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ABSTRACT
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Apoptosis is a genetically regulated cell death program, which shows distinct morphological
characteristics. It takes place during neuronal development and in some neurodegenerative
diseases. During apoptosis, the intracellular proteins are degraded by various caspases,
cysteine aspartases, which are regulated by pro- and anti-apoptotic signals. This thesis
elucidates the role of anti-apoptotic proteins in nerve cell survival and neurodegeneration.
Studies have focused on Bcl-2 family members and Inhibitor of Apoptosis Proteins (IAP).

XIAP and RIAP-2 are IAP proteins, which are expressed by neurons in the central
nervous system. Kainic acid, a glutamate receptor agonist that induces seizures, increased
XIAP immunoreactivity in rat hippocampus, whereas RIAP-2 expression in the same time
decreased in degenerating neurons. Both XIAP and RIAP-2 were absent in dying neurons
indicating that these proteins have a protective role in kainic acid induced
neurodegeneration.

NAIP, another IAP family member, was shown to interact with the calcium binding
protein Hippocalcin using the yeast two-hybrid system and immunoprecipitation
experiments. Hippocalcin-NAIP interaction increased motoneuron survival in caspase-3
independent and dependent manners.

The anti-apoptotic Bcl-2 proteins, Bcl-2 and Bcl-x, were studied using cultured neurons
and human neuronal progenitor cells. In the progenitor cells, Bcl-2 overexpression enhanced
cell survival and induced downregulation of Caspase-2 (ICH-1) and caspase-3
(YAMA/CPP32). These results suggest a novel mechanism for the action of Bcl-2.

Estrogen was shown to inhibit death of cultured dorsal root ganglion neurons (DRG) after
nerve growth factor withdrawal. The hormone increased the levels of Bcl-x, which may
explain the known neuroprotective function of estrogen.
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ABBREVIATIONS

AD Alzheimer`s disease
BERKO Estrogen receptor beta deficient mouse
BH Bcl-2 homology domain
BIR Baculoviral Inhibitory Repeat
bp Base pair
CA Cornu Ammon
CARD Caspase recruitment domain
C. Elegans Caenorhabditis Elegans
Caspase Cystein-aspartase
CNS Central nervous system
COS-7 Monkey kidney cell line 
DED Death effector domain
DEVD Asp-Glu-Val-Asp, caspase-3 inhibitor
DNA Deoxyribonucleic acid
DRG Dorsal root ganglia
ER Estrogen receptor
ERKO Estrogen receptor alpha deficient mouse
FITC Fluorescein isothiocyanate
GABA Gamma aminobutyric acid
GFAP Glial fibrillary acidic protein
GFP Green fluorescent protein
GST Glutation S-transferase
HA Hemagglutinin
IAP Inhibitor of Apoptosis Protein
ICE Interleukin-1β converting enzyme
IRES internal ribosome entry site
KA Kainic acid
kb kilo base pairs
kDa kilo Dalton
LDH Lactate dehydrogenase
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
NAIP Neuronal apoptosis inhibitor protein
hNTera Neuroblastoma Tera-2 cell line
NeuN Neuronal nuclei marker NeuN
NGF Nerve Growth Factor
NMDA N-methyl-D-aspartate receptor
NSC-34 Motoneuron cell line
N2a Murine neuroblastoma cell line
PARP Poly (ADP)-polymerase
PCR Polymerase chain reaction
PD Parkinson`s disease
ROS Reactive oxygen radicals
RIAP-2 Rat inhibitor of apoptosis proein 2
RING Really Interesting New Gene, structural domain in the IAPs 
RNA Ribonucleic acid
RPA RNase protection assay
SDS Sodium dodecylsulphate 
SMA Spinal muscular atrophy
SMN Survival of motoneuron gene
TUNEL dUTP mediated nick-end labelling
XIAP X chromosome-linked inhibitor of apoptosis protein
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INTRODUCTION

APOPTOSIS

General Features
Cell death can be roughly divided into two different forms: apoptosis and necrosis.
Necrotic cell death is commonly observed for instance after toxic insults, in acute changes
of osmolarity and after high intensity pathologic insults. It is characterised by organelle
swelling, leakage of the cell contents to the extracellular space with following inflammatory
response (Ankarcrona et al., 1995). 

Apoptosis, or programmed cell death, was described in the early 1970` by Kerr et al.
(Kerr et al., 1972). The term apoptosis comes from Greek and means “(leaves) falling off”
referring to the fact that apoptosis/cell death is an essential part of life. Apoptosis is a
genetically determined form of cell death with defined morphological characteristics. It is an
active process, which needs ATP, and leads often, but not always, to caspase activation
(Wyllie et al., 1984). During apoptosis, chromatin is condensated and DNA is cleaved into
180bp internucleosomal fragments. High molecular weight fragments (50-300kbp) are,
however, also found (Wyllie, 1980; Wyllie et al., 1984; Oberhammer et al., 1993). The
variety of DNA fragments produced is thought to depend on whether Apoptosis Inducing
Factor (AIF) is released and related to activation or not of caspases (Walker et al., 1999;
Susin et al., 1999; Bezvenyuk et al., 2000).

Table 1. Features of apoptosis, necrosis and paraptosis (mod. from Sperandio et al. 2000)
___________________________________________________________________

Apoptosis Necrosis Paraptosis
Morphology

Nuclear fragmentation + - -
Chromatin condensation + - +/-
Apoptotic bodies + - -
Mitochondrial swelling Sometimes + Late

Genomic effect
DNA fragmentation + - -

Caspase activity
Caspase-3 processing + - -
PARP cleavage + (85kDa) + (50-62kDa) -

Inhibition by
ZVAD.fmk + - -
XIAP + - -

Bcl-X + - (Usually) - 

Cells, which undergo apoptosis, are packed into small vesicles, so called apoptotic
bodies, which are phagocyted by neighbouring cells, often macrophages or dendritic cells
(Savill and Fadok, 2000). The recognition and engulfment of apoptotic cells seem to be
conserved between nematodes, insects and mammals but the mechanisms are not yet fully
(Savill and Fadok, 2000). Several surface receptors, among others scavenger receptors,
integrins and phosphatidylserine receptor, mediate recognition, which depends on the
phagocytic cells and their state of activation (Fadok et al., 1992; Martin et al., 1995; Fadok et
al., 2000). Recent studies with nematode C. Elegans have revealed that certain genes are
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required for correct engulfment of apoptotic bodies (Hengartner, 2001). Homologues genes
have been found in mammals and they regulate both cytoskeletal rearrangement and
migration during engulfment and correct linkage of outer signals to the inner machinery
(Reddien and Horvitz, 2000; Gumienny et al., 2001). When apoptotic cells are phagocyted,
anti-inflammatory cytokines, such as Transforming Growth Factor beta (TGF-β), are
secreted (Savill and Fadok, 2000).

In some cases, a variant type of cell death exhibiting both signs of apoptosis and necrosis
occurs. This is named paraptosis and it is characterised by cytoplasmic vacuolisation and a
certain degree of chromatin condensation (Sperandio et al. 2000). A comparison between
apoptosis, necrosis and paraptosis is presented in Table 1. 

Signals for Apoptosis 
The apoptotic programme can be activated by many different kinds of signals, such as
trophic factor withdrawal, chemotherapeutic agents and developmental signals (LaCasse et
al., 1998). Apoptosis can also become triggered via activation of death receptors of which
Fas/APO-1/CD95 and TNF receptors are the best characterised (Schulze-Osthoff et al.,
1998; Krammer, 1999). Ligand binding to these receptors, leads to recruitment of
associated proteins and coupling of signals to intracellular mediators, such caspases as
described below (Schmitz et al., 2000).

Caenorhabditis Elegans –an elegant genetic model for apoptosis
The nematode Caenorhabditis Elegans (C. Elegans) with its 1091 cells of which 131 die
through apoptosis, has served as a simply genetical model for apoptosis (Ellis et al.,
1991b). Studies have shown that there are at least 15 genes that function in programmed
cell death (Metzstein et al., 1998). These 15 genes can be divided into four groups as
shown in figure 1: (1) genes involved in  decision making (ces-1 and ces-2); (2) in
execution (ced-3, ced-4, ced-9 and egl-1); (3) in the engulfment of dying cells (ced-1, ced-
2, ced-5, ced-6, ced-7, ced-10, ced-12); and (4) genes involved in degradation of cell
corpses within engulfing cells (nuc-1).

Figure 1. Death genes in C. Elegans and the corresponding mammalian homologues

C.Elegans

Mammals

Egl-1                                         Ced-9                              Ced-3
                                        Ced-4

Death

 Bax Bcl-X Apaf-1
 Bid Bcl-2 Caspase-3 and Caspase-9
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Genetical studies suggest that ces-1 and ces-2 (ces, cell death specification) regulate a
subset of cell death in C. Elegans since mutations in these genes block the death of certain
neural cells (Ellis and Horvitz, 1991a). However, mutations in ces-1 and ces-2 do not affect
cell death in all cell types indicating that several parallel mechanisms control the decision
making step of apoptosis (Ellis and Horvitz, 1991a). Indeed, ces-2 encodes a member in a
basic-leucine zipper family of transcription factors supporting the hypothesis that the cell
death initiation is controlled at the level of gene expression (Metzstein et al., 1996).

Several studies have shown that ced-3, ced-4 and egl-1 are needed for cell death in the
worm. Loss-of function mutations of the genes result in survival of almost all the cells in C.
Elegans. Egl-1 (egl, egg laying defective) was initially discovered as a gain-of-function
mutation leading to ectopic expression of cell death in HSN (hermaphrodite specific
neurons) resulting in egg-laying defect (Trent et al., 1983; Condradt and Horvitz, 1998).
Egl-1 binds to Ced-9 and it is thought that it acts by releasing Ced-4 from Ced-9 (Conradt
and Horvitz, 1998). Indeed, even the mammalian Egl-1 homologues, so called BH3-only
proteins (see below), bind Bcl-2 family proteins is capable of inducing programmed cell
death (Adams and Cory, 2001).

Ced-3 (ced, cell death abnormal) encodes a member of cysteine-aspartases (caspase, see
below), which have a central role in apoptosis, whereas ced-4 and its mammalian
homologue APAF-1 (see below) regulate apoptosis at different levels (Yuan and Horvitz,
1992; Yuan et al., 1993; Zou et al., 1997; Chinnaiyan et al., 1997). Both of these genes
are needed for cell death process since mutations in one or both of them blocks most of cell
death (Ellis and Horvitz, 1986). Overexpression of Ced-3 can induce apoptosis
independently of Ced-4 expression, whereas Ced-4 overexpression in Ced-3 negative cells
results in very little cell death (Metzstein et al., 1998). Thus, Ced-4 seems to potentiate
Ced-3 killing activity.

Contrary to ced-3 and ced-4, ced-9 has been shown to inhibit apoptosis and in loss of
function mutation of this gene leads to ectopic expression of cell death (Hengartner and
Horvitz, 1994). This can be inhibited if Ced-3 and Ced-4 are mutated indicating that Ced-9
works upstream of Ced-3 and Ced-4 (Hengartner et al., 1992). Mutations in egl-1 however
cannot rescue the phenotype suggesting that it functions upstream of Ced-9 (Conradt and
Horvitz, 1998). The mammalian homologue of Ced-9, Bcl-2 protein also exhibits anti-
apoptotic functions as explained below (Hengartner and Horvitz, 1994). 

As pointed out earlier, the engulfment of dying cells is an important step during cell
death. In C. Elegans, several genes have been identified to take part in this process, in
particular a subset of genes important for cytoskeleton rearrangement (ced-2, ced-5 and
ced-10), ced-1, ced-6 and ced-7 whose functions are less understood (Ellis and Horvitz,
1991b; Hengartner, 2001). 

When dying cells have been engulfed, the cell contents must be degradaded. In C.
Elegans at least one gene, namely nuc-1 is needed to perform part of this function. Nuc-1
(nuc, nuclease) encodes or regulates the activity of nuclease needed for DNA degradation
(Hedgecock et al., 1983; Ellis and Horvitz, 1991b). However, mutations in nuc-1 or genes
involved in engulfment do not prevent cell death indicating that the activities of these genes
are not required for killing. Indeed, Nuc-1 is homologues to mammalian DNaseII, which is
needed for DNA degradation during apoptosis (Lyon et al., 2000; Wu et al., 2000).

Mammalian Caspases
As mentioned above, the genetic analysis in C. Elegans revealed the presence of cysteine-
aspartase ced-3, which is required for the execution phase of cell death (Yuan and Horvitz
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1992; Yuan et al., 1993). Identification of ced-3 led to the discovery of the mammalian
homologue interleukin-1β-converting enzyme (ICE), a cystein protease (Yuan et al., 1993).
Today, 14 mammalian caspases have been cloned and characterised. Common to them all is
that they are synthesised as inactive precursors composed of four distinct domains: an N-
terminal pro-domain, a large subunit, a short domain and a linker region (Nicholson and
Thorberry, 1997). The activation of caspases is induced by a proteolytic cleavage of the
pro-domain and the linker region leading to a formation of a tetramer with two catalytic
sites (Wilson et al., 1994; Rotonda et al., 1996).

The caspases can be classified in many different ways. Phylogenetically they are divided
into two groups: one related to ICE (caspase-1) and the other to ced-3. These groups can be
further divided into subdivisions depending on whether the pro-enzymes have a short
(Caspase-3, -6, -7) or a large pro-domain (the rest of the caspases). Alternatively, the
caspases can be arranged into different groups depending on their substrate specificity
(Thorberry et al., 1997; Rano et al., 1997). Group I consists of caspases-1, -4, -5 and –13
and is characterised by the preference of a hydrophobic amino acids in the position P4
where as group II caspases (caspase-2, -3 and-7) require Asp in the same position. Group
III caspases (caspase-6, -8, -9 and-10), on the other hand, prefer aliphatic amino acids in
the position P4. These aliphatic amino acids are commonly found in the maturation sites of
most group II and III caspases indicating that group III caspases can function as initiation
caspases in the caspase cascade (Nicholson, 1999). In summary, the initiator caspases
belonging to the group III cleave and activate the effector caspase (group II), which leads to
an amplification of the cascade and destruction of the cell as presented in Figure 2.

Figure 2. Caspase activation

SIGNAL (e.g. Chemotherapeutical agents)

CASPASE ACTIVATOR (e.g. Apaf-1) 

INITIATOR CASPASE (Caspase- 8, -9, -10) group III

EFFECTOR CASPASE (Caspase- 3, -6, -7) mainly group II

CELL DESTRUCTION (e.g. DNA fragmentation)

There are two different kinds of domains mediating the interaction between caspase
activators and initiator caspases: the death effector domain (DED) and caspase recruitment
domain (CARD). DED is found in FADD, which is an adapter protein linked to the
Fas/APO-1/CD95 receptor upon Fas-ligand binding via its death domains (DD) (Boldin et
al., 1996; Muzio et al., 1996). Caspase-8 has one DED motif in its pro-domain, and
Caspase-10 contains two DED domains (Zheng et al., 2001; Medema et al., 1997).
Interaction between the DED domains and FADD connects the apoptotic signals from
Fas/APO-1/CD95 receptor to the caspases. CARD domain, which is present among others
in Caspase-1, -2 and –9, is also thought to mediate the interaction between the adaptor and
their respective caspase. For instance, CARD domains in APAF-1 binds CARD domains in
Caspase-9 and in similar CARD domains of caspase-2 bind to RAIDD, which is an adapter
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molecule in Tumour necrosis factor receptor 1 (TNF-R1) signalling (Duan and Dixit, 1997;
Chou et al., 1998; Zhou et al., 1999).

Table 2. Mammalian caspases (Mod. from Chan and Mattson, 1999) 

Caspase Structure Subcellular Upstream KO phenotype
localisation caspases and other biol. effects 

Caspase-1 (ICE) pro/p20/link/p10 cytoplasm, nucleus Caspase-4, -8, -10 KO: Healthy, dev. Normal,
external cell surface and –11 resistant to endotoxic chock

Caspase-2 (Nedd2, pro/p20/link/p12 cytoplasm, nucleus, Caspase-1, -3 KO: Resistance to apoptosis in B 
ICH-1) mitochondria and Granzyme B lymphoblasts, accel. cell death in 

motoneurons
Caspase-3 (CPP32, pro/p17/p12 cytoplasm, Caspase-6, -10 KO: perinatal death 
Yama, Apopain) mitochondria and Granzyme B brain malformations
Caspase-4 (ICErel II, pro/p20/link/p10 cytoplasm
TX, ICH-2)
Caspase-5 (ICErel III,      pro/p20/link/p10 cytoplasm
TY)
Caspase-6 (Mch2) pro/p18/p13 cytoplasm Caspase-3, -7 APP and lamin cleavage

and Granzyme B
Caspase-7 (Mch3, pro/p20/p12 cytoplasm, ER, Caspase-3, -8, -10 PARP cleavage
ICE-LAP3) mitochondria and Granzyme B
Caspase-8 (Mch5, pro/p18/link/p11 Caspase-3, -10 KO: Failures in heart dev., cell 
MACH, FLICE) and Granzyme B prol. in Hem. poet. system, death 

rec. med. apoptosis

Caspase-9 (Mch6, pro/p17/p12 cytoplasm, Caspase-3, -8 KO: Perinatal death, brain
ICE-LAP6) mitochondria and Granzyme B malformation, thymocytic

resistance to apoptosis
Caspase-10 (Mch4) pro/p17/p12 cytoplasm Caspase-8, -10 Inherited mutation causes

and Granzyme B                autoimmunoproliferative
syndrome

Caspase-11 (mICH-3)      pro/p20/p10 cytoplasm Granzyme B Pro-inf. Cytokine processing

Caspase-12 (mICH-4)                                            cytoplasm KO: Resistance to ER stress and in 
Cortical neurons to APP, but not to
STS or trophic factor withdrawal

Caspase-13 (ERICE) cytoplasm Caspase-8 Activated by caspase-8

Caspase-14 (MICE) p20/p10 cytoplasm Caspase-8 Keratinocyte differentiation
and Granzyme B

APP= amyloid β protein; KO= knock-out mouse; link= linker; PARP= poly-ADP-ribose polymerase; pro= prodomain;  STS=
staurosporine

As indicated in Figure 2, the activation of the caspase cascade leads to the cellular
destruction and appearance of the apoptotic characteristics described above. During this
process, the caspases destruct various substrates of which more than 70 are characterised
today (Chan and Mattson, 1999).  One big group of caspase substrates is different kinds of
structural genes, among others lamins, fodrin and gelsolin. PARP (poly-ADP-ribose
polymerase) and DNA-PK, two proteins involved in the maintenance of genomic DNA
integrity, become caspase victims, too. Many signalling proteins and apoptosis regulators
have also been reported to become caspase targets. As an example of these are RasGAP,
Raf1 and Akt1 in addition to Bcl-2, Bcl-XL and Bid. DNA itself is degraded by DNA
degrading nuclease (CAD), which is activated after caspase cleavage of its inhbitor ICAD
(Enari et al., 1998; Sakahira et al., 1998). Altogether, the cell destruction leads to impaired
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cellular repair and homeostasis maintenance, to inactivation of anti-apoptotic proteins and
to structural disassembly and ultimately engulfment and disposal of the dying cell.

Caspase activation can be inhibited by different means such as virus. Cowpox virus
serves as an example of this: It produces a protein called Cytokine Response Modifier,
which binds and inhibits caspase-1 (ICE) leading to the suppression of cell death in virally
infected cells (Ray et al., 1992). Yet, another group of virally derived apoptosis inhibitors
is the recently described Inhibitor of Apoptosis Protein (IAP) family, which was originally
identified in baculoviruses due to its ability to suppress cell death (see below, Clem and
Miller, 1994). Beside viral proteins, there are several synthetic peptides with the ability to
inhibit caspases. These inhibitors have been shown to increase survival in both cultured
cells and in vivo (Ekert et al., 1999). The selectivity of the inhibitors have been developed
based on the specific substrate cleavage sites and they act as competitive pseudosubstrates.
Depending on the chemical groups, they are either reversible or irreversible inhibitors. The
former are often coupled to aldehyd (-CHO), ketone or nitrile groups and the latter are
linked to fluoro- or chloro-methyl ketones (-CKM, -FMK).

Studies with gene deleted animals for caspase have substantiated the function of
individual caspases in vivo (Zheng et al., 1999). Data from these studies is summarised in
Table 2. Especially, caspase-3 and –9 deficient animals show severe phenotype indicating
that they play a central role in cell death. Caspase-3 knockout mice show malformations in
the brain suggesting that this caspase is needed for normal brain development (Kuida et al.,
1996; Woo et al., 1998). Caspase-8 deficient mice have defects in the immune system
indicating that caspase-8 is needed for proper function of immune cells (Varfolomeer et al.,
1998).

The role of mitochondria in cell death
Although the role of mitochondria have been highlightened in several studies many details
remains to be clarified. Mitochondria are needed for the apoptosis and it is thought that
cytochrome c which is released from the mitochondria is essential for the activation of the
caspase cascade (Liu et al., 1996). The release mechanism is not fully understood but
several members in the Bcl-2 family are localised at the mitochondrial membrane. It has
been shown that Bax promotes cytochrome c release whereas the anti-apoptotic proteins
Bcl-2 and Bcl-X block the release (Kluck et al., 1997; Kharbanda et al., 1997; Yang et al.,
1997; Jurgensmeier et al., 1998). 

Another characteristic of apoptosis is the loss of mitochondrial membrane potential
(Vayssiere et al., 1994). That itself could possibly cause cytochrome c release. One
important structure in mitochondria is the permeability transition pore complex (PTPC),
which consists of adenine nucleotide translocator (ANT) in the inner mitochondrial
membrane, the cyclophilin D that binds to the ANT, and the voltage dependent channel
(VDAC) (Marchetti et al., 1996; Loeffler and Kroemer, 2000). Several proteins have been
described to bind to this large complex, among them Bax and Bcl-x, which can form and
inhibit channel formation respectively (Narita et al., 1998).

Moreover, mitochondria play a role in cell death by their ability to bind proteins other
than cytochrome c. Smac/DIABLO is a protein found normally attached to the
mitochondria but that is released upon to induction of apoptosis (Du et al., 2000; Verhagen
et al., 2000). Smac/DIABLO binds to IAPs in the cytosol and inhibits then anti-apoptotic
function. In addition, apoptosis inducing factor (AIF) can be released from the 
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mitochondria (Susin et al., 1996; Susin et al., 1999). The release of AIF results in DNA
fragmentation in the nucleus.

The apoptosome and Apaf-1
The cytochrome c release and mitochondrial dysfunction are inhibitable by cyclosporin A.
In most cases, the apoptotic signals are coupled to mitochondria, which are essential for the
cell death process (Newmeyer et al. 1994). During the mitochondrial phase of apoptosis,
cytochrome c is released, which leads to the formation of the apoptosome complex (Liu et
al., 1996). 

The apoptosome consists of cytochrome c, ATP, Apaf-1 and pro-caspase-9, and its
formation leads to the activation of caspase-9 and further amplification of the caspase
cascade via activation of caspase-3 (Zou et al., 1997; Li et al., 1997; Srinivasula et al.,
1998). The central molecule in this complex is Apaf-1 (apoptosis protease activating
factor), which has a aminoterminal caspase recruitment domain (CARD), a central Ced-4
homology domain and a carboxyterminal WD40 repeats, which are thought to mediate
protein-protein interactions and negatively regulates Apaf-1 activity. 

Apaf-1 bound to cytochrome c hydrolyses ATP and undergoes oligodimerisation via its
Ced-4 homology domain. At the same time, CARD domain recruits and facilitates
procaspase-9 processing. In addition, caspase-3 and –7 have been reported to be recruited
into the apoptosome complex where they are processed into smaller subunits (Cain et al.,
2000). The size of the apoptosome complex has been reported to be approximately 1.4MDa
using recombinant proteins, but has a size of 700kDa in native lysates (Cain et al., 2000;
Bratton et al., 2001).

Apaf-1 deficient mice die during early development (between E16-P0) and exhibit
reduced apoptosis in brain tissue show craniofacial and eye alterations (Yoshida et al.,
1998). Similar changes have been also identified in caspase-9 deficient mice indicating that
the apoptosome complex is important for the cell death process (Kuida et al., 1998 ; Hakem
et al., 1998).
 
ANTI-APOPTOTIC MECHANISMS

The Bcl-2 family
Bcl-2 is a mammalian homologue of ced-9, and belongs to a large gene family sharing
structural similarity in the so called BH (Bcl-2 homology)-domain. As shown in Table 2,
the Bcl-2 family can structurally be divided into three classes of proteins: Bcl-2, Bax and
Bik subfamilies. The Bcl-2 subgroup includes proteins such as Bcl-2, Bcl-XL, BCL-xs and
BCL-w, which all possess the four characterised BH-domains (BH1-4) and exhibit, with the
exception of Bcl-Xs, anti-apoptotic properties (Tsujimoto et al., 1984; Boise et al., 1993;
Reed, 1994; Gibson et al., 1996). The pro-apoptotic Bax-subgroup consists of Bax, Bak,
Bad and Bok, which only have BH1-3 domains (Oltvai et al., 1993; Chittenden et al.,
1995a, 1995b; Kiefer et al., 1995; Yang et al., 1995; Hsu et al., 1997). The third
subfamily consists of”BH3 only” group of proteins and includes Bik, Bid and Bim (Boyd et
al., 1995; Wang et al., 1996; O`Connor et al., 1998).  Proteins belonging to this group
have strong pro-apoptotic features indicating that the BH3 domain alone can induce
apoptosis under certain conditions (Chittenden, 1995b; Cosulich et al., 1997; Hsu and
Hsueh, 1998; Ray et al., 2000). Furthermore, when the BH3 region of Bcl-2 is changed to
that of Bax, it looses its death antagonising effects suggesting that there are critical 



13

differences between the BH3 domains found in pro- and anti-apoptotic members in the Bcl-2
family (Hunter and Parslow, 1996).

As indicated in Table 2, some of the members in the Bcl-2 family have in their
carboxyterminal a hydrophobic transmembrane domain required for insertion to membranes
(Hockenbery et al., 1990). Indeed, many family members can be found associated with the
mitochondrial outer membrane, the nuclear membrane and endoplasmatic reticulum
(Hockenbery et al., 1990; Gonzales-Garcia et al., 1994). The functional relevance of the
membrane docking is still unclear but in the case of Bcl-2, membrane insertion seems to be
associated with its capability to antagonize apoptosis in some systems but not in others
(Hockenberry et al., 1990; Tanaka et al., 1993). In addition, deletion of the transmembrane
domain in Bcl-x does not affect its anti-apoptotic properties (Borner et al., 1994; Gonzales-
Garcia et al., 1995).

The Bcl-2 family proteins exhibit a variety of biological actions. Several Bcl-2 family
members can form heterodimeric bindings, which are mediated by the insertion of BH3 of
the pro-apoptotic protein into a hydrophobic pocked formed by BH1, BH2 and BH3 regions
from the anti-apoptotic protein (Oltvai et al., 1993). Heterodimerization between anti- and
pro-apoptotic proteins appears to inhibit the biological activity of their partners (Oltvai et
al., 1993; Yang et al., 1995). It has also been reported that BH3-only proteins can function
as cytoplasmic ligands for other pro-and anti-apoptotic family members thereby regulating
their activity (Yang et al., 1995; Desagher et al., 1999).

Table3. Classification of proteins in the Bcl-2 family 

Bcl-2 subfamily          BH4 BH3  BH1  BH2    TM
Bcl-2 (+)
Bcl-XL (+)
Bcl-XS (-)
Bcl-w (+)

Bax subfamily  BH3  BH1  BH2    TM
Bax (-)
Bak (-)
Bad (-)

Bik subfamily  BH3    TM
Bik (-)
Bid (-)
Bim (-)

(+)= anti-apoptotic protein; (-)= pro-apoptotic protein; TM= transmembrane domain

Some of the activities of Bcl-2 protein occur via binding to other proteins than Bcl-2
family proteins. Among the interactors reported for Bcl-2, and in certain cases for Bcl-X,
are signalling molecules such as Raf-1, R-Ras p23 and 53BP-protein (Fernandez-Sarabia and
Bischoff, 1993; Wang et al., 1996; Naumovski and Cleary, 1996). In addition, Bag-1, which
regulates the Hsp70/Hsc70 chaperone system and to calcineurin, a calcium-activated
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phosphatase, has been described to interact with Bcl-2 family proteins (Takayama et al.,
1995 and 1997; Shibasaki et al., 1997). 

The determination of the 3D-structure of Bcl-XL gave a hint as to the function of Bcl-2
family members as ion channels (Muchmore et al., 1996). The 3D-structure of Bcl-XL is
very similar to that of some bacterial toxins e.g. diphtheria toxin, which contain a pore
forming domain. Later studies have demonstrated that Bcl-2, Bcl-XL and Bax can form ion
channels in synthetic lipid membranes (Antonsson et al., 1997; Minn et al., 1997; Schendel
et al., 1997; Schlesinger et al., 1997). The pores formed by Bcl-2 and Bcl-XL are small and
have a moderate cation preference and are formed only in non-physiological acidic
conditions. In contrast, Bax forms larger pores, which prefer anions at physiological pH and
in some studies, but not all, it has been showed that Bcl-2 can prevent in vitro channel
formation by Bax  (Antonsson et al., 1997; Schendel et al., 1998).

In addition, Bcl-2, Bcl-xL and Bcl-w have been reported to inhibit cytochrome c release,
whereas Bax can promote it (Kluck et al., 1997; Kharbanda et al., 1997; Yan et al., 2000).
Bak or BH3 oligopeptides added to isolated mitochondria induce cytochrome c release and
lead to mitochondrial dysfunction (Jurgenmeister et al., 1998; Narita et al., 1998). It is
thought that the Bcl-2 family members regulate cytochrome c release by associating and
thereby affecting the mitochondrial PT pore (see above), which becomes opened by the loss
of the electrochemical gradient (∆Ψ) during apoptosis (Petit et al., 1996). Bcl-2 and Bcl-X
overexpression have been reported to protect against different agents, such as cyanide, that
directly act on the mitochondria PT pore (Shimizu et al., 1996; Susin et al., 1996; Kluck et
al., 1997). In addition, cytochrome c microinjection studies have shown that Bcl-2 and Bcl-
x can block the cell death downstream of cytochrome c release (Li et al., 1997). 

Bcl-2
Bcl-2 was first identified through its involvement in follicular B-cell lymphoma. In this
cancer form, Bcl-2 expression is altered by a chromosomal translocation, t(14;18), which
places the gene in a close proximity to enhancer elements of the immunoglobulin heavy
chain locus (IgH) resulting in deregulated expression of Bcl-2 in B-cells (Tsujimoto et al.,
1984). Expression of Bcl-2 in immature B-cells leads to growth independent of IL-3, which
is normally needed for the survival (Vaux et al., 1988). 

Bcl-2 gene codes for a 25kDa protein and can be found in two different splice variants:
Bcl-2α and Bcl-2β. The β-form lacks the transmembrane domain, which appears to be
dispensable for function as discussed above (Tanaka et al., 1993). In addition to splicing,
phosphorylation of serine and threonine residues in the loop region between BH3 and BH4
regulates the Bcl-2 function. Several kinases, among others the Jun-N-terminal kinases, can
phosphorylate Bcl-2 leading to the abolishment of the protective function of Bcl-2. 

Bcl-2 is expressed in a variety of tissues, among others in the haematopoietic system,
many inner organs and skin (Hockenbery et al., 1991; LeBrun et al., 1993; Novack and
Korsmeyer, 1994). In the brain, Bcl-2 mRNA is expressed at higher levels during
embryonic and late prenatal development than in postnatal and adult brain (Abe-Dohmae et
al., 1993; Castren et al., 1994). In adult rat brain, Bcl-2 mRNA is expressed in the dentate
gyrus in the hippocampus, in the olfactory bulb and cerebellar granule neurons (Castren et
al., 1994). Studies on Bcl-2 protein expression have substantiated these findings and they
indicate that Bcl-2 is scanty present in the adult CNS but retained in the peripheral nervous
system (Merry et al., 1994).
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Gene deletion studies have highlightened the role of Bcl-2 in neuronal survival. Bcl-2-
deficient mice survive embryonic development but die in early adulthood due to polycystic
kidney disease and thymic and splenic abnormalities (Veis et al., 1993; Nakayama et al.,
1994; Kamada et al., 1995). Transgenic mice over-expressing bcl-2 gene in neural cells
show resistance against naturally occurring cell death and experimental ischemia, facial,
sciatic and optic nerve axotomy (Martinou et al., 1994; Dubois-Dauphin et al., 1994; Farlie
et al., 1995; Michaelidis et al., 1996; Bonfanti et al., 1996). Bcl-2 has been reported also
to induce differentiation of neural cells (Suzuki and Tsutomi, 1998; Middleton et al.,
1998).

Bcl-2 proteins show a variety of biological activities as summarised in Table 4. Bcl-2
both decreases lipid peroxidation and prevents phosphatidylserine exposure at the plasma
membrane (Hockenbery et al., 1993; Martin et al., 1995). Bcl-2`s effects on redox potential
are mediated through decreased lipid peroxidation and effects on catalase, SOD and GSH
levels leading to inhibition of ROS generation (Hockenbery et al., 1993; Kane et al., 1993).
Bcl-2 also inhibits caspase-3 and -6 activation and has effects on ion balance (Lam et al.,
1994; Chinnaiyan et al., 1996; Marin et al., 1996). On the mitochondria level, Bcl-2 can
inhibit the transmembrane potential loss and calcium influx into mitochondria and
cytochrome c outflow is also blocked (Baffy et al., 1993; Zamzami et al., 1996).

Table 4. Biological effects of Bcl-2 

1. Plasmamembrane Prevention of phosphatidylserine exposure, decreased lipid peroxidation 

2. Redox potential Decreased lipid peroxidation, inhibition of ROS generation, increase in
catalase, SOD, GSH, elevated NAD/NADH

3. Proteases Inhibition of Caspase-3 and -6 activation 

4. Ion balance Inhibition of hydroperoxide induced calcium outflow from ER, inhibition of
nuclear calcium up-take 

5. Mitochondria Inhibition of transmembrane potential loss inhibition of calcium influx into
mitochondria, prevention of cytochrome c outflow 

ER= endoplasmatic reticulum; GSH= reduced gkutathione; ROS= Reactive oxygen species; SOD= sodium dismutase

Bcl-X
Bcl-X is another anti-apoptotic protein of the Bcl-2 family. Bcl-x gene encodes an
approximately 20kDa protein, which can be found in three splice forms: Bcl-Xs, Bcl-XL
and Bcl-Xβ (Boise et al., 1993). The long form (Bcl-XL) inhibits cell death upon growth
factor depletion, but the short form (Bcl-Xs), which lacks the parts of the BH1 and BH2
domains, inhibits the ability of Bcl-2 to antagonize apoptosis (Boise et al., 1993; Gonzales-
Garcia et al., 1995). Bcl-Xβ seems in some experimental systems to have an anti-apoptotic
function, and in others it promotes apoptosis (Gonzales-Garcia et al., 1995).

Bcl-X mRNA is highly expressed in many tissues among others in the thymus, liver and
bone marrow (Gonzales-Garcia et al., 1994; Krajewski et al., 1994). In the brain, Bcl-X
mRNA is highly expressed during early development but the expression decreases towards
adulthood (Frankowski et al., 1995; Hamner et al., 1999). On the protein level, Bcl-X
expression has been reported to be low in the adult brain, but opposite reports also exist,
too (Mizuguchi et al., 1996; Alonso et al., 1997; Shimohama et al., 1998; Vekrellis et al., 
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1997). Bcl-Xs mRNA is present in the human thymus but the transcript is undectable in
mouse tissues (Gonzales-Garcia et al., 1994). No expression studies have been published
for Bcl-Xβ. 

Bcl-X deficient mice die during embryonic development due mainly to the massive cell
death in haematopoietic system and in brain neurons (Motoyama et al., 1995). The early
occurring neuronal death can be prevented by Bax-deficiency indicating that Bax binding to
Bcl-X critically regulates cell survival (Shindler et al., 1997). Similar kinds of results have
been obtained using dorsal root ganglion neurons, which have high expression of Bcl-X
during the developmental stages when most of the naturally occurring cell death takes place
(Vogelbaum et al., 1998). 

Transgenic mice over expressing Bcl-X in the immune system show thymocyte
resistance against γ-irradiation and glucocorticoid treatment and overexpression under a
neuronal promoter has been shown to rescue cells after hypoxia-ischemia and after facial
axotomy (Chao et al., 1995; Parsadanian et al., 1998). On the contrary, naturally occurring
cell death in the facial motor neurons is not inhibited in these animals (Parsadanian et al.,
1998). 

Bax
Bax is a pro-apoptotic family member in the Bcl-2 family and it exits in several
alternatively spliced forms. Baxα consists of three BH domains and a carboxyterminal
transmembrane domain, whereas baxβ and baxω lack the transmembrane domain. Baxγ on
the other hand does not have the exon 4 and baxδ lacks the BH3 domain. By now, no
functional significance has been demonstrated for baxβ, baxγ and baxδ. Baxω has a pro-
apoptotic activity but it has been reported to also antagonise cell death under certain
conditions (Zhou et al., 1998).

Bax mRNA is highly expressed in several tissues, among others in the brain, heart, lung
and kidney. Bax protein is also found in these tissues but the expression of mRNA and
protein do not always correlate with each other (Krajewski et al., 1994). The different
splice forms are present in the brain. In general, Bax seems to be expressed more widely
than Bcl-2 and the expression seems to decrease during development (Oltvai et al., 1993;
Krajewski et al., 1994; Zhou et al., 1998; Shimohama et al., 1998). Bax is mainly present
in the cytoplasma. After an apoptotic stimulus a conformational change occurs in Bax,
which leads to its translocation to mitochondria. This can result in Bax oligomerisation,
channel-forming activity and ultimately to cytochrome c release (Antonsson et al., 2000)

At the cellular level, Bax deficient mice show hyperplasia in several tissues among
others in neurons (Knudson et al., 1995; Deckwerth et al., 1996). Bax deficient neurons
survive better after facial nerve axotomy and cultured cortical neurons from these animals
are more resistant against glutamate and DNA damage. Furthermore, symphathetic neurons
lacking Bax are less dependent on NGF for their survival (Deckwerth et al., 1996).

The Inhibitor of Apoptosis Protein Family
The IAPs were found in insect baculoviruses as proteins with the ability to promote survival
of infected cells (Crook et al., 1993; Clem and Miller, 1994). The neuronal inhibitor of
apoptosis protein (NAIP) was the first identified human homologue to insect IAPs (Roy et
al., 1995). Subsequently, four other human IAPs (c-IAP-1/HIAP-2/hMIHB, c-IAP-
2/HIAP-1/hMIHC, XIAP/hILP and Survivin) were characterised followed by identification
of two Drosophila homologues, DIAP-1/dILP-1 and DIAP-2 (Hay et al., 1995: Rothe et 
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al., 1995; Duckett et al., 1996; Liston et al., 1996; Uren et al., 1996; Ambrosini et al.,
1997). Today other homologues of IAP proteins have been characterised in different
species (LaCasse et al., 1998).

As presented in Table 4, the IAP family proteins share a well-conserved motif of
approximately 65 residues called the baculovirus IAP repeat (BIR). c-IAP-1 and -2 as well as
NAIP and XIAP contain three BIR domains and Survivin has only one BIR region. This
indicates that single BIR region can be sufficient for the anti-apoptotic action (Ambrosini et
al., 1997). The individual BIR domains show both a structural and functional variation but
common to them all is a highly hydrophobic centre (Hinds et al., 1999). The core structure
has several conserved cystein and histidine residues, which have zinc coordinating
properties needed for the IAPs`anti-apoptotic function (Vucic et al., 1998; Sun et al.,
1999). In addition, sequences immediately next to the BIR have been demonstrated to be
important for the interaction between IAPs and other proteins (Vucic et al., 1998; Sun et
al., 1999).

Table 5. The structure of the mammalian IAP-family members

NAIP

XIAP

cIAP-1

cIAP-2

Survivin

With the exception of NAIP and Survivin, all other IAP family proteins have a C-
terminal RING motif, which can be found in over 200 different proteins. Typical for the
RING domains are the histidine and cysteine rich regions with zinc binding capacity
(Borden, 2000). The function of the RING-domains is still unclear, but the zinc ligation
appears to be crucial for biological activity (Borden, 2000). The RING domain is found in
other proteins involved in among others RNA processing, organelle transport and viral
replication (Borden, 2000). The only unifying theme for RING domain function seems to
be that they are involved in formation of large macromolar scaffolds. An example of this is
the activity of RING domain for IAP autodegradation through ubiquitinylation in the
thymocytes (Yang et al. 2000). There is also data suggesting that the RING-domain of IAPs
may function as a negative regulator of apoptosis (Hay et al., 1995). 

The IAP family exhibits a variety of biological activities. Different IAP family members
antagonize cell death upon a variety of signals, among others against treatment with
chemotherapeutic agents, Fas activation and trophic factor withdrawal (LaCasse et al.,
1998). Part of this inhibition is mediated through direct binding and inactivation of caspases
as described for XIAP, cIAP-1 and cIAP-2 (Roy et al., 1997; Deveraux et al., 1997; 

     BIR1           BIR2 BIR3  CARD  RING
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Deveraux et al., 1998). Caspase inhibition appears to need only one BIR-region, which, in
the case of XIAP, is the BIR2 domain (Takahashi et al., 1998). On the other hand, caspases
can cut and thereby degradate some IAPs as shown for XIAP in Jurkat T cells after Fas
stimulation (Deveraux et al., 1999). Likewise, survivin binds to active caspases-3 and –9 as
well as to pro-caspase 9 but it remains to be proved whether this binding inhibits the
caspases (Tamm et al., 1998).

As mentioned above, the action of XIAP, cIAP-1 and cIAP-2, can be modified by
binding to Smac/DIABLO. Smac/DIABLO is a mitochondrial protein and that is released to
the cytosol along with cytochrome c release in response to an apoptotic stimulus (Verhagen
et al., 2000; Du et al., 2000). The release requires active caspases and is blocked by Bcl-2
(Adrien et al., 2001). In addition, it was recently shown that in TRAIL induced cell death,
Smac/DIABLO release requires Bax (Deng et al., 2002). Smac/DIABLO mRNA is present
at least in heart, kidney and testis. In the cytosol, Smac/DIABLO binds to the target IAP
and thereby inhibits its binding to activated caspases. Smac/DIABLO can promote cell
death both at the level of apoptosome complex and at the level of effector caspases
(Srinivasula et al., 2001). Structural studies have revealed that the very aminoterminal of
Smac/DIABLO (AVPI sequence) is critical for the XIAP BIR3 binding and thereby for the
cytochrome c promoted apoptosis (Liu et al., 2000; Ekert et al., 2001; Srinivasula et al.,
2001). 

There is increasing evidence that IAPs also play a role in signal transduction. The cIAP-
1 and cIAP-2 were first identified as central components in TNF-receptor signalling
complex suggesting that they play a role in regulation of TNF dependent cell survival
(Rothe et al., 1995; Chu et al., 1997; Stehlik et al., 1998b). In addition, XIAP interacts
with TABI, an intracellular mediator of bone morphogenetic protein receptor signalling
(Yamaguchi et al., 1999). As presented in Table 5, cIAP-1 and cIAP-2 have a CARD close
to the RING domain (LaCasse et al., 1998). This domain mediates protein-protein
interactions and is present in many pro-caspases, too. This suggests that CARD-mediated
protein-protein interactions between IAPs and other proteins may play an important role in
modulating the apoptotic process (Deveraux et al., 1999).

Neuronal apoptosis inhibitor protein (NAIP)
NAIP was originally identified as a gene deleted in many patients suffering from Spinal
Muscular Atrophy type 1 (SMA1), a devastating human disease characterised by motor
neuron degeneration in early life (Roy et al., 1995). Later studies have, however, shown
that mutations in the SMN gene are more important as a cause of the disease but NAIP
seems to have more a modulating role in the disease pathogenesis of SMA (Jablonka et al.,
2000). 

As mentioned above, NAIP consists of three BIR domains but lacks the carboxyterminal
RING domain. NAIP encodes for an approximately 120kDa long protein. The BIR domains
of NAIP have not been demonstrated to bind directly to activated caspases and the NAIP`s
anti-apoptotic activity is mediated by other means (Roy et al., 1997).

Beside in motor neurons, NAIP appears to be widely expressed in the nervous system
(Xu et al., 1997a). NAIP is present in hippocampus, in cortex, amygdala and thalamus.
The NAIP deficient mice are more vulnerable to kainic acid induced hippocampal cell death
than wild type controls (Holcik et al., 2000). Furthermore, it has been reported that NAIP
delay motoneuron cell death in vivo and in vitro as well as suppresses neuronal
differentiation and apoptosis in PC12 cells (Perrelet et al., 2000; Gotz et al., 2000). In
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addition, adenovirally overexpressed NAIP also reduces ischemic damage in rat
hippocampus and protects nigrostriatal pathway in a rat PD model suggesting an important
role in neuronal degeneration (Xu et al., 1997b; Crocker et al., 2001). 

X chromosome –linked inhibitor of apoptosis protein (XIAP)
XIAP is one of the first identified human homologues of viral IAPs. XIAP gene is found on
the long arm of X chromosome (Xq25) and the mRNA encodes for a 57kDa protein found
mainly in the cytosol. Structural studies of XIAP suggest that the BIR domains are classical
zinc fingers but thay differ structurally from each other (Sun et al., 1999; Riedl et al.,
2001; Huang et al., 2001; Chai et al., 2001). In addition, the function of the different BIR
domains varies. The BIR2 domain can bind activated caspase-3 whereas caspase-9 binding
is mediated via the BIR3 domain. 

The RING domain of XIAP seems to have a role in XIAP degradation via
ubiquitinylation as shown for glucocorticoid- and etoposide-treated thymocytes (Yang et al.,
2000). The XIAP mutants lacking the carboxyterminal RING domain were more resistant
to apoptosis-induced degradation and correspondingly, more effective at preventing the cell
death process than wild type XIAP (Yang et al., 2000). In addition, the ubiquitin protein-
ligase activity of XIAP seems to promote proteosomal degradation of active caspase-2
leading to increased anti-apoptotic effect (Suzuki et al., 2001).

XIAP mRNA can be found in many different tissues, for example in kidney, pancreas,
thymus, skeletal muscle and brain (Uren et al., 1996). In several studies, various transcripts
have been identified but details on potential splicing variants remains to be studied. Gene
analysis has further shown that translation of XIAP is controlled by a 162-nucleotide
internal ribosome entry site (IRES element), which is located in the 5`untranslated region
of XIAP mRNA (Holcik and Korneluk, 2000). This IRES element enables an effective
translation under physiological stress and it increases the protection against serum
deprivation and gamma irradiation induced death in HeLa cells (Holcik and Korneluk,
2000). Similar IRES elements are also present in a limited number of other genes such as c-
myc, VEGF and immunoglobulin heavy chain and it has been hypothesized that this
mechanism might serve as a mechanism for guaranteed translation under compromised
conditions like that after heat shock or growth arrest. In case of XIAP, it has been
demonstrated that La autoantigen, which is a member in the RNA recognition motif group
of general RNA-binding proteins, is required for translation through IRES element (Holcik
and Korneluk, 2000).

The anti-apoptotic function of XIAP is established through direct binding and inhibition
of active caspases (Deveraux et al., 1997, 1998; Takahashi et al., 1998). The binding of
caspases is mediated through the BIR 2 and BIR3 domains as mentioned above (Riedl et al.,
2000; Huang et al., 2000). BIR 2 binds active caspase-3 at a high affinity whereas caspase-
9 binding is mediated through BIR3 domain. On the contrary, active caspase-3 has been
shown to cleave and inactivate XIAP in the Jurkat T cells after irradiation (Deveraux et al.,
1999). The cleavage site for caspase-3 is within or after the BIR2 and leads to the formation
of two XIAP fragments: an aminoterminal fragment consisting of BIR1 and BIR2 and
carboxyterminal fragment formed by BIR3 and RING. Overexpression of BIR1-BIR2
fragment has been shown to inhibit Fas-induced apoptosis in immune cells but this
inhibition is significantly less potent that that of full-length XIAP. In contrast,
overexpression of BIR3-RING fragment seems to slightly enhance Fas-mediated cell death,
but protects against Bax induced cell death. 
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As mentioned above, Smac/DIABLO can inhibit the anti-apoptotic effects of XIAP.
Recently, yet another mitochondrial protein has been reported to be released from
mitochondria and to bind XIAP. This protein is a serine protease called Omi/Hrt2A
contains a conserved IAP-binding motif (AVPS) at the aminoterminus (Suzuki et al., 2001;
Verhagen et al., 2002; Martins et al., 2002; Hedge et al., 2002). This motif is exposed
upon release into the cytosol leading to IAP binding via the BIR3 domain and caspase
activation. Interestingly, Omi/Hrt2A can also induce apoptosis in a caspase-independent
manner through its protease activity.

In addition to the above-mentioned interactors, XIAP has been shown to bind to a novel
cellular protein called XAF1, XIAP associating factor 1 (Fong et al., 2000; Liston et al.,
2001). XAF is produced as four distinct transcripts and it is expressed in many tissues and
is present at low or undetectable levels in different cancer cell lines. Expression of XAF1
leads to a redistribution of XIAP from the cytosol to the nucleus followed by inability to
inactivate active caspases. In addition, it has been reported that cells that express XAF1 at
high levels are more resistant against cell death induced by chemotherapeutic agents
indicating that XAF1 may be important in mediating the apoptosis resistance of cancer cells
(Fong et al., 2000).

XIAP mRNA has been found in brain tissue but its precise localisation and function is
not fully known. Overexpression of XIAP in the cultured cerebellar granule neurons (CGN)
was shown to delay apoptotic cell death (Simons et al., 1999) and overexpression of XIAP
by adenoviral vectors in rat hippocampus reduced cell damage and behavioural deficits (Xu
et al., 1999). In addition, XIAP overexpression in the retinal ganglion delays the ganglion
cell degeneration after axotomy and protect synergistically with GDNF against MPTP
induced nigral cell death in a model of Parkinsons disease (Kugler et al., 2000; Ebenhardt
et al., 2000). 

XIAP has also been shown to suppress apoptosis in a Jun-c terminal kinase dependent
pathway as well as Nuclear factor κB (NFκB) has been reported to regulate XIAP levels in
different cell types and experimental paradigms (Sanna et al., 1998; Stehlik et al., 1998b;
Tang et al., 2001). In addition, XIAP has been reported to be a cofactor in TGF-beta
signalling and interact with BMP signalling elements (Yamaguchi et al., 1999; Birkey
Reffey et al., 2001).

Recently, the first results on XIAP deficient mice were published (Harlin et al., 2001).
These animals seem to be viable and lack major developmental disturbances. Neither Fas,
UV irradiation nor oligomycin induced cell death were affected in XIAP deficient cells.
Surprisingly, the levels of cIAP-1 and –2 were observed to be increased in the knock-out
animals.

cIAP-1/RIAP-2
cIAP-1/HIAP2/MIAP2, was found through its binding to TNF (Tumor necrosis factor)
receptor 2 associating proteins TRAF1 and TRAF2 (Rothe et al., 1995; Uren et al., 1996).
The protein has three BIR domains, which bind and inhibit caspase-3, -7 and –9 and
suppress cell death (Roy et al., 1997; see review LaCasse et al., 1998). However, the
relative ability of IAP-2 to inhibit caspases is lower than that of XIAP (Roy et al., 1997).
IAP-2 has been cloned in different species including human, mouse, chicken and pig and it
can be found in brain tissue (Rothe et al.,1995; Liston et al.,1996; Uren et al.,1996; Digby
et al., 1996; Liston et al.,1997; You et al.,1997; Stehlik et al.,1998a). The gene encodes
for an approximately 70kDa protein, which is found in the cytosol.
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In general, little is known about cIAP-1 exact expression and function in different cell
types. Various cytokines regulates cIAP-1 levels in endothelial cells and increase the
survival of these cells (Stehlik et al., 1998b). There seems to be a reciprocal regulation of
cIAP-1 and XIAP since the cIAP-1 expression level is increased in the XIAP deficient mice
(Harlin et al., 2001). This indicates that these proteins can compensate for each other’s
functions. 

NEURONAL CELL DEATH AND SURVIVAL

Cell death during the development
During brain development an excess of neurons are born and approximately 50% of them
are later eliminated in order to ensure proper function (Oppenheim, 1991). The competition
for neurotrophic factors directs the survival and cell death of early neurons (Levi-
Montalcini, 1987; DiCicco-Bloom, 1993). The neurotrophic support is important during the
development but neurotrophins functors also regulate maintenance and neuronal properties
in the adulthood. 
Nerve growth factor NGF was the first neurotrophic factor to be discovered (Levi-
Montalcini, 1966). It is present in the nervous system and support the survival and
maturation of sensory and sympathetic neurons in the PNS and cholinergic cells located in
the forebrain and striatum (Bibel and Barde, 2000). NGF effects is mediated through the
high affinity receptor trkA, which is a tyrosine kinase receptor leading to the activation of
the MAP kinas and Akt pathways (Hempstead et al., 1991; Kaplan et al., 1991; Bibel and
Barde, 2000). There is present yet another low affinity receptor for NGF, so called p75
receptor (Berg et al., 1991). Activation of this receptor can lead not only to cell survival
but also to activation of the cell death in certain cells (Bredesen et al., 1998; Casademunt et
al., 1999). Beside NGF there are other molecules such as BDNF and NT3 supporting
survival and development of various classes of neurons (Conover and Yancopoulos, 1997).

As mentioned above, several important intracellular proteins are involved in regulation
of cell death. With regard to the caspases, genetic studies have shown that certain caspases
are essential for brain function. Caspase-3 knockout animals show brain abnormalities
among others big ectopic cell masses in the cortex as well as hippocampal deformities
(Kuida et al., 1996; Woo et al., 1998). Similar defect can be seen in caspase-9 deficient
mice, not surprisingly since caspase-9 is thought to function upstream of caspase-3 (Kuida
et al., 1998; Hakem et al., 1998). In addition, neurons from caspase-12 deficient
mice show higher resistance against APP induced death in cultures than wild type neurons
(Nakagawa et al., 2000). This is also observed using caspase-2 deficient mice indicating
that cell death of cortical neurons is at least partially mediated through caspase-12 and
caspase-2 (Bergeron et al., 1998). Caspase-1 and -11 deficient mice instead show resistance
against ischemic cell death and caspase-1 deficient mice are resistant against cell death
occurring after experimental autoimmune encephalitis (Kuida et al., 1995; Li et al., 1995;
Wang et al., 1998).

Several members of the Bcl-2 family are expressed within the nervous system and show
developmental regulation. Bcl-2 is developmentally downregulated in the CNS but the
expression is retained in the PNS (Merry et al., 1994). Likewise, Bcl-X is down regulated
in the CNS during the development (Frankowski et al., 1995; Hamner et al., 1999). On the
contrary yet another members of the same family, Bcl-w is expressed at low levels in
developing brain but is widely expressed in the mature brain (Hamner et al., 1999). These 



22

results indicate a complex situation with changing levels of different family members,
which provides an optimal survival for brain cells at different time points.

In addition, different family members in the IAP family have been shown to be
expressed in the nervous system although they are not yet as well studied as the Bcl-2
family members. NAIP was the first IAP family members to be shown to be expressed in
the nervous system and studies have shown that it is mutated in patients suffering from
spinal muscular atrophy, a devastating genetical disease leading to muscular atrophy and
death in childhood or young adulthood (Roy et al., 1995; Xu et al., 1997). 

Neurodegeneration
As mentioned above naturally occurring cell death is an essential part of development of
many organs including brain. There are, however, several disease processes affecting
neurons with increased cell death. These disorders are characterised by degenerative
changes leading to neuronal loss either after acute damages such as in brain trauma and
stroke/ischemia or occurring during longer periods of times such as in human
neurodegenerative diseases. Cell death in these disease is caused by different means which
are still largely unknown. 

In one common human disorder, Alzheimer’s disease the brain pathology is related to by
accumulation of beta amyloid peptide and formation of  amyloid deposits (Yankner, 1996;
Selkoe, 1997). In addition, hyperphosphorylation of Tau is part of the disease process
leading to formation of senile placks and neurofibrillary tangles (Lee et al., 1999).
Furthermore, mutations in a gene called presenilin have been associated with the disease
(Sherrington et al., 1995; Levy-Lahad et al., 1995). These mutations have been seen
especially in the early onset of AD and it has been shown that the mutated pesenilins
increase the production of 42-APP, the APP form that mostly accounts for amyloid fibrid
formation. Genetic studies have also shown that the apolipoprotein allele e4 serves as a
common risk factor for AD and it has been reported to promote the polymerisation of APP
to plack-forming fibrils (Yankner, 1996).

In PD, dopaminergic cells in the substantia nigra are primarily affected leading to
rhypokinesia, tremor and at later stages often to dementia. Many reasons have been
postulated to be causes of PD and exposure to various environmental factors seems to play a
role in the pathogenesis (Jenner, 2001). Experimentally 1-methyl-4-phenyl-
1,2,3,6tetrahydropyridine (MPTP), a drug that was abused in the USA in the 1970`s has
been shown to be a potent drug to destroy nigral cells and induce symptoms similar to that
seen in patients with PD (Tatton and Kish, 1997). Part of the cell death in substantia nigra
is thought to be apoptotic (Tatton and Kish, 1997). 

Neuronal cell death is also taking place after uncontrolled neuronal activity such as in
epileptic seizures (Sperk et al., 1994). The mechanism behind this is partly glutamate
receptor activation induced exitotoxicity with release of calcium into the cytosol. After
prolonged activation of the glutamate receptors intracellular calcium levels can be elevated
to such extend that downstream processes resulting in cell death are triggered. 

ESTROGEN AND ESTROGEN RECEPTORS
Estrogen presents an important class of hormones with pleiotrophic effects. There is
epidemiological evidence that estrogen replacement therapy for postmenopausal women is
associated with improvement of cognitive performance, protection against cognitive
deterioration and increased incidence of Alzheimers disease (Paganini-Hill and Henderson,
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1994; Robinson et al., 1994). In addition, estrogen has been shown to be beneficial against
cerebral stroke and cardiac infarct (Lafferty and Fiske 1994; Hurn and MacRae, 2000).
Contrary to that estrogen failed to improve cognitive or functional outcome of patients with
mild to moderate Alzheimers disease (Mulnard et al., 2000). 

The beneficial effects of estrogen have been demonstrated in many animal models of
neuronal degeneration. In ovarectomised rats, physiological concentrations of estrogen,
attenuated extent of brain damage after cerebral ischemia (Dubal et al., 1998).  In primary
neurons, organotypic hippocampal cultures and the hippocampal cell clone HT22 estrogen
attenuated neuronal injury caused by hypoxia, excitatory amino acids, superoxide anions
and hydrogen peroxide (Goodman et al., 1996; Singer et al., 1996; Behl et al., 1997).
Moreover, estrogen reduced the neurotoxic effects of β-amyloid and β-amyloid
accumulation in the culture medium (Goodman et al., 1996; Keller et al., 1997).

Estrogen functions through estrogen receptors, namely the alpha receptor (ERα) and the
beta receptor (ERβ) (for review see Pettersson and Gustafsson, 2001). These receptors
belong to the steroid/thyroid hormone superfamily of nuclear receptors and share common
structural characteristics. ERα and ERβ have an aminoterminal AF1 domain, a DNA
binding domain and ligand binding domain. The aminoterminal AF1 domain has a ligand-
independent function and is involved in transcriptional activation of target-gene expression.
ERα and ERβ have some crucial differences in this domain; in ERα it is a strong stimulator
of reporter-gene expression in cell lines whereas ERβ showed a lower activity under same
conditions. In addition, studies with synthetic antiestrogens (Tamoxifen, ICI 164,384) have
shown that these ligands function as partial estradiol agonists in the case of ERα but show
antagonistic activity with ERβ indicating that there are differences in the AF1 domains
between ERα and ERβ.

The DNA binding domain, which is very similar in ERα and ERβ, contains a zinc finger
structure that mediates receptor dimerisation and binding to specific DNA sequences. The
carboxyterminal ligand-binding domain mediates ligand binding leading to activation of
target-gene expression. The ligand binding domains in ERα and ERβ are very similar even
in the tertiary structure and thus many tested compounds bind to both the receptors with
same affinity.

Estrogen receptors can be activated also independent of estrogen. It has been described
that among others several kinases (eg PKC, PKA), growth factors (EGF, insulin, IGF-1),
cytokines (IL-2) and neurotransmitters (Dopamine) as well as cell cycle regulators (CDKs)
can lead to estrogen receptor activation and expression of target genes.

Estrogen receptors are expressed in various tissues among others in mammary glands,
bone, uterus, central nervous system and cardiovascular system (Pettersson and Gustafsson,
2001). ERβ is expressed apart from the already mentioned tissues expressed in ovary,
prostate and lungs. Knowledge about differences between these two receptors in various
tissues has been gained from the studies with ERα (ERKO) and ERβ receptor deficient
mice (BERKO). 

BERKO mice show hypocellularity in the somotosensory cortex and an astroglial
proliferation in the limbic system (Wang et al., 2001). In addition, these animals had signs of
increased neuronal degeneration with age, suggesting that estrogen signalling through ERβ
may be important for the pathogenesis of a various kinds of neurodegenerative disorders such
as Alzheimers disease (Tang et al., 1996; Henderson et al., 1994). On the contrary, ERKO
mice show loss of male-typical aggressive behaviour (Ogawa et al., 1997). 
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METHODS TO STUDY NEURONAL CELL DEATH AND SURVIVAL

Dorsal root ganglion neurons
Dorsal root ganglia are located along the spinal cord and contain a heterogeneous
population of sensory neurons. These cells are derived from the neural crest cells and are
distinguished by several characteristics including sensory modalities, neurotransmitter
content, morphology and growth factor requirement (Verge et al., 1996). Morphologically
they can be divided into big magnocellular neurons, which are associated with large-
diameter myelinated axons, and smaller parvocellular neurons which give rise to small-
diameter myelinated of unmyelinated primary afferent axons. Totally approximately 60-
70% of the DRG neurons belong to the last category of cells. In addition, these DRG
neurons can be differed by immunohistochemical method since they express several
peptides like PACAP, substance P, somatostatin and calcitonin gene-related peptide
(Lioudyno et al., 1998). 

During the maturation process, DRG neurons are strongly dependent on neurotrophic
support. Approximately 80% of the sensory and pain neurons in DRG are lacking in mice
gene deleted for TrkA or its ligand NGF indicating that NGF is essential for the survival of
these cells (Minichiello et al., 1995, Silos-Santiago et al., 1995). In addition, NT3
activation of TrkC has been reported to e essential for the survival of the relatively small
population of DRG proprioceptive neurons (Ernfors et al., 1994a; Farinas et al., 1994;
Klein et al., 1994). DRG neurons respond to several other trophic factors like BDNF, IGF-
1 and GDNF (Ernfors et al., 1994b). 

Several BCl-2 family members are expressed in the DRG neurons and it has been
suggested that the relative levels of the anti- and pro-apoptotic proteins might regulated the
cell death (Gillardon et al., 1996). Indeed, the ratio between Bcl-X and Bax plays a role in
DRG neuron cell death (Vogelbaum et al., 1998). In addition, Bcl-x expression is high
during the early postnatal development and downregulated with maturation (Vogelbaum et
al., 1998). DRG neurons in Bax deficient mice, survive indefinitely in vitro in absence of
NGF (Deckwerth et al., 1996). Furthermore, naturally occurring cell death in is eliminated
in peripheral ganglia in Bax deficient mice during the embryonic life (White et al., 1998).

Motoneurons
Spinal motomeuron bodies are located in the ventral horn of the spinal cord and they are
generated in excess during development. About 50 percent of them are eliminated through
cell death and several neurotrophic factors regulate their survival during the naturally
occurring cell death. 

The neurotrophins BDNF and GDNF have been reported to support motoneuron survival
in culture (Sendner et al., 1992; Henderson et al., 1994). Motoneurons are also supported
by other neurotrophic factors such as CNTF and HGF (Sendner et al., 1990; Wong et al.,
1997). Interestingly, there seems to be regional differences in trophic factor dependies
between motoneurons derived from cervical, thoracal and lumbal regions as shown for
HGF (Novak et al., 2000).  

Motoneurons express receptors for NMDA and AMPA receptors, which mediate
calcium influx in response to glutamate during the embryonic development. Thereby they
are vulnerable for increased calcium levels as shown in several studies (Berridge et al.,
1998; Rothstein et al., 1993). 
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Pathological motoneuron cell death can be seen among others in several
neurodegenerative diseases, which affect spinal motoneurons. ALS and SMA can serve as
an example for these. Furthermore, there are several experimental models, which mimic
the damages seen in spinal cord injuries. 

Little is known about downstream signals involved in motoneuron cell death. Several
apoptosis genes have been identified in motoneurons and overexpression of Bcl-2 have been
shown to significantly reduce motoneuron cell death during development (Martinou et al.,
1994; Dubois-Dauphin et al., 1994). Interestingly, Bcl-2 deficient mice show only a small
reduction of motoneuron numbers even though these mice show enhanced motoneuron loss
postnatally suggesting that several parallel mechanisms exist (Michaelidis et al., 1996).
Mutations in IAP family member NAIP have been identified in patient suffering from SMA
even if NAIP is thought to have only a modulatory function in this disease (Roy et al.,
1995). Furthermore, Bcl-2 and SMN protein seem to work synergistically in this disease in
order to increase the anti-apoptotic function (Iwahashi et al., 1997). In addition,
adenovirally administrated NAIP, HIAP1 and HIAP2 have been shown to rescue about 30-
40% of motoneurons at one week after sciatic nerve axotomy (Perrelet et al., 2000).

Hippocampal neurons
Hippocampus is located as semicircles around thalamus and it plays a central role in spatial
memory and learning. Hippocampus is structurally divided in different parts: the dentate
gyrus, and the hippocampal area CA1-4 (CA, Cornu Ammon). Both the dentate gyrus and
CA1-4 areas are three-layered structures. The CA1-4 areas consist of the polymorphic layer
(stratum oriens), the pyramidal layer (stratum pyramidale) and the molecular layer (stratum
radiatum/stratum lacunosum moleculare) whereas the layers in dentate gyrus are called
hilus (polymorphic layer), granular layer and molecular layer. 

Hippocamus has connections with regions such as entorhinal cortex, septum, brainstem,
hypothalamus, thalamus and amygdala. The principal neurons in hippocampal CA1-4 areas
are called pyramidal neurons and they present the majority of neurons in the hippocampus.
The cell bodies of these neurons can be found in the pyramidal layer and the morphology
varies depending on where the cells are located. These neurons mainly project via the
fimbria-fornix formation to septum, thalamus and hypothalamus. Majority of the neurons in
the dentate gyrus on the other hand are so called granule cells, which are smaller than the
pyramidal neurons. These neurons send projections mainly to the CA3 area via mossy fiber
axons. 

In hippocampus there are interneurons, of which the GABAergic Basket cells in CA1 are
the best characterised. These appear to mediate both feed forward and feedback inhibition
of pyramidal neurons. In the hilus, the interneurons seem to have a slightly different subset
of neurotrophic receptors and trophic factor requirements (Korhonen et al., 2000).
Generally, hippocampal neurons express receptors for many neurotrophic factors and
several neurotrophins are present in this tissue (Wetmore and Olson, 1993). In addition,
many neurotrophic factors among others BDNF and HGF have been reported to increase
the survival of the hippocampal neurons in vitro (Zafra et al., 1990; Korhonen et al.,
2000). 

Kainic acid models 
Glutamate is the major excitatory transmitter in the brain and several studies have shown
that different genes are regulated upon glutamate receptor activation. Kainic acid (KA), 
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which is an agonist for ionotropic non-NMDA glutamate receptors AMPA and KA
receptors, is a widely used experimental tool to study activation of glutamate receptor. 

Systemically administrated KA results in epileptoform seizures in the hippocampus with
the propagation to other structures within the limbic system. KA is known to induce cell
death in the brain (Olney, 1974). This effect on neuronal cell death is dependent on whether
the drug is administrated intraperitoneally, intraventricularly or by intra-amygdaloid
injections. Intraperitoneal injections result in neuronal death mainly in hippocampal CA1,
CA3 and CA4 areas whereas cell death after intraventricular injections is mainly seen in
CA3 subfield (Sperk et al., 1994; Nadler et al., 1978; Schwob et al., 1980). Similarly,
intra-amygdaloid injections result in cell death in CA3 area (Ben-Ari et al., 1980; Pollard et
al., 1994). Importantly, the dentate gyrus is consistently spared from KA caused
neurodegeneration (Sperk et al., 1994). 

Neurons in CA3 are highly vulnerable to KA and easily degenerate after recurrent
seizures (reviewed by Ben-Ari and Cossart, 2000). Diazepam, a well-known anti-epileptic
drug, can block the seizures and inhibit ensuring cell death indicating that normal
degeneration in CA3 depends on seizure activity. This hypothesis is supported by the
observations that repetitive high-frequency stimulation of CA3 neurons induces a selective
cell loss suggesting that excessive activation of synaptic inputs to CA3 neurons is toxic.

Studies have shown that the epileptogenic activity of KA in CA3 is caused by the
activation of high-affinity kainate receptors in the mossy fiber synapses (Frerking et al.,
1998). Several kainate receptors have been cloned and the role of the different subunits in
kainate receptor mediated activity has been studied using gene deleted animals. Granule
cells and pyramidal cells in the CA3 area are enriched in GluR6-containing kainate
receptors and electric activity upon mossy fiber stimulation and KA receptor activation is
eliminated in GluR6 deficient mice (Mulle et al., 1998). In addition, higher concentrations
of kainic acid are needed to provocate seizures in these animals.  There are some studies
where low expression of GluR5 is observed in the CA3 neurons but the role of this subunit
is not fully understood (Vignes et al., 1998). 

Previous studies have shown that nerve cell death mediated by KA is at least partially
apoptotic although there are some reports suggesting that the cell death process after kainic
acid is necrotic (Pollard et al., 1994; Simonian et al., 1996). Evidence for the apoptotic cell
death comes from the studies, which have shown presence of TUNEL reactive cells and
caspase-3 activation (Faherty et al., 1999). Several proteins, among them members of the
Bcl-2 family, are regulated by KA suggesting an involvement of apoptosis (Lopez et al.,
1999). 

KA is also known to induce gene expression in an activity dependent manner. Some of
these genes are regulated very rapidly (within minutes to some hours) whereas other genes
need longer times before changes are observed in expression levels. Among genes regulated
by KA, are neurotrophic factors, their receptors, synaptotagmin III, calbindin and NaClII
(Zafra et al., 1990; Ernfors et al., 1991; Mudo et al., 1995; Vician et al., 1995; Lee et al.,
1997; Gastaldi et al., 1997).
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MATERIAL AND METHODS

EXPERIMENTAL ANIMALS
All animal experiments were approved by local ethical committees and carried out in
accordance with the European Communities Council Directive (86/609/EEC). 

Kainic acid injection (Paper IV, V)
Adult male rats (200-300g) were anaesthetised with ether or urethane and placed in
stereotaxic apparatus. KA (0.35µg/ml/0.5µl, Sigma, St. Louis, MO, USA), or an equal
amount of saline were injected into the lateral ventricles with following stereotaxic
coordinates: AP= -0.85; L= 1.5; V= 4.3 from the Bregma (Paxinos and Watson, 1998).
KA induced a tonic-clonic seizure in the rats that lasted for 30-60 minutes. Rats were killed
by decapitation at 6h, 12h, 24h, 48h and 72h after injection, and brains were frozen and
stored at -70°C until analysis.

CELL CULTURE

Cell lines (Paper I, III)
Cells (hN-tera2, N2a, NSC-34, COS-7) were cultured in high glucose Dulbecco`s modified
Eagle`s medium (DMEM; Biochrom, Germany) supplemented with 10% foetal calf serum
(Bottom, Germany). Human NT-2 cells were obtained from Stratagene (USA) and have the
properties of neuronal precursor cells (Pleasure and Lee, 1993). Murine neuro 2a
neuroblastoma cell line was a kind gift from Dr Metsis (Karolinska Institute, Stockholm,
Sweden). NSC-34, a spinal cord motor neuron-like cell line was a kind gift from Dr
Cashman (Cashman et al., 1992). 

Primary cultures (Paper II, IV)
A. Dorsal root ganglia (DRG) Cultures 
DRG neurons were prepared essentially as earlier described (Lioudyno et al., 1998). DRG
were dissected from P3-P4 old Wistar rats (B&K, Sweden), and the ganglia were collected
in phosphate buffered saline (PBS) buffer containing 0.45% glucose. The tissue was treated
with 0.25% trypsin (Gibco, Sweden) for 30min at 37°C, and the digestion was terminated
by the addition of DMEM (Gibco, Sweden), supplemented with 10% charcoal-stripped
serum (Imperial Chemical Industries, U.K.). Cells were centrifuged for 3min at 900 rpm,
the pellet was washed three times and a single cell suspension was obtained by passing the
tissue through a Pasteur pipette. The cells were pre-plated for 2 hr on a 35 mm dish (Nunc,
Denmark), followed by seeding of non-adherent cells (9,400 cells/cm2) onto 24-well plates
(Nunc, Denmark) coated with poly-DL-ornithine (0.1mg/ml; Sigma, Sweden) and laminin
(6g/ml; Sigma, Sweden). NGF (50ng/ml) and cytosine β-D-arabino-furanoside (0.01mM,
Sigma; Sweden) were added to the cultures. After one day fresh serum-free medium was
added, together with different concentrations of 17β-estradiol (Sigma, Sweden), tamoxifen
(Sigma, Sweden) or ICI 182,780 (kindly provided by A. Maggi, University of Milan,
Italy). 

B. Hippocampal cultures
Hippocampus was dissected from E 17 old Wistar rats (B&K, Sweden) as described (Zafra
et al., 1990). Tissue was treated with papain (0.5µg/ml; Sigma, Sweden) and DL-cystine 
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(0.2 µg/ml; Sigma, Sweden) at +37°C 15 minutes and sequentially dissociated by adding
DNaseI (Roche, Germany) and passing the tissue through a Pasteur pipette. Dissociated
neurons were centrifuged for 3min at 900rpm. The pellet was suspended in DMEM
(Biochrom, Germany) supplemented with 2% foetal calf serum (Biochrom, Germany) and
neurons were plated onto a polyethyleneimine (Sigma, Sweden) coated plates at a density of
0.2-0.25x106cells/cm2. 

Cell transfections (Paper I, III)
In order to establish stable cell lines, human NT-2 cells (paper I), NSC-32 cells (Paper III)
and N2a cells (Paper III) were transfected using calcium phosphate with an expression
plasmid for human bcl-2, NAIP and Hippocalcin. Several cell lines were selected for using
G418 (Gibco, Sweden) and analysed by Northern and Western blotting.

Viability assays (Paper I, II, III, IV)
The viability of the cells was estimated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide-assay (MTT, Sigma, Sweden), which is based upon the reduction of
MTT by mitochondrial hydrogenases. Briefly, MTT (0.5mg/ml) was added to the cultures
for 3h at +37°C. Formed crystals were dissolved in isopropanol-HCl and absorbance was
measured at 570nm. There was a linear relationship between the absorbance and the
survival of the cells.

An enzymatic assay for LDH (Roche, Germany) was also used to assay cell viability in
Paper III. Briefly, cells were plated on a 96-well plate (Nunc, Denmark) at the density of
0.3x106cells/cm2 and after stimulation; supernatants were collected and proceeded for the
analysis. Absorbance of enzymatically formed formazan dye was read at 500nm.

CELL BIOLOGY METHODS

Antibodies (Papers I, II, III, IV)
A specific anti-XIAP antibody was produced in rabbits by immunisation with a peptide,
SSDRNFPNSTNSPRN, corresponding to residues 244-258 in mouse XIAP. The primary
antiserum was affinity purified by gel-agarose columns, and the specificity of the antibody
was tested by ELISA and Western blotting. For other primary and secondary antibodies,
see table below.

Western blotting (Paper I, II, III, IV)
For western blotting, cells and tissue were lysed with lysis buffer (Paper I and III: 62mM
Tris pH6.8, 6M Urea, 10% glycerol, 2% SDS, 0.003% bromophenol blue, 5% 2-
mercaptoethanol; Paper II: 1% NP-40, 20mM Tris pH8.0, 5mM EDTA; Paper III: 50mM
HEPES pH 7.5; 250mM NaCl, 0.2% NP-40; Paper IV: 150mM Nacl, 1% Triton X-100,
0.5% sodium deoxycholate, 0.1% SDS, 50mM Tris pH 8.0) supplemented with protease-
inhibitor cocktail (Roche, Germany). DNA was shared by sonication and lysates were pre-
cleared subsequently by centrifugation. The protein concentrations were determined using
BioRad DC Protein Assay (BioRad, Sweden) and equal amounts of total protein were
loading onto each well. After separation on a SDS-gel, proteins were blotted onto a NC
(BioRad, Sweden) or a PVDF-membrane (Amersham, U.K.). The membrane was blocked
with 3-5% skim milk-TBS-T (10Mm Tris pH 8.0, 150mM NaCl, 0.1% Triton X-100) at
RT for 1-2 hours. Incubation with primary antibodies was typically done over night at 
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+4°C. After extensive washing with TBS-T-buffer, horseradish peroxidase coupled
secondary antibody (Dako, Denmark) was added and incubated at RT for 1 hour. After
washing signal was visualised using ECL method (Pierce, USA).

Table 6. Used antibodies 

Antibody Company  Source Dilution Application Used in study

CPP32 Transduction mouse 1:1000 WB, IC Paper I
ICH-1L Transduction mouse 1:1000 WB, IC Paper I
Raf Transduction mouse 1:1000 WB Paper I
PARP Dr. Poirier mouse 1:10000 WB Paper I
Bcl-2 Santa Crux rabbit 1:500 WB Paper I
Bcl-X Transduction rabbit 1:1000 WB Paper II
Bax Santa Crux rabbit 1:500 WB Paper II
ERα StressGen mouse 7µg/ml IC, IH Paper II
ERβ Affinity Bioreagents rabbit 5µg/ml IC, IH Paper II
HA oche mouse 1:1000 WB, IP Paper III
GFP Clontech rabbit 1:500 WB, IP Paper III
Myc Roche mouse 1:1000 WB Paper III
PARP BioMol mouse 1:10000 WB Paper III
Caspase-3 Pharmingen rabbit 1:100 IC, IH Paper III, IV
GFAP Roche mouse 1:500 DS Paper IV
NeuN Chemicon mouse 1:150 DS Paper IV, V
OX42 Serotec mouse 1:800 DS Paper IV
cIAP-1 Santa Crux goat 1:100 WB, IH Paper V
Anti-mouse -HRP Dako rabbit 1:1000 WB Paper I- IV
Anti-mouse-Biotin Vector horse 1:200 IC, IH Paper I, II 
Anti-mouse-FITC Sigma goat 1:200 DS Paper IV, V
Anti-rabbit-HRP Dako goat 1:1000 WB Paper II-IV
Anti-rabbit-Biotin. Vector horse 1:200 IC, IH Paper III, IV 
Anti-goat-HRP Dako rabbit 1:1000 WB Paper V
Anti-goat-Biotin Vector horse 1:200 IH Paper V

WB= Western blotting, IC= immunocytochemistry, IH= immunohistochemistry, IP= immunoprecipitation,
DS= double staining

Immunocyto-and histochemistry (Paper I, II, III, IV, V)
For immunocytochemistry, cells were fixed with 2-4% paraformaldehyd (Paper I and II) or
with acetone: methanol (1:1) (Paper III). For immunohistochemistry 13-15µm sections
from P3-4 rats` DRG (Paper II) or adult rat brain (Paper III) were cut in a cryostat (Leitz
Digital 1702, Wetslar, Germany) and mounted onto Superfrost slides (Metzel-Gläser,
Germany). Slides were fixed in 4% PAF for 30min at +4°C (paper II) or with acetone: 
methanol (1:1) for 10min at -20°C. After fixation, endogenous peroxidases were quenched
with 1% hydro peroxide. Cells and tissue sections were blocked (Paper I: PBS, 0.005%
Triton X-100, 1% BSA; Paper II: PBS, 0.3% Triton X-100, 3% rat serum; Paper III and
IV: TNB-blocking reagent (NEN, USA)) followed by incubation with primary antibodies.
After extensive washing, secondary biotinylated antibody (1:200; Vector laboratories,
USA) was added. Specific signal was visualised using DAB (Sigma, Sweden) as a
chromogen. Cells were immersed in PBS-glycerol and tissue sections were dehydrated in an
alcohol series and mounted with Entellan (Kebo, Sweden).



30

Double staining (Paper IV, V)
For double staining, brains were fixed and incubated with primary antibodies as above.
After washing secondary biotinylated anti-rabbit antiserum (Vector laboratories, USA) and
fluorescein isothiocyanate (FITC)-conjugated anti-mouse antiserum (Dako, Denmark) were
added in dilution 1:200, and incubated for 2 hours at RT. Thereafter tissue sections were
incubated with Texas Red coupled avidin (NEN, USA). Sections were dehydrated as
above and mounted with Vectastain fluorescence mounting medium (Vector laboratories,
USA).  

TUNEL staining (Paper IV, V)
TUNEL labelling was performed as earlier described (Gavrieli et al., 1992). Briefly, frozen
sections were fixed for 10 min with acetone: methanol (1:1) at -20°C, and permeabilised
with 0.1% Tween-20/1% BSA/ PBS on ice. Fluorescein-conjugated 12-dUTP in a buffer
containing TdT (Roche, Germany) was added and sections incubated for 1 h at +37°C,
washed and analysed under fluorescence microscope (Zeiss, Germany). 

Caspase-3 assay (Paper III, IV)
The caspase-3 assay was performed using a Caspase-3 Cellular Activity Assay kit (BioMol,
USA). In brief, stimulated cells (Paper III, IV) or tissue (Paper IV) were lysed in cell lysis
buffer supplemented with 0.1% NP-40, and centrifuged for 10 min at 10,000 x g. In a
reaction volume of 100µl, 10µl of the lysate supernatant (between 1-3µg/µl) was added to
assay buffer and the caspase-3/7 substrate Ac-DEVD-pNa (200µM) and incubated at 37°C.
Release of p-nitroaniline was monitored by recording the optical density at 405 nm.
Samples were performed in duplicate.

Calcium assay (Paper III)
The measurement of intracellular Ca2+ concentrations was performed using fura-2
essentially as previously described (Kukkonen et al., 1997), except that 1mM probenecid
(p- (dipropylsulphamoyl) benzoic acid (Sigma, Sweden) was added to the medium during
the fura-2 loading and measurement to inhibit the leak of fura-2.

XIAP recombinant protein (Paper IV)
This was produced in the baculovirus system using Sf9 cells according to the
manufacturer´s instruction (InVitrogen, USA).

In vitro binding assays (Paper III)
GST-tagged hippocalcin was expressed, purified and immobilised onto glutathione beads
according to standard methodology.

A. Reticulocyte lysates
35S-labelled NAIP-BIR (aa 6-421), XIAP and luciferase proteins were generated from
cDNAs by in vitro transcription and translation using the TNT T7-coupled reticulocyte
lysate system (Promega, Sweden), but with the addition of 1mM ZnCl2. 35S-NAIP-BIR1-3

(15 µl), 35S-XIAP (30 µl) or 35S-luciferase (30 µl) were diluted in 700 µl of binding
buffer (50mM Tris-HCl, pH7.5, 150mM NaCl, 1% NP-40) supplemented with either 1mM
CaCl2 or 1mM EGTA, and incubated for 1 hr with GST-hippocalcin immobilised onto 
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glutathione beads (50µl). The beads were recovered by centrifugation, washed 8 times in
the appropriate binding buffer, boiled in SDS-PAGE sample buffer and the supernatant
retrieved by centrifugation. Samples were resolved by SDS-PAGE and visualised following
autoradiography.

B. Mammalian cells
COS-7 cells were transfected at 75% confluency using the calcium phosphate method. Cells
were lysed 48 hr after transfection in 1 ml of ice cold lysis buffer (50mM HEPES, pH 7.5,
250mM NaCl, 0.2% NP-40, protease inhibitors (Roche, Germany), supplemented with
either 1mM CaCl2 or 1mM EGTA and incubated for 1 hr with GST-hippocalcin
immobilised onto glutathione beads (50µl). The beads were recovered by centrifugation,
washed 3 times in the appropriate binding buffer, boiled in SDS-PAGE sample buffer.
Samples were resolved by SDS-PAGE and transferred to nitrocellulose membrane (BioRad,
Sweden) for Western blot analysis. Anti-GFP (Clontech) and anti-Myc (Roche, Germany)
were used as primary antibodies for the analysis followed by incubation with HRP-
conjugated secondary antibodies (Dako, Denmark). Specific signals were detected by
enhanced chemiluminescence. 

Co-immunoprecipitation and Western blot analysis (Paper III)
COS-7 cells were transfected and lysed as described above in lysis buffer supplemented
with either 1mM CaCl2 or 1mM EGTA. Monoclonal anti-HA epitope antibody (3.5µg)
(clone 12CA5) was incubated with the lysate for 2 hr at 4°C. Complexes were
immunoprecipitated with protein G-sepharose (Pharmacia, Sweden) for 1 hr at 4°C, and
washed 3 times with the lysis buffer. The sepharose beads were boiled in SDS-PAGE
sample buffer and samples were resolved by SDS-PAGE followed by transfer to
nitrocellulose membrane (BioRad, Sweden). Western blot analysis was performed as
described above with the exception that anti-GFP (Clontech, USA) and anti-HA (Roche,
Germany) were used as primary antibodies.

MOLECULAR BIOLOGY

RNA preparation (Paper I, III, IV, V)
Total RNA from cells (Paper I, III) or tissue (Paper IV) was extracted with the acid
guanidine isothiocyanate: phenol-cloroform extraction method (Chomczynski and Sacchi,
1987). The concentration of extracted RNA was measured spectrophotometrically.

Northern blotting (Paper I, III, IV, V)
Total RNA was prepared and subjected to gel electrophoresis and transfected to a nylon
filter (Amersham, U.K.). The filters were pre-hybridised with for 60min and there after
hybridised overnight at 42°C with a [32P]-dCTP (Amersham, U.K.) labelled (Rediprime;
Amersham, U.K.) probe. In Paper IV [32P]-UTP (NEN, USA) labelled cRNA probes were
used instead of DNA probes and hybridisation was then carried out at 65°C. Filters were
washed with 2XSSC, 0.1% SDS for 15 minutes and 0.1XSSC, 0.1% SDS for 30 minutes at
65 degrees. Mouse β-Actin was used as a control. Blot was exposed to PhosphoImager
(Molecular Probes, USA) and specific transcript levels were compared with those of β-
Actin.
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RNase protection assay (Paper IV)
RNase protection assay was performed as earlier described (Palm et al., 1998). Shortly,
specific riboprobe was produced through linearisation of the plasmid in the 5′end followed
by transcription with T7 RNA polymerase as described in MAXIscript kit instructions
(Ambion, USA). Anti-sense GAPDH-cRNA probe (a kind gift from Dr. K. Palm) was used
as a control. The probes were hybridised with 10µg RNA and protected cRNA fragments
were then separated on 4% polyacrylamide gels under denaturating conditions. Gels were
exposed to PhosphoImager (Molecular Dynamics, USA) and amounts of rat XIAP-specific
mRNA were analysed using ImageQuant software (Molecular Dynamics, USA). The sizes
of the protected bands were determined with a RNA size marker (Ambion, USA).

In situ hybridisation (Paper III, IV, V)
In situ hybridisation for hippocalcin was performed as previously described using neonatal
Wistar rats (B&K, Sweden) on spinal cord sections (Skoglösa et al., 1999). The
oligonucleotide probe was 47 nucleotides in length, complementary to nucleotides 58-104
of the rat hippocalcin coding sequence (Scandinavian Gene Synthesis, Sweden). A 200-fold
excess of cold probe was used as a negative control. 

For RIAP-2 in situ hybridisation 14 µm serial coronal sections cut on a cryostat were
thawed onto 3-aminopropyl ethoxysilane-coated slides. Following fixation in 4%
paraformaldehyde for 15 min, slides were rinsed twice in PBS and once in distilled water.
They were then incubated with 0.2M HCl for 10 min, deacetylated with 0.25% acetic
anhydride in 0.1M ethanolamine for 20 min and dehydrated with increasing concentrations
of ethanol. Slides were incubated for 16h in a humidified chamber at 52° C, with 8 x105
cpm of probe in 70µl hybridization cocktail (50% formamide, 20 mM Tris-HCl (pH 7.6), 1
mM EDTA (pH 8.0), 0.3 M NaCl, 0.1 M dithiothreitol, 0.5 µg/ml yeast tRNA, 0.1 µg/ml
poly-A-RNA, 1X Denhardt´s solution and 10% dextran sulfate). They were washed twice
in 1X SSC at 62°C for 15 min, and then in formamide:SSC (1:1) at 62° for 30 min. After
an additional wash in 1X SSC at 62°C, single-stranded RNA was digested by RNAse
treatment (10 µg/ml) for 30 min. at 37°C in 0.5 M NaCl, 20 mM Tris-HCl pH 7.5, 2mM
EDTA. After washing with SSC at 66 °C for 30 min the slides were dehydrated in ethanol
and air-dried.  The sections were exposed for three weeks to ß-Max Hyperfilm
(Amersham), and subsequently coated with NTB-2 photoemulsion diluted 1:1 in water
(Eastman-Kodak Co., Rochester, NY), and stored for 4 weeks in desiccated light-tight
boxes at 4 C.  Slides were developed with D19 (Eastman-Kodak Co.), fixed with Al-4
(Agfa Gevaert, Kista, Sweden) and counterstained with Cresyl Violet. Control
hybridization for specificity of the cRNA probes was studied using sense 35S-labeled
riboprobes, which resulted in no signal above background. 

When combining in situ hybridization for RIAP mRNA with the immunolabeling of cells
with the neuronal marker NeuN, immunolabeling was performed after the in situ
hybridization procedure, which was carried out exactly as detailed above. The sections
were incubated for 15 min in blocking buffer consisting of 2.5% normal goat serum and
0.3% Triton X-100 in PBS and subsequently incubated overnight at 4°C in the presence of
the primary antibody( NeuN 1:500; Chemicon, Temecula, CA, USA) Sections were
washed three times for 5 min in PBS, and incubated at room temperature for 1 h with a
biotinylated antimouse antiserum (Amersham, UK), diluted 1:200. After three 5 min
washings with PBS, the sections were incubated for 1 h with a horseradish
peroxidase¯streptavidin complex (Vector, Burlingame, CA), diluted 1:100 in PBS. After 
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washing the peroxidase reaction was developed in the same buffer containing 0.05% 3,3-
diaminobenzidine-4 HCl and 0.003% hydrogen peroxide. After a short wash with H2O,
sections were dehydrated in an ascending alcohol series, coated in NTB-2 emulsion and
processed as described above.

CLONING

Cloning (Paper III, IV)
cDNA corresponding to amino acids (aa) 6-421 of NAIP was synthesised from human
placenta cDNA using PCR primers and conditions as previously described (Roy et al.,
1995), and cloned into pBluescript (Stratagene, USA). Full length XIAP cDNA was
obtained by screening from a human foetal brain library (Clontech, USA). PCR was used
to generate constructs with appropriate restriction sites for cloning into expression vectors.
A 450 bp long rat XIAP DNA fragment between the BIR3 and RING domains, was cloned
by polymerase chain reaction (PCR) using adult rat liver cDNA and the following primers:
5`(GAATTCAACATGCCAAGTGGTTTCC) and 3′(CCGGATCCTTAAGACATAAA
AATTTTTTG).  The sequences of all constructs were verified by automated sequencing.

Expression constructs (Paper III)
For expression in mammalian cells, NAIP cDNA (aa 6-421) was subcloned into pEGFPC1
(Clontech, USA) and pCDNA3.1HisC (Clontech, USA). Full-length hippocalcin was
subcloned into pCDNA3.1HisC, pEGFPC3 (Clontech, USA), and pIRESneo behind an in-
frame HA epitope tag. A tricistronic construct was generated in pIRESneo by inserting an
IRES sequence downstream of HA-tagged hippocalcin, followed by EGFP NAIP-BIR1-3
(aa6-421), a synthetic intron, IRES sequence and neomycin resistance gene of the vector.
Deletion constructs of NAIP’s BIR domains were cloned into pYTH6 (BIR1aa46-157;
BIR2aa161-268; BIR3aa264-362; BIR1+2aa46-233; BIR2+3aa161-344) and pEGFPC1
(BIR1+2aa46-233; BIR3aa264-362). Myc-tagged full-length human NAIP cDNA in
pCDNA3 and human Bcl-2 cDNA in pSFFV were kindly provided by Alex MacKenzie and
Stanley Korsmeyer, respectively.

For expression in yeast cells, cDNA encompassing the BIR domains of NAIP was
subcloned into the GAL4 DNA-binding domain vector pYTH6 (aa46-344; Clontech, USA)
and activation domain vector, pACT2 (aa46-421; Clontech, USA). Full length XIAP cDNA
was subcloned into two-hybrid vectors pGBT9 (XX) and pGAD424 (XX), and hippocalcin
into pYTH6 and into the bacterial GST expression vector pGEX-6P (XX).

Polymerase chain reaction (Paper I, III, IV)
Reverse transcription (RT)-PCR was carried out with extracted total RNA using Taq
polymerase (Perkin Elmer, USA). Twenty-five to thirty cycles were usually performed with
a PCR machine (PTC-100; MJ Research, USA) and the reaction steps were typically 94°C,
55°C and 72°C. The PCR products were subjected to gel electrophoresis and the bands
were either sequenced or hybridised with specific probes.

Yeast two-hybrid system (Paper III)
A. Screening 
pYTH6 NAIP-BIR (aa 46-344) was linearised and integrated into the yeast genome of yeast
strain Y190 through a lithium acetate/PEG based transformation method and used to screen 
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a human foetal brain library (Clontech, USA) essentially as previously described
(Aspenstrom and Olson, 1995). Transformants were grown on Trp–Leu–His– plates
supplemented with 25mM 3-aminotriazole (Sigma, Sweden) for 4-8 days and streaked onto
Trp–Leu–His– and Trp–Leu– plates. A filter lift procedure was used to examine the
colonies for β-galactosidase after 2 days (Aspenstrom and Olson, 1995).

B. ONPG assay 
Double transformants were streaked onto Trp–Leu– plates and grown for two days. Three
individual colonies for each double transformant type were picked and grown overnight at
30°C in 5 ml Trp–Leu– liquid media. Next day, culture volumes were increased and the yeast
was grown to an OD600 of 1.0.  The yeast was harvested by centrifugation; the pellet
was resuspended in Z-buffer (60mM Na2HPO4, 40mM NaH2PO4, 10mM KCl, 1mM
MgSO4), and divided into triplicates. Following repeated freeze thawing in liquid nitrogen
and a 30°C water bath, Z-buffer containing β-mercaptoethanol (2%, Kebo, Sweden) and
the substrate ONPG (2.2mM; Sigma, Sweden) were added to the samples. The samples
were incubated at 30°C until yellow colour developed at which time the reaction was
terminated and cleared by centrifugation. The OD420 was determined for each sample and
the β-galactosidase activity determined as described (Aspenström and Olson, 1995). 

STATISTICAL METHODS AND IMAGE ANALYSIS

Image analysis (Paper I, II, IV, V)
Transcript levels were analysed by using PhosphoImager (Molecular Dynamichs, USA).
Western blotting membranes were analysed with digitised image analysis system (JAVA;
Corte Madera, USA). For analysis of immunostained cells in Paper IV a public domain
NIH image program (http://rsb.info. nih.gov/nih-image) was used. Five non-overlapping
standardised areas within the dentate gyrus, hilus and the CA1 and CA3 regions were
analysed and more than 100 cells were counted for each section. 

The brain region and nuclei distribution of RIAP-2 mRNA were evaluated from
emulsion-dipped sections using the rat brain atlas of Paxinos and Watson. The relative
levels of RIAP mRNA expression (intensity) per cells were evaluated from emulsion dipped
slides by count of silver grains over the individual cells, using an image analysis system. A
correction factor for overlapping grains was included. Labeled cells were defined on the
basis of the presence of more than 8 silver grains compared to background, which was
calculated by counting the grain in field lacking labeled cells, such as white matter. For
each brain nucleus examined, the grains of at least 30 cells in three different parts of at
least two sections were counted. The data are shown using an arbitrary semi-quantitative
scale of labeling intensity described as low intensity (+), indicating an amount of silver
grains between the fixed minimum level and 30 grains per cells; moderate intensity (++),
indicating a number of grains between 30 and 60;  and high intensity  (+++), indicating a
number of grains exceeding maximum level selected for moderate intensity.

In addition, the percentage of labeled cells within a particular structure was determined.
For each brain area analysed, 200 cells were counted in three different fields of at least two
sections. Data of percentage of labeled cells is shown as low density (<30%), moderate
density (between 30 and 60%) and high density (>60%). The results were analysed by
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ANOVA and Student´s  t- test. Differences in p-value less than 0.05 were considered
statistically significant. Values are shown as mean ±SEM.

Statistical methods (Paper I, II, III, IV, V)
Values are presented as mean ±SEM and analysed by ANOVA and Student´s t-test. P<

0.05 was considered statistically significant. 
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PRESENT INVESTIGATIONS

AIMS

General aim
The aim of the present investigations was to gain deeper insights into the apoptotic process
in neuronal degeneration accompanying many devastating human diseases. This was
accomplished by studying the expression, function and regulation of anti-apoptotic proteins
belonging to the Bcl-2 and Inhibitor of Apoptosis Protein families.

Specific aims
• To study the role of Bcl-2 overexpression in human neuronal precursor cells with

special reference to its effects on caspases.

• To study the distribution of estrogen receptors in dorsal root ganglion and to
investigate the role and mechanism of estrogen as a survival factor for DRG neurons

• To study the mechanisms behind NAIP`s anti-apoptotic effect on motoneurons and
search for novel interactors using the yeast two-hybrid system 

• To characterise XIAP expression and function during neuronal development and in
the kainic acid induced neuronal degeneration

• To study the expression of RIAP-2 mRNA and protein in the rat brain and their
regulation after kainic acid 
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RESULTS AND COMMENTS

PAPER I: Bcl-2 over expression leads to a down regulation of caspases
In order to study cell death in progenitor neurons, human NT-2 cell line expressing many
properties of neuronal precursor cells were used (Pleasure and Lee, 1993). These cells
were stably transfected with bcl-2, a well-known apoptosis modulator that has been shown
to play an important role in developmental cell death and neuronal survival (Tsujimoto et
al., 1984; Reed et al., 1994; Garcia et al., 1992; Martinou et al., 1994; Michaelidis et al.,
1996). Stably transfected cells showed resistance against cell death induced by serum
withdrawal or neurotrophic factor deprivation. Bcl-2 over expressing cells also dramatically
downregulated cystein proteases ICH-1L/caspase-2 and CPP32/Yama/caspase-3 at the post-
translational level. Downregulation of CPP32/Yama/caspase-3 occurred at the
transcriptional level. 

Paper I describes a novel mechanism for Bcl-2 in cell death protection, namely the down
regulation of caspases-2 and –3. The observed effect on these caspases suggests that
expression of individual caspases are differentially regulated by Bcl-2 in these cells. On the
contrary, caspase downregulation has not been seen in bcl-2 overexpressing mice
suggesting that Bcl-2 may have different mechanisms for cell protection at different stages
of development (Guarin et al., 1999). In our experiments, human neuronal progenitor cells
were used as a model for early development. 

PAPER II: Estrogen increases the survival of DRG neurons and up-regulates Bcl-X
Estrogens represent an important class of hormones that can promote development,
maturation and function of CNS (McEwen et al., 1997; Pilgrim and Hutchison, 1994).
Estrogen receptors α (ERα) and β (ERβ) are widely expressed in the central nervous
system, but little is known about these receptors in the PNS (Kuiper et al., 1996).
Therefore, the role of estrogen in survival of DRG neurons was examined in paper II. 

ERα and ERβ were found in P3 DRG and in cultured postnatal DRG neurons. Studies
with cultured DRG neurons revealed that 17β-estradiol inhibited death caused by NGF
withdrawal. The anti-estrogen compounds ICI 182,780 and tamoxifen, blocked the 17β-
estradiol induced increase in survival indicating that effect is receptor mediated. Effects of
estrogen on neuronal survival have been observed in hippocampal neurons (Azcoitia et al.,
1999). Recently, it was reported that ERβ deficient mice show hypocellularity in the
somotosensory cortex, and an astroglial proliferation in the limbic system with signs of
increased neuronal degeneration with age (Wang et al., 2001). 

17-β-estradiol increased significantly the levels of the anti-apoptotic protein Bcl-x in
DRG, whereas no change was observed for Bax. In hippocampal neurons and PC12 cells
estrogen has been shown to modulate Bcl-X expression levels (Pike, 1999; Gollaputi and
Oblinger, 1999). There is evidence that Bcl-X is developmentally regulated in DRG
neurons (Vogelbaum et al., 1998). Interestingly, estrogen did not change the Bax
expression level, which also is regulated in the DRG during the development (Vogelbaum
et al., 1998). Estrogen receptor antagonist tamoxifen blocked the induction of Bcl-X
suggesting an involvement of ERs. Whether the estrogen effect on Bcl-X is obtained
through a direct genomic effect or is indirect remains to be studied.
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PAPER III: NAIP binds hippocalcin and protects motor neurons against calcium
induced cell death via BIR3 domain
Whilst XIAP, c-IAP1 & 2 and survivin (Deveraux et al., 1997; Roy et al., 1997; Tamm et al.,
1998) inhibit specific caspases through direct interaction, this has not been observed for
NAIP (Roy et al., 1997). This suggests that NAIP acts differently or requires additional
molecules to protect cells against harmful stimuli. To study this, we used the yeast two-
hybrid system to identify potential interactors for NAIP. The most potent interactor found
using this system was Hippocalcin, which is a neuron-specific calcium binding protein.
Employing in situ hybridisation, hippocalcin mRNA was localised to the neonatal rat spinal
cord, and it was particularly present in the large motoneurons.

To understand the function of the NAIP–Hippocalcin interaction and its effects on motor
neuron death, we studied the NSC-34 motor neuron-like cell line that exhibits properties of
spinal cord motor neurons (Cashman et al., 1992). These cells were stably transfected with
NAIP or NAIP-Hippocalcin together, and the cells were in both cases significantly more
resistant to  cell death induced by ionomycin than wild type cells.  

No significant difference in the intracellular calcium levels between controls, NAIP-
BIR1-3 or NAIP-BIR1-3/hippocalcin transfected NSC-34 cells were observed with respect
to basal Ca2+ levels. Nor was there any difference in peak and sustained Ca2+ responses
to 1µM thapsigargin, in control and NAIP-BIR1-3/hippocalcin cells. This suggests that the
protective effect of NAIP-BIR1-3 or NAIP-BIR1-3/hippocalcin against cell death is not
caused by changes in the Ca2+ level regulation, as proposed for Bcl-2 induced protection
(Lam et al., 1994). However, it is not possible here to rule out differences in long-term
Ca2+ responses after NAIP overexpression. 

To determine whether a single BIR domain or a combination of domains is required for
NAIP to bind hippocalcin, deletion constructs of the BIR domains were analysed.  BIR1
and 2 have no binding capacity to hippocalcin, whilst BIR3 domain bind hippocalcin.
Expression of EGFP BIR3 itself had no protective effect in cells treated with thapsigargin,
however, when co-expressed with hippocalcin, the protection was comparable to that
afforded by NAIP-BIR1-3 and hippocalcin.

Caspase-3 has been shown to be a key caspase involved in apoptosis (Slee et al., 1999).
Recent reports, however, indicate that cell death with the morphological characteristics of
apoptosis can occur without caspase-3 activation. To study this, we analysed the NSC-34
and Neuro-2a cell lines for caspase-3 activation, at various time points after treatment with
thapsigargin and staurosporine. In NSC-34 cells both staurosporine and thapsigargin readily
activated caspase-3 which became apparent at 6 hr. In contrast, thapsigargin induced only a
small increase in caspase-3 activity at 24 hr indicating that thapsigargin killed through a
pathway not dependent on caspase-3. The same situation was also observed using
immunocytochemistry, revealing few Neuro-2a cells positive for caspase-3 at 24 hr after
thapsigargin treatment, but many more positive NSC-34 cells. 

NAIP has been shown to be important in neuronal degeneration occurring in affected
motor neurons in patients with SMA (Roy et al., 1995). Furthermore, elevated levels of
NAIP can protect hippocampal neurons against ischemia (Xu et al., 1997). In Paper III, we
have identified hippocalcin as a new interactor for NAIP. Hippocalcin belongs to larger
family of calcium binding proteins as recoverin, which has been associated with cancer-
associated retinopathy (Polans et al., 1995). This indicates that this protein family may play a
significant role in neuronal survival. Using in situ hybridisation it was shown that
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hippocalcin mRNA is present in the spinal cord motoneurons. These neurons are known to
be vulnerable to elevated calcium levels, for instance after excessive glutamate receptor
activation (Rothstein et al., 1993). Interestingly, cell lines overexpressing NAIP and
hippocalcin were more resistant against calcium induced cell death and BIR3 region of
NAIP together with hippocalcin was equally effective to protect cells as the whole
molecule. In view of this, it is possibly that smaller peptides mimicking BIR3 could be
neuroprotective which warrants more studies. 

PAPER IV: XIAP is present in the rat brain and is regulated in the kainic acid
induced neuronal degeneration in the rat hippocampus 
Little is known about the expression of IAPs in the nervous system. In order to study the
occurrence of XIAP mRNA in rat brain Northern blotting and RNase protection assay
(RPA) were applied. Two transcripts of XIAP was found in rat brain corresponding to those
earlier reported in human brain tissues using Northern blots (Duckett et al., 1996; Uren et
al., 1996). Using a carboxyterminal XIAP probe spanning the linker region between BIR3
and RING in RPA, two protected transcripts of XIAP were detected (about 430 and 225bp),
suggesting heterogeneity of XIAP in this region.

There was a widespread distribution of XIAP immunoreactive cells in the rat brain.
XIAP immunoreactivity was found among others, in the hippocampus, in the cortex and in
the substantia nigra. XIAP positive cells were present also in the amygdala, the thalamus,
the hypothalamus and in the septum. In cerebellum XIAP, immunoreactivity was present in
Purkinje cells, but absent in granule cells. Double labelling experiments showed that both
neurons and glial cells express XIAP immunoreactivity. 

KA, a glutamate receptor agonist, is known to induce seizures and cause neuronal
degeneration in specific regions of rat brain such as in the hippocampus and in the
amygdala (Olney at al., 1974; Nadler et al., 1978; Sperk, 1994; Pollard et al., 1994). To
study whether XIAP is regulated by KA, immunohistochemistry was applied. The number
of XIAP positive cells significantly increased in the CA3 region at 48 h after KA. The
intensity of XIAP per cell, however, initially increased in the CA3 region at 12 h, and
decreased thereafter. Double-staining experiments revealed that the majority of XIAP
positive cells in CA3 region were neurons, but some glia cells were also positive at 48h.
Compared with the CA3 region, the alterations in XIAP by KA were modest in the CA1
subregion and not present in other parts of the hippocampus. The immunohistochemical
data was confirmed by Western blotting which showed that XIAP protein levels increased
at 12 and 24 h after kainic acid, and decreased thereafter.

Using caspase-3 assay, an increased activity was observed in hippocampus at 24 and 48
h but not at 12 h after kainic acid. Similarly, immunocytochemistry for the active form of
caspase-3 revealed that no cells were positive at 12h whereas some cells became
immunoreactive for this antibody at 24 h in the CA3 area. However, few cells in this
region were immunoreactive for both active caspase-3 and XIAP. Labelling of cells with
the TUNEL method showed many positive cells in the CA3 region at 24h after kainic acid,
but very few cells were positive for both TUNEL labelling and XIAP immunoreactivity.
These results suggest that viable neurons express XIAP whilst TUNEL positive, dying
cells, are largely devoid of this protein. This suggests that XIAP may undergo cleavage in a
caspase-dependent manner in degenerating neurons. 

To study this, we cultured embryonic hippocampal neurons in the presence of different
concentrations of kainic acid. 50 µM or more kainic acid readily induced nerve cell death 
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in these cultures. At the same time, the activity of caspase-3 increased after kainic acid
treatment could be blocked by the caspase-3 inhibitor, DEVD.  XIAP protein was also up
regulated by KA in the cultures as seen in vivo. Most significantly, a 25 kDa large XIAP
protein band gradually appeared in the cultures that were inhibited by the addition of
DEVD. These results suggest that XIAP becomes a target for caspase-3 after prolonged
treatment with KA.  

As shown in Paper IV, XIAP expression was relatively constant during the development
and XIAP is widely expressed in the adult rat brain. Double labelling showed that XIAP
protein was found in neurons and glial cells. The expression pattern of XIAP indicates an
important role of this protein during development. However, preliminary data indicates a
redundancy in the system since XIAP deficient mice are healthy and do not show any major
phenotypic changes (Harlin et al., 2001). Interestingly, cIAP-1 and cIAP2-2 levels were
increased in these animals suggesting overlapping functions for the IAP family members
(Harlin et al. 2001).

KA known to induce cell damage in the limbic system regulated the number of XIAP
positive cells and the XIAP expression levels. KA also activated caspase-3 and subsequently
enhanced degradation of XIAP in the dying cells. Interestingly, the surviving neurons were
XIAP immunoreactivity showing a biphasic regulation of the protein. As shown by others
cell death induced by KA can be inhibited by p35 protein and by transgenic mice over
expressing NAIP in the brain (Viswanath et al., 2000; Holcik et al., 2000). The fact that
KA induced cell death is inhibited in both of the models suggests a fundamental role for the
IAPs in exitotoxic neurodegeneration.

PAPER V: RIAP-2 expression in the nervous system and seizure regulation
Using a PCR approach the rat homolugue of human cIAP-1/HIAP-2, RIAP-2,  was cloned.
RIAP-2 was present in rat hippocampus in two transcripts with the size of about 4 and 5
kB. These transcripts sizes correspond to those found previously for mouse IAP-2 also
using Northern blotting (Rothe et al., 1995; Uren et al., 1996; Liston et al., 1997). 

The relative level of RIAP-2 mRNA increased slightly during early postnatal
development in rat hippocampus as determined and in adult rat brain RIAP-2 was found in
hippocampus, in cerebral cortex and in cerebellum. RIAP-2 was also expressed among
others in olfactory bulb, in substantia nigra, cerebellum and in nuclei within thalamus. Both
RIAP-2 mRNA and protein RIAP-2 colocalised with NeuN, a marker for neurons, in
different brain areas indicating that RIAP-2 is predominantly expressed by neurons in the
adult rat brain. 

KA transiently upregulated the expression of RIAP-2 mRNA in cerebral cortex, and in
the dentate gyrus and CA1 regions of the hippocampus. The highest increase in RIAP-2 in
these regions occurred at 12 h after treatment, and the levels decreased thereafter.
Interestingly, in rats with less severe seizures, the CA3b subfield showed an incomplete
lesion with spared neurons among degenerating ones and an upregulation of RIAP-2 mRNA
in these cells.  This suggests that RIAP-2 in these neurons may contribute to neuronal
survival occurring after less severe seizures. The number of RIAP-2 immunoreactive cells
was reduced in the CA3 region after 6h following KA whereas many cells were positive in
CA1 and dentate gyrus.  

TUNEL positive cells were observed in the CA3 area at 12 hours after KA and the
number of them reached the maximun at 24h declining thereafter. Using double staining, it
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was shown that RIAP-2 protein was absent in dying TUNEL positive cells, suggesting that
RIAP-2 may protect against neurodegeneration caused by KA. 

Interestingly, both RIAP-2 and XIAP are expressed by neurons and are regulated by
kainic acid. As mentioned earlier, XIAP and cIAP-1 have been shown to be reciprocally
regulated but the mechanism for this regulation is still unclear. However, NF-κB has been
shown to regulate cIAP-1 and XIAP levels in some cells (Chu et al., 1997; Stehlik et
al.,1998; Wang et al., 1998). This remains to be studies further in neurons.
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GENERAL DISCUSSION

The term apoptosis was introduced more than 30 years ago to describe a form of cell death
exhibiting certain morphological characteristics in dying cells. It is now considered that the
process of apoptosis occurs during development for the establishment of an optimised
number of cells with correct morphology and function of most organs in the organism. In
addition, apoptosis is needed in many disease processes for the elimination of unwanted
cells infected for example with viruses or after DNA damage or in cancer.

In the beginning the cellular mechanisms behind apoptosis were poorly understood, but
when more became known about the processes involved, the term programmed cell death
was coined. This term has then often been used as a synonym to apoptosis. However, many
processes, which are called apoptosis, do not fulfill the morphological criteria of apoptosis
as originally described. For example, a subset of neurons can have apoptotic characteristics
after various necrotic insults (Linnik et al., 1993; MacManus et al., 1993; Ray and
Sapolsky, 1999). Moreover, both necrotic and apoptotic signs, such as ruptured membranes
and DNA laddering, can be found in the same neuron (Sohn et al., 1998; Martin et al.,
1998; Gwag et al., 1997). Furthermore, the same chemical compound, such as KA, also
used in this study, can induce either apoptotic or necrotic cell death depending on time of
exposure, concentration of agent and the age of animal or neurons treated (Martin et al.,
1998). Neuronal cells are also likely to undergo an apoptotic form of death when greater
amount of energy is available (Leist et al., 1997; Eguchi et al., 1997). Along this line,
some authors have suggested that injured neurons first intend to undergo apoptosis but can
be halted due to various factors such as the of availability of ATP and mitochondria
function (Roy et al., 1999). In addition, the levels of free radicals (ROS) play an important
part in regulation of apoptosis and paradoxical effects have been described in brain trauma
after inhibition of ROS production (Lewen et al., 2001). 

Some authors have suggested the name paraptosis for a type of cell death that does not
exhibit all the morphological characteristics of apoptosis (Sperandio et al., 2000).
Paraptosis was first described in 293T and the cell death was not affected by Bcl-X nor by
treatment with caspase inhibitors albeit still being mediated by caspase-9 activation in an
Apaf-1 dependent manner (Sperandio et al., 2000).   

There are also reports that describe a caspase-independent cell death which shows
apoptotic morphology. For example, death of retinal cells induced by oxidative stress can
not be blocked by caspase inhibitors (Carmody et al., 2000). In addition, studies with
caspase-3 or caspase-9 deficient mice have shown that cell death is occurring to a nearly
normal extent within different populations of developing neurons (Oppenheim et al., 2001).
However, the morphology of dying neurons differs from that seen in classical apoptosis 
and the kinetics of cell death is also delayed. There are now ample evidence that, beside
caspases, other proteases, such as calpains, serine proteases and cathepsins become
activated during cell death (Leist and Jäättelä, 2001).  

As evident from the discussion above the current terminology on the concept of cell
death is not completely satisfactory.  Therefore, it has recently been suggested that the term
active cell death (ACD) should be used for the type of cell death that requires activation of
intracellular processes regardless of the strict morphology present in dying cells (Sloviter,
2002). In this respect the term passive cell death (PCD) should be used instead of necrosis,
a word that does mean bona fide only death.
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In the developing nervous system, depending on the neuronal subtype, about 20-80% of
neurons born are eliminated during naturally occurring cell death which shows classical
apoptotic morphology. This developmental cell death is needed for correct morphology and
proper function of the nervous system. However, neuronal death and degeneration is seen
also in several human diseases, such as in Alzheimer´s and Parkinson disease, in
amyotrophic lateral sclerosis (ALS) and in spinal muscular atrophy (SMA) as well as after
more acute injuries occurring in brain trauma and ischemia/stroke. 

At the present time, mainly symptomatic therapy can be offered to patients afflicted by
these conditions. In this repect a lot of effort has been put down to identify mechanisms and
factors regulating neuronal death in these dirsordes and to find novel therapeutic methods.
The role of apoptosis in the neurological  disorders has been suggested, but data is still
rather scarce and open to discussion. 

Studies using synthetic caspase inhibitors have shown that cell death can be delayed in
many types of brain injuries (Nicholson, 2000). Similar results have also been obtained
studying caspase deficient mice and some mouse models for human disease suggesting that
a possible improvement could be achieved in neurodegenerative diseases (Eldadah and
Faden, 2000). These include ALS, neonatal hypoxic-ischemic brain damage, Parkinson´s
disease, status epilepticus and ischemia/stroke. However, as discussed above the caspase
deficient mice may have severe development disturbances, and they also exhibit a caspase-
independent type of cell death (Oppenheim et al., 2001). This suggests that caution should
be exerted in the interpretation of data especially for the human clinical setting and in
designing attempts to use caspase inhibition as a therapeutic strategy to prevent neuronal
cell death. The issue of safety and cancer promotion is another important aspect to consider
here.

Studies using transgenic mice with overexpression of Bcl-2 in neurons have shown an
improved outcome after various brain insults such as after trauma, axotomy and ischemia
(Martinou et al., 1994; Michaelidis et al., 1996; Dubois-Dauphin et al., 1994; Farlie et al.,
1995; Bonfanti et al., 1996). In addition, adenovirally administrated IAP family proteins
were shown to protect neurons against neuronal cell death (Xu et al., 1999; Kugler et al.,
2000; Ebenhardt et al., 2000; Xu et al., 1997). On the other hand, bcl-2 antisense
approaches have been tested in some tumour models with good results. In these studies,
bcl-2 antisense decreased tumor growth, which has been confirmed in some recent clinical
studies (Schlagbauer-Wadl et al., 2000; Waters et al., 2000). 

Neurotrophic factors are known to promote neuronal survival of various classes of
neurons and they have also been studied for neuroprotection in different settings  in
experimental animals and even in man. For example, NGF was administrated
intracerebroventricularly to patients suffering from Alzheimer´s disease with some
improvement of nicotine binding in brain (Eriksdotter Jonhagen et al., 1998). However, by
time it became impossible to carry out these studies further because of serious side effects
due to severe pain. GDNF has also been administrated in the similar ways to a patient
having Parkinson´s disease (Kordower at al., 1999). These patients have also been treated
with embryonic nigral transplants, which have been shown to incorporate into the brain
tissue and to release dopamine (Piccini et al., 1999). The recent concept of (neural) stem
cell therapy will hopefully open new avenues for the treatment of these and other
neurological diseases. 
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In conclusion, recent studies on the function and interaction of various antiapoptotic
proteins have added considerable to our understanding about the molecular mechanisms
regulating cell death and apoptosis. Many of these proteins and mechanism are also found
in the nervous system and may contribute to the process of neurodegeneration. Increased
knowledge about the antiapoptotic proteins and cell death in brain disorders will ultimately
help and facilitate the design of novel drug targets and add to possible therapeutic
approaches to treat and alleviate human neurological diseases.
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