
action is situated within, in the sense that the environment affects, but does not determine
the organization of interactions under the present constraints. They conclude that because
traditional HF&E did not doubt the validity of the distinction between human and machine,
the discipline has encountered some difficulties in reaching a systems perspective. More
recently, Hollnagel (2012) emphasizes that the role of humans in systems is not only to be
a part of the system, but also to shape the system, and therefore it is relevant to portray the
systems by studying and analysing their behaviours and activities. Accordingly, the set of
mutually dependent functions existing within a system is characterized with what it does
rather than what it is (Hollnagel, 2012).

In a similar vein, Norros (2014) points out that the discipline of HF&E needs to focus on
principles of interaction and co-functioning between elements of a whole system. Moreover,
she advocates HF&E researchers to deal with technology-in-use in its scientific discourse in
order to comprehend the various roles of technology that people take advantage of in their
various activities, particularly in work practices (Engestrom & Middleton, 1998; Kuutti &
Bannon, 2014; Miettinen, Samra-Fredericks, & Yanow, 2009). Norros mentions, for exam-
ple, the seminal work conducted by Orlikowski (2000), who provides good insights in her
analysis of the ways that technology shapes the routines and resources of social organiza-
tions. Indeed, Norros points out that she has been inspired in her own work by theories
of human-environment relationships, including activity theory (AT) (Leontev, 1978) and
habits (Peirce, 1958) as different ways to consider and study technology-in-use. Norros
(2014) concludes that there is a need for a more holistic view of the historical, cultural and
developmental roots of the generic patterns of work practices involved in technology-in-use,
rather than merely offering tentative explanations for a particular course of action from
a more narrow ‘snap-shot’ view. In other words, we agree with the necessity of providing
a linkage between what happens ‘now’ to asking ‘why does this happen now in this way’
from a prolonged perspective. We suggest studying the whole web of patterns rather than
just pulling on a single thread, in order to reveal the underlying reasons that can explain
the identified pattern of work practice. That is, instead of blaming a particular person for
some performed ‘human error’ a systems perspective could explain how and why this par-
ticular error occurred in the system as a whole, by examining how past and current work
practices may have been altered given the inclusion/exclusion of new/old tools, which may
have resulted in the emergence of new pattern of work practices. This is a shift from merely
examining particular situations to proceed to studying and using relevant theoretical frame-
works in order to reveal generic explanations of the observed work practices, providing a
deeper and coherent understanding of humans’ situated actions.

Norros (2014) further argues that given the difficulties in tackling problems emerging
from the complex socio-technical systems of today’s modern workplaces, the HF&E society
faces a pressure for a paradigm change. Some identified reasons for this change are not
only characterized by the earlier revealed challenges addressed above, but also the need
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for additional analytical and theoretical approaches, which are capable of articulating new
and more relevant problems to reach a so-called ‘high-quality HF&E (Norros, 2014). She
further emphasizes that a common denominator to these new approaches in high-quality
HF&E is to conceive human-technology-environment as a unity, and adopts this as the
new object of analysis, arguing that these approaches offer articulated concepts to what a
systems HF&E should be. We suggest that DCog could provide a relevant complement to
the aforementioned approaches of human-environment relationships (AT and habits) that
provides a support for a systems perspective, thus adding DCog to the toolbox for conduct-
ing high-quality HF&E (for a more theoretical comparison of cognitive ergonomics, AT,
and DCog, see for example Decortis, Noirfalise, & Saudelli, 2000; Halverson, 2002; Nardj,
1996; Rogers, 2012).

It should be emphasized that although we do not go as far as to claiming the urge for an
instant paradigm change in HF&E, we highly stress the need to consider the epistemological
and ontological challenges that occur when incorporating new theoretical constructs and
analytic lenses from one discipline to another. Different theories provide different concepts,
perspectives and historical roots when conducting research, and there is a necessity to
‘filter and focus’ the rich stimuli of real world settings from a theoretical perspective (Nardi,
1997). Similarly, Decortis et al. (2000) describe the role and relevance of the theoretical
perspective as a ‘theoretical filter’ through which the practitioners investigate and analyse
the phenomena of interest, where the selected ‘theoretical filter’ puts forward some aspects
of the observed situation and puts other aspects in the background. Thus, either lacking
a ‘theoretical filter’ or not understanding it, may result in the practitioners not knowing
how to properly handle the observed situation and interpret the collected data into distinct
concepts of meaning. We therefore emphasize that it is wrong to claim that one theoretical
framework is significantly better than another one, given that different frameworks enable
the researcher to perceive and portray different possible viewpoints regarding work practices
in complex cognitive socio-technical systems.

Our purpose is to contribute to the understanding of the theoretical and analytical
properties of the DCog framework, in order to support HF&E specialists to do explicit and
appropriate choices for the particular aim of study. Furthermore, it should be mentioned
that the same terms used may have different semantic meanings in different frameworks,
for example, the semantic meaning of the concept of ‘activity’ differs between cognitive
ergonomics and AT (Decortis et al., 2000). Although DCog has roots in the prevailing
computer metaphor of mind, it still offers some conceptual challenges with its systems
perspective, its anthropological roots, and the changed situated view of how to consider and
study the interaction between human and technology ‘in the wild’ It should be noted that
the simplicity and low detail in the four illustrative examples only goes to demonstrate how
HF&E specialists might be missing quite a bit of relevant distributed cognitive processing
by having a scope and unit of analysis which is based merely on the human, or even worse,
on the human brain. The systems perspective, in this case DCog, allows us to expand the
unit of analysis to also include other actors and tools as making up the emergence of the
socio-technical cognitive system. We also argue that our understanding of the intricacies
of cognitive processes will be inadequate if we fail to consider the human cognizer as a part
of a larger system, as proposed in the new DEEDS and 4E approaches in the advancing
cognitive science field. It should be noted that these new approaches did not originate from
an a priori perspective as in the computer metaphor of mind, rather they are being based on
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observed results that comes from empirical evidence and cognitive modelling (robotics) in
artificial intelligence (AI) (Dreyfus, 1992; Lakoff & Johnson, 1999). In extension, the human
cognizer should be seen as a live agent with their own incentives and urges, and not as a
mere machine acting on input and generating output, ‘as a factor, a passive element that
can (...) be trained to perform whatever operations [are] required’ (Bannon, 1991, p. 28).
Instead, we favour the ideas put forward by the DEEDS and 4E approaches to cognition,
and as Dix (2002, p. 2) puts it; it is about finding equality between the human and the world
and “... not just act on the world, but act with the world’ (our bolds).

Successfully employing DCog in the HF&E discipline, especially in the manufacturing
domain, can easily be argued to shed light on understanding and grasping the role that
the various forms of representations play in the coordination of work practices in complex
socio-technical systems where the individual human is considered a component among
others (peers and cognitive artefacts) in the system. This was previously unobservable due
to a limited perspective of the distributed coordination of human-technology interaction as
well as the unit and scope of analysis. Among other things, DCog with its own theoretical
‘focus and filter’ on the system’s goal can help in:

« Mapping out the trajectory/journey of the information flow and the propagation of
information over time and space in the distributed socio-technical system.

o Identifying various kinds of representation formats (graphical, numerical, written,
embodied) used in the information flow as well as recognizing the different shifts
between representation formats during the propagation of information in the distrib-
uted socio-technical system.

o Including ‘embodied representations’ (e.g. the embodied interactions and experiences
with our senses) that put significant attention on the tacit knowledge present in the
craftsmanship associated with being a skilled worker in manufacturing, which becomes
visible through coordination of different kinds of internal and external representa-
tions in the information flow and propagation of information in the distributed socio-
technical system.

o Identifying workarounds and subsequently prevent breakdowns from a systems per-
spective. It is widely acknowledged that with obtained experience, workers become
increasingly skilled at their work and one part of this is finding workarounds that allow
for faster, more efficient work, through the use of smart coordination mechanisms in
order to reduce cognitive load (i.e. handling shortcomings in different cognitive arte-
facts) with the ultimate individual goal arguably being to ease their own work situation,
i.e. identifying skilled workers” developed ‘best practices’ and ‘lessons learned’ in the
distributed socio-technical system.

 Changing the level of analysis to enable moving between the more general system’s
level to the more detailed level that specify concrete details of actual use of available
cognitive artefacts by studying the assembly processing at the shop floor, i.e. in the
wild in the distributed socio-technical system.

o Enabling a coherent systems analysis of work practices with the added value of grasping
the workers’ actions related to the various used tools and cognitive artefacts (from cur-
rent but also historical perspectives), including the emergent situations where workers
benefit from functionalities not intentionally designed for or when they invent new
usages and routines of available tools.
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« Providing implications for design and redesign of new and/or existing cognitive arte-
facts as well as the organization of various levels on a production line in the socio-
technical system where the distributed and socially shared representations among
workers are taken into consideration. Observing and analysing how assembly workers
do work in the wild can enable engineers to produce realistic requirements which then
can be properly implemented in the design of new products (e.g. tools and cognitive
artefacts), while not being a design method as such.

Considering these identified insights, which can mainly be accomplished through a
systems perspective would allow for the spreading of knowledge to others in the same
domain. Identifying workarounds, for example, that are efficient and quality conscious or
previously unobservable tacit knowledge can prove beneficial and can be used in training
of new employees among other things. As exemplified by Albihn (2015), a skilled assembly
worker, not following the prescribed standard operating procedures (SOP) during quality
inspection, cuts the required time from about 45 to 15 min by changing the order and
procedure of the operations. More detailed examples of this are also visible in Andreasson
et al. (2016) who has conducted a thorough DCog analysis of manual assembly. Viewing
it this way, it becomes easily arguable that companies, through their skilled workforce,
possess knowledge and competences that they did not know they had. We emphasize the
importance of HF&E specialists to challenge incorrect or sometimes insulting assumptions
of the workers’ competence, skills and performance, given that they want do their best to
accomplish the goals with the available tools and cognitive artefacts and prescribed work
processes in the socio-technical system as a whole. We strongly suggest that studying and
analysing work practices ‘in the wild’ from a DCog perspective are aligned with the ‘mission’
of the HF&E discipline, i.e. making more effective, efficient, safe and desirable products. All
of these benefits will come to HF&E specialists by just applying a perspective that makes
work practices in manual assembly visible.

This paper has focused on trying to apply a DCog perspective to HF&E society and to
consolidate this cognitive framework to a high-quality HF&E discipline. However, despite
the emphasis on interactions between agents and their social surroundings, the DCog frame-
work offers little on the embodied nature of human cognition, and is currently peculiarly
‘disembodied’ (Hutchins, 2006; Lindblom, 2015b), and there are theories within the DEEDS
and 4E approaches that are complementary to DCog (e.g. Lindblom, 2015b). Furthermore,
investigating the role of the body in manual assembly from an embodied cognition per-
spective has been done by Kolbeinsson and Lindblom (2015) who applied an embodied
interpretation to interruption management.

To summarize; the main objectives of this paper have been to expand the unit of analysis
in systems ergonomics to include not only the human, but the entire social and material
context as contributing entities in the cognitive system. We have attempted to show how
DCog can be successfully applied to study the manufacturing domain within HF&E and
we have supplied real world illustrative examples of the distributed nature of human cog-
nition in manufacturing. Future work will also include more of the embodied nature of
human cognition and other more ‘radical’ DEEDS and 4E approaches with the ultimate
goal of consolidating and expanding upon the areas of cognitive and physical ergonomics
to become a high quality HF&E discipline.
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Our final remark is that we are convinced that the HF&E discipline has great potential
in shaping the future workspaces at the shop floors in manufacturing, and that this requires
a willingness for cross- and trans-disciplinary work, although encountering some episte-
mological and ontological challenges which we think the discipline can overcome given its
multidisciplinary past. We believe that the DEEDS and 4E advances in the cognitive science
field is a prerequisite for the next step in the development of a systems perspective, going
beyond the view of the assembly worker as a factor or actor, and consider the assembly
worker as an enactor. Both perspectives, the new advances in cognitive science and the
HF&E discipline address the need for reducing the common friction between human and
technology, since much of current technology is designed to bend our embodied human
being into an unnatural shape of interaction. Instead, we should emphasize how this inter-
action is enacted through bodily actions and real world experience, designing for mutual
relationships between human and technology from a systems point of view.
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