
Automatic analysis of infant engagement during play: An
end-to-end learning and Explainable AI pilot experiment

Marc Fraile
Department of Information

Technology, Uppsala University
Uppsala, Sweden

Joakim Lindblad
Department of Information

Technology, Uppsala University
Uppsala, Sweden

Christine Fawcett
Department of Psychology, Uppsala

University
Uppsala, Sweden

Nataša Sladoje
Department of Information

Technology, Uppsala University
Uppsala, Sweden

Ginevra Castellano
Department of Information

Technology, Uppsala University
Uppsala, Sweden

ABSTRACT
Infant engagement during play is an active area of research, related
to the development of cognition. Automatic detection of engage-
ment could benefit the research process, but existing techniques
used for automatic affect detection are unsuitable for this scenario,
since they rely on the automatic extraction of facial and postural
features trained on clear video capture of adults. This study shows
that end-to-end Deep Learning methods can successfully detect
engagement of infants, without the need of clear facial video, when
trained for a specific interaction task. It further shows that attention
mapping techniques can provide explainability, thereby enabling
trust and insight into a model’s reasoning process.

CCS CONCEPTS
• Applied computing→ Psychology; • Computing methodolo-
gies → Interest point and salient region detections.
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1 INTRODUCTION
Task engagement in infants during play has been identified as a
relevant concept in child developmental studies [6]. However, the
analysis of the relevant experimental data is a laborious process,
requiring manual annotation of session data by one or more domain
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experts. This marks infant engagement detection as a prime target
for automation. The automatic detection of engagement and other
affect-related states in adults has been the subject of a growing
body of research [16, 20], but most proposed methods rely on the
automatic extraction of engineered facial, postural and audio fea-
tures [7]. The available extraction tools [3, 4] are trained on clear
video capture of adults, and do not generalize well to the facial and
bodily characteristics of young children [5].

An alternative, under-explored path for classification of affective
states is end-to-end training of Deep Learning models. While this
approach has shown to have great predictive power, its black-box
nature limits our trust in the obtained predictions. To combat this, a
variety of explainability techniques have been developed [1]. In the
context of convolutional networks for computer vision, attention
maps are an important family of such techniques [2, 17, 18].

In this study, we display how an end-to-end Deep Learning
approach can successfully predict infant engagement during guided
play. This is done from a single video source capturing both the
infant and the researcher from a lateral view, without dedicated
facial capture or a dedicated feature extraction phase. We achieve
this with a very limited amount of data, and use attention maps to
validate the network’s reasoning. We fine-tune a pre-trained video
classification network on three different guided play tasks, with
only 40-60 samples in each training set. Once satisfactory results
are obtained, we showcase how a selection of attention mapping
techniques can be used to increase trust, reveal possible modes of
failure, and learn what behaviors are correlated with the labels.

2 RELATEDWORK
2.1 Automatic Infant Engagement Recognition
The automatic recognition of affect in human-human interactions
has been most often studied in adults and using video recordings of
the participant’s face. Sariyanidi et al. [16] provide a 2015 survey,
predating the modern explosion of Deep Learning methods. They
highlight the dominance of scales originating in the psychology lit-
erature, such as Facial Action Units (FAU). These measurements can
be estimated using computer vision methods, and used as inputs for
further classification methods. Popular later tools like OpenFace [3]
and OpenPose [4] are based on the same principle: provide reliable
estimates for facial and postural features, and let the end-user apply
statistical models. This contrasts with the modern trend to perform
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end-to-end training: remove all assumptions about what features
are best, and instead feed the raw input to a deep learning model.
This often results in higher predictive power, and may reveal previ-
ously unknown domain-specific knowledge. While some works in
this direction exist [20], the subject remains underexplored.

An area of particular interest is engagement. It has seen heavy
interest in the context of education, due to its ties to student perfor-
mance and institutional success [9]. Automatic detection of student
engagement has seen similar developments as affect recognition:
facial, postural and auditory hand-crafted features are extracted
from frontal video, and detection is performed on these. A recent
example is the EmotiW Challenge [7] , which has included student
engagement detection in several editions. Analysing the accepted
papers, we see a repeated use of OpenFace and OpenPose as feature
extractors, often paired with engineered audio features.

Task engagement has also been studied in-depth in the context of
infant development. Infant engagement has been shown to correlate
with cognitive performance [6], and is an active area of research.
Studies on infant engagement typically rely on manual annotation
of videos, where domain experts make subjective judgements based
on features such as positive emotion, gaze direction, and goal-
directed movements. This is a time-consuming process, which can
lead to coarse labelling and relatively small amounts of available
data, making it difficult to obtain statistical significance. For these
reasons, reliable automatic engagement detection would be a very
useful tool for research, but it has remained virtually unexplored.

One possible reason for this lapse on research is the lack of
tools: face and pose estimation algorithms trained on adults do
not necessarily generalize to young children, and might require
re-training. For example, Chambers et al. [5] re-train OpenPose
with a dedicated infant dataset. Relevant studies might opt to use
a human expert for classification, even in real-time applications
[14]. If an infant is too young to speak, we cannot rely on audio
features for affect recognition. If they are too young to sit still, it
can be hard to obtain clear facial video capture. When automatic
analysis is explored, machine learning approaches are avoided. For
example, Egmose et al. [8] use kinetic energy estimates to estimate
joint attention between mother and child.

2.2 Explainability
End-to-end Deep Learning models often outperform methods based
on hand-crafted features, at a lower development complexity. How-
ever, it’s typically hard to explain why an input is mapped to its
output, leading us to treat the system as a black box whose con-
tents are unknown. If the collected data contains unexpected or
unwanted correlations, the model can obtain high statistical scores
through faulty reasoning.

The set of techniques used to alleviate the black-box problem
is known as Explainable Artificial Intelligence (XAI), and has seen
a surge of interest in recent years [1]. Explainability has further
been identified by the European Union as a necessary principle
to attain trustworthy AI [10]. Some prior work has applied XAI
techniques in the context of automatic affect recognition. Lin et
al. [12] use end-to-end learning to predict affective labels in adults
from physiological signals. They feed four separate types of sensory
data into independent models, and fuse the results using a Random

Forest classifier. They then calculate a relevance score for each
stream as an explainability step. Pandit et al. [15] use convolutional
networks to predict arousal and valence from extracted FAU. They
then simplify the model to its shallowest as an explainability step.
To the best of our knowledge, neither end-to-end learning has been
applied to infant engagement, nor XAI techniques have been used.

Attention maps are an important family of XAI methods in image
processing. They attach an importance score to each input pixel,
given an output decision. Since defining "importance" is open-ended,
this has led to a variety of methods with different execution speeds
and interpretations. Notable examples include guided backpropa-
gation [18], Grad-CAM [17], and LRP [2]. A selection of attention
mapping methods was applied in this study.

3 METHOD
3.1 Dataset
We collected a dataset including videos of 22 14-month-old infants
(11 girls; mean age = 14 months, 6 days) participating in three dif-
ferent interaction tasks with an adult experimenter. Infants were
recruited from a local list of families who were interested in par-
ticipating in research with their child. Before the tasks, parents
received information about the study and signed a consent form.
The procedure was approved by the local ethical committee.

During the tasks, the infant was seated in a high chair at a
table with the parent seated behind them and the experimenter
seated across from them. A Sony Handycam HDR-CX260 camera
(1440 × 1080px @ 25fps) was used to record the interaction. It
produced a profile view of the infant and experimenter.

In the "people" task, four round boxes were attached to the table.
The yellow boxes directly in front of the infant and the experimenter
each contained 10 wooden dolls. The boxes to the left (red) and the
right (blue) of the child were empty. The experimenter began by
naming the boxes "sun house" (red) and "moon house" (blue), and
placing a doll in one of the boxes. She then asked the infant if they
would like to try and removed the cover from the infant’s doll box.
The experimenter placed half of her dolls into one of the boxes one
at a time, and then switched to placing them in the other box.

In the "eggs" task, the experimenter showed the infant an egg-
shaped shaker and began to shake it at either 150 or 170bpm for 10
seconds. Then she gave the infant an egg shaker. Infants could play
with the shaker for 30 seconds. The experimenter then pretended
to drop her egg on the ground and when she picked it up, she began
shaking it at the other rhythm for another 30 seconds.

In the "drums" task, the experimenter showed the infant a drum
and tapped on it with a drumstick at one of the predetermined
rhythms, as in the previous task. She moved the drum to the middle
of the table and gave the infant their own drumstick and encouraged
them to join in drumming. After 30 seconds, she flipped the drum
over and began drumming at the other rhythm.

A coder watched each video, and rated the child for their level
of engagement with the task. Each task was divided into 30-second
segments, and each segment was labelled either playfully engaged
object, if the child was playing with the relevant object, or not
engaged, otherwise. Between two and five labelled clips were ob-
tained per session and task. This totalled 77 samples for "people",
54 samples for "eggs", and 50 samples for "drums".
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3.2 Classification Algorithm
While the performance of video classification networks has im-
proved drastically over the last few years, successful models tend
to be large and complex, and progress has been driven by the grow-
ing availability of ever-larger datasets [21]. Thus, pre-training is a
crucial step when working with smaller sample sizes. Despite this,
not all successful networks are equally big, and a smaller modern
network runs a lower risk of over-fitting the data. These factors
led us to choose the Mixed Convolution Network provided by the
torchvision package [19]. It is a smaller model in the ResNet
family, and consists of an embedding unit followed by a logistic
regression classifier head. The embedding unit consists of convolu-
tional layer blocks with skip connections, using 3D convolutions at
the earlier blocks and 2D convolutions at the latter blocks. It comes
pre-trained on the Kinetics-400 dataset [11], a collection of videos
containing 400 categories, with over 400 videos per category.

Training was done independently for each task, resulting in 3
separate binary classifiers. As a pre-processing step, 80% of the
recorded sessions were split into a training fold, with the remaining
20% reserved for testing. Each relevant 30-second annotated clip
was then extracted from the session recording, and downsampled
to a spatial resolution of 208x160 pixels. This resulted in 40-60 clips
in each training set, and 10-20 clips in each test set. The test data
framerate was uniformly reduced to 1/8th (3.125fps down from
25fps), while the training data was reduced to between 1/7th and
1/9th as a data augmentation step. At training time, a video data
augmentation pipeline was run: cutting the videos to 60 frames;
applying a small amount of rotation, scaling, and stretching; extract-
ing a random 112x112 pixel crop; possibly applying a horizontal
flip, color biasing, Gaussian blur, and/or normal white noise.

Training consisted of two steps: a head training phase, where
the single-layer 400-class classification head for Kinetics was sub-
stituted for a single-output binary classification head and trained
independently; and a fine-tuning phase, where the whole network
was trained at a lower learning rate. For head training, a hyper-
parameter grid search was employed; best results were obtained
using L-BFGS [13] with class weights and no parameter decay. For
fine-tuning, ADAM optimizer with weight decay gave good results.

3.3 Attention Maps
For this study, we evaluated a selection of attention mapping meth-
ods, starting with gradient visualization. It consists in running the
backpropagation algorithm, and displaying the gradient at the in-
put layer. In multi-class classification, only the relevant class is
fed into the algorithm. This simple method can already reveal use-
ful information on the network’s attention, but tends not to be
class-discriminative, and susceptible to high-frequency noise.

One approach to address these issues is guided backpropagation
[18]. It modifies the backpropagation algorithm so that negative
gradients are discarded when propagating through a ReLU layer.
This change tends to produce sparser attention maps, with greater
focus on what areas of the image provide positive evidence for
a decision. It also suffers from a lack of class discrimination, but
better captures the relevant fine details.

Another approach is Grad-CAM [17]. It is a class-aware low-
frequency solution for convolutional networks: take the activation

Table 1: Accuracy and F1 score for infant engagement in
each task (convolutional network vs. manual annotation).

task people eggs drums
test accuracy 75% 83% 92%
test F1 score 82% 83% 89%

Figure 1: Infant engaging in the "people" task, with guided
backpropagation overlayed. We can see that the child’s arm
movement is relevant to the classification result.

Figure 2: Infant engaging in the "people" task, with gradient
visualization overlayed. We can see the network focuses on
the infant. The same frame is shown in Figure 1, displaying
greater legibility.

maps on the last convolutional layer, weigh each map according to
the mean of its gradients, sum them, and discard negative values.
The resulting grayscale map will typically be low-resolution (10x10
pixels in our case), and can then, if needed, be upsampled to match
the input resolution. In contrast, guided Grad-CAM [17] marries the
fine detail of guided backpropagation with the class-awareness of
Grad-CAM by multiplying both maps together. It produces relevant
but sparse visualizations.

4 RESULTS AND ANALYSIS
The performance of themost successful network per task (judged by
test F1 score) is listed in Table 1.While these numbers are promising,
the network could be relying on accidental relationships in the data.
To investigate if this is the case, we applied the techniques listed in
Section 3.3 to correctly classified samples, and performed subjective
analysis of the results.

In all three tasks, gradient visualization gave a noisy indication
that the network was focusing on the infant and experimenter,
and reacting to their motion. Figure 2 shows the gradient on a
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(a) Engaging in "drums". (b) Engaging in "eggs".

Figure 3: Infant engaging in the "drums" and "eggs" tasks,
with guided backpropagation overlayed. (a) the network re-
acts to the infant’s hand, and both drumsticks. (b) the net-
work reacts to moving oval shapes.

positive sample for the "people" task. We can see that in this case
the network is solely focusing on the child, but there is too much
noise to deduce further details.

Guided backpropagation displayed greater clarity, and showed
that the network focuses on task-relevant forms of motion. Figure
1 shows the same sample as Figure 2, enabling comparison of the
attention maps produced by different methods. We can see that
guided backpropagation focuses more clearly on the infant’s arm,
which is extended into the toy box. Figure 3a shows a positive exam-
ple for the "drums" task. It shows the network is paying attention
to the infant’s hand, and both drumsticks. This reveals a possible
mode of failure: the network could fail to distinguish the infant
from the experimenter. Figure 3b shows an "engaged" sample in
the "eggs" task. Similar to drums, the network is focusing on the
moving shakers. Despite the good classification performance, we
see a strong reaction to the experimenter’s motion and to other
oval shapes in the image, again hinting at possible modes of failure.

Grad-CAM gave very coarse maps, but could clearly separate
what constitutes evidence for engagement, and what constitutes
evidence against it. Figure 4 shows a negative (not engaged) sample
from the "eggs" task. Figure 4a shows evidence for the correct class.
The network is (correctly) focusing on the child’s general position to
determine "child not engaged". Figure 4b shows the present evidence
for the opposite class ("child engaged"), which is (erroneously)
highlighting the experimenter’s motion. The network might be
using undesired environmental clues to detect engagement.

Guided Grad-CAM gave very sparse maps, making it problematic
to derive conclusions in some cases. When enough information was
visible, it provided both class discrimination and fine detail. Figure
5 shows a positive example in the "eggs" task, comparing guided
backpropagation (5a) and guided Grad-CAM (5b). We can see that
the network focuses on the experimenter’s shaker to determine
"child engaged", coinciding with our observation in Figure 4b.

5 CONCLUSIONS
In this study, we have shown that an end-to-end Deep Learning
model can successfully predict infant engagement during play,
when trained for a specific interaction task. By leveraging a stan-
dard video classification architecture pre-trained on a large dataset

(a) Correct class (not engaged). (b) Opposite class (engaged).

Figure 4: Infant not engaged in the "eggs" task. Grad-CAM
comparison for the correct class vs. the opposite class, show-
ing which elements in the frame support each outcome.

(a) Guided backpropagation. (b) Guided Grad-CAM.

Figure 5: Infant engaged in the "eggs" task. Comparison be-
tween guided backpropagation and guided Grad-CAM. The
network focuses on the experimenter’s shaker.

(Kinetics 400), we succeeded despite very limited amounts of data
(40-60 training samples per task), and without the usual limitations
imposed by feature extraction steps (clear view of the face for facial
features, clear view of all limbs for postural features, etc.).

Finally, we have shown how attention maps can increase con-
fidence in a classifier (demonstrating that the network focuses on
relevant motion in all 3 tasks), or help identify modes of failure
(network reacts to all moving oval shapes in "eggs" task, considers
experimenter’s engagement). Both types of examples illustrate what
behaviors are correlated with the labelling in the current dataset.
Since this information is found without intervention, it is also free
from human assumptions, and can help us understand the data.

Future work could involve revisiting the annotations to obtain
more context-relevant information (Is the child engaged with the
task but not the experimenter? Is the child engaging the experi-
menter?), and study how the network attention changes. It could
be interesting to compare the aspects considered important by
a human and the aspects highlighted by the network, opening a
possibility for new knowledge discovery.
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