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Abstract
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We present methods for automatic verification of several classes of systolic circuits.

A model for the formal description of implementations and specifications of systolic circuits
is provided. The implementation description of a circuit reflects the computations performed
inside the cells, the topology of the circuit, and the interconnection pattern among the cells of
the circuit. The specification expresses the desired relation between the input and the output
data of the circuit.

The mathematical operations defining the cell computations are interpreted as the opera-
tions of an algebra A. The ordered ring I of integers is used to define the notion of discrete time,
and to describe the topology and the interconnection pattern of the circuit. By circuit verifica-
tion over a class K of algebras we mean that we check whether or not the circuit implementation
is correct with respect to the specification over [ and each algebra A in K.

Methods for automatic verification of three classes of circuits are described. Lach class is
characterized by the interpretation of the cell operations in the circuits of the class. The three
classes considered have cell computations which are defined as the operations of a connnutative
ring, uninterpreted function symbols, and the operations of a boolean algebra. For each class,
a nontrivial subclass is defined by imposing restrictions on the forms of the cell computations
and circuit architectures. The verification problem is then reduced, using the properties of [
and the class K of algebras on which the circuits operate, to a set of decidable problems over
I and K. We illustrate the verification methods by applying them to non-trivial circuits in the
respective classes.

Examples of circuits which can be verified automatically by our methods include circuits for:
convolution algorithms, matrix operations (such as matrix multiplication and transposition),
string comparisons (such as substring detection, approximate string matching, and palindrome
recognition), and implementation of digital filters.
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Chapter 1

Introduction

1.1 Systolic Circuits

The advent of VLSI has led to an increased interest in designing highly-parallel comput-
ing architectures in order to maximize performance and minimize cost. One type of such
architecture is the systolic circuit [Kun82], which consists of a large number of proces-
sors (computation cells), each of which performs a limited amount of computation and
contains very little storage. These processors are interconnected in a simple and regular
pattern allowing communication between near neighbors. Such architectures allow us to
minimize circuit parameters such as circuit area and power consumption. In addition,
the regularity of the system and the simplicity of the processors make systematic design,
analysis, and reasoning possible. Applications of systolic circuits can be found in digital
signal processing, image processing, pattern matching, linear algebra, graph theory, etc.
Prototype systolic circuits are available and are used especially in digital signal processing
systems [F'W8T, ABC*87, AAG*86).

1.2 Verification

A rigorous method for establishing correctness of a system is to provide a formal model
for describing the system structure and intended behaviour. In general when dealing
with system correctness two descriptions of the system are involved: a specification and
an tmplementation. The specification of the system describes how we expect the system
to behave, while the implementation describes how the system is built. In the case of
systolic circuits the specification is often a statement of how the output data of the circuit
is related to the input data, and the implementation is a description of the behaviours of
the processors and the interconnections among the processors inside the circuit.

Two important and related approaches for proving system correctness are synthests
and verification. In synthesis, a specification is given, and the synthesis system generates
an implementation which is correct with respect to the specification. In verification the
descriptions of the specification and the implementation are given. The task of verification
is to check whether or not the implementation is correct with respect to the specification.
The notions of system synthesis and verification are often related. Synthesis is usually
carried out by applying a sequence of transformations to derive the implementation from
the specification. These transformations must be verified in the sense that they must be

13



14 CHAPTER 1. INTRODUCTION

proved to preserve the correctness of the specification within the formal model. When
an implementation is derived from a specification by synthesis then the implementation
is verified by construction, i.e. the derived implementation is guaranteed to be correct
with respect to the specification as the transformations preserve the correctness of the
specification.

Formal synthesis and verification proofs can be accomplished by hand, be supported
by proof development systems, or be completely mechanized by decision methods. By hand
methods we mean proofs based on standard mathematical reasoning. Examples of hand
synthesis and verification methods for systolic circuits include fixed point theory, process
algebra, term rewriting techniques, etc. Recently proof checkers and theorem provers have
been used to carry out systolic circuit verification. These are proof-supporting computer
systems each of which is based on some established formal logic. A proof checker inputs
a logical formula and a proof of validity of the formula, and checks whether the proof is
correct or not. A theorem prover inputs a logical formula and tries to return a proof of
validity or falsity of the formula. Examples of such systems are the Boyer-Moore theorem
prover [BM79], the Nuprl proof development system (due to R. Constable) based on
Martin-Lof type theory, and the HOL system (due to M. Gordon) [Gor87] based on the
Church type theory. A decision method is given a statement in a theory, and checks
whether or not the statement is valid in the theory. While for most theories there are
no decision methods, sometimes nontrivial classes of problems can be found for which
decision methods can be constructed. This is the main concern of this thesis. We will
try to find nontrivial classes of systolic circuits for which we define decision methods to
perform automatic verification.

1.3 Results

In this thesis we will provide:

e a formal model for systolic circuits.
e a formal definition of systolic circuit verification.

e methods for automatic verification of several nontrivial classes of systolic circuits,

A formal model for systolic circuits is a means of providing formal descriptions of
implementations and specifications of these.

The implementation of a systolic circuit consists of a description of i) the computations
performed inside the cells, which is given by a description of the relation of the output and
input data of the cells, ii) the topology of the circuit, i.e. the manner in which the cells
are placed inside the circuit, and iii) the pattern of interconnection inside the circuit, i.e.
the manner in which the cells communicate and interchange computation results among
cach other. In this thesis we will consider synchronous circuits. We assume that we have
a global clock which synchronizes the flow of data inside the circuit. EFach cell has a
number of inputs, local variables (registers), and outputs. At each clock cycle a number
of computations are performed inside each cell on the data received from the inputs of the
cell and the data stored inside the local variables of the cell. The results of computations
are partially sent out via the outputs of the cell to the other cells, and partially stored
inside the local variables of the cell.



1.3. RESULTS 15

We will use the notion of an algebra to interpret the cell computations inside the
circuit. An algebra consists of a set of domains which defines the sets of data on which
the cells operate, and a set of operations which define the meanings of the computations
(mathematical operations) inside the cells. When we say that a circuit operates on e.g. a
ring, then we mean that the data on which the cells compute are the elements of the ring,
and the computations performed inside the cells are defined by means of the ordinary
ring operators, +, -, —, and 0. The regularity of the topology of systolic circuits makes
it possible (as we will show in the description of our model) to use the integers to define
the cell positions. This is achieved by implementing an indexzing which assigns to each
cell (in an n-dimensional circuit) a unique n-tuple of integers which defines the position
of the cell. We will also use the integers to define the notion of time, where each clock
cycle corresponds to one time step. Thus, when dealing with a circuit, we work with two
algebras: i) the algebra on which the circuit operates, and ii) the integers which are used
to define the notions of time and cell position. The implementation of a systolic circuit can
be described by a set of recursive equations over the algebra on which the circuit operates
and the integers. The equations arise from the descriptions of the cell computations, and
the interconnection pattern of the cells inside the circuit. The boundary conditions of
the equation system are the inputs to the circuit, i.e. the inputs to those cells which are
not connected to outputs of other cells, and the initial values, i.e. the values stored in the
circuit wires and cell registers at the start of circuit computations.

The specification of a circuit tells us which values certain wires and cell registers
should have at certain time instants. The values demanded by the specification are also
described as recursive equations over the algebra on which the circuit operates and the
integers.

In order to perform formal verification of a circuit we must be able to compare the
equation systems describing the implementation and specification of the circuit. We will
use elementary fixed point theory to define a formal semantics for the equation systems
which we get from the descriptions of the implementations and specifications of the
circuits in our model. We define formally the notion of equality between two equation
systems. Thus we can define the formal meaning of the verification of a circuit over the
algebra on which it operates.

Automatic verification can be achieved by constructing decision methods to compare
the implementation and specification equations of circuits. This is to be regarded as the
main concern of this thesis. We will define several nontrivial classes of systolic circuits,
and construct automatic verification methods for them. For each class we will give an
example of how the automatic verification method can be applied to a nontrivial circuit
in the class. In each case the automatic verification is accomplished by starting with the
verification condition (i.e. the statement of correctness of the implementation with respect
to the specification), and applying a sequence of rewriting rules (based on the axioms of
the algebra of the circuit and the integers) to transform the verification condition into a
set of formulas with the two properties that: 1) checking the validity of each formula in
the set is straightforward, and ii) the verification condition is valid iff each formula in the
set is valid.

We will study the automatic verification of a class of circuits which operate over com-
mutative rings. Examples of such circuits are found especially in the field of digital signal
processing systems. The cell computations in the circuits of the class are defined by
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the ring operators +, -, —, and 0. We will investigate the problem of whether a circuit
implementation is correct with respect to a specification for the class of all commutative
rings. If a circuit is verified in this manner then the circuit is correctly implemented for
any arbitrary interpretation of the ring operators in a commutative ring. We will also
study the verification of circuits which operate on some particularly interesting commu-
tative rings, such as the ring of integers, and the ring of natural numbers modulo m, for
some fixed natural number m. The latter is particularly interesting in systolic circuit
implementations since modular arithmetics allow bounding the sizes of the cell registers
in the circuit.

Another problem which we will study is that of verification of circuits with unin-
terpreted function symbols. In this case we regard the cell operations as uninterpreted
function symbols. We will perform the verification without taking into consideration
the particular properties of the cell operations. Many times the particular properties of
the cell operations do not affect the outcome of the verification. The verification prob-
lem nevertheless is still nontrivial. This is due to the fact that the verification involves
dealing with the axioms of the integers which are used to model time and cell position,
and because the recursive patterns of the equation systems defining the specification and
implementation of the circuit are often quite complicated and deciding equivalence is
difficult. If a circuit is verified in this manner then the circuit is correctly implemented
with respect to the specification regardless of the particular interpretation of the cell
operations. On the other hand, if the verification condition is not valid, then there may
still be interpretations of the cell operations which make the implementation correct with
respect to the specification.

Lastly we will study the verification problem of a class of circuits which compute over
boolean algebras. The cell operations are defined by the boolean operators A, V, -, true,
and false. We will also consider a class of circuits where the cells operate on two disjoint
sets of function symbols. The elements of the first set are interpreted as the operations
of a boolean algebra, while the elements of the second set are left uninterpreted.

1.4 Related Work

Several techniques for systematic design and synthesis of systolic circuits are known. One
method is that of manipulating data-dependency graphs. The main idea is to obtain a
data-dependency graph of the specification (which is of the form of a system of recur-
rence equations) and transform it into an equivalent graph satisfying certain conditions
which make it possible to provide a time-space mapping and hence a systolic implemen-
tation. Examples of this type of method are the works of Lisper [Lis88, Lis89], Moldovan
[Mol82, Mol87], Quinton [Qui84, Qui86], and Rajopadhye [RF87, Raj89]. Huang and
Lengauar [HL87, HL89] present a method where the specification is a sequential pro-
gram. The method is based on deriving a sequential trace of the program and then
transforming the sequential trace into a semantically equivalent parallel trace. The idea
of the transformation is that semantically independent basic program statements can be
executed in parallel. Finally a time-space mapping is provided from the parallel trace into
a systolic architecture. Sheeran [She85, She86] presents a VLSI design language p/'p in
which higher order functions are used to give both graphic and semantic interpretations
of the circuit. The language obeys a set of algebraic laws which are used to transform a
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correct (but inefficient) specification into a systolic circuit implementation which is cor-
rect with respect to the specification. Further developments of the method can be found
in [LJ88, Luk89].

Various approaches for the hand verification of systolic circuits have appeared in the
literature. For example, Chen [Che83] uses systems of recursive equations to describe sys-
tolic circuits, and fixed point induction to show that an implementation meets a certain
specification. Hennessy [Hen86] uses a language, derived from CCS [Mil89], to describe
systolic circuits. Verification is done by applying a sequence of semantics-preserving
transformations and fixed-point induction to derive the implementation from the specifi-
cation. Gribomont [Gri88] uses a small language, derived from CSP [Hoa83], to describe
systolic circuits. The semantics of the language allows the transformation of each circuit
into an equivalent sequential program. The circuit correctness is then proved using in-
variant methods for sequential programs. Rem [Rem87] presents a methodology based on
trace theory (which is related to CSP) for the design and verification of systolic circuits.
Melhem and Rheinbold [MR84] suggest a mathematical model in which systolic circuits
are described as systems of difference equations. The verification process is based on
providing a solution to the system of equations, and then using induction to show that
it realizes a certain specification. Tucker and Thompson [TT88] have defined a frame-
work for synchronous concurrent algorithms, in which systems are modelled as networks
composed of modules computing and communicating in parallel. Systolic circuits are a
special case of these algorithms. Formalization of synchronous concurrent algorithms is
done by simultaneous primitive and course of values recursive functions over abstract
algebras. Case studies on hand verification of systolic circuits have been done within the
framework [HTT88, MT87, ET89].

Of course, any systematic method should have machine support, either customized to
the method, or based on general proof development systems for logics. Purushothaman
and Subrahmanyam [PS88, PS89] give a methodology to verify systolic circuits based
on solving systems of uniform recurrence equations, and then show how their methodol-
ogy allows mechanical circuit verification, using the Boyer-Moore theorem prover system
[BM79]. In [DLT89] primitive recursion is represented in the Martin-Lof type theory un-
derlying the Nuprl proof development system, and a proof of correctness of a convolution
circuit is carried out in the system. We have experimented with the verification of a
number of systolic circuits in the Church type theory underlying the HOL system of M.
Gordon (see [Gor86] and [Gor87] for a description of the HOL system).

None of the above methods are decision methods, and thus are not fully automatic.
All of them require the user to submit “extra information” that is not in the specification
or the implementation. Examples of such extra information are lemmas which are first
proven and then used in the final verification proof, or induction hypotheses which are
used when performing inductive proofs. It is often not obvious which lemmas or induction
hypotheses are needed.

One method for automatic verification of systems composed of many identical pro-
cesses is presented by Clarke et al in [CGB86]. The verification of a system with an
arbitrary number of processes is reduced to the verification of a system with a fixed num-
ber of processes. The method of Clarke is used to prove synchronization properties of
systems, but can not be applied to prove assertions about the data computations per-
formed by a system, and thus can not be applied to the class of circuits which we will
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treat.

1.5 Outline

In chapter 2 we introduce a formal model of systolic circuits. In chapter 3 we give
some examples of systolic circuits. In chapter 4 we use basic ideas from the theories of
abstract data types and fixed points to define a formal semantics of our model, and then
define formally what we mean by systolic circuit verification. In chapter 5 we describe
a method for automatic verification of a class of circuits which operate on commutative
rings. In chapter 6 we describe a method for automatic verification of a class of circuits
which operate on uninterpreted function symbols. In chapter 7 we describe a method for
automatic verification of a class of circuits which operate on boolean algebras.



Chapter 2

The Model

In this chapter we will give a formal model for describing implementations and specifi-
cations of systolic circuits. A systolic circuit is composed of a number of computation
cells, which are placed inside the circuit in a regular manner. Each cell has a number
of inputs, a number of outputs, and a number of local storage variables (see figure 2.1).
We consider synchronous circuits, thus we assume the presence of a global clock. Each
cycle of the clock corresponds to a time step. An input of a computation cell is connected
to an output of another cell. These connections follow a certain pattern which will be
described later. At each clock cycle, each computation cell performs a number of compu-
tations on the data received from the inputs of the cell and the data stored in the local
variables of the cell. Some of the computation results are sent out from the outputs of
the cell, while some are stored in the local variables. The inputs of the computation cells
on the “boundary” of the circuit which are not connected to the outputs of any other
cells receive their data from outside the circuit. These constitute the inputs of the entire
circuit. Before the first computations are performed the outputs and the local variables
of the cells have initial values.

We will describe a very simple summation circuit which we will use as an illustration
throughout the chapter. The circuit receives the elements of a matrix with infinitely
many rows and ¢ columns, and outputs the result of summation of the elements of each
row in the matrix. The summation circuit consists of an array of ¢ computation cells
where each cell has two inputs and two outputs (see figures 2.2 and 2.3). The element
a(i,j) of the matrix is received via the second input of the cell at position j at time
i+ j — 2. At each clock cycle each cell adds the values received trom its two inputs and

My o L, outy

7 | S /)

outy e ] locy e ina

Figure 2.1: A cell with three inputs, three outputs, and two local variables
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Figure 2.2: A cell in the summation circuit
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Figure 2.3: The summation circuit
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outputs the result, via the first output of the cell, to the next cell. The first input of
the first cell has always a value of 0. In this manner the result of summation of row i is
obtained from the first ouput of the last cell at time £+7 —1. Note that the input to the
circuit is in the form of streams of elements of a.

2.1 Preliminaries

Let I =< I,4+,—,-,<,0,1 > be the ordered ring of integers, and @ =< @, +,—,-,0,1 >
the ring of rationals. We will use x and y (possibly with subscripts) to denote variables
which range over I. We will use a, 3,7, 6 to range over I, and p to range over (). By a
Q1I-polynomial we mean a polynomial whose coeflicients are rational numbers and whose
variables range over the integers. By an integer polynomial we mean a polynomial whose
coeflicients are integers and whose variables range over the integers. We will use ¢ and ¢
to range over integer and }/-polynomials.

When we write ¢(z1,...,2,) we mean that the set of free variables of ¢ is a subset
of {zy,...,z,}. We use vector notation whenever possible. Thus we write e.g. ¢(T)
instead of g(z1,...,2n), ¢(T + 7) instead of ¢(z1 + y1,..., &0 + ¥n), and & T + [ instead
of anzy + -+ + o, + 3, if n is known or irrelevant in the context.

We assume that each circuit operates on a set § of data domains which are called the
sorts of the circuit. Also we assume that we have two sets A and G of function symbols
which are associated with each circuit. Each a € A is called a stream variable and has
an arity n, where n is a non-negative integer, and a sort S, where S € §. Each element
g € G is called an operation symbol and has a domain sort w € S* and a range sort
S5 € S8. A constant operation symbolis an operation symbol whose domain sort 1s empty.
We denote the set of constant operation symbols in G by K. The pair < §,G > is called
the signature of the circuit. We will use the stream variables to describe the inputs for
our circuits which will be of the form of streams over the data domains on which the
circuit operates. The operation symbols are used to describe the computations on data
which are performed inside the cells of our circuits.

We also need to define a class of recursive functions which we will use to give formal
descriptions of the implementations and specifications of our circuits. To do this we
introduce the notion of systems of recurrence equations over a signature SIG as follows:
We assume that we have a set of function variables, where each function variable f has
an arity n where n is a nonnegative integer, and a sort S € § . The class of systolic terms
over SIG =< 8,G > and their sorts are defined as follows:

o If a € Ais a stream variable of arity n and sort S and ¢,(T),...,q.(T) are QI-
polynomials, then a(q(T),...,¢.(T)) (called a stream expression) is a term over
SIG of sort S.

o If f is a function variable of arity n and sort S, and ¢,(T),...,q.(T) are integer
polynomials, then f(q:(Z),...,qn.(T)) (called a function variable ezpression) is a
term over SIG of sort S.

e If ¢y € G is an operation symbol of domain sort 5 - .- -5, and range sort
S, and ;(T),...,1,(T) are terms over SIG, of sorts Sy,..., S, respectively, then
g(t1(Z), ..., t.(T)) is a term over SIG of sort S.
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A stream expression a(qi(Z), ..., ¢.(T)) is said to be well-defined for a value & of 7 if ¢;(@)
is an integer for 1 <7 < n. A systolic term #(T) is said to be well-defined for a value @
of T if each stream expression in ¢(T) is well-defined for @. A systolic term () is said to
be well-defined under a predicate p(T) if for each value @ of T if p(@) is true then ¢(7) is
well-defined for @.

A functional over SIG is of the form:

case
n(T) = H(T)

P(T) = t.(3T)
endcase

where p;(T) is a predicate over I, and t;(T) is a term over SIG. We assume that

t4(T), ..., t.(T) all have the same sort S, and that t;(T) is well-defined under p;(T). Fur-

thermore, we assume that for each value @ of T, p;(@) A p;(@) is false if j # . Each p;(T)

is called a guard of the functional, and each ¢,(7) is called a result of the functional, while

every p;(Z) = t;(Z) is called a case of the functional. We call S the sort of the functional.
A system of recurrence equations over SIG is of the form:

Fi(T) Fi(T)

fﬂ(I) = fn(i)

where f; is a function variable, and F; is a functional over SIG whose sort is the same
as the sort of f;. In addition, we assume that the only function variables which occur in
F(T), ..., Fu(F) are fi,..., fn. We call SIG the signature of the system of recurrence
equations.

2.2 Implementation of Systolic Circuits

The formal description of the implementation of a systolic circuit consists of three parts:
e The topology of the circuit, i.e. how the cells are placed inside the circuit.
e The interconnections, i.e. how inputs and outputs of the cells are connected.

o The cell computations, i.e. the manner in which values of outputs and local variables
in a cell at some time instant depend on values of inputs and local variables in the
cell at previous time instants.

A. Topology Generally the topology of an n-dimensional circuit can be described as
a predicate top(%,f) where T is an n-tuple, and 7 is called a circuit parameter. The
predicate top represents a family of circuits. For every integer value of 7 we get a member
of the family of circuits whose topology is described as follows: there is a computation
cell at each integer point T satisfying top(Z, ). The circuit parameter usually describes
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the size of the circuit. For example in the case of the summation circuit, the topology of
the circuit is described by the predicate sumtop, where:

sumtop(z,f) = 1<z<¢ (2.1)

which means that there is a computation cell at each integer point between and including
1 and €. We observe that ¢ (which is a circuit parameter) decides the length of the array,
and that sumiop defines the topology of a family of summation circuits. For each value
of € we get the topology of one circuit in the family. For example if £ = 3 then we get
the topology of a summation circuit which has a computation cell at the points 1, 2, and
3, and if £ = 5 then we get a circuit which has a cell at the points 1, 2, 3, 4, and 5, etc.

In the following we denote the inputs, outputs, and local variables of the cells by
Ny, ey My, OUly, ..., OUly,, and loey,. .., loc,, respectively. We will use the same
notation in; to denote the wire in;, and the function in; which gives the value ini(Z, 7, t)
of the i input of the cell placed at T at time instant t. The same applies to out; and
loc;. By a signal we mean any in;, out;, or loc;. We use s to range over signals.

B. Interconnections In the class of circuits we consider, we allow a pattern of in-
terconnections which can be defined as follows: For each input in; there is an integer
polynomial A;(T,7) (called the connection function of in;), such that the input in; of a
cell at T is connected to the corresponding output out; of the cell at T+ A;(F,7). Observe
that this means that the number of inputs of each cell is equal to the number of outputs of
the cell. The cells on the “boundary” of the circuit whose i*" inputs are not connected to
the outputs of any other cells receive their inputs from outside the circuit. Let top)(Z,7)
denote the position of those cells whose 7 inputs are connected to outputs of other cells,
and top’(T, T) the position of those cells whose i** inputs are not connected to outputs of
other cells, then we get:

topl(Z,0) — iny(T,0,t) = outy(T+ AT, 0), 7, t) (2.2)
top?(Z,0) — iny(T,€,1) = Inputy(T,1,1) (2.3)
Here Input; is called an input function and defines the value of the i*" inputs of the cells
which are on the “boundary” of the circuit. These may be considered as inputs to the
entire circuit. Observe that:

top!(%, ¥) topi(Z,8) A topi(T + AT, 1), 1) (2.4)

7 ‘
top!! (T, F) topi(T,8) A —topi(T + AT, 1), F) (2.5)

We assume that the input functions are described as input ezpressions. An inpul expres-
sion 1s a functional over the signature of the circuit of the form:

case (2.6)

m(@,0t) = it(F,4,1)

(T, 01) = it (Z,
endcase

|

)
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where each it;(F,Z,t) is an input term. An input term is either a stream expression, or a
constant operation symbol.

In the case of the summation circuit the connection functions are defined by the
following:

Al(:r:,l?} = -1 (
Aoz, £)

I
|

8

=

o e
{o5]

=

The interconnections are defined by:

(2<z<t) — ing(2,6,t) = outy(z —1,4,1) (2.9)
(z=1) — iny(z,4,t) = Input;(z,4,t) :
(1<t — ing(z,l,t) = Inputy(z,l,t) (2.11

These equations mean that the first input of each cell (except the first cell) is connected
to the first output of the previous cell, while the first input of the first cell, which is not
connected to the outputs of other cells, receives its values from the environment of the
circuit as described by the input function Input, which is considered as an input to the
entire circuit. No cell has a second input which is connected to the outputs of other cells.
The value of each in, is received from the environment of the circuit as defined by the
input function Input;. The input functions Input; and Input, are defined as follows:

Inputy(z,€,t) = 0 (2.12)
Inputy(z,€,t1) = case (2.13)
{a:St-i—i} = a(t—z+2,2)
endcase

Note that Input, declares how the elements of a actually are input to the circuit. This
mapping of the input sequences into the clock cycles of the circuit is called the input
scheduling of the circuit [HTTS88].

C. Cell Computations As mentioned earlier, at each clock cycle, a cell performs a
number of computations on the data received from the inputs of the cell and the data
stored in the local variables of the cell. Some of the computation results are sent out
from the outputs of the cell, while some are stored in the local variables. Thus the value
of an output or a local variable at a certain time step depends on the values of the inputs
and local variables at some previous time. The computations performed in a cell are
dependent on the position of the cell and the time instant. Thus, although all the cells in
a circuit are similar, they may perform different computations, since their positions may
differ. The same cell may perform varying computations, depending on the current time.

Let SIG =< §,G > be the signature of the circuit. Each output or local variable s
in the circuit has a sort S € §. Formally a cell computation term its sort, and its delay
are defined by the following:

o If s is an input or a local variable of sort S, then s(Z,Z, ¢ — 7), where 7 is a positive
integer, is a cell computation term with sort S and delay 7.
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o If cty(%,4,t),...,cta(T,¢,t) are cell computation terms with sorts Sy,...,S,, and
delays y,...,7, respectively, and if ¢ € G is an operation symbol with a domain
sort Sy - -+ - S, and a range sort S, then g(ct(T,7,1),...,ct,(T,0,1)) is a cell

computation term with a sort S and a delay maz(r,..., ™).

A cell computation is a functional of the form:

case (2.14)

pl(f,g,i) — Ctl(E,g,t)

(T, 0 t) = ctn(T,E,1)
endcase

where each ct;(%,7,) is a cell computation term. The delay of the cell computation above
is defined to be maz(7y,...,7.), where 7; is the delay of ct;(Z,¥,1).

For each output or local variable s, there is a computation F associated with s such
that the sort of s is the same as the sort of F. The delay 7 of s is defined to be equal to
the delay 7 of F. We assume that the first computation result appears on s first when
t > 7. When t < 7 the value of s will be equal to an initial value.

In general the value of s can be described as follows: After the period of initialization
the value of s is described by an equation of the form:

t>7) A top(z, ) — s(T,0t) = F(T,L1) (2.15)

Let F(%,7,t) be of the form of (2.14), then equation (2.15) means that the value of s
at each cell at ¢t > 7 is decided by checking the predicates py,...,p, (i.e. by checking
the cell position and time instant). If p;(Z,7,¢) is true then the value of s(7,%,t) will be
equal to ct;(7,7,t). If no p;(%,7,t) is true then the value of s(7,7,¢) is undefined. Note
that by the help of the predicates p; we can code such statements as: “the cells at the
odd positions perform a certain operation while the cells at the even positions perform
another operation”, or “a cell performs a certain operation (or is idle) up to a certain
time instant (which may depend on the cell position) after which it performs another
operation”, etc. We will see examples of such statements in describing the computations
of the summation circuit, and also in the circuits described in chapter 3.
The period of initialization is described by the equation:

(0<t<T) A top(z,8) — s(T,L,t) = Init,(T,0,1) (2.16)

Equation (2.16) means that when ¢ < 7, the value of s(Z,%,t) is equal to an initial value
Im'ts(f,?, t). For each output or local variable s, there is an initial function Init, which
defines the value of s when t < 7, where 7 is the delay of s. We assume that the initial
functions are described as initial expressions. An initial expression is of the same form
as an input expression (see (2.6)).

In the case of the summation circuit the cell computations are described as follows:
After the initialization period the computations are defined by:

> A(1<a<l) — (2.17)
outy(z,¢,t) = case
{ Bret } = my(z,l,t— 1) +ing(x,l,t —1)
endcase
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(t=21) A (1<a<l) — outy(z,l,t) = ina(z,l,t —1) (2.18)
The initialization period is defined:
0<t<l) A (1€2<l) — outy(z,f,t) = Inity(z,{,1) (2.19)
and:
(0<t<1) A(l<z<l) — outy(z,l,t) = Inity(z,l,1) (2.20)
The initial functions are defined by:
Inity(z,£,t) = undefined (2.21)
and:
Inity(x,f,t) = undefined [:2.22)

Equations (2.21) and (2.22) indicate that no initial values are preloaded into the circuit.

2.3 Specification of Systolic Circuits

A specification of a system describes how we expect the system to behave. A specification
of a systolic circuit states which values we expect certain wires (i.e. cell inputs and
outputs) and certain local variables of the circuit to have at certain time instants. This
can be expressed by the general form:

) (2.23)
A) == (1@ 51 = AELY)) A - A (pn(@61) — (sm(@T.L1) = [u(T.T.1))

where p; is a predicate, f; is a function variable in a system of recurrence equations, and
s; is a signal in the circuit. Intuitively the specification formula means that whenever

the predicate p;(T,¢,t) is true then the value of the signal s:(T,7,¢) should be equal to
fi(@, 4, 1).
In the case of the summation circuit the specification formula is given by:

sumspec(z, l,t) = (z=0 A (L <t) — ouly(z,l.t) = f(t -+ 1,0)

where [ is defined by:

fy1,32) = case
{mw=1} = aumn)
{1<p<t} = flywe-1)+amm)
endcase

Note that the specification not only tells us that we get the expected output of the circuit,
but also the time instants at which to expect the elements of the output. This mapping
from circuit output to clock cycles is called output scheduling [HTT88].



Chapter 3

Examples

In this chapter we introduce three systolic circuits: a convolution circuit, a string match-
ing circuit, and a substring detecting circuit. We will use these circuits as examples to
illustrate the application of the automatic verification methods introduced in chapters 5,
6, and 7. For each circuit, we give the formal descriptions of the implementation and the
specification according to the model of chapter 2.

3.1 A Convolution Circuit

The convolution of two sequences a(0),a(1),...,a(€f) and b(0),b(1),...,b(f) of ring ele-
ments is a sequence ¢(0),¢(1),...,c(2¢) where':

o a(t) - b(j — 1) ifo<j<e
i) = | w1y
THS a(j—l+i)-b(f—i) if £<j <A

The convolution algorithm has many important applications in digital signal processing,
and is also related to integer multiplication and polynomial multiplication. In this section
we introduce a convolution circuit, which is a version of that given in [Ull84].

The circuit consists of an array of £+1 cells. Each cell has three inputs, three outputs,
and a local variable (see figures 3.1 and 3.2). The input sequences a and b are fed into
the circuit from the left, and propagate to the right. The sequence a is input from in, of
the first cell (i.e. that at position 0), while the sequence b is input from in, of the same
cell. The elements of b move twice as fast as the elements of a. When a(0) enters a cell
at time t, the value of the local variable of the cell is updated to the value of the element
of b entering the cell at time ¢ — 2. The elements of ¢ propagate from right to left. As

!Notice that foo) r(T,1) can be defined by sum(T,0, £(F)), where sum(T,i,n) is given by the recur-
rence equation:
sum(T,i,n) = case
{i=n]} = r(3,i)

{i<n} = r@i)+sum( i+ 1,n)
endcase

27
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Figure 3.1: A cell in the convolution circuit

! T P > >
> 0 > 1 > 2 L e e e e >
< ~ar B R N I

Figure 3.2: The convolution circuit

an element of ¢ moves, it meets elements of a propagating to the right, and elements of
b stored in the local variables of the cells. As an element c(i) meets a pair of elements
from a and b, the product of the pair is added to the sum stored in ¢(). Observe that an
element ¢(i) should meet a pair of elements from @ and b iff they are part of the sum for
(7)), i.e. of the form a(z),b(j — 1), or a(j — £+ 1), b(£ — ). Also observe that the elements
of a and ¢ should propagate in alternate processors, otherwise each element ¢ would miss
half of the elements of @ which are part of its sum.

In section 3.1.1 we will give a formal description of the implementation of the convo-
lution circuit, and show that it falls into the category of circuits we described in section
2.2. In section 3.1.2 we will give a formal specification of the circuit.

3.1.1 Implementation of the Convolution Circuit

We will structure the formal description of the implementation of the convolution circuit
according to the scheme presented in section 2.2.

A. Topology The convolution circuit consists of an array of £+ 1 cells. The topology
of the circuit can be described as:

top(z,f) = D€ <4 (3.2)

This means that we place a cell at each integer point between (and including) 0 and ¢.
Observe that £ is a circuit parameter and decides the length of the array. The predicate
top describes the topology of a family of convolution circuits; one for each value of the
length of the input sequences a and b.
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B. Interconnections The connection functions are defined by é; =< —1 >, § =<
—1>, and 63 =< 1 >. Thus we get the following equations:

1<z <t) — ing(a,d,t) =outy(z —1,0,1) (3.3)
(I1<a<l) — ing(a,4,t) = outy(z — 1,£,1) (3.4)
(0<a<l-1) — ing(a,{,1) =outs(z+ 1,£,1) (3.5)

These equations mean that in; and in, of each cell (except the first cell ie. that at
position 0) is connected to out; and outy respectively of the previous cell, while ing of
each cell (except the last cell i.e. that at position £) is connected to outs of the next cell.
The inputs Input, and Input, are fed into the circuit via in; and in, respectively of the
first cell, while Inputs is fed into the circuit via ing of the last cell.

(z=0) — wng(z,f,t) = Inputy(z,l,t) (3.6)
(z=0) — wna(z,4,t) = Inputa(a,{,t) (3.7)
(z=40) — wnz(z,l,t) = Inputz(x,l,t) (3.8)

The input functions are given by:
Inputy(z,¢,t) = case (3.9)
(t+2) modd =0 i
{ 2<t <4042 = ()

(t+2)modd =0
{4€+2<t58e+2 =0

endcase

Inputy(z,l,t) = case (3.10)
{ogt<t} = bt)
endcase

Inputs(z,€,t) = case (3.11)

2W046<t<6{+2
(t4+264+2)mod4 =0

endcase

b=

Note that Input; and Input, define the input scheduling of the circuit, i.e. how the
sequences a and b actually are input to the circuit (see figure 3.3).
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Figure 3.3: (A) Input; and Input; when £ = 2. (B) Input; when £ = 2. (C) Inputy
when £ = 3. (D) Value of out5(0,¢,t) when £ = 2. The

“E7g represent undefined values.
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C. Cell Computations The computations which take place in the cells can be de-
scribed by the following:

(t22) A (0<z<l) —

outy(z,£,t) = case 4 i
{tmod2=0} = iny(a,6,t-2) 2]
endcase
(t=21) A (0<2<l) — ouly(z,f,t) = iny(z, bt —1) (3.13)
t>2) A (0<z<l) —
loc(z,{,t) = case
{t=22+2} = inyfs,0,t-2)
(3.14)
tmod2=0
{ 92 49 <t } = loc(x,l,t —2)
endcase
> A(0<z<l) — (3.15)
outz(z,f,t) =
case

{t=22+4} = ini(a,0,t=2) loc(z, £t —2)

t mod?2 =10
e +4 <t
endcase

} = ng(z,l,t —2) +iny(z,4,t — 2) - loc(z,l,t — 2)

From (3.12), (3.13), (3.14), and (3.15) we conclude that the delays of out,, out,, loc, and
outs are 2, 1, 2, and 2 respectively.

Consider a cell at position z. The value of out; at the cell at an even clock cycle t > 2
is equal to the value of in; at t — 2. The value of out; at any clock cycle ¢t > 1 is equal
to the value of iny at £ — 1. The value of loc at any even clock cycle ¢ > 2 is decided by
the following: if t = 2z + 2 then the value of iny at t — 2 is “stored” in the local variable,
otherwise if ¢ > 22 + 2 then the value of loe will not be changed from its value at ¢ — 2.
The value of outs at any even clock cycle t > 2 is decided by the following: if ¢ = 22 +4
then it is equal to the multiplication of the values of in; and loc at 1 —2, while if 2244 < ¢
then it is equal to the result of adding the value of in3 to the multiplication of the values
of in; and loc at t — 2. Observe that out,, outs, and loc are “idle” at odd clock cycles.
This means that their values are “undefined” at these clock cycles. In sections 4.3 and
5.3 we will define formally what we mean by “undefined”. In practice it means that they
have “don’t care” values. Note that outy is “active” at each clock cycle.

The period of initialization is defined by:

(0<t<2) A (0<e <) — outy(x,f,t) = Outlnity(z,{,t) = undefined(3.16)
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Figure 3.4: A cell of the modified convolution circuit

(0<t<1) A (0<a<{l) — outyz,l,t)=C0utlnity(z,£,t) = undefined(3.17)
(0<t<2) A (0<2 <) — outs(z,l,t) = Outinity(z,£,t) = undefined(3.18)

(0<t<2) A (0<a <) — loe(z,l,t) = Loclnit(z,{, t) = undefined (3.19)

The above equations indicate that no initial values are preloaded to the circuit. The

initial values do not affect the results of the computations of the circuit, and hence their
values are undefined.
Control Signals We observe that the computations in the cells of the convolution circuit
depend on the time and the position of the cell. For example if we consider equation (3.14)
we observe that the value stored in the local variable is different at different clock cycles,
depending on whether t = 2z + 2, or t > 2z + 2. Similarly the value sent out via outy, as
described by equation (3.13), is dependent on whether { = 22 + 4, or { > 22 + 4.

In practice there are different methods of implementation to enable the cells to check
the relative relation of time and position.

One method is to preload the position into the cell and then use hardware circuitry
to compare the cell position with the number of clock cycles.

Another method is to use control signals. A control signal is a sequence of constants,
which is fed into the circuit, and then propagated to the different cells. The constants
are coded in such a way as to reflect the time-position relation of each cell.

The convolution circuit can, for example, be modified and supplied with a control
signal. A fourth input and output is added to each cell (see figure 3.4). These are used
to propagate the control signal throughout the circuit, as described by the following
equations:

(t=2)A (0<2<l) —
outy(z,l,t) = case
{tmod2=0} = inya,l,t-2)
endcase

(3.20)

Outlnity(x,f,t) = undefined (3.21)
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(1<2<d) — gz, L, t) = outy(z — 1,4,1) (3.22)

Inputy(z,€,t) = case (3.23)
{t=0} = o0

tmod2=0 a1
2<t<8+2

endcase

We observe that if iny(z,¢,t—2) = 0 then t = 2242, if iny(z,¢,t—2) = 1 thent > 2z+2,
ifing(z,€,t—4) = 0 then t = 2244, and if iny(z,£,t —4) = 1 then ¢ > 2z +4. This means
that: the equality ¢ = 2z + 2 in equation (3.14), the inequality ¢ > 2z + 2 in equation
(3.14), the equality t = 22+4 in equation (3.15), and the inequality ¢ > 2z +4 in equation
(3.15) can be replaced by iny(z,€,t —2) = 0, ing(z,l,t —2) = 1, iny(z,{,t —4) = 0, and
ing(z,l,t —4) = 1 respectively.

The control signals can be treated in much the same way as other signals in the
circuit, thus allowing us to analyze circuits containing control signals. This analysis is
not included here.

3.1.2 Specification of the Convolution Circuit

The specification of the circuit tells us that we get the convolution sequence ¢ from outs
of the first cell. Furthermore it reveals that we get one element of ¢ at each fourth clock
cycle, starting at ¢t = 4 and finishing at ¢t = 8¢ + 4.

spec(z,,t) =
(t=0) A (4<t<80+4) A (tmodd=0) — (outg(m,é’,t] = c(t ;4))
From equation (3.1):
spec(z, £,t) =
(z=0) AN (4<t<4+4) A (tmoedd=0) —
(outs(, 0) = £iZa ()b (=4=2))
5 (3.24)

(e=0) A (40+4<t<80+4) A (tmodd=0) —s
Bé—t44 .
(outs(a:,é',t) = T a(ttegize) -b(f—i))

Note that the specification defines the output scheduling of the circuit, i.e. the time
instants at which to expect the elements of the output.

3.2 A String Matching Circuit

A simple measure of similarity between two strings is the distance between them. The
distance between two strings is defined to be the smallest number of characters (in the two
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Figure 3.5: A cell in the string matching circuit

strings) which should be removed to make the strings equal [Sel80, Ukk85]. For example
the distance between IRAQ and IRAN is 2, and between FRANCE and FLORENCE is
4,

String distance algorithms have applications in molecular biology, signal processing,
spelling correction, speech understanding, and fault tolerant systems.

Formally the distance between the two strings:

a{l)?a(l)v G ,{1(61)
and

b(1),6(2),...,b(¢2)
is defined by d(¢4, ¢;), where:

a if i=0 and j=0
92(d(i - 1,7)) if 0<i< and j=0
di3) =Y gydtij - 1)) if i=0 and 0<j <4, i
ga(a(?), b(j), d(i,5 — 1), if 0<i< and 0<j <ty
d(i —1,5),d(i = 1,5 — 1))

where gy, g2, and g3 are interpreted as:

g = 0
ga(z) = 14z
g3(@1, T2, T3, Tq,x5) = if (21 = x3) then x5 else 14 man(xs, z4)

We will describe a string matching circuit which is a version of that given in [LL85]. It
consists of an array of cells. Each cell has four inputs, four outputs, and a local variable
(see figures 3.5 and 3.6).

The sequence a is preloaded into the left half of the array. One element of « is stored
at each other cell starting at the first cell from the left. The sequence b is preloaded into
the right half of the array. One element of b is stored at each other cell starting at the
first cell from the right. At each clock cycle the elements of a move one step to the right,
while the elements of b move one step to the left. When an element a(z) meets an element
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Figure 3.6: The string matching circuit

b(7) in a cell, the element d(z,7) is calculated. The result is both stored inside the cell,
and sent to the cells immediately to the left and the right. If a(i) = b(;) then the value
of d(z,7) will be equal to the value of d(z — 1,7 — 1) which is stored inside the cell. If
a(i) # b(j) then the value of d(z,j) will be equal to 1 4+ min(d(z,j —1),d(: — 1,7)). The
elements d(7,j — 1) and d(z — 1, j) are received from the cells immediately to the left and
the right respectively. The distance between the two strings, as defined by the element
d(€y, £y), is fetched from the cell at €, — £y, at time £; + €, + 1.

In section 3.2.1 we will give a formal description of the implementation of the string
matching circuit. In section 3.2.2 we will give a formal specification of the circuit.

3.2.1 Implementation of the String Matching Circuit

We will structure the formal description of the implementation of the string matching
circuit according to the scheme presented in section 2.2.

A. Topology The string matching circuit consists of an array of 2(¢; + €3) + 3 cells.
The topology of the circuit can be described as:

top(z,by,4y) = =26 —-1<2<2+1 (3.26)
This means that a cell is placed on each integer point between (and including) —2¢; — 1
and 2, + 1. Note that ¢; and {, are circuit parameters and decide the length of the

array from left and right. The predicate top describes the topology of a family of string
matching circuits; one for each value of the length of the input sequences a and b.

B. Interconnections The connection vectors are defined by 8, =< —1 >, 8, =< 1 >,
§3 =< —1 >, and §, =< 1 >. Thus we get the following equations:

(=26 <z <204+ 1) — nglx, €y, 0,t) = outy(x — 1,4, 04, 1) (3.27)
(—‘Zg] -1 S Z S 262) — i?!z(l‘,éi],g-z,t) — O'ltt'g(l' + l,fl,fz,t) (328)
(—2£1 S 2 S 262 + 1) — iﬂa(.’ﬂ,gl,gz,t) = O'('Lt:;(.'l} - 1,61,2231) (3.29)

(—2{71 -1 ﬂ I S 2@2} —t in,;(;l:,fl,fg,t) = oui4(az - 1,51,52,1‘.) (330)

These equations mean that in; and ing of each cell (except the first cell i.e. that at
position —2¢; — 1) is connected to out; and outs respectively of the previous cell, while
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iny and iny of each cell (except the last cell i.e. that at position 2¢, + 1) is connected to

outy and outy respectively of the next cell. The inputs to the circuit are defined by:

(z=-26—-1) — in(z,b,4,1) = Inputy(z, 4, €y, t) = undefined  (3.31)
(z=20+1) — ing(z,by,0,t) = Inputy(z, £y, £, 1) = undefined  (3.32)
(z = =26, —1) — ing(z,€,4,,t) = Inputs(x, £y, £y, t) = undefined  (3.33)

(z=20+1) — ing(z,€,45,t) = Inputy(z,{y, ¢y, t) = undefined  (3.34)

The above equations indicate that no input is fed into the circuit.

C. Cell Computations The computations which take place in the cells can be de-

scribed by the following:

(t21) A (26 —1<2<2+1) —

outy(z,4,4,,t) = case -
{(t+e+)mod2=0} = imi(s, b, ot —1) O3
endcase
outy(z,by,0,,t) = case 5
{(t+$+1)mod2:0} = ing(x,l, 0t —1) (3.46)
endcase
(t>2) A (=26 —1<z2<2+1) —
IOC(:E,gl,EQ,t) =
case
<0 .
{ t:m—x+1 } = g2(ina(z, by, 6,1 — 1))
M T (3.37)
b= $+1 2 3Ly b1, 42,
—r+1<t
z+1<t = gs(ing(x,f1, ot — 1), ing(x, by, la,t — 1),
(t+z+1)mod2=0 ing(x, by, €y, t — 1), ing(x, 0y, 65,1 — 1),

loc(z, €y, €s,t — 2))
endcase

outs(z, by, o, t) = loc(z, by, b, 1) (3.38)
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outy(z, €y, 4p,t) = loc(z,€y,4;,1) (3.39)

From (3.35), (3.36), and (3.37) we conclude that the delays of outy, out,y, and loc are
1,1, and 2 respectively. Let Init;, Init;, and LocInit be the initial functions correspond-
ing to outy, outy, and loc respectively, then:

0<t<l) A (=2 -1<z<2U+1) — (3.40)
outl(x,fl,eg,t) = Initl(w,ﬂl,fg,t)

outg(x,fl,é’g,i) - Iﬂitg(ﬂ:,el,EZ,t)

0<t<2) A (=26 —1<2<2U+1) — (3.42)
loc(z, 4y, €, t) = LocInit(z,ly, €y, 1)

The initial functions are defined by:

Inity(z,6,,0,,1) = case (3.43)

-2 -1<2<-3 241
{ (z+1)mod2 =0 } =4 (-

endcase

Inity(z,ly,£6,,t) = case (3.44)

3<z<2+1 e
{(a:+1)mod2=0} = ()
endcase

LocInit(z,€y,£2,t) = case (3.45)
{ zi=10 } = 01
endcase

Equation (3.43) means that an element of a is preloaded into out; of each other cell
starting at * = —3 and finishing at = —2¢, — 1. Equation (3.44) means that an element
of b is preloaded into outy of each cell starting at * = 3 and finishing at =z = 20, + 1.
Equation (3.45) indicates that g; is preloaded into loc of the cell in the middle (that at
position 0), while no initial values are preloaded into the local variables of the other cells.

3.2.2 Specification of the String Matching Circuit

The specification of the circuit tells us that we get the difference between the sequences
a and b from loc of the cell at position £, — £; at time £; + £, + 1. Formally:

spec(x,ly,ly,t) = (3.46)

t)
(loc(zx, €y, €3, t) = d(y,43,01,03))
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Figure 3.7: A cell in the substring detecting circuit

where:
d(yl,y%fl,ez) =
case
1y =10
=
{ y2=10 } h
0 </
{05050 = st -1mh.6)
(3.47)
{ 0<u <t } = aldyn-16,6)
O<y, <1
{ 0< z; < E; } = ga( a(y1), b(wa), |
d(y1,y2 — 1,81, 82),d(y1 — 1, y2, 41, 62),
d(y: — 1,92 — 1,61, £2))
endcase

3.3 A Substring Detecting Circuit

In this section we introduce a substring detecting circuit, which given two strings a(1),
.-.ya(fy) and b(1),...,b(¢2), checks whether one of the strings is a (contiguous) substring
of the other. The substring relation can be defined as substr({;,{,), where*:
o N (ali+i+ 1) = b +1)) if yi 2w
substr(yy,y2) = (3.48)
VI AL (a(i+ 1) = b+ +1)) if g2 >y,

The circuit consists of an array of ¢; cells where each cell has three inputs, three
outputs, and two local variables (see figures 3.7 and 3.8).

The elements of the string a are stored inside the cells of the circuit, while the elements
of the string b are input from the left. The element a(i) is stored inside the first local

?Notice that Vf(jo) b(Z,) and /\ffo) b(T,) can be described by recurrence equations in a similar manner
to ffu) r(T,1) (see section 3.1).
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Figure 3.8: The substring detecting circuit

variable of the i** cell (the cell at position z). The elements of b are input, one element
each other clock cycle, via the first input of the first cell.

The elements of b move one step to the right at each clock cycle. In addition to the
stream of elements of b moving to the right, two other streams flow inside the circuit.
One stream (which we call stream 2) moves through the second inputs and outputs of
the cells, one step at each other clock cycle, from the right to the left. Another stream
(which we call stream 3) moves through the third inputs and outputs of the cells, one
step at each clock cycle, from the left to the right.

When an element b(j) enters a cell ¢ the elements a(i) and b(j) are compared for
equality. The element of stream 2 entering the cell from the right at the same time as
b(7) indicates the equality of the two substrings:

a(t+1)a(i+2) - a(ly)

and:
b +1) b5 +2) - b(j + 4 —1)
if {4 —1 < {,— j, and the equality of the two substrings:
a(t+1)a(i+2) - ali + € —j)
and:
b3 +1) b7 +2) - b(Lz)

if {3 — 7 < £, —i. The value of the element of stream 2 entering the cell is “and”ed with
the result of comparison of a(i) and b(7). Thus the new value of the element of stream
2, leaving the cell at the next clock cycle, indicates the equality of the two substrings:

a(i)ali+1)a(i +2) -+ a(fy)
and:
b(7) b(j +1) b(G+2) -+ b(j + b — 1)
if 4 —i < {3 — j, and the equality of the two substrings:
a(ia(i+1)a(i+2) - ali + €, — j)

and:
b(7) b(7 +1) b(7 +2) --- b(£2)
ifly —j <& —1.
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Also, when b(j) enters the cell ¢, the element of stream 3, entering the cell at the same
time from the left, indicates whether the string:

b(7) b(7 +1) --- b(E2)

is equal to one of the strings:

a(l) a(2) -+ a(lz—j+1)
a(2) a(3) - ally—j7+2)
=1 olff in eBeidis T

The value of this element of stream 3 is “or”ed with the value of the element of stream
2 entering the cell at the same time. Thus the new value of the element of stream 3,
leaving the cell at the next clock cycle, indicates whether the string:

b(7) b(5 +1) -+ b(£2)

is equal to one of the strings:

a(l) a(2) - ally—3+1)
a(2) a(3) - a(lz—j+2)
a(i — 1) a(z) ally —j4+1—1)
a(¢) a(i+1) -+ a(ly—j+1)

The value of substr({,,{;) can be picked as follows:

o If £; > £;,. When the element b({y) enters the cell £, — ¢, 4+ 1, the value of the
element of stream 3 leaving the cell at the next clock cycle is equal to substr({y,(s).
This value is copied to the second local variable of the cell, from which it can be

fetched.

o If /5 > £;. When the element b(j), where j > {; enters the first cell of the circuit,
the value of the element of stream 2 entering the first cell at the same time indicates
the equality of the two substrings:

a(2) a(3) - -alf)
and:
b(i+1)b(F+2) ---b(i+6—1)

This value is “and”ed with the result of comparison of b(j) and «(1), the result
indicating the equality of the string a to the substring of b defined by:

b(7) (G +1) b7 +2) -+ b7+ 4 - 1)

W

This last value is “or”ed with the contents of the second local variable of the first
cell. The value substr({,,{,) can be fetched from the second local variable of the
first cell one clock cycle after that b(1) has entered the cell.

In section 3.3.1 we will give a formal description of the implementation of the substring
detecting circuit. In section 3.3.2 we will give a formal specification of the circuit.
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3.3.1 Implementation of the Substring Detecting Circuit

We will structure the formal description of the implementation of the substring detecting
circuit according to the scheme presented in section 2.2.

A. Topology The substring detecting circuit consists of an array of ¢, cells. The
topology of the circuit can be described as:

top(z, b1,0,) = 1<z <4

This means that we place a cell at each integer point between (and including) 1 and £,.
There are two circuit parameters £; and £,. The circuit parameter £, decides the length
of the array. The predicate top describes the topology of a family of substring detecting
circuits; one for each value of the lengths ¢; and ¢; of the sequences a and b.

B. Interconnections The connection vectors are defined by §; =< —1 >, & =< | >,
and &3 =< —1 >. Thus we get the following equations:

(2S$S€1) === inl($»€11€2?t)=outl('r"l,glag?at)
(1<z<b—1) — g, by, b, t) = outy(z+ 1,6, 0, 1)
(22z<4) — ing(a,b,0,1) = outs(z — 1,61, 65, 1)

These equations mean that in, and ins of each cell (except the first cell i.e. that at
position 1) is connected to out; and outs; respectively of the previous cell, while in, of
each cell (except the last cell i.e. that at position ¢;) is connected to out; of the next cell.
The inputs Input; and Inputs are fed into the circuit via in; and ing respectively of the
first cell, while Input, is fed into the circuit via in, of the last cell.

(2 =1) — ing(z, b, 0,t) = Inputy(x, by, Lo, 1)
T gl) == in2(m:£1332$t) = In-putz(ﬂ",el,g2,t)
(z=1) — ins(z,ly,b,t) = Inpuis(z,fy, by, 1)

(

The input functions are given by:

Inputy(z,6,6,,t) = case
tmod2 =10
{ t <202 } = 3(%)
endcase
Inputy(z,€y,0,1) = case
{ h+1<t) =
endcase

]nput3(rc,t?1,£’g,t) = ff

where # stands for the value true and ff stands for the value false. Note that Input,
defines the input scheduling of the circuit, i.e. how the sequence b actually is input to the
circuit.
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C. Cell Computations The computations which take place in the cells can be de-
scribed by the following:

(t > 1) A (l S Z Sf]) = outl(x,fl,fg,t) = inl(rc,fl,l’g,t = l)

(t21) A (15:1:5&’1) ——
O'Ltfg(.’ﬂ,fl,te%t) =
case
(t+z)mod2=10
{ t=12=

in2(1‘:€]1[/21t_ l)
(t+a) mod2 =10
{ t>z = A .
UOC;(I,El,gg,t - ].) = '\'-’l‘?.](.’ll,fl,({g,t = l)]

endcase

} — (IOCl(ﬂ?,ehgz,t-*].) =in1($,£1,£2,t—*1))

=21 A(l<zc<t) —

outz(z,l1,42,1) =

case

inB(zyghe'Z-)t - 1)

vV
{ (t+z)t7io;12=0 } - (l'ocl(z,fl,fz,t— 1) )

inl(.?,‘,f],{’z,t == 1)

in:ﬁ(l'afl-.ez,ﬂ—l)

V
(t+2)mod2=0 ing(z, by, b, t — 1)
> == A

focl(z,fl,ﬂz,t = 1)
inl(a:,fl,fg,t— 1)

endcase

t=21) A (1<z<ly) — loci(z, by, 4y, t) = locy(z, €y, 3,1—1)
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(t21) A (1<z<t) —

locy(x,4q,45,1)

case

t='2f1—3c
l'=£1

t=2€1—$
CL“(E}

{

t>2€1'—$
=1
t4+1)mod2 =0

|

endcase

!

t>2€1—$
=1
tmod2 =0

1:713(.?3,51, Eg, t— 1)

%
} !OC](ﬂ,gl,Bg,t — 1)
inl(zﬂfljezz t— 1)
in;;(a:,f;,fg, t— 1)
\
ing(.’c,fl,fg,t—l)
} = A
locl(a:,é’l, gq,t — l)
gz, by, byt — 1)
IOCz(l',ﬂl,gz,t = 1)
\
z'ng(:c,i’l,fg,t—lj
e A
focl(:r:,fl,fg,t—l)
z'nl(:c,é’l,fg,t—l)
} = lOCg(x,EI,fg,t—l)

From the above equations we conclude that the delay of each of outy, out,, outs, loc,,
and loc, is 1. The period of initialization is defined by:

0<t<1) A (1Sz<b)
0<t<l) A (1<z<h)
0<t<l) A (1<z<b)
0<t<1) A (1<z<h)
O<t<l) A (1<z<hy)

outy(z,€;,€y,t) = Outlnity(z, €, €;,1) = undefined

—
— outy(z, by, 0, t) = Outinity(z, €y, €5, ) = undefined
—  outs(z, €y, ¥z, 1) = Outinitz(z, £y, {,,t) = undefined
— locy(z, by, 05, t) = LocInit(z, £, {5,t) = a(z)

— locg(z, by, €y, t) = LocInit(z,{,, l2,t) = undefined

The above equations indicate that the element a(7) is preloaded to loc; of cell 7, while no
initial values are preloaded to the other wires and local variables of the circuit.
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3.3.2 Specification of the Substring Detecting Circuit

The specification of the substring detecting circuit is of the following form:

spec(z, by, €2,1) =
(lsfg) A (fggf[) A (t:fl-{-fg”l) A (.r=€1—€2+1} —_—
(loca(z, €1, €2,1) = substr({y,£3))
A
(1<) A (li<l) AN(z=1) A (t=26) —
(loca(z, €1, 83,1) = substr(fy, £3))

From equation (3.48) it follows that:

spec(:c,fl,fg,t) =
(zoc2(a, el,eg, ) vfi-fﬂ/\fz ol (a(i+j +1) = b(i +1)))
A
(1<) A (G <b)A(@=1) A (t=20) —
(toca(z, by, L2, 1) = VI AL (a(i+ 1) = b(i + j + 1))

(3.49)

Notice that the specification defines the output scheduling of the circuit, i.e. the time
instants at which to expect the elements of the output.



Chapter 4

Verification of Systolic Circuits

In this chapter we define formally the notion of verification of systolic circuits. In sections
4.1 and 4.2 we will summarize some basic ideas of the theories of abstract data types and
fixed points. In section 4.3 we use the ideas of sections 4.1 and 4.2 to define a formal
semantics for systems of recurrence equations. Based on the semantics definition we will
give the formal meaning of equality among systems of recurrence equations. In section 4.4
we will show, based on the results of section 4.3, how implementations and specifications
of systolic circuits can be compared for equality and hence how the notion of formal
verification of these circuits can be defined. In section 4.5 we will describe how decision
methods can be found to carry out automatic verification of different classes of systolic
circuits.

4.1 Signatures, Algebras, and Algebraic Specifica-
tions

In this section we describe some basic ideas concerning the theory of abstract data types.
For more details see e.g. [MG85], [EM85], or [GTW78].

A signature STG is a pair < §,G >, where § is the set of sorts of STG, and G is the
set of operation symbols of SIG. Each g € G has a domain sort w € §*, and a range sort
S € 8. The set K C G such that g € K iff g has an empty domain sort is called the set
of constant operation symbols of SIG.

A SIG-algebra A, where SIG =< §,G >, is a a pair < §4,G* >, where § is the
set of domains of A, and G* is the set of operations of A. The set of domains S is of
the form {S4; S € S}, where each S* is a set, and is called a domain of A. The set of
operations G# is of the form {g*; g € G}, where each g* is a function of type:

gt i St x .o x 84 — g4

if g has a domain sort Sy - --- - S,, and a range sort S. Bach g is called an operation
of the algebra.

For each S € § we assume that we have an infinite set of variables X which we call
the set of variables of sort 5. We call X = |Jscs Xs the set of variables of STG.

The set Ts of terms of sort S are defined as follows:

e If g € K has a range sort S then g € Ts.

45
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o If r € Xg then z € Ts.

e If t4,...,1, are terms of sorts Sy,...,.S, respectively, and ¢ € G has a domain sort
Sy +-- -5, and a range sort S, then g(ty,...,1,) € Ts.

The set Tszg of terms of STG is defined by Uges T's.
Let A be a §IG-algebra. An assignment 0 is a function which maps the elements of
Xs into S4, for each S € S. That is if § is an assignment and z € Xg then 0(a) € S4.
Given a STG-algebra A and an assignment @, the evaluation ' of the elements of Ts7g
is defined as follows:

o If g € K then #'(g) = ¢*.
o if z € X then #'(z) = 0(x).
o If g(ty,....1.) € Tszg then 0/(g(ty,....t,)) = ¢*(0'(ty),....0(t,)

A 8§ZG-equation is a pair < L, R >, where L, R € Ts7g. We write an equation in the
usual notation L = R.

A SIG-algebra A is said to satisfy a STG-equation L = R, iff for all assignments ¢ in
A, we have 0'(L) = #'(R).

An algebraic spectfication SPEC is a triple < §,G, & >, where SIG =< §,0 > is a
signature, and £ is a set of STG-equations.

A S8IG-algebra A is said to be a SPEC-algebra, where SPEC =< §IG,E >, iff A

satisfies each equation in £.
4.2 Functionals and Fixed Points
In this section we give some basic results of fixed point theory. The results are simple
modifications of the theory found in e.g. [ManT74].

Assume that we have a set D of sets, and an element L (representing the value
undefined), such that L & d, for each d € D. We define:

Dt = {du{l};de D}
and:
D = DuD*

A partial function is a function of type dj x -+ x d}, — d; ., where df € D", for
1<:<n+1.

We define a partial order C on the elements of each d* € D~ in the following way:

o z C 2, for each z € d*.

o L Cz foreachzed, if L&€d.
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The relation C can be extended to n-tuples in the following way:
KB ypesny@n 2 L € Wi ol 39

if z; C wy, for 1 < ¢ < n, where w;, z; € d7, for some df € D".
A partial function h is said to be monotonic if:

(7:1E72) — (k(z1) E h(z2))

for each Z; and z,.
A partial function h is said to be strictif h(zy,...,z,) = L whenever z; = L for some
1<i<n.

Proposition 1 Fach partial function with type dy X -+ x d,, — d*, where d; € D, for
1 €1 < n, is strict.

Proof: The proof follows immediately from the definition of strictness, and from the fact
that L ¢ d;. O

Given a partial function h of type dy x - - - xd, — dyy1, whered; € D, for1 <: < n+l,

the natural extension h* of h is a partial function of type df x --- x df — d,,, where

df =d;U{L}, for 1 <i<n+1,given by:

h+(z - _ WE) if ek Lforl <i<n
Ly i) = L if z;=1Lforsomel <i<n

It is clear that the natural extension of each function is strict.
Lemma 2 Fvery strict partial function is monotonic.

Proof: Suppose that h is strict but not monotonic. Then there are Z; and Z; such
that Z, C %, and 2(%;) € h(%). It can be shown that the strictness of A implies that
h(Z;) = L, and consequently A(Z;) C h(Z,), which is a contadiction. O

Lemma 3 The composition of monotonic partial functions ts monotonic.
Proof: Let h(Z) be of the form:

R{(h(Z1), -+ . hn(Zn)
where k', hy, ..., h, are monotonic. The claim follows from:

(WC7) — (V1 <i<n). (@ CE)) —
(V(1 <2< n). (h(w;) C hi(Z))) — (h(W) C A(Z))

O
Let hy and hy be partial functions. The relation hy C hy (read hy is less defined than
or equal to hy) is defined as:

(hy T hy) iff V. (hy(Z) = ha(3))
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The relation hy = hz (read hy is equal to hy) is defined by:
(hy = hy) it (hy T hy) A (he T Iy)

Let hq, ki, hy, ... be a sequence of monotonic partial functions, denoted {h;}, then
{h;} is called a chain if:
heChyChyC---

We say that h is an upper bound of the chain if:
hi C h

for i > 0. We say that h is a least upper bound of the chain, denoted U{h;}, if & is an
upper bound, and for each other upper bound A’, h C A'.

Lemma 4 Each chain has a least upper bound.
Proof: We define U{h;} as follows:

A o w if hi(Z) = w for some i > 0
U{hi}(z) = { L if h(Z) = Lforeach: >0

It can be easily checked that L{h;} exists and that it is the least upper bound of {h;}.
0

A basic functional' F, of type (d} x --- x df — d¥) — (d x --- x d}, — dF), where
dj,...,d% € D" and d* € D*, maps the set of partial functions of type d} x - -- x df — d*
into itself. That is, if F(f) is a functional of type (dj x - -- xd; — dT) — (dj x - x d —
d*), and h is partial function of type dj x .-+ x di — d* then F(h) is a partial function
of type df x --- x d; — dt.

A basic functional F(f) is said to be monotonic if:

(M Eh)) — (F(h)C F(he))

for each two partial functions by and h,.
A basic functional is said to be continuous if:

F{h}) = w{F(h)}
for each chain {&;}.

Lemma 5 Any basic functional F(f) defined by the composition of monotonic partial
functions and the function variable [ is conlinuous.

Proof: The claim can be shown by induction on the structure of 7. 0O
A partial function h is said to be a fived point of a basic functional F(f) if:

F(h) = h

A partial function & is said to be the least fized point of a basic functional F(f) if h is a
fixed point and for each other fixed point &', h C '

n the literature F is simply called a functional. We reserve the term functional to the class we
introduced in section 2.1, and which we will use throughout the later chapters
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Lemma 6 Fuvery continuous basic functional has a least fized point. Furthermore the
least fized point fr of F([) is defined by:
fr = U{F(Q)}
where Q(Z) = L for every .
Proof: That fr is a fixed point of F(f) follows from:
F(fr) = FL{F@}) = W{FQ)} = W{F@)} = fr
Now suppose that h is a fixed point of F. It can be shown by induction on 7 that:
F(Q) C h

for each ¢ > 0. Since fr is the least upper bound of {F*(Q)}, then fr Cg. O
A recursive program is of the form:

hz) = F(h)(Z)

Where F([f)(Z) is a basic functional defined by the composition of monotonic partial
functions and the function variable f applied to Z. The function defined by the recursive
program above is the least fixed point fr of F, and we denote it by fp. From lemma 5
it follows that F is continuous. From lemma 6 it follows that fp exists.

A system of recursive programs is of the form:

H(Z) = Flf,. fall
H(Z) = Flh,.. 5

]

)
)

(51

(@) = Falfry- s f2)(3)

where each F; is a functional defined by the composition of monotonic partial functions
and the function variables fi,..., f. applied to z.

In order to interpret systems of recursive programs, we need to define the notions of
monotonicity and continuity for tuples of partial functions and basic functionals.

A tuple < hy, ..., h, > of partial functions is said to be monotonic if h; is monotonic
for 1 <¢ < n. Wesay that:

& Byl 38 B 8 Hyeon iy

if hy; € hyg;, for 1 <4 < n.

Cotisider- atupleF ( iy v o Fa) = Bl lrsovayfa)ion o Fal Pz fi) S06f itictionals,
where each F; maps an n-tuple of partial functions of types ty;, ..., ty, respectively into
a partial function of type ty;, for 1 < ¢ < n. We say that F is continuous if F; is
continuous, for 1 < i < n. We say that h =< hy,..., h, > is a simultaneous fized point

of F(f1,..., fa) if:
h‘i = ﬁ(hh“-’hn)

for 1 <i < n. Wesay that & is the simultaneous least fived point of F if h is a simultaneous
fixed point and for each other simultaneous fixed point k', 2 C k'
The results of lemmas 5 and 6 still hold, namely:
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Lemma 7 Any basic functional F(fi,..., fn) defined by the composition of monotonic
partial functions and the function variables fi,..., fu is continuous.

Proof: The proof is similar to that of lemma 5. O

Lemma 8 Fach continuous tuple of basic functionals:

f(fla"')fn) :<}-l(fls-"1fn)a-'-1f(f1:---:fn)>

has a simultaneous least fized point.

Proof: The proof is similar to that of lemma 6. O

The n-tuple of functions defined by the system of recursive programs above is the
simultaneous least fixed point < fz,...,fr, > of F(fi1,..., fn), which we denote by
< fpi,---, fpn >. From lemma 7 it follows that F(f;,..., fu) is continuous. From
lemma 8 it follows that F(fi,..., fu) has a simultaneous least fixed point.

4.3 Semantics

In this section we use the ideas of sections 4.1 and 4.2 to explain how a system of
recurrence equations with a signature SIG can be interpreted over a STG-algebra A.
Then we define formally the notion of equality among systems of recurrence equations.

A stream interpretation I over a SIG-algebra A, where SIG =< §,G >, is a total
function which maps each stream variable into a function from tuples of integers to the
domains of A. Thus if 7 is a stream interpretation then, for each a € A of arity n and
sort S, I(a) is a function of type I™ — 5%, We denote Z(a) by a*.

Suppose that E is a system of recurrence equations over a signature SIG =< §,7 >.
We will define a formal semantics, which, given a STG-algebra A, and a stream interpre-
tation T over A, transforms E into a system of recursive programs.

Let £ be of the form®:

Hi(T)

Fi(T)

fn(T) = Fn(f)

The interpretation [E] 4 7 of I, under the algebra A and the stream interpretation T over
A, is defined to be the following equation system:

h(z) [71(@)]ax

(@) = [Fal@]az

2Notice that according to the notation of section 4.2 we should write F;(f1,.. ., f2)(T). Nevertheless,
for notation convenience, we write F;(T) whenever the tuple < fi,..., f, > is known or irrelevant in the
context.
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where [Fi(Z)] 4 7 is the interpretation of Fi(T) under the algebra A and stream interpre-
tation Z. The interpretation [F(T)] 47 of a functional F(T) of the form:

pi(T) = ©(T)

Pm(T) = tn(T)
endcase

is defined by:

[[ti(jf)]l,g,f if P.‘(f) is true
[F@): =
= if p;(T) is false for 1 <7 <m

where [ti(T)] 4 7 is the interpretation of t;(Z) under the algebra A and stream interpreta-
tion Z. The interpretation [t(Z)], 7, of a term ¢(T) is defined by the following:

o If t(T) is of the form a(q:(T),...,qx(T)) then:
@)z = o (a@),- ... (@)
where a?* is defined by the following:

a¥(zy,... ) if z; is an integer for 1 < < k
ot (2y,...,8:) =

L if z; is not an integer for some 1 <i¢ < k
o If t(Z) is of the form f(qi(T),...,qk(T)) then:

@az = f@@)- . a@)
e If t(T) is of the form ¢(t,(T),...,tx(T) then:

[t@)]sr = 9A+([[tl(f)]],1,ra---»llfk(i_')ﬂ.‘i,r)

where gt is the natural extension of g*,

It can easily be checked that [E], ; is a system of recursive programs. Now we will
show that our semantics is well-defined in the sense that the basic functionals [Fi(Z)] , ;
in [E] 4 are continuous, and consequently [E] , ; has a simultaneous least fixed point.

We note that the basic functionals in [E],; are built by the composition of the
function variables fi,..., f, and the following partial functions:

o g2t S x o x SAt — §A% for each g € G, where g% is the natural extension
of g4, g has a domain sort S; - -+ - S,,, and range sort S.
9,49 g

e q:I"— @, where ¢(z,...,2,) is a QI-polynomial.

e g:["— I, where q(z1,...,2,) is an integer polynomial.
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e alt : Q" — S for each stream variable a € A, where a has an arity n and a sort

S,
e case-endcase : B" x (§41)" — 5S4t where B denotes the hooleans and S € S.
e p: " — B, where p(T) is a predicate over the integers.

We will show that the above partial functions, from which the basic functionals in
[E] 4z are built, all are monotonic. This is achieved by the following lemma:

Lemma 9 Let F be a system of recurrence equations over a signature STG. Then for
each SIG-algebra A and stream interpretation I over A, the basic functionals in [E], ;
are built from the composition of function variables and monotonic partial functions.

Proof: The strictness of g, a*, and p follows from proposition 1. Also ¢* is strict by
definition. The monotonicity of ¢, a’*, p, and g% follows from lemma 2.

We will show that case-endcase is also monotonic. We will first show that if- then-
else of type B? x (d¥)? — d*t is monotonic. Suppose that < z;, 25, 23 >C< wy, wy, ws >.
Two cases are possible:

1. w; = z; = true. In such a case we have:

if-then-else(z, 29, 23) = 23 C wy = if-then-else{w,, ws, ws)
2. w; = z; = false. In such a case we have:
if-then-else(z, 25, 23) = 23 C w3 = if-then-else(w,, w;, ws)

It can easily be verified that case-endcase is built by the composition of if-then-else,
td, and Q, where id(z) = z, for each z, and Q(z) = L, for each Z. The monotonicity of
case-endcase follows from lemma 3 and the monotonicity of if-then-else, id, and (.
a

Lemma 10 Let E be a system of recurrence equations over a signature SIG. Then for
each SIG-algebra A and stream interpretation T over A, the basic functionals in [E], 4
are continuous.

Proof: The proof follows from lemmas 9 and 7. O

Theorem 11 Let E be a system of recurrence equations over a signature SIG. Then for
each SIG-algebra A and stream interpretation T over A, the tuple of basic functionals in
[E] 47 has a simultaneous least fived point.

Proof: The proof follows from lemmas 10 and 8. O

Now, given a system of recurrence equations £ over a signature SIG, a SIG-algebra
A, and a stream interpretation 7 over A, we agree that the tuple of functions defined by
E, under A and Z, is equal to the tuple of functions defined by the interpretation [£7], 7
of E, under A and I (which by definition is equal to the the simultaneous least fixed
point fp =< fp1,..., fpn > of [E], 7). By theorem 11 it follows that fp exists.
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Let E; and E; be systems of recurrence equations over a signature SIG of the forms:

M@ = Ful(@)

flmff) = }—lm (T)
and:

(@) = Fu(@)

fna(T) = Fany(T)
respectively. Given a STG-algebra A and a stream interpretation Z over A, we say that:
hi(@m) = fr(@)
forsomel <i:<nand 1 <j<nyif:
fri(@) = fp:(@a)
where < fpi1,..., fpin, > and < fpa1,..., fpan, > are the functions defined by [£1], ;

and [Ep], ; respectively.
We say that fi.(@1) = f2;(@;) over an algebra A, written:

A B fa(@) = f2,(@2) (4.1)

hi(@) = fa(@)

for each stream interpretation over A.
We say that fi;(@;) = fo;(@2) over an algebraic specification SPEC, written:

SPEC k= ful@) = f(@)

iff (4.1) is valid for each SPEC-algebra A.
Notice that the validity of :

A E fil@) = f2;(T2)

can be interpreted as a predicate P(T,T;) over the integers where for each value @, and
@; of T; and Ty, P(@;, @) is true iff (4.1) is valid. The same applies to:

SPEC | ful®y) = f2;(T2)
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4.4 Formal Verification

In this section we define formally what we mean by the verification of a systolic circuit.

As mentioned earlier, a specification of a system is a statement of how we expect the
output of the system to be related to the input. The verification problem is to check
whether the system implementation fulfills the requirements stated by the specification.
In order to give a formal definition of systolic circuit verification we need the following
proposition.

Proposition 12 For each systolic circuit, the value of the signals of the circuit can be
described as a system of recurrence equations, where the signature of the equation system
is the same as the signature of the circuit and the function variables of the equation system
are the signals of the circuit.

Proof: The proof follows easily form (2.2), (2.3), (2.4), (2.5), (2.6), (2.14), (2.15), and
(2.16). ©

By the verification of a systolic circuit, with a signature STG, over a SIG-algebra A,
we mean that we check whether or not the specification formula spec(T) of the circuit is
valid over A; in symbols:

A E spec(T)
We know that the specification formula of a circuit is of the form:
spec(f) = (pl(E) == (31(3) = fl(E))) Iy sz Y (pm(f) =¥ (Sm(f) = fm(T)JJ

where p;(T) is a predicate over the integers, s; is a signal in the circuit, and f;(Z) is a
function variable in a system of recurrence equations. Thus the verification amounts to
checking the validity of:

A E (@) — (s1(Z) = AF) A - A (PulT) — (sm(T) = [(T))) (4-2)

The validity of the formula in (4.2) is interpreted as follows: for each value @ of T if p(@)
is true then:

Ak s(@) = f(@) (4.3)

is valid, for 1 < ¢ < m. From proposition 12 and the definition of specification formulas
we know that s;(Z) and fi(7) are function variables in systems of recurrence equations.
Thus from section 4.3 we know the formal meaning of the validity of (4.3).

By the vertfication of a circuit with a specification formula spec(Z) and a signature
SIG over an algebraic specification SPEC = (8IG, ), written:

SPEC | spec(T)
we mean that we check whether or not:
A | spec(T)
is valid for each SPEC-algebra A.
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In chapter 5 we will study verification of systolic circuits over rings. This means
that the operation symbols of the circuit will be {+,-, —,0}, and the verification will be
performed over the algebraic specification of rings (see appendix A).

In chapter 7 we will study circuit verification over boolean algebras. Thus the op-
eration symbols will be {V, A, =, false,true}, and the verification is performed over the
algebraic specification of boolean algebras (see appendix B).

In chapter 6 we will consider circuit verification over algebraic specifications with
empty equation sets. That is, given a systolic circuit with signature STG and specification
formula spec(T) we consider the validity of:

SPEC |= spec(T) (4.4)
where SPEC = (SIG,0). Clearly if (4.4) holds then:
Ak specta)
holds for each STG-algebra A.

4.5 Automatic Verification

By the automatic verification of a class of circuits, each with a signature SIG, over a
SIG-algebra A, we mean that we have a decision method which, given the specification
formula spec(T) of a circuit in the class, the method checks automatically whether:

A [ spec(T) (4.5)

By automatic verification of a class of circuits over an algebraic specification we mean
that we have a decision method which checks automatically the validity of (4.5) for
all SPEC-algebras A. In chapters 5, 6, and 7 we give decision methods to perform
automatic verification of certain classes of systolic circuits over the algebraic specification
of rings, algebraic specifications with empty equation sets, and the algebraic specification
of boolean algebras respectively. We derive our classes of circuits, on which we perform
automatic verification, by imposing suitable restrictions on the general model of circuits
we presented in chapter 2. The restrictions are made by demanding that the circuit
topologies, interconnections, cell computations, and specification formulas should be of
certain restricted forms which are special cases of the general model. The restrictions
are made in a such a way that we can define decision methods while still maintaining
nontrivial classes of circuits. The reason for considering restricted classes of circuits is
that the general model often leads to undecidable verification problems.
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Chapter 5

Class of Rings

In this chapter we study verification of systolic circuits which operate over commutative
rings. We will give a decision method for automatic verification of a class of these circuits.
Such circuits are found in the field of digital signal processing. Examples of circuits which
can be automatically verified by the methods of this chapter include the convolution
circuit in [Ull84] (described in section 3.1), the matrix multiplication circuits in [MC80]
and [UlI84], the systolic realization of linear phase FIR digital filters in [Kwa37], the
systolic arrays for Viterbi Processing in [PG88], and the systolic array for 2-D spatial
filtering in [AS88]. The cell computations in the circuits of this class are defined by the
ring operators +, -, —, and 0. We will investigate the problem of deciding whether a circuit
implementation is correct with respect to a specification for the class of all commutative
rings. If a circuit is verified in this manner then the circuit is correctly implemented for
any arbitrary interpretation of the ring operators in a commutative ring. We will also
study the verification of circuits which operate on some particularly interesting rings, such
as the ring of integers, and the ring of natural numbers modulo m, for some fixed natural
number m. The latter is particularly interesting in systolic circuit implementations since
modular arithmetics allow bounding the sizes of the cell registers in the circuit. We will
illustrate the ideas of the chapter by sketching how the verification method can be applied
to the convolution circuit introduced in section 3.1.

In section 5.1 we give some preliminaries on rings. In section 5.2 we define two classes
of systolic circuits, the class of linear systolic circuits, and the class of tail-recursive ring
systolic circuits. These two classes of circuits are defined by imposing restrictions on
topologies, interconnections, cell computations, and specification formulas of the circuits
of the general model in chapter 2. The class of linear circuits will be used even in
chapters 6 and 7 to define new classes of circuits. The class of tail-recursive ring systolic
circuits is a subclass of linear systolic circuits. In this chapter we construct a method for
automatic verification of tail-recursive ring systolic circuits. In section 5.3 we study what
the general definition of semantics amounts to when restricting ourselves to the class of
commutative rings. In section 5.4 we give an overview of a decision method for antomatic
verification of tail-recursive ring circuits. In section 5.5 we show that the values of signals
in the implementation and specification of a tail-recursive ring systolic circuit can be
described as a class of guarded expressions over rings. In section 5.6 we show that the
problem of deciding equality between two guarded ring expressions can be reduced to the
integer linear programming problem which is decidable [BT76], and hence the verification
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problem is decidable.

5.1 Preliminaries

We will work with an arbitrary commutative ring! R =< R, +,-,—,0 > (see appendix
A). As in chapter 2, let [ =< I,+,—,-,<,0,1 > be the ordered ring of integers, and
let @ =< @,+,—,-,0,1 > be the ring of rationals. We will use z and y (possibly with
subscripts) to denote variables which range over I. We will use a, 3,7, é to range over I,
and p to range over ().

A linear QI-polynomial is of the form:

P1I7 Frieish Prnn 5 Pn+1

We will use £ and ¢ to range over linear Q) /-polynomials.
A linear inequality is of the form?*:

a1yt anZn + <0
A linear equality is of the form:
ottt az, +3=0
A linear modulo predicate is of the form
(cy@y + -+ apz, + ) mod v =0

where 0 < 8 < 7. Here 7 is called the modulus of the linear modulo predicate.

By a linear predicate we mean a linear inequality, a linear equality or a linear modulo
predicate. We use p to range over conjunctions of linear predicates.

When working with a ring R, the set A of stream variables is such that each a € A
has a sort R.

We consider a class of expressions which expand the class of polynomials over £. The
class of ring expressions is defined by the following:

o ( is a ring expression.

o If a € A is a stream variable with arity n, and ¢,(T),...,¢.(T) are linear QI-
polynomials then a(q(Z),...,q.(T)) (called a linear stream expression) is a ring
expression.

e If r1(Z) and r3(T) are ring expressions, then r((T) + r2(T), —r(T), and r(T) - 12(T)
are ring expressions.

o If r(:!: 1) is a nng expression, and (T) is a linear QI-polynomial then /) r(z,1)

is a rlng expzesston.

'In the rest of the chapter we say only ring instead of commutative ring.

2Observe that for each inequality of the form ajzj + -+ + apz, + 8 < @l + -+ abz, + ', 0
a1z 4 Fapzg+ 8> 0,or gy + - +apzn + 8 >0, 0r gz + -+ apay + 3 <0, there is an
equivalent inequality of the form we have defined above.
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We will denote ring expressions by r.
The class of ring polynomials over a ring R is defined by the following:

e 0 is a ring polynomial over R.
e Each variable over R is a ring polynomial over R.

e If r; and r; are ring polynomials over R, then r; + rp, —ry, and ry - 75 are ring
polynomials over R.

A linear guarded ring expression is of the form:

" (f) == N (f)

pa(T) = r.(T)
endcase

where r;(T) is a ring expression, and p;(T) is a conjunction of linear predicates. In
addition, we assume that p;(@) A p;(@) is false for each @ if j # ¢, and that »;(T) is well-
defined under p;(T) (Informally we say that a ring expression r(T) is well-defined under
a predicate p(T) iff for each value @ of T if p(&) is true then the upper indexes of the
Y operators in r(@) evaluate to nonnegative integers, and the arguments of the stream
variables evaluate to integers. For a formal definition of well-definedness see section 5.3).
Each p;(T) is called a guard of the expression, and each r;(T) is called a result of the
expression, while every p;(T) = 7(T) is called a case of the expression. It can easily be
shown that each linear guarded ring expression can be defined by a system of recurrence
equations over the signature of rings. We use e, e, €5, €3, ... to range over linear guarded
ring exXpressions.

5.2 Special Classes of Systolic Circuits

In this section we will introduce classes of circuits which are special cases of the general
model described in chapter 2. These special classes of circuits are defined by impos-
ing restrictions on how the circuit topologies, interconnections, cell computations, and
specifications may look like. The automatic verification methods will be applied to the
restricted classes of circuits. In section 5.2.1 we will define the class of linear systolic
circuits. The notion of linear systolic circuits will also be used in chapters 6 and 7. In
section 5.2.2 we will describe tail-recursive ring systolic circuits. In the rest of this chapter
we will give a method for automatic verification of tail-recursive ring circuits.

5.2.1 Linear Systolic Circuits

We will use linear systolic circuits to define the class of circuits on which we perform
automatic verification in this chapter and in chapters 6 and 7.
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Topology The topology of a linear systolic circuit is of the form:
top(z,0) = topy(T, ) A ... A topn(T, )

where each top;(T,%) is a linear inequality. Observe that top(T,?) defines a polytope.

Interconnections In a linear systolic circuit, the connection function A; corresponding
to an input in; is a tuple of integers, i.e. :

A o= G (5.1)

where &; is an n-tuple of integers in an n-dimensional circuit®. We call §; the connection
vector of in;. Also an input expression is of the form:

o
[S%]
—

case (

n(Z,0t) = iti(T,0,1)

(T, 0 t) = it (T,0,1)
endcase

where p;(Z,€,1) is a conjunction of linear predicates.

Cell Computations In linear systolic circuits, the cell computation associated with
each output or local variable is of the form:

case (5.3)

pl(faevt) = Ctl(f!eui)

endcase

where p;(T, Z, t) is a conjunction of linear predicates. An initial expression is of the same
form as an input expression (see (5.2)).

Specification The specification formula spec(%,Z,t) of a linear circuit is of the form:

spee(T,0,t) = - - - - -
(p1(T, 4, t) — (s1(F,0,t) = fU(ELE)) A o A (Pl Folit) — (8(T, 0 1) = fulT, 1))

where p;(T) is a conjunction of linear predicates.

In sections 5.2.2, 6.2, and 7.2 we define new classes of circuits which are special cases
of linear circuits, by considering special forms of cell computations and specification
formulas.

#Notice that although the interconnections of the summation circuit (section 2.2) do not follow the
form given here, the circuit can be considered as a two-dimensional linear circuit, where the topology
of the circuit is defined by sumtop(z,y,£) = (1 < z < £) A (y = 1), and the interconnection vectors are
§1 =< —1,0> and & =< 0,-1 >.
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5.2.2 Tail-recursive Ring Circuits

A tail-recursive ring systolic circuit is a linear systolic circuit, with the signature of rings,
where certain restrictions are imposed on the cell computations and the specification
formula of the circuit.

Cell Computations in Tail-recursive Ring Systolic Circuits A cell computation
is of the form:
8(z,6,t) =
case
n(@0t) = Qi(s1(T. 6t —7),...,8:(F 0t — 7))

pm(E ?
z, 7,

) = Quia@ht—r),...,5@, 8t —7)) (5.4)
Pmi1(T,4,t) =

$1
8'(F, 5t —1)+ QmH(sl(E,Z,t — 1)y, 86(T, 0t —T))

pa(Z,6t) = S(EFLt-1)+ (1T 6t —7),...,5(F, Lt — 7))
endcase

where ;(Z) is a ring polynomial over R, and s’ is defined by the following: if s is a local
variable then s’ is the same as s, while if s is an output out; then s’ is the corresponding
input in;.

Ther dependency relation <p (s, <p s; is read s, is dependent on s,) among the
signals of a tail-recursive ring circuit is defined as the smallest relation containing the
following elements:

e Let s be any output or local variable, and let the computation of s be of the form
of equation (5.4), then s; <p s, for 1 <: < k.

e Let s be any signal and out; any output, then if s <p out; then s <p in;.

e let s be any signal and in; any input, then if in; <p s then out; <p s.

In the class of tail-recursive ring circuits, the dependency relation is acyclic, i.e. for each
signal s, we have s £}, s, where s is the transitive closure of <p. This implies that <y is
a well-founded relation. The dependency relation of the convolution circuit in section 3.1
is given by the set {< loc,iny >, < loc, outy >, < ouly, loc >, < ing, loc >, < oulz,tn, >
, < outs,out; >, < ing,ing >, < ing,out; >}. Observe that the relation is acyclic.

Specification Formulas of Tail-recursive Ring Systolic Circuits The specifica-
tion formula of a tail-recursive ring circuit is of the form:

spec(T,1,t) =
(pl(f1f’ t) R (31(1‘-’?33) = TI(T’?J)” 5 AR (pm(f$?at} — (sm(fa?:” = ""m.(-fa?a”))

where r;(Z, ,1) is a ring expression which is well-defined under p;(z,7,1).

The reason for the name fail-recursive is that the computations of a tail-recursive ring
circuit can be described (section 5.5.2) by a class of functions which we will introduce in
section 5.5.1, and which we call tail-recursive ring functions.

It can easily be checked that the convolution circuit described in section 3.1 is a
tail-recursive ring circuit.
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5.3 Semantics

Let R be a ring. In a similar manner to the general case in section 4.3, given a stream
interpretation Z over R, we give a formal semantics for our ring expressions and linear
guarded ring expressions. A stream interpretation 7 over R maps each stream variable
into a function from tuples of integers into R. Thus if 7 is a stream interpretation then,
for each a € A of arity n, Z(a) is a function of type I* — R.

The semantics definition in the case of rings is a special case of defining semantics for
arbitrary algebras as described in section 4.3. Nevertheless we think it is interesting to
investigate what this amounts to in the special case of rings, and when dealing with the
special class of tail-recursive ring circuits.

Let L be an element such that L ¢ R. By [r(T)]g; and [e(Z)]z; we mean the
interpretation of the ring expression r(Z) and the linear guarded ring expression ¢(T)
respectively under the ring R and the stream interpretation Z over R. We have:

|[0]|R,I =0

ol (g(z)) if g(T) is a tuple of integers
le@@Npzr =

L otherwise

[ra (EH]R;{ i [[TQ(T)]]R_I if [ri(T)] gz # L fori=1,2
["@) +r2(@)]rs =
d otherwise

~[r@)]ps @]z # L
[-r@)]rr =
A otherwise

[r(@) - m2@)pr =
Ny otherwise

Zf(fo] [r(z,i)]pz if €(Z) is a nonnegative integer

[£& @], =

L otherwise

case

p1(T) = m(T); [ri{®)pz if pi(T) is true

{ [M@ps - lr2(@pr i [ri(F)]gg # L fori=1,2

Pm(T) => ™m(T) L if pi(T) is false for 1 < i< m

endcase BRI

We say that a ring expression r(T) is well-defined for a certain value @ if, for each
stream interpretation 7 over R, [r(@)],; # L. Otherwise we say that r(@) is undefined
for @. Observe that the well-definedness property does not depend on the particular
stream interpretation Z, nor on the particular ring K. We say that a ring expression r(T)
is well-defined under a conjunction of linear predicates p(7) iff for each value @ of T, if
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p(@) is true then r(@) is well-defined.

We say that two ring expressions r1(T) and ry(T) are equal, over R, for a value @
of T (denoted ri(@) = ry(@)) iff for each stream interpretation I over R, [r(@)]y ;
[r2(@)] gz

Observe that a linear guarded ring expression is well-defined for a value @ of T iff one
of its guards is true for @.

Il

5.4 Overview of The Verification Decision Method

We will give a sketch of an automatic decision method for tail-recursive ring circuits. In
section 5.2.2 we mentioned that a circuit specification was of the form:

spec(T) = (5.5)
(m(z) (5:@) =m(@)) A - A (Pr(F) — (5m(T) = r(T)))

where py(T),...,pn(T) are conjunctions of linear predicates, sy,...,s,, are signals in the
circuit, and r1(T),...,r.(T) are ring expressions such that r;(T) is well-defined under
pi(T).

In section 5.3 we defined formally the notion of equality for linear guarded ring ex-
pressions with respect to any ring R.

Let KC be a class of rings. By the eircuit verification for the class of rings K, we mean
that we check whether the specification formula in (5.5) is valid when interpreted in every
ring R € K; in symbols:

K | spec(T)

Notice that spec(T) contains stream variables (which occur in ry,...,r,) and integer
variables (T, ¢, and t). Thus to interpret spec(T), the stream variables are interpreted
in the rings of X', while the integer variables are interpreted in the standard model of
integers.

The verification process is carried out in the following two steps, each of which is
carried out automatically:
1. In section 5.5 we show that, for each tail-recursive ring systolic circuit, the value of
each signal in the circuit can be described by a class of functions which we will introduce
in section 5.5.1, and which we call tail-recursive ring functions. Furthermore we will show
that for each tail-recursive ring function, there is a linear guarded ring expression, which
is equal to it over each ring R. This means that, considering the specification formula in
(5.5), there are linear guarded ring expressions e,(T),. .., €,(T) such that:

$1(T) = e(T) , ..., 3au(T) = en(T)
over each ring R, so that the specification formula can be rewritten as:

spec(T) = (5.6)
(P1(T) — (a2(@) =71(@)) A -+ A (Pm(T) — (em(T) = m(T)))

which is equivalent over K.
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2. In section 5.6 we will study the decidability of the validity of formulas of the general
form:

p(E) — (e(T) = r(T)) (5.7)

where p(T) is a conjunction of linear predicates, €(T) is a linear guarded ring expression,
and r(T) is a ring expression which is well-defined under p(Z). From the formula in (5.6)
we conclude that if the validity, over K, of the formula in (5.7) is decidable, then the
validity of the specification formula is decidable.

We know that e(T) in (5.7) is of the form:

case pi(T)=ri(T); ... ; po(T) = ri(T) endcase

Thus , for K, the validity of the formula in (5.7) is equivalent to the validity of the two
formulas:

p(T) — pi(T) V-V p(T) (5.8)
over I, and:

p(@) A Pi(T) — (r(T) =ri(T)) (5.9)

over K, for 1 <i<n.

The validity, over I, of the formula in (5.8) can be shown (lemma 25) to be reducible
to the integer linear programming problem which is decidable [BT76] (integer linear
programming is described in section 5.6.4).

To decide the validity, over X, of the formula in (5.9), we need to decide the validity,
over K, of formulas of the form:

p(Z) — (r(z) = 0) (5.10)

where p(T) is a conjunction of linear predicates and r(T) is a ring expression well-defined
under p(Z). We will consider a class of formulas which we call bilinear formulas (see
section 5.6.2 for the definition of bilinearity). We define a measure of complexity for
formulas of the form of (5.10), and then show (in lemma 22) that if the formula in (5.10)
is bilinear then the formula can be rewritten into the conjunction of a set of “less complex”
formulas, which is equivalent over each ring R. The rewriting can be repeated recursively
(lemma 24) until we obtain a conjunction of “simple” formulas. A “simple formula” is of
the form:

pE) — (r=0) (5.11)

where p'(T) is a conjunction of linear predicates, and r is a ring expression which does not
contain any free integer variables. Obviously the validity, over A, of the simple formula
in (5.11) is equivalent to the unsatisfiability, over I, of p'(T), or the validity, over K, of
r = 0. The unsatisfiability of p'(Z) can be easily shown to be reducible to the integer
linear programming problem which is decidable [BT76]. Also the validity, over X, of » = 0
can be shown (lemma 23) to be reducible to the zero-equivalence of a ring polynomial
over K (see section 5.1 for the definition of ring polynomials).
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Thus deciding the validity of the specification formula for the class of rings K is
reduced to deciding the zero-equivalence of polynomials over X; i.e.:

K E (Q=0) (5.12)

where @ is a ring polynomial.

The problem in (5.12) is decidable if K is the class of all rings. It is also decidable for
some interesting rings, for example, if K is the ring of integers, the ring of reals, or the
ring of natural numbers modulo m (for some fixed natural number m).

5.5 Ring Circuits as Guarded Ring Expressions

In this section we carry out the first step of the automatic verification of tail-recursive
ring circuits. We show that, for a tail-recursive ring systolic circuit, the values of outputs,
inputs, and local variables of the different cells at different time instants can be described
as linear guarded ring expressions. This is done in two steps: 1) we introduce a class of
functions which we call tail-recursive ring functions, and show that for each tail-recursive
ring function, there is a linear guarded ring expression which is equal to it over each
ring R. ii) we show that the values of cell outputs, inputs, and local variables can be
described as tail-recursive ring functions, and hence as linear guarded ring expressions.
We apply the results obtained in the section to describe the signals of the convolution
circuit (described in section 3.1) as linear guarded ring expressions.

5.5.1 Tail-Recursive Ring Functions

In this section we introduce tail-recursive ring functions, and show that for each tail-
recursive ring function there is a linear guarded ring expression which is equal to it over
each ring R.

Definitions

A tail-recursive ring function f over a tuple ¢ of integers, where at least one element §;
of 6 is not equal to 0, is of the following form:

f(T) = case (5.13)
mn(T) = r(T); e Pu(T) = () 5 T
Prmt1(®) = [E+8) + 1 (@) 5 o 5 Pal®) > [(E+73) +7(T)
endcase

where each r;(T) is well-defined under p;(Z), and p;(@) A p;(@) is false for each @ if j # 7.
Note that each tail-recursive ring function is defined by a recurrence equation over the
signature of rings.

Given a ring R and a stream interpretation T over R, the function defined by f(Z) in



66 CHAPTER 5. CLASS OF RINGS

(5.13) is given by the least fixed point of the following:

E’"i(f)ERJ if pi(T) is trueand 1 <i < m
U@lpr = { [f@+)],, +[5®lpz ifpi(@)is treeand m +1<i<n
1 if ps(Z) isfalsefor 1 <i<n

Note that if the recursive calls of [f(T)];; continue infinitely (i.e. for each j > 0 there
is a p;; such that p; (T 48 - j) is true, where m + 1 < ¢; < n), then [f@)]gr = L.

For each value @ of 7, we say that a tail-recursive ring function f(Z) is equal to a linear
guarded ring expression e(Z), over a ring R, iff for each stream interpretation T over R,
[f(@]pz = [e(@)]pz- What the relation fi(@) = fo(@) means should be clear.

A tail-recursive ring function f(T) is said to be elementary if it is of the form:

f@) =
case
n(@) = nr(T)
pn(@) = (@) (5.14)
P(T) A pns1(T) = f(T+6)+ rm(T)

PE) A pol@) = @+5)+7a(@)
endcase

where p(T) is a conjunction of linear inequalities and equalities, p,(T), ..., p,.(T) are con-
junctions of linear predicates, and p,41(T),...,p,(T) are conjunctions of linear modulo
predicates.

Elementary Tail-Recursive Functions as Linear Guarded Ring Expressions

We will show that for each elementary tail-recursive ring function there is a linear guarded
ring expression which is equal to it over each ring R. This is achieved in lemma 14. For
the proof of the lemma we need some auxiliary definitions and lemmas.

Two linear modulo predicates p,(T) and py(T) are said to be similar if p;(Z) is of the
form (a7 T+ £1) mod v; = 0 and py(T) is of the form (a7 7+ F2) mod v, = 0, where
a7 = @; and 7; = 2. Two conjunctions of linear modulo predicates p,(T) and p,(T) are
said to be similar if p,(T) is of the form p11(ZT) A ... A p1(T) and po(T) is of the form
pa(T) A ... A pan(T), and py;(T) and py;(T) are similar for 1 <1 < m.

We call the elementary tail-recursive function f(Z) in equation (5.14) complete if
Prg1(T)s - - Po(T) all are similar.

Lemma 13 For each elementary tail-recursive function f\, there is a complele elemen-
tary tail-recusive function f; such that fi(T) = fo(T) over each ring R.

Proof: The details of the proof are not included. The main idea behind the proof is the
following: Let p,(T) and p2(T) be two linear modulo predicates, which are not similar.
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Let pi(T) be of the form (@5 T + ;) mod v; = 0, for i = 1,2. Then:

pE = pE) v .- vd(z)
where:
p)@) = (@7T+pB)modm=0) A (@GT+B+j—1)mody,=0)
and:

@ = p@) V.- vidE)

where:
@) = (@F+b+j—1)modym =0) A (@ + ) mod 7, = 0)

Observe that pi" (%), . L P(T), p2@),. .. ,p!(T) all are similar.
An elementary tall recursive function fi(Z) can thus be rewritten into a complete
elementary tail-recursive function f,(7), such that each pair of guards in f(T), which

contain linear modulo predicates which are not similar, are relpaced in f,(Z) by a set of
guards whose modulo predicates are similar. 0O
Consider a set M = {p\(T),...,pa(T)} of similar conjunctions of linear modulo pred-

icates. Let each p,(T) be of thc form:
(@ T+ Ba)mody =0 A - A (T T fim) mod 4p, =0
Let & be a tuple of integers. We define a relation M(8) on M as follows:
(0:(2),25(®)) € MB) i (@ B+ Bw)mody = By) for 1<kgm

Intuitively if (p;(Z), p;(T)) € M(8), then for each B, if p;(B) is true then p;(B +38) will be
true. We call the relation M (§) above the successive modulo relation.

Let M*() be the transitive closure of M(8). For any p;(Z) € M(8) if (p:(Z), pi(T)) €
M*(8), then pi(T) is called closed, while if (pi(T),pi(T)) & M*(8), then p;(T) is called
open. The M(§)-sequence of p;(T) is the sequence whose first element is p,(T), and
in which any element p;(Z) is followed by an element py(Z) iff (p;(Z),px(T)) € M(3).
Consider p;i(T) € M, then:

o If p;(T) is closed then the M(%)-sequence of p;(T) will be of the form:
Pir(T)s -1 Pia(T)s 20 (T), o o+ s Pia(T), - -
where i; =4, and i; # i for 1 < j # k < a. The sequence:
Pir(T), .-, pia(T)
is called the basic M(8)-sequence of p;(ZT).
o If p,(Z) is open then the M(8)-sequence of p;(F) will be of the form:
Pi(T), s Pia (T)

where iy = 1, 4 # i for 1 < j # k < a, and there is no p;(T) € M such that
(Pia (T), p;(T)) € M(8).
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Consider a linear inequality p(Z) of the foom @ T+ 3 < 0. Let § be a tuple of
integers. We call the minimum nonnegative ¢ such that p(Z + i - 9) is false (i.e. such that
@ (T+1i-8)+ B > 0) the 5-range of the inequality. Let u(T) denote the §-range of p(T).
Observe that if p(%) is false then u(Z) = 0. If p(Z) is true, then u(T) is finite if @- & > 0,
otherwise u(T) = co. If p(F) is true and @- § > 0 then:

_ l-az-j
K(E) = [T]

The range of an equality p(T) of the form @ T+ § = 0 is defined in the same way.
Observe that if p(Z) is true, then u(T) = 1 if @- & # 0, otherwise 4(T) = cc. Now given
a conjunction p;(Z) A ... A pn(ZT) of equalities and inequalities, we define the &-range
of the conjunction as the minimum of the §-ranges of the elements of the conjunction.
Clearly the range of the conjunction above is the minimum ¢ such that any of p;(Z + -
&)y Pm(T +1-8) is false.

Consider a tail-recursive function f of the form:

f(Z) = case
pl(f) = T](T) bl pm(_'f) = T‘m('_f) 3 _
Prt1(T) = f(T+68) +rmia(T) 5 oo 5 palT) = [(T+6) +1ra(T)
endcase
Denote the cases of f by ¢1,...,¢msCnt15-- 0. We call €,..., ¢, the non-recursive
cases of f, and ¢mq1, ..., ¢, the recursive cases of f. For any value 3 of T, the recursive

sequence of f(fB) is of the form:

ilviQ)"'v"".a
where p;, (B+(j—1)-8)is truefor 1 <j < a, ¢, is recursive for 1 < j < a—1, and either
¢;, 1s non-recursive, or Pk(B— + a-8) is false for 1 < k < n. Observe that the recursive
sequence of f(B) may be:

e empty i.e. @ = 0 (when pi(f) is false for 1 < k < n). In this case f(5) = L.

¢ infinite i.e. @ = oo (when for each 0 < j, there is a k such that m+1 < k < n and
(B + 7 - 8) is true). In this case f(B) = L.

e finite and 1 < i, < m (when for each 0 < j < a — 1, there is a &k such that
m+4+1<k<nand p(B+7-8)is true; and there is a &' such that 1 < k' < m and
pe (B + (e — 1) -8) is true). In this case f(B) = X5, ri,,, (B +7 - 9), over each ring
R.

e finite and m + 1 € ¢, < n (when for each 0 < j < a — 1, there is a k such that
m+ 1<k <nand p(B+7-8) is true; and there is no &' such that pu (B + a - 8)

is true). In this case f(3) = L.

Observe that in each case whether f(#) = L or not depends entirely on the guards of f,
and is independent on any particular stream interpretation Z or ring R.

Lemma 14 For each elementary tail-recursive function f, there is a linear guarded ring
expression e such that f(T) = e(T) over each ring R.
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Proof: Let R be an arbitrary ring. From lemma 13 we can assume without loss of
generality that f is complete. Let f(T) be of the form:

f(7) =

pl( ) = Tl( ) ) pm(_f) = Tm(T) )

d( ) A pmia(E) = fE+6) +rmi1(T) 5 .- 5 P(T) A pa(T) = f(T+8) +1a(2)
endacase

We define the successive modulo relation M(8) on the set {pn41(T),...,pa(F)}. For any
value B of 7 if f() is defined, then a number of cases are possible:

1. If p,(E) is true, for some 1 <7 < m. In this case f(8) = ri(8) over R.

2. If p(B) A pi(B) is true, for some m + 1 <4 < n, and p;(T) is closed. We observe that

f(B) is defined only if the 8-range u(B) of p(B) is finite, and p;(B + u(B) - ) is true for
some 1 < j < m. In this case the recursive sequence of f(#) will be of the form:

Thyeeealasllyreogbay oo 3llyee i ylaytlyeeeylyy?
where:

Py (“f)? v ?pfa(i-')
is the basic M(§)-sequence of p;(T), and:

= () dwa v = p(B) mod a
+ S <nfor1§j-._(a’ 1Sz.ﬁ§m
This means that:
18} =
k-1
(Zn, Ptia 6)+"'+T=’a(3+(j-a+a—1)'3))
=0 i ) . H
T=1(ﬂ+ka5)+ +T‘1(ﬂ+(ka+7_1)5)
+

ro(B+ (ko k) )
over R. Observe that if £ = 0 then:
fB) = ra(@®+ - +r,(B+(v-1)-8)+re(B+7-3)

3. 1If »(B) AE"(E) is true, for some m + 1 < i < n, and p;(T) is open. Let u(f) be the
b-range of p(f), and let:
Piy (E)! <oy Pig (E)

be the M(8)-sequence of p;(Z). We observe that if f(/3) is defined then the recursive
sequence of f() will be of the form:

Ty oalyyl
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where v = min(u(B),a), 1 <’ < m, and py(B +~ - &) is true. In this case:
f@) = ry@B)+-+r,B+(v=1)-8) +ra(B+7-9)

over R.

Now we will define a linear guarded ring expression e(T), such that f(F) = ¢(T) over
R. The set C of the cases of e(T) reflects the above three possibilities. The set C is the
smallest set containing the following elements:
1. For each 1 <: < m, C contains the case:

{ pi(T) }:=> 7i(T)
2. Foreach m 4+ 1 < < n, if p;(T) is closed, then let:
Pir(T), - - 1 Pia (T)
be the basic M(%)-sequence of p;(Z), and u(T) the §-range of p(F). Let:
kT) = p(@) diva +(T) = u(T) mod a

For each 1 < ¢ < m, C contains the cases:

K(F)-1
o) ( Z T+ a8+ +ri (T ata-1) -3))
e (o 7 M
Pu(Z + p(Z) - ) (T + K@) -8+ o 41 (T (KE) -0+ 9(E) = 1)-T)
a< y(z) + B
(T + (k(T) -+ (7)) 6)
and:
p(7)
pi(7) i L T 7
pr(:‘f+ﬂ(f)'3) :=>'f'=]($)+ +T=1(;)($+(—Y(‘r) 1) )+Tl'(a’ +FT(J’) )
a > p(7)
3. For each m+ 1 <i < n, if p,(T) is open, then let:

Pi (.‘f), v apiu(-x_)
be the M(8)-sequence of p;(T). Let u(T) be the d-range of p(T), and let ¥(T) = min(u(T),
a). Then, for each 1 < i’ <m, C contains the case:

pir(T+4(T) -6
Now we observe that if #(T) is a ring expression, then r(Z)[z; — (@ T + ) mod 5|, where
v is a positive integer, can be written as:

p(7) _ _
pi(T) = i, () + -+ 1 (F+(HET) = 1) «9) +ru(T +4T) )
)

case
{@z+pmody=0} = (@i 0

{(55+ﬁ_7+1)m0d7=0} = @)z —v-1]
endcase
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and 7(T)[z; « (@ T + ) div 7], where 7 is a positive integer, can be written as:

case
{(@z+B)mody=0} = r(@)z; — T

~

{@T+8-v+1)mody=0 } ot (@) TR

endcase

Thus each case in C, in which @ T+ 8 mod v or (& T+ ) div v occurs in the result, can
be replaced by a number of equivalent cases in which @ T+ 3 mod vy or (@ T + 3) div v
is replaced in the result by an integer or a linear @I-polynomial respectively, and such
that the result of each new case is still well-defined under the guard of the case. Similarly
all occurences of forms [@ T + A/v], min(& T + B,7), or min(a&; T, + 1,82 Ty + F2)
in the results of C can be replaced by integers or linear polynomials. It follows that
each element of C' will be of the form p(Z) = r(T), where p(T) is a conjunction of linear
predicates and r(T) is a ring expression.

We observe that the construction of the cases of e(T) does not depend on the particular
ring R. It follows that f(T) = e(T) over each ring R. O

Tail-Recursive functions as Linear Guarded Ring Expressions

We will show that for each tail-recursive function, there is a linear guarded ring expression
which is equal to it over each ring R.
Let F(Z) be any functional of the form:

case
nE) = u(@)

Pn(f) == tn(f)
endcase

Then the result of deleting the case p;(T) = t,(T) in F(T) is the functional:

=
=
p(Z) = 1.(T)

endcase

Theorem 15 For each tail-recursive function f, there is a linear guarded ring expression
e such that f(T) = e(T) over each ring R.
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Proof: Let R be an arbitrary ring. Let f(T) be a tail-recursive function. It is clear that
f(T) can be written as:

f(z) = (5.15)
case
@ AR @) =A@ 5 L m(E) AR (E) = r0)(F) ;
pl(f) AP (@) = FE+E) +r0 (@) 5 - @) APRE) = F(@+8) + (@) ;
pk( ) A p( )(.’L‘) = r(k)(f) ce i pe(T) A p("}( )= r(“)( Vis

(@) A Pt a(T) = f(T+ )+rm2+l( )i @) APE(E) = f(T+T) + (=)
endcase

where 1 < k, pi(T) is a conjunction of linear inequalities and equalities, p!’ (_) is a
conjunction of linear modulo predicates, p;, (@) A p;,(@) is false for each @ if i3 # 7;, and
pff)( )/\pm( ) is false for each j and @ if ¢ # ¢;. We will show the theorem by induction
on k.

Base Case (k= 1): If k = 1 then f(T) is an elementary tail-recursive function. The
result follows from lemma 14.

Induction Step: We observe that for each value B of Z, f(3) is defined only if p;(3) is
true for some 1 < ¢ < k. Furthermore if pi(ﬁ) is true then p; continues to be true in the
subsequent recursive calls of f, until the number of recursive calls is equal to the &-range
1:(B) of pi(B) (in which case p; becomes false). Also, once p; has become false then it
will not become true again at any later recursive call of f. Formally:

piE) — (Vi<wp(@) pE+i-8)) A (V)2 @) -p(E+i-8) (516)
Let hi(T) be the result of deleting the cases:
p(Z) Apy () = (@), - piE) A RL(E) > 10 (@),
pt(m)/\pmg+l( ):> f($+5)+7"m +1(§) % mE apt 'T)Apn)(x => f( )""T(l ( )
in f(T). Then from (5.16) it follows that for R:

pi(z) — (f(7) = (@) (5.17)
where:
Pi(E) A p%‘j’(f) — (@ ="P@) for 1 <j<my
p@) A PIE) — (i@ =LT+8)+r0@) form+1<j<n (5.18)
-pi(@) — (fi(T) = hi(T))

It can be shown that there are conjunctions of linear inequalities and equalities Plii)(ﬁ),
.,PJ{:}( ), such that for each @, P{ @) A P( (@) is false if 32 # 51, and:

(@ = PP@ V- v RY@ (5.19)

Also from the induction hypothesis it follows that there is a linear guarded ring expression
() such that:

h(E) = e9(F) (5.20)
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over R. From (5.18), (5.19), and (5.20) it follows that:

fi(@) = (5.21)
case

PO@) = eD@); ... ; PP(E) = e(3);

pi@ Ap)(@) = 0@ ... pi(@) AT = r0(@)

pi@) AP (@) = fE+8) + 0@ ... @) APE) = F(T+3) + (@)
endcase

From the above equation we can easily conclude that f;(Z) is an elementary tail-recursive
function. From lemma 14 it follows that there is a linear guarded ring expression ¢; such
that:

fi@) = &) (5.22)
over R. Let:
e(T) = case pi(T) = e1(T); ... ; pi(T) = ex(T) endcase (5.23)

It follows easily that e(T) can be written as a linear guarded ring expression. From (5.17),
(5.22), and (5.23) we get:

f@) = &3)

over 2. We observe that the construction of e(Z) does not depend on the particular ring
R. Tt follows that f(T) = e(T) over each ring R. O

5.5.2 Describing Tail-recursive Ring Systolic Circuits by Lin-
ear Guarded Ring Expressions
In this section we show that, for tail-recursive ring systolic circuits, the values of outputs,

inputs, and local variables of the different cells at different time instants can be described
as linear guarded ring expressions. This is achieved by the following theorem:

Theorem 16 Consider a tail-recursive ring systolic circuit. Let s be any signal in the
circuit. Then there is a linear guarded ring ezpression e such that:

s(Z,0,t) = e(F,4,1)
over each ring R.

Proof: We will prove the theorem by induction on the dependency relation (see section
5.2.2). We will show the claim when s is any out;. The proof is similar when s is any n; or
loc;. Let the computation equation of out; be of the form of (5.4). Let the corresponding
initial function, input function, and connection vector be Init(z,¢,t), Input(z,,t), and
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& respectively. Recalling equations (2.2), (5.1), (2.3), (2.16), (5.3), and (2.15) we get:

s(z,2,t) =
case
0€t<r e
{ top(z, ) } = Init(T,{,1)
t>T
top(z, ) = Q(a@Z Lt —7)... (T Lt = 7))
(T, 4t)
t>27
top(T,7) = Qu(s1(Z, Lt —7),...,8:(F, Lt — 7))
Pm(T, 4, 1)
t=>7 Input(z, 0t — 1)
top"(z, £) — B + )
i N b AT Quir1(s1(T, 0t —71),. .., (T, 0,1 — 7))
(5.24)
t>7 Input(Z,0,t —7)
top”(i_,?) — +
pn(Z, 4, 0) Qu(81(Z, 8t — 7)., 84(Z, Gt — 7))
t>71 s(Z+8,5,t—1)
top/ (%, f) = B + B
Pma1(T, 4, 1) Quii(81(T, 0t —7),. .., s(T, 6t — 7))
t>7 s(T+06,0,t—1)
top'(T,0) § = +
Da(T 45 1) On(31(F, 8t = 7)o 807, Lt — 7))
endcase
From the definition of the dependency relation we know that s;,...,8: <p s. It follows
from the induction hypothesis that there are linear guarded ring expressions ¢,,..., ¢,
such that:

Sj(f,f,t) = ej(f,é’,t]
over each ring R. Furthermore we know that Init(%,7,t) and Input(Z,,t), in tail-
recursive ring circuits, are described as linear guarded ring expressions. It follows easily
that out; is a tail-recursive function. From theorem 15 it follows that there is a linear
guarded ring expression e such that:



5.5. RING CIRCUITS AS GUARDED RING EXPRESSIONS 75

over each ring R. O

5.5.3 First Step of Verification of The Convolution Circuit:
Describing it by Linear Guarded Ring Expressions

Theorem 16 can be applied to the convolution circuit introduced in section 3.1, in order
to describe the values of the wires and local variables as linear guarded ring expressions.
The details of the application of the theorem are not given here.

From (3.12), (3.16), (3.3), and (3.6) we get:

outy(z,£,t) = case
<z <

t>=2
=10 = Input,(z,f,t —2)

tmod?2 =10

{ 0£t<2£} N Out]n?.t;(171€1t)

tmod?2 =0
endcase

bt 2
l1sx<i = outy(z—1,{,t —2)

From (3.16) and (3.9) we get:
outy(z,£,t) = case

tmod4 =10

H+4<t<8+4
z=10 = 0

tmod4 =0

4< i <4044
{ r=0 } B a(%)

t i
l<ag<d = ouly(z—1,0,1 —2)
t mod2=0

endcase
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By applying theorem 15 we get:

outy(z,{,t) = case (5.25)

2r4+4<t<2z4+ 4044
0<z<?t — Q(M)

d
(t —2z) mod4 =0

b=asd

2e+40+4<t<22+80+4
= 0
(t—2z)mod4 =0

endcase

which is a linear guarded ring expression.

Similarly we can show that:

ini(z,f,t) = case (5.26)
204+2<t<2c+4042
{ 0<a<t } — a(%)
(t—2z+4+2)modd =0
2o+ 40 4+2<t<2zx+80+2
{ 0<a<t } = 0
(t—2z4+2)mod4=0
endcase

and:
ing(x,f,t) = case (5.27)
z<t<z+/¢
{ 0<z<{ } = bt —=z)
endcase
and:

loc(z,l,t) = case (5.28)
20 +2<t
0<a <t } = b(z)
tmod2 =0
endcase
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From (3.15), (3.18), (3.5), and (3.8) we get:

outs(z,£,t)
case

‘i = Outlnits(z, 1)

=2
t=2z+4

0<z <t

|
}
|

r/\ I/\

= iny(z, bt —2) - loc(z, £, —2)

) = Inputs(z,{,t —2) +iny(z,f,t —2) loc(z, €, t —2)

tmod2=20

t>2
2c+4 <t
0<z<t
tmod2 =10
endcase

= outsz(z + 1,4,t—2) +iny(z, €t — 2) - loc(z, €,t — 2)

From (3.18), (3.11), (5.26), and (5.28) we get:

outz(z,l,t) =
case

= a (%) -b(z)

==% & (z_sz_q) sb(z)

204+8<t<66+4
B =L

(t+2¢)modd =0

0<z<t = outs(z +1,6,t~2) +a (EZ=4) i(a)

(t—2z)mod4=0

0<e <t
(t—2z) mod4 =0

== outz(z +1,{,t - 2)

)
|
{ 2e+4<t<2w+40+4 }
|

{ Qr+dl4+4<t<2e+80+4

endcase

gt
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By applying theorem 15 we get:

outsz(z,L,t) =
case
24 4<t<4l-2c+4 s
= (t=2z-4i-4) 3
0<z </ =k 3. 4 a( = ) b(z+1)
(t—2z) mod4 =0

4 22 +8<t <4 +2x+ 4 _
0 ogd = Zf;ga(%).b(@n_{_i)
(t—2z)mod4 =0

U+20+8<t<8-22+4
= - BI_2z—t+44 %
0<z<t = Dot a(f—i)b(Litiebiot)
(t—2z) mod4=0
endcase

which is a linear guarded ring expression.

5.6 Equality Checking

In this section we will accomplish the second step of the verification of tail-recursive ring
circuits; the first step being given in section 5.5. We will study the validity of formulas
of the form:

p(T) — (e(T) = r(T)) (5.30)

where p(Z) is a conjunction of linear predicates, (%) is a linear guarded ring expression,
and r(Z) is a ring expression which is well-defined under p(7). We will consider a class
of formulas which we call bilinear formulas, and show that if a formula of the form of
(5.30) is bilinear, then it is decidable to check whether or not it is valid for the class of
all rings. We will also show that the validity of bilinear formulas of the form of (5.30) is
decidable for some interesting rings such as the ring of integers, the ring of reals, and the
ring of natural numbers modulo m (for some fixed natural number m). Furthermore we
use the results obtained in the section to carry out the second step of the verification of
the convolution circuit.
We need the notion of normal forms for ring expressions.

5.6.1 Normal Forms for Ring Expressions

We introduce the notions of sums of products and normal expressions, and then show
that for each ring expression there is a normal expression which is equal to it over each
ring R.

A sum of products is a ring expression of the form:

6H(F) £2(Ta) (@ aaeimo)

Z Z Z al(a_l‘(fsih--'aim))' '(tn(ﬁ(f!il:'-':iﬁilJ)

i1=0 i3=0 im=0
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Here m is called the depth of the sum of products, and a1(G(Z,21,...,0m)) -
@ (GnlT, 01, - - -y 1)) the stream expression part of the sum of products.

A normal ring expression is a ring expression of the form 51(T) + - - - + Si(T) where
Si1(T),. .., (T) are sums of products.

Lemma 17 For each ring expression r(T), there is a normal expression N(T) such that
r(T) = N(T) over each ring R.

Proof: The proof can be carried out easily by structural induction on ring expressions,
and rewriting by distributive laws as:

Il
=
—

8|
=
5
%)
sl
=
+
=
o
=
&
=
-
w
-1
&)
=

r1(T) - (r2(T) + r3(7))
£(T) £(7)
(Z n(ﬁ:‘,i)) - my(T) (T, 1) - r2(T)

i=0 1=0
(=) () Y(3)
r(T,0) +r2(T,0) = Y_m(T0) + ) (T 0)
i=0 i=0 1=
() ‘ 6H(T) ' €1(7) £2(F) ‘ .
Son@i)| - | X T = ri(F,4) - 12(%, 5)
i=0 =0 i=0 j=0

]
From now on we consider only normal expressions.

5.6.2 Ring Conditional equalities

A sum of products is bilinear if its stream expression part is of the form:

al(%l(E} I)s -y Qrmy (T,;)) e ﬂn(qnl (512)1 s 1([71?!1,1(5’;))

and for each ¢ and 7 where 1 < ¢ # j < n, either g; is not the same stream variable as
aj, or the elements of T and i have the same coefficients in ¢;(T,7) as in (;J;‘.(T,F)E for
1 < k < m; =m;, i.e. there are integers ay such that:

gik(T,1) = qilTat) + o

for 1 <k < m; =m;. A normal expression is called bilinear if all its sums of products are
bilinear. A linear guarded ring expression is called bilinearif all its results are bilinear.

A zero-equivalence formula is of the form p(zT) — (r(T) = 0), where p(T) is a con-
junction of linear predicates and r(T) is a bilinear normal expression which is well-defined
under p(T).

‘A ring conditional equality is of the form p(T) — (e(T) = r(T)), where p(T) is a
conjunction of linear predicates, ¢(T) is a linear guarded ring expression which is bilinear,
and r(Z) is a bilinear normal expression well-defined under p(Z).

In section 5.6.3 we define a measure of complexity on zero-equivalence formulas. In
section 5.6.5 we show that for each zero-equivalence formula P(7), there is a finite con-
junction of “simpler” zero-equivalence formulas, which is equivalent to P(T) over each

ring R.
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5.6.3 Complexity

We define a measure of complezity for zero-equivalence formulas. In order to do that we
need the notions of matching relation and block.

Two sums of products are said to be matching if their stream expression parts are of
the forms:

al(q‘.ll('—fj-zr)u ki i 5q1m1(5=?)) S sk an(qnl(fu ;)y i aqnm"(faz))

and:
al(?;l(fﬂ'L LK) vq;ml(fli)) ot a"n(q:ﬂ (T,i], ) aq:m,,(i 5)}

respectively, and the elements of Z have the same coefficients in ¢;x(T,7) as in ¢, (T,7),
i.e. there are linear polynomials q}'k(f), for 1 <7 <nand1 <k <mj, such that:

3k(T7) = Gu(T7) + ¢5i(7)

It is clear that the matching relation is an equivalence relation among sums of products.
Two normal expressions, of the forms 511(T) + -+ + S1m(T) and 52 (T) + -+ + 52,.(7)
respectively, are said to be matching if 51;(Z) and S,;(T) are matching for 1 <@ < m.

Let N(Z) be a normal expression of the form S;(T) + -« - + S,.(T). Let the equiva-
lence classes defined by the set {5(Z),...,S,(Z)} and the matching relation be {5,,(7),
ces St (@Y - {51 (T)s - - -y Suma(T)}. Let Bi(T) be the normal expression S;(T) +
<o+ Sim;(T). Then B;(T) is called a block of N(T), while B{(Z) + -+ + B.(T) is called
the block form of N(T).

The complezity of a sum of products is defined to be the pair < d,#z >, where
d is the depth of the sum of products, and #z is the number of free variables in the
sum of products. The complerity of a block in a normal expression is defined to be the
maximum of the complexities of the sums of products in the block. The complexity of
a normal expression is defined to be a pair < ¢;,¢; >, where ¢ is the complexity of a
block with maximum complexity in the normal expression, and ¢; is the number of blocks
with maximum complexity in the normal expression. The complexity of a conjunction of
linear predicates is defined to be the number of free variables in the conjunction of linear
predicates. The complezity of a zero-equivalence formula of the form p(T) — (r(T) = 0)
is defined to be the pair < ¢;,¢; >, where ¢; is the complexity of r(T), and ¢; is the
complexity of p(T).

A sum of products is called simple if it has a complexity of < 0,0 >. Note that
if a sum of products is simple then it does not contain any free integer variables. A
normal expression is called simple if all the sums of products in it are simple, i.e. it has a
complexity of the form << 0,0 >, ¢ >. A zero-equivalence formula is called simple if its
normal expression is simple, i.e. it has a complexity of the form <<< 0,0 >, ¢; >,¢; >.

The complexity of a normal ring expression r(T) is denoted by C(r(T)). The same
applies to linear predicates and zero-equivalence formulas.

5.6.4 Integer Linear Programming

The integer linear programming problem is the following: Given a conjunction p(T) of
linear equalities, ts there a nonnegative value @ of T such that p(@) s true ¢. In [BTT76)
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the integer linear programming problem is shown to be decidable. This is done by finding
a bound ¥ which is derived from p(T), such that if there is a nonnegative @ for which
p(@) is true then there is a nonegative 3 <7, such that p(3) is true.

5.6.5 Deciding the Validity of Zero-equivalence Formulas

In this section we show that the validity of zero-equivalence formulas over a class of rings
K can be reduced to the zero-equivalence of polynomials over K. This is achieved by
lemma 24. For the proof of the lemma we need the definition of the shifting operation
and some auxiliary lemmas.

Let »(Z) be a ring expression. The result of shifting the stream variable a by 73(%)
in 7(Z) is the ring expression rs(Z) we get from r(F) by replacing each stream expression
(see section 5.1) of the form a(g(z,7)), by the stream expression a(g§(Z,7) + 73(F)). Here
rs(T) is called a shift of r(T).

The result of shifting the variable « by « in 7(T) is the rmg expression we get from

r(T) by replacing each occurence of z in each stream expression in r(T) by z + a.

Lemma 18 Let r(T) be a ring expression. Let rs(T) be a shift of r(T). Then for cach
value @ of T, r(a) = 0 iff rs(@) = 0 over each ring R.

Proof: Let R be an arbitrary ring. First we show that for each value @ of T, it is true
that for each stream interpretation I over R, there is another stream interpretation 7'
over R, such that [r(@)], 7 = [rs(@)]p 7

Let rs(T) be the result of shifting a by ¢s(T) in r(T). For each stream interpretation
T over R, we define the stream interpretation I* over R, such that for each 3

ar(

=
I
=1
s
=

and:
b'(B) = ¥'(B) ifb#a

It is clear that I exists and that [r(@)]z 7 = [rs(@)]p 7.

Now suppose that rs(@) = 0 over R. It follows that for each stream interpretation
I’ over R, [rs(@)]pr = 0. Suppose that r(@) # 0 over R. Then there is a stream
interpretation I over R, such that [r(@)];; # 0. This implies that there is a stream
interpretation I’ over R such that [rs(@)], 7, # 0, which is a contradiction. It follows
that if rs(@) = 0 over R then r(@) = 0 over R.

In a similar manner we can show that if »(@) = 0 over R then rs(@) = 0 over K.

As R was chosen arbitrarily, the result holds for each ring R. O

Lemma 19 Let:
e S5(T) be a bilinear sum of products, which is not simple.
e o be an integer.
o S'(T) = 5(T)[a; «— a; + al.

Then there are bilinear sums of products S*(T), S1(T),. .., 5%(T), such that:
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e 5%(T) is the result of shifting x; by a in S(T).
e C(5:(T)) < C(S(T)) for1 <1 < m.

o For each value B of T if both S'(B) and S(B) are well-defined then S'(F) = 57(
S$1(B) 4 -+ + Sn(B) over each ring R.

=
-+

Proof: The proof can be carried out using induction on the com};:lexn,y of sums of products
and expanding expressions of the form T/t r(T,i) to Tr0) (T, 1) + r(F,L(F) + 1) +

-+ (T, 4T) +) if v is a positive integer, and to 3, (_IO) r(T,1) — r(T,4(T)) —r(T,4T) —
1)—---—r(m £(T) + v+ 1) if v is a negative integer. O

Remarks on lemma 19
1. Observe that S(%) and S*(T) are matching, and that C(S5*(F)) = C(S5(7)).

2. Let N(T) = S1(T) + -+ - + Su(T), then S'(T) = S*(T) + N(T). Observe that N(T) is
a normal expression and that C(N(T)) < C(S(T)).

3. If the stream expression part of S(T) does not contain z; then S*(T) = S(T).

Lemma 20 Let:
e (T) be a bilinear normal expression, which is not simple.
e o be an integer.
o '(T) = r(T)[zi « z: + al.
then there s a bilinear normal expression v™(T) such that:
o C(r*(@) < C(r(®))
o for each value K] of T if both r’(ﬁl and r(B) are well-defined, then for each ring R
if r(B) =0, then r'(3) =0 iff r*(8) = 0.

We call the ring expression r*(F) the result of rewriting »'(T) by »(T) = 0.
Proof: Let R be an arbitrary ring. Let the block form of »(Z) be:

By\(Z) + -+ + Bu(T)

Without loss of generality let B,(T) be a block with highest complexity in »(T).

Let aj,...,a, be the stream variables which occur in By(ZF). We know that B, (T)
is bilinear and that all the sums of products in B(T) are matching. It follows that
there are polynomials §,(x;),...,§,(z;), such that the result of shifting a,,...,a, by
Gi(z:), - - -, (i) respectively in B,(T) yields a block Bs;(T) in which the following is
true: z; does not occur in the stream expression parts of the sums of products in Bs (7).

Let rs(T) be the result of shifting ay,...,an by §y(2i), ..., G (2;) respectively in r(Z),
then:

rs(T) = Bsi(T)+ -+ Bsy(T)
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where Bs;(T) is the result of shifting a1, . . ., am by i (i), . ., G (zi) respectively in B;(F).
Also we note that:

F@) = BiE)+-+ Ba(®)

where B’ (T)

= B;(T)[z; « z; + a]. Let r&'(T) be the result of shifting a,,...,a, by
(2, Gl2i)

respectively in r'(Z) then:
rs'(T) = Bsy(T)+ -+ Bsl (T) (5.31)

Observe that the stream expression parts of Bs;(T) and Bs}(T) do not contain w,.
From the remarks below lemma 19 it follows that:

Bsj(z) = Bsj(T)+ N;() (5.32)

over R, for 1 < j < m, where Bs}(7) is the result of shifting x; in Bs;(T) by a. Also we
know from the fact that the stream expression part of Bs,(T) does not contain z;, that:

Bsi(T) = Bsi(T) (5.33)
From (5.31), (5.32), and (5.33) it follows that:
rs'(T) = Bsi(T)+ MNi(T) + Bsy(T) + No(T) + - + Bs,,(T) + Nin(T)  (5.34)

over R. Now suppose that 7(3) = 0 for a certain 3. We know by lemma 18 that rs(3) = 0,
s0:

Bsy(B)+ -+ + Bsm(B) =

over R, and:
Bsy(B) = —Bsy(B)—--- — Bsn(B)
over K. From (5.34) and (5.35) we get:
)~
(B) Bs;( )+ -+ Bs; (E] Bsn(B) +
Ni(B) + - + N (B)

(3]
o
o

over R. Let r*(T) be:

Bs3(T) — Bsy(T) + -+ + Bs},(T) — Bsm(T)+
N(Z) + -+ Nu(T)

It is clear that r*(T) is a bilinear normal expression. By lemma 18 it follows that () = 0
iff rs'(B) = 0 iff r*(4) = 0 over R, so r*(Z) fulfills the second condition stated in the
lemma. We must also show the first condition i.e. C(r*(T)) < C(r(T)). From the remarks
below lemma 19 we know that Bs;(Z) and Bs;(Z) belong to the same block in »(7), and
that:

C(Bsj(z)) = C(Bs;(T))

)
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and:

C(N;(T)) < C(Bs;(T))
As we have chosen B;(T) to be a block with highest complexity, it follows that:

C(r*(@) < C(r(=@)

As R was chosen arbitrarily, the result holds for each ring R. O

Corollary 21 Consider a conjunction p(T) of linear predicates, and a ring expression
r(Z) which is well-defined under p(T). Let o be an integer. Let p'(T) = p(T)[z; « 2+ o,
and v'(T) = r(T)[z; — zi +a]. Let v°(T) be the result of rewriting r'(T) by r(T) = 0, then
for each ring R:

(V2. p(z) — (r(@) = 0)) — (YZ.p(T) A PI(T) — (r"(T) = 0))

Proof: Let R be an arbitia.ry ring. Suppose that ¥Z. p(T) — (r(T) = 0) over R. Suppose
that for a certain value 3 of T we have pﬁ_ﬁ) and p'(3) true. Then 7(3) = 0 and +'(F) =0
over R. By lemma 20 it follows that »*(F) =0 over R. O

Lemma 22 Suppose that P(T) is a zero-equivalence formula, which is not simple. Then
there is a finite set of zero-equivalence formulas such thal each element of the set is less
complez than P(T), and such that P(T) is valid over a ring R iff each of the elements of
the set is valid over R.

We call the set of less complex formulas the decomposition set of P(T). The lemma
can be applied recursively (as will be explained in lemma 24) to get a set of simple
zero-equivalence formulas.

Proof: Let R be an arbitrary ring. The two cases A and B below are possible. In each
case we will give a finite set Z of zero-equivalence formulas which are less complex than
P(T), and whose conjunction is equivalent to P(T) over R.

A. If the conditional part of P(T) contains an equality leq(T). In this case P(T) will be
of the form:

leq(@) A p(&) — (r(Z)=0)

We will use leq(T) to eliminate a free variable in P(T), reducing it to a less complex
zero-equivalence formula which is equivalent over R. Let z; be a free variable in leq(T)
chosen in the following way:

o If all the free variables of leg(T) are also free in #(T), then let z; be any free variable

in leg(T).

e If there is a variable which is free in leq(T), but not in »(T), then let z; be any such
a variable.
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Let leq(T) be of the form ayz1 + -+ + anz, + 8 =0, let:
UT) = o+ -+ oz + i+ ...+ anz, + 8
P(E) = p@) [o: = 2] @) = @) [0 - ]
Let:
P(E) = pE) A (UFT)mod a; =0) — (r'(z) =0)

We define Z to be the one element set {Pi(T)}. It is obvious that P(Z) iff P (T) over
R. Also the manner in which z; is chosen above implies that either the number of free
variables in r(T) is reduced, or the number of free variables in p(T) is reduced while the
number of free variables in r(T) is not changed. In both cases it follows that:

C(A@) < C(P(@)
B. If the conditional part of P(T) does not contain any equalities. Let P(T) be of the
form p(Z) — (r(T) = 0). Then p(T) will be of the form p,(T) A p2(T) where pi(T) is
a conjunction of linear inequalities and p2(T) a conjunction of linear modulo predicates.

Let ; be any free variable in P(T). Let o be the least common multiple of the moduli
of the modulo predicates in py(Z). Observe that

p2(T) T po(T)[z: — 2 + @] T po(T)[z; & 2, — ]

By induction:
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A2ZIYE. P(Z)[z; + §)
VZ. P(T) — (P(T)[z; — z: + a])

VZ. P(T) — (P(T)[z; « z; — a])

ANZoVE. P(T)[x; + j)
P (T)
A
VZ. ni(@) A P(F) — (P@E)[ei — 2+ a])
Pa(7)
N
VT pi(T) A P(T) — (P(T)[2: = i +al)
P3(T)
A
Ve oni(@) A PE) — (P@)[e: @i — a))
Py(T)
A
VZ. pi(Z) A P(T) — (P(T)[z: — 7. — a])

Ps(T)

(5.36)

We will give five sets 7y, Z,, Z3, Z4, and Zs of zero-equivalence formulas, such that
each element in Z; is less complex than P(Z), and such that F;(T) is equivalent to the
conjunction of the elements of Z; over R, for ¢ = 1,2,3,4,5. The set Z will be equal to
ZiUZyUZ3 U ZyU Zs.

1. We define Z; to be the set {P(T)[z; — j]; 0 < j < a — 1}. We can prove that each
element of Z; is less complex than P(T) in a similar manner to that of case A above.

2. Let:
A(@) = pi(T)zi = xit+a]  py(T) = pa(T)]ai — i +qf

We observe that:
VZ. =pi(Z) A (po(T) A p2(T) — (n(T) = 0)) A pi(T) A pa(T) — (7'(T) =0)

iff
VZ. ~pi(F) A py(T) A ph(T) — (r(T) =0)
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over R. Furthermore it can be shown that there are formulas p11(Z),. .., p1x(T), p21(T),
..., p2x(T), where py;(Z) is a conjunction of linear inequalities and py;(T) is a linear
equality, such that:

-pi(E) A PUE) = (pu(@) A pa(T) V -+ V (pi(T) A pa(T))

which means that:
VZ. pii(T) A pa(T) A p3(T) — (r'(T) = 0)
A
Vz. Py(T) ift :
A

VT. p1k(T) A par(T) A pay(T) — (r'(T) = 0)

over K. Let:
Py(T) = pii(T) Apa(T) A pi(T) — (r'(T) = 0)

The equality py;(Z) can be used, in a similar manner to that in case A, to generate a
zero-equivalence formula P;;(Z) which is equivalent to and less complex than P;(T). Now
Z, can be defined to be {Py;(F);1 <j < k}.

3. Let:
(T)[x: — 2 + q

w
I
3
o
s
=
e
&
i)
+
RS
=3
L*)
8|
I
=
%]

n(@
™(T) = r(T)[z; « z; + a]

We observe that:

VZ.pi(T) A (pa(T) A pa(T) — (r(T) = 0)) A pi(T) A po(T) — ((T) = 0)

VZ. pi(T) A pi(T) A pa(T) A (r(T) =0)

\_,
—_
3
—
8|
=
Il
=
—

over K. From lemma 20 it follows that:
VT, Py(T) iff VZ.pi(T) A Pi(T) A pa(T) A (7(T) =0) — (r*(T) = 0)

over R, where r*(T) is the result of rewriting 7'(T) by r(Z) = 0 (see lemma 20). From
corollary 21 it follows that:

VI. P(T) iff (VZ. P(T)) A (VZ. pi(T) A pi(T) A po(T) — (r°(T) = 0))

over [&. This means that P5(T) in (5.36) can be replaced by Py (Z) without changing the
validity of the formula over R, where:

Py(T) = VZ.pu(T) A pi(T) A pa(T) — (7°(T) = 0)
Let Z3 be the set { P3(T)}. By lemma 20 we know that:

cir(@) < C(r(z))
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Consequently:

&
8|

C(Pn(z)) < C(P(T))

4. Similar to 2.

5. Similar to 3.
We observe that the construction of the decomposition set is not dependent on the

particular ring R which was chosen arbitrarily, and hence the result holds for each ring
R, @

Lemma 23 Let r be a ring expression which does not contain any free integer variables.
Then there is a ring polynomial Q) such that v =0 iff Q =0 over each ring R.

Proof: Let R be an arbitrary ring. As r does not contain any free integer variables then
it is of the form®:

Z Y - '6‘1 al). .aﬁ"‘(an]

where m is a positive integer, v; is an integer, f;; is a nonnegative integer, a; is a stream
variable, and @&; is a tuple of integers. In addition, for each | <i < m thereisal <j <n
such that §;; > 0, and for each 1 < i # j < n either a; # a; or @; # @;. We define a ring
polynomial @:

Q = Z"f:’ . Uﬁfu_ _,Ufm

i=1

where v; is a variable over R. It can easily be checked that r = 0 iff Q = 0 over R. As R
was chosen arbitrarily, the result holds for each ring B. O

Lemma 24 Let K be a class of rings. Suppose that the zero-equivalence of a ring poly-
nomial over K is decidable®. Then the validily of zero-equivalence formulas over K is

decidable.

Proof: Let P(T) be any zero-equivalence formula. We compute the decomposition set of
P(T) (see lemma 22), and repeat the procedure recursively on the elements of the set
until all the elements of the set are simple. Thus we get a finite set {F;(T),..., P.(T)}
of simple zero-equivalence formulas such that:

P(%)
iff
PiZ) A -+ A Pn(T)

4By v-2 we mean z + .- +z, and by 27 we mean z. .- -z
e et S——

s
5We say that the zero-equivalence of a ring polynomial, over a class K of rings, is decidable if for each
ring polynomial @ (see section 5.1) it is decidable whether @ = 0 for all rings R € K
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over each ring R. Let FPi(T) be of the form pi(T) — (r; = 0) (see the definition of simple
zero-equivalence formulas in section 5.6.3). This means that:

P(z)
iff (5.37)
(@) — (1=0)) A oo A (u(E) — (rm=0))

over each ring R. As r; does not contain any free integer variables then it follows from
lemma 23 that there is a ring polynomial @; such that:

over each ring K. From (5.37) and (5.38) we get:

P(T)
iff (5.39)
(m(E) — (@1=0) A - A (pn(T) — (@m=0))

over each ring R.

Now, let K be a class of rings. From (5.39) it follows that the validity of P(T) over
K is equivalent to the validity of p;(Z) — (@i = 0) over K, for I < ¢ < m. It is clear
that the validity of p;(T) — (@i = 0) over K is equivalent to the unsatisfiability of p;(Z)
over I, or the validity of ¢); = 0 over K. It can easily be shown that the unsatisfiability
of p;(T) over I can be transformed to the integer linear programming problem which is
decidable (see section 5.6.4). Also we have assumed that the validity of ; = 0 over K is
decidable. It follows that the validity of P(T) over K is decidable. O

5.6.6 Deciding the Validity of Ring Conditional Equalities

We will show that the problem of deciding the validity of ring conditional equalities is
decidable over the class of all rings. We will also show that the problem is decidable over
the ring of integers, the ring of reals, and the ring of natural numbers modulo m (for
some fixed natural number m). This is achieved by theorem 26 and corollary 27. First
we need the following lemma:

Lemma 25 Let p(T),p1(T),. .., pm(T) be conjunctions of linear predicates. Then il is
decidable to check the validity of:

p(E) — pu(T) V -V pr(T)
Proof: First we will show that the negation of each linear predicate is equivalent to the
disjunction of a finite number of linear predicates. This follows from:

S(ayzy + o+ age, + <0) Mt (a4 oz, + 3> 0)

and:
~(oax1 + - + ann + = 0)
iff
gz + -+ a2z, +8<0) V (gzy + -+ apz, + 5> 0)
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and:
(21 + -+ + anzy, + §) mod vy = 0)
iff
5 (a1 4 - + Qn@n + B+ 1) mod v = 0)

Now, we know that:

VZ.p(T) — m(T) V -+ V pu(T)

iff
VZ. =p(T) V pi(T) V - V pu(T)
iff
=3Z. p(T) A ~pi(T) A oo A pn(T)
P(z)

Let us consider P(T). Each —p;(T) can be written as a disjunction of negations of linear
predicates. A negation of a linear predicate can be replaced by a disjunction of linear
predicates as shown above. By taking the normal form it follows that P(T) can be written
as a disjunction of conjunctions of linear predicates, i.e. :

P(z)
iff
Pi(T) V -V P,(T)
where P;(7) is a conjunction of linear predicates. It follows that:
-3z. P(%)
iff
=(3z. A(T) vV --- vV IT. P,(T))

It can be shown that the validity of 3T. P;(T) can be reduced to the integer linear pro-

gramming problem which is decidable (see section 5.6.4). The result follows immediately.
|

Theorem 26 Let K be a class of rings. Suppose that the zero-equivalence of a ring
polynomial over K is decidable. Then the validity of ring conditional equalities over K is
decidable.

Proof: Consider a ring conditional equality P(T) of the form p(Z) — (e(T) = r(T)). Let
e(T) be of the form:

case pi(T) = m(T); ... ; pw(T) = ru(T) endcase

The validity of P(Z) over K can be checked in two steps. In the first step we check
whether the following is true: whenever p(Z) is true then there is a guard in e(Z) which
is true. This is equivalent to the validity of:

P(T) = VL,pi(T)

over I. We know from lemma 25 that the validity of the above formula is decidable.
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In the second step we check whether the following is true: whenever a guard in e(T) is
true then the corresponding result is equal to r(Z) over K. This is equivalent to whether:

p(E) A pi(®) = (ri(T) —(T) = 0)

is valid over K, for 1 < ¢ < m. The above formula is a zero-equivalence formula, and its
validity over K can be checked according to lemma 24. O

Corollary 27 The validity of ring conditional equalities s decidable over:
o The class of all rings.

o The ring of integers, the ring of reals, and the ring of natural numbers modulo m
(for some fized natural number m).

Proof: Let @ be a ring polynomial of the form:

m

Zﬂri a Ulﬁll' R .UE‘“

i=1

First we will prove the second part of the claim. We know that ¢ = 0 is valid over the
integers (reals) iff 3; = 0, for 1 < < m. Also the validity of ¢} = 0 over the ring Z,, of
natural numbers modulo m is decidable since Z,, is finite.

Considering the first part of the claim we know that if 4; = 0, for 1 <1 < m, then
@ = 0 is valid over the class of all rings (i.e. @ = 0 is valid over each ring R). On the
other hand if ; # 0 for some 1 <7 < m then it is not the case that @) = 0 is valid over
each ring R, as there is at least one ring (the ring of integers) over which ) = 0 is not
valid. O

5.6.7 Second Step of Verification of The Convolution Circuit:
Checking Ring Conditional Equalities

In section 5.5.3 we carried out the first of the two verification steps on the convolution
circuit. We described outs(xz,£,1) as a linear guarded ring expression (see equation (5.29)).
Here we perform the second step. We use the algorithm in theorem 26 to check
whether the value of outs(z,¢,t) described by (5.29) fulfills the specification of the circuit
as stated in (3.24).
Recalling the specification formula as stated in (3.24):

spec(z, £,t) =
(z=0) A (d<t<4+4) A (tmodd =0) —
=g :
(outg{a:,f,t) = z‘;oa(i}-b(%))
N
(z=0) A (4 +4<t<8+4) A (tmodd =0) —
8i—t 5
(outs(e,0,0) = Tod™ o (teg8=t)  p(2 — ))
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Here we will consider only the first element of the conjunction in the specification formula
above. The second element can be treated similarly. Let:

plz,€t) = (z=0) A (4<t<4+4) A (t modd =0)
= t—41—4
r(z,6,t) = 3 a(i)-b (—“)
=0 4
From equation (5.29) we know that:
Oﬂt3(l’.’,£,t) =
case
Qr+4<t<4l—2+4 e
0<z <t = Lo a(EZH=) (2 +ti)
(t —2z) mod4 =0

gl

4 -2z 4+8<t<4€+2z+4
— Ef;ga(t—hr;d:—d) ('J(’I,‘+1.)
(t —2z) mod4 =0

40 +2x +8<t <8l —-2x+4 e
0<z</ = Tt a(f— i) b(itttztizg)
(t—2z) modd4 =0
endcase
Let:
pi(z, ) = 2e4+4<t<4l-224+4) A (0<a <l A ((t—22)modd =0)
palz,lit) = (M —-20+8<t<4M+204+4) AN (0 <) A ((E—22) modd =0)
pa(z,€t) = (H+20+8<t<8—-2z4+4) AN (08 A ((t—22)mod4d =0)
t—2x—4
: t— 92z —4i —
m(z,bt) = 3 a(;éh——%)-b(z+i)
=0 4
b—z y
t—2zx—41—4
ro(z, b,t) = Za(%)-b(x+i)
1=0
35—2?—!14 e 2 .
. t—4+2x+42-4
ra(z,€,t) = ,—;0 (t(é’—z)-b( y )

According to the algorithm given in the proof of theorem 26 we have first to check the
validity of the formula:

p(z,6,t) — pi(2,6,1) V pa(z,6,t) V pa(z,4,t)

We observe that p(z,£,1) — py(z,£,t), so the above formula is valid.
Then we have to check the validity of the formulas:

plz,6,t) A pi(z,0t) — (ri(z,6,t) = r(z, 1))
plz, 0,t) A po(z,l,t) — (ra(z,ét) = r(z, 0, t))
plz,6,t) A pa(z,f,t) — (ra(z,f,t) = r(z, . t))
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Each of the formulas above is a zero-equivalence formula, and its validity can be checked
as described by the algorithm in lemma 24.
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Chapter 6

Class of all algebras

In this chapter we study verification of systolic circuits which operate on uninterpreted
function symbols. We do not assume any special properties of the functions corresponding
to the operations performed inside the computation cells of the circuit. We recall that
in chapter 5 we assumed that the cell operators fulfilled the properties (axioms) of a
commutative ring. Often, it turns out that a circuit can be verified independently of the
particular properties of the cell operations. In such a case the verification amounts to
checking the time-space properties of the implementation with respect to the specification.
We check that the right computation is performed at the right place at the right time.
As we will see in the case of the string matching circuit (introduced in section 3.2), the
verification is nevertheless nontrivial. This is due to the fact that the verification still
involves 1) checking properties of the integers, which are still used for the description of
the notions of time, cell position, and circuit parameter, and ii) comparing the “recursive
patterns” of the recurrence equations describing the implementation and the specification.
Proving a circuit correct with respect to a specification, for uninterpreted cell operations,
implies its correctness for each interpretation of the cell operations. Clearly if the circuit
is not correct with respect to the specification for all interpretations of the cell operations,
there may still be interpretations of the cell operations over which the implementation is
correct with respect to the specification.

Formally by the verification of a circuit with a signature SZG, for uninterpreted
function symbols, we mean that we check the validity of the specification formula of
the circuit over the algebraic specification SPEC, which has a signature STG, and an
equation set which is empty. The validity of the specification formula over SPEC implies
its validity over each STG-algebra. On the other hand, if the specification formula is not
valid over SPEC there may still be a STG-algebra over which the specification formula
is valid.

Examples of circuits which can be automatically verified by the methods of this chap-
ter include the string matching circuit in section 3.2, the palindrome recognizer circuits
in [Hen86] and [L.S81], and the matrix transposition circuits in [Ull84] and [Ole87].

In section 6.1 we give some preliminaries. In section 6.2 we define a class of systolic
circuits which we call acyclic systolic circuits. In section 6.3 we study what the general
definition of semantics amounts to when working with uninterpreted function symbols. In
section 6.4 we give an overview of a decision method for automatic verification of acyclic
systolic circuits. In section 6.5 we will show that the implementations and specifications

95
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of acyclic systolic circuits can be described by a class of recurrence equations which we
call acyclic recurrence equations. In section 6.6 we give a method for comparing acyclic
recurrence equations for equality over the class of all algebras (i.e. with uninterpreted
function symbols), and thus carry out automatic verification of acyclic systolic circuits
over the class of all algebras.

6.1 Preliminaries

We will use the same notation as in chapter 5. Linear @ I-polynomials, linear inequalities,
linear equalities, linear modulo predicates, and linear predicates have the same meanings
as in section 5.1.

We will work with a set G of operation symbols, a set A of stream variables. A linear
function variable ezpression is of the form f(T+@). A linear systolic term is of the form:

g(tl(f)a . e !tn(f))

where g € G, and each t;(T) is either a linear stream expression or a linear function
variable expression. A functional is said to be linear if each of its results is a linear
stream expression, a linear function variable expression, or a linear systolic term. A
system of recurrence equations is said to be linearif all its functionals are linear.

A (one-dimensional) integer vector is of the form < é;,...,8, > where each é; is an
integer. A zero vector, denoted 0, is an integer vector < &,..., b, >, where 0; = 0.
for 1 < ¢ < n. A unit vector denoted, T;, is an integer vector < é;,...,4, >. where
b6 =1,and §; = 0, if 7 # ¢ for 1 < 7 < n. A positive vector is an integer vector
< 61y...y 6 >, where 0 < §;, for 1 < i < n, and there is at least one 1 < j < n such that
0 < 6;. An m-dimensional integer vector is of the form < 81y .. 0, > where 3, is an
(m — 1)-dimensional integer vector.

Consider a function variable f and a linear systolic term g¢(¢:(T),...,t.(T)). Let
ti,(T),. .-, ti,(T) be such that t; () is of the form f(F + 8;), and such that no {(T) €
{t1(T)s .-, ta(T)} \ {t:,(T), .., 2. (T)} is a function variable expression which has f
as a function variable. Then < §,...,8,, > is called the recursive vector of f in
g(t1(T), ... ,ta(Z)), and the elements of {t1(T),...,t.(T)} \ {t:,(T),. .., i, (T)} are called
the non-recursive terms of f in g(t1(T),...,t.(T)). For example, let {(x) = g(h{z +
2), f(z + 3),a(4z), f(z — 2)), then the recursive vector of f in #(x) is < 3,—2 >, and the
non-recursive terms of f in ¢(z) are h(z + 2) and a(4z). The recursion vectorof [ in the
linear function variable expression f(Z + f3) is defined to be < 7 >.

Consider a conjunction p(T) of linear inequalities and equalities, and a two-dimensional
integer vector §. We say that p(T) is stable with respect to § iff there is no value @ of 7.
and positive vectors 7, and 7, such that':

p@) A -p@+7, -8) A p@+p -8+,

1Let @ =< ay,...,8m >, B =< l1,..-1in >, and & =<< &;y,..., YT T T P G S5

According to our vector notation (section 2.1), we interpret @ + 7 - & as:

<ar+pr bt pa by o am i o pin b >
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Proposition 28 Given a conjunction p(Z) of linear inequalities and equalities, and a
two-dimensional integer vector é, it is decidable to check whether p(T) is stable with
respect to 6.

Proof: From the definition of stability above, it can be easily shown that the problem
is reducible to the integer linear programming problem which is decidable (see section
5.6.4). O

A conjunction of linear predicates p;(Z) A po(T), where p,(T) is a conjunction of linear
inequalies and equalities and p,(Z) is a conjunction of linear modulo predicates, is said to
be stable with respect to a two-dimensional integer vector & if py (%) is stable with respect
to 8.

Consider a tuple < pi(Z),...,pa(T) >, where each p;(Z) is a conjunction of linear
inequalities and equalities, and a tuple < 8;,...,8, >, where each &; is a two-dimensional
integer vector. Then we say that < pi(T),...,p.(T) > is uniform with respect to <
81,...,0, > iff there is no value @ of T and positive vectors T, ..., 7, such that:

Pio(®) A piy (T4 -85, ) A Pip (BT -8y +T2-80,) A oo A piy (@+T -8, + By 6, + -+ 65,)

where 7y =1, and 1 <i; <n,for0 <5 < k.

Proposition 29 Consider a tuple < p1(T),...,pa(T) >, where each p;(T) is a conjunc-
tion of linear inequalities and equalities, and a tuple < &y,...,6, >, where each 8, is a two-
dimensional integer vector. Then it is decidable to check whethea < pi(T), ..., pa(T) > is
uniform with respect to < 8y, ... o >

Proof: For each k the problem of satisfiability of:

Pio (@) A piy (@478 -8iy) A pip (@ 4Ty 8iy +T2-85,) A -+ A piy (@+T8 -85, + Ty -8iy +- - -+ 705,55, )

can be easily shown to be reducible to the integer linear programming problem which is
decidable (see section 5.6.4). The result follows from the fact that & < n, which means
that only finitely many combinations need to be considered. O

A tuple < p11(T) A p1a(T), - - -, Pn1(T) A pn2(T) >, where each p;1(T) is a conjunction
of linear inequalities and equalities, and each p;3(T) is a conjunction of linear modulo

predicates, is sald to be wuniform with respect to < 51,...,&1 >, where each &, is a
two-dimensional integer vector if < p11(T),...,pu(T) > is uniform with respect to <
Branneits 5

A lmear modulo predicate p(T) of the form (& - T + /) mod v = 0, is said to be invari-
able with respect to a two-dimensional integer vector § =< 8y,...,8, >, if (@- &;) mod v =
0, for I < ¢ < n. Notice that if p(Z) is invariable with tespect to 5 then, for each @,
if p(@) is true then p(@+ 7 - &) will be true for each integer vector . A conjunction
of linear predicates py(T) A pa(T), where pi(T) is a conjunction of linear inequalies and
equalities and p,(T) is a conjunction of linear modulo predicates, is said to be invariable
with respect to a two-dimensional integer vector 8 if each modulo predicate in py(T) is
invariable with respect to 6.
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Let F be a linear functional of the form:

case
p(T) = (T

Pa(T) = ta(T)
endcase

Let {t;,(T),..., . (T)} C {t1(T),...,t.(T)} be such that ¢(T) € {t;,(T),... .t (F)} iff [
occurs in ¢(T). Let the recursive vectors of fint; (Z),...,t;, (T) bedy,...,8,, respectively.
Then F is said to be acyclic with respect to f if:

* p;;(T) is stable with respect to §;, for 1 <j <m.

e p;.(Z) is invariable with respect to Ej, for1 <j <m.

=
3
Vv

o <p,(Z),...,pi,(T) > is uniform with respect to < §,,...,

Consider a system of linear recurrence equations of the form:

(6.1)

We say that f; is dependent on f; (written f; <p fi) iff f; occurs in F;.
A linear system of recurrence equations of the form of (6.1) is called an acyelic system
of recurrence equations iff:

1. Each F; is acyclic with respect to f;.

2. The dependency relation <p is acyclic, i.e. fi £} fi, for 1 < ¢ < n, where <}, is
the transitive closure of <p.

We say that SPEC is the algebraic specification of the class of all STG-algebras if
SPEC =< SIG,0 >.

6.2 The Class of Acyclic Systolic Circuits

In this section we introduce the class of acyclic systolic circuits. An example of a circuit
in this class is the string matching circuit we introduced in section 3.2. In section 6.5 we
will show that the implementation and specification of an acyclic systolic circuit can he
described by acyclic systems of recurrence equations (and hence the name acyclic).

An acyclic systolic circuit is a linear systolic circuit, in which certain restrictions have
been imposed on the cell computations and the specification formula of the circuit.
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Cell Computations in Acyclic Systolic Circuits A cell computation term is said
to be linear if it is of the form:

g(«ﬁ(f,?,i - Tl)? L !Sn(fa?yt - Tn))

where s; is an input or a local variable. A cell computation is said to be linear if each
result in the cell computation is a linear stream expression, a linear cell computation
term, or of the form s(%,#,t — r) where s is an input or a local variable.

Two types of cell computations are allowed in acyclic systolic circuits:

ssociated with an
t), then the value

1. Linear cell computations, where the cell computation F(,7,
output or a local variable s, is linear. Let 7 be the delay of F(
of s will be defined by the two equations:

t), a
z,t,

0<t<t) A top(T,f) — s(T,0,t) = Init,(T,0,1) (6.2)
and:
(t=1) A top(T,0) — s(T,0,t) = F(T,4,1) (6.3)

where equation (6.2) describes the value of s during the initialization period, and
equation (6.3) describes the value of s after the initialization period.

2. Branching cell computations. If a branching cell computation is associated with an
output s, then the value of s is defined by:

s L) =i (E L) (6.4)

where s, is an output or a local variable whose value is defined by a linear cell
computation. Intuitively equation (6.4) means that, at each clock cycle, the value
of s, inside a cell is branched to the value of s in the cell i.e. the value of s is equal
to the value of s; at each clock cycle and cell in the circuit.

In the string matching circuit (section 3.2), the values of outy, outy, and loc are defined
by linear cell computations, while the values of out; and outy are defined by branching
cell computations.

Furthermore a number of additional restrictions are made on the cell computations
in an acyclic systolic circuit. These restrictions enable us (theorem 30) to describe the
implementations and the specifications of acyclic systolic circuits as acyclic systems of
recurrence equations, which are decidable to compare for equality (corollary 51). The
additional restrictions are defined by:

1. Let s be any output or local variable. Let the cell computation F(T,?,t) associated
with s be linear. Let F'(Z,7,t) be the functional we get from F(%F,7.t) by performing the
following two steps:

o If s is an output, let s’ be the input corresponding to (connected to) s, and & the
connection vector of s’. Then replace each occurrence of the form s'(Z,4,{ — 7) in

F(Z,0,t) by s(T+8,6,t — 7).
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e Let s; be any output whose value is defined by a branching of the form:
s1(Z,4t) = s(T,6,1)

Let s, be the input corresponding to (connected to) s;, and &; the connection
vector of s|. Then replace each occurrence of the form s(z,¢,t —7) in F(%,7,1) by
S(Z+86,4,t—7).

In an acyclic systolic circuit, F'(Z,7,t) is acyclic with respect to s.

2. The dependency relation <p (83 <p $1 is read s, is dependent on s3) among the signals
of an acyclic systolic circuit is defined as the smallest relation containing the following
elements:

e Let s be any output or local variable, and let the computation of s be of the form
of equation (6.3). Let s; be any input or local variable which occurs in F(7,7,t).
If sy is a local variable and s; # s then s; <p s. If 5, is an input, let ) be the
output corresponding to s;. If s # s then s} <p s.

e Let s be any output whose computation is of the form of equation (6.4), then for
each s; if s <p 87 and 51 # s, then s; <p s9.

In the class of acyclic systolic circuits, the dependency relation is acyclic, i.e. s A5 s, for
each signal s in the circuit, where <3 is the transitive closure of <.

The dependency relation of the string matching circuit in section 3.2 is defined by
{< loc,out; >,< loc,outy >,< loc,outy >, < loc,outy >}. Notice that the relation is
acyclic.

Specification Formulas of Acyclic Systolic Circuits The specification formula of
an acyclic systolic circuit with a signature SIG is of the form:

spec(z,0,1) =

M@ L1) — (1(7,0,0) = AT L)) A - A (PTG 1) — (sm(T, L 1) = fu(T. 1))
where f; is a function variable in an acyclic system of recurrence equations over SZ¢.

It can be easily checked that the string matching circuit described in section 3.2 is an
acyclic systolic circuit.

6.3 Semantics

Suppose that E; and FE; are acyclic systems of recurrence equations over a signature SIG.
Let fi and f; be function variables in E; and Ej respectively. Then, given a STG-algebra
A, the relation:

A E h(@) = (@) (6.5)

can be interpreted according to the semantics definition in section 4.3.
In this chapter we study the problem of deciding the validity of (6.5) for each STG-
algebra A. Alternatively, whether:

SPEC k& fil@m) = fo(@s) (6.6)
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where SPEC is the algebraic specification of all STG-algebras (i.e. SPEC =< SIG,0 >).
Note that if (6.6) is valid, then (6.5) will be valid for each STG-algebra A. If (6.6) is not
valid, there may still be a §7G-algebra A for which (6.5) is valid.

Informally, we check the the equality of systems of recurrence equations without as-
suming particular properties for the sorts and operation symbols of the signatures of the
equation systems. Thus if the equation systems are equal then there will be equal for
each interpretation of the sorts and operation symbols. If they are not equal then we may
still find an interpretation of the sorts and operation symbols which makes them equal.

6.4 Overview of the Verification Decision Method

We will give an overview of an automatic method for the verification of acyclic systolic
circuits over the class of all algebras.
In section 6.2 we mentioned that a circuit specification was of the form:

spec(T) = (6.7)
(P1(T) — (1(@) = [1(T)) A - A (P(@) — (5n(T) = fn(T)))

where pi(T),...,pn(T) are conjunctions of linear predicates, s;,..., s, are signals in the
circuit, and fi,..., f,, are function variables in acyclic systems of recurrence equations
over the signature of the circuit.

Let SPEC be the algebraic specification of the class of all STG-algebras, i.e. :

SPEC = < 8IG,0>

Consider a circuit with a signature STG and a specification formula spec(T). By the
circuit verification for the class of all SIG-algebras, we mean that we check whether or
not:

A spec(T)
is valid for each STG-algebra A. This is equivalent to checking:
SPEC | spec(T) (6.8)

Notice that although the sorts and operation symbols of SIG are interpreted as do-
mains and operations of the algebras of STG, the integer variables T which occur in
spec(T), and the integer operators +, -, —, <, and 0 which occur in p(Z),...,pn(T) are
always interpreted in the standard model of integers. The verification process is carried
out in the following two steps, each of which is carried out automatically:

1. In section 6.5 (theorem 30) we show that the signals of an acyclic systolic circuit can
be described by an acyclic system of recurrence equations, where the signature of the
equation system is the same as the signature of the circuit, and the function variables of
the equation system are the signals of the circuit.

2. In section 6.6 we study validity of formulas of the general form:

SPEC = p(T1,T2) — (i(F1) = fo(T2)) (6.9)
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where p(T1,T2) is a conjunction of linear predicates, fi and f; are function variables in
acyclic systems of recurrence equations with a signature SIG.

From (6.7), (6.8), and the first verification step we conclude that if (6.9) is decidable
then (6.7) will be decidable.

In section 4.3 we defined the formal meaning of:

SPEC }: (fi(@) = f2(a2))

for each value @; and @, of 7; and T5.

In section 6.6.1 we define a class of formulas called Presburger formulas, which are the
class of first order formulas over the structure < I, 4+, —,<,0,1 > of integers. In section
6.6.6 (theorem 50) we show that given p(Z;,7;), fi and f, above there is a Presburger
formula P(%1,T2) such that:

P(Z1,%;) iff SPEC |=p(E),T2) — (fi(F1) = f(Z2)) (6.10)

The validity of Presburger formulas has been shown to be decidable. It follows that the
validity of formulas of the form of (6.9) is decidable.

Now we will sketch how P(T;,T;) can be found such that (6.10) holds. In section
6.6.4 (lemma 46) we show that there are Presburger formulas Py (Z) and P(T) such that:

P(z) ff fi(z) =L (6.11)
for each SIG-algebra A, and:
Py(z) iff fo(T) = L (6.12)

for each SIG-algebra A. In section 6.6.5 (lemma 49) we show that there is a Presburger
formula P4(T,,T,) such that:

(A1) # L) A (fa(T2) # L) — (6.13)
(Ps(T1, 7o) iff (SPEC |= (f1(Z1) = f2(T2))))

From (6.11), (6.12), and (6.13) it follows that P(T;,73) in (6.10) can be defined as:

(Pi(T1) A Py(T2))
P(,T;) = |p(T1,T2) — vV
(=Pi(T1) A =Py(T2) A P3(T0,T2))

As Presburger formulas are first order formulas, they are closed under the first order
logical connectives. It follows that P(%,;,T,) is a Presburger formula.

6.5 Systolic Circuits as Acyclic Recurrence Equa-
tions

We will show that the signals of an acyclic systolic circuit can be described as an acyclic
system of recurrence equations.
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Consider an acyclic systolic circuit. Let F(Z,?,t) be a linear cell computation (see
section 6.2) in the circuit. By the normalization of F(T,f,t) we mean the functional
F*(z,1,t) we get from F(T,L,t) by applying the following two steps:

1. Let s be any input. Let the output corresponding to (connected to) s be s, the
connection vector of s be 3, and the input function corresponding to s be of the form:

case
m(E,4t) = ity(T,L1)

palT 1) = it (T,,1)
endcase

Let:
p(T, 0 t) = ct(7,0,t)
be any case in F(%,7,t). Then replace the case above by the following cases:
e The case:
p(z,0,t) A top'(7,8) = ct'(z,4,t)

where top'(%,7) denotes the position of the cells whose inputs s are connected to
the outputs of other cells, and et'(T, ,t) is the result of replacing each occurence of
the form s(%,¢,t — 7) in ct(%,Z,t) by s"(T+ 8,6, L — 7).

e The case:
p(T, ) A top"(7,0) A pi(T,0,t) = cti(F,0,t)

for each 1 < ¢ < n, where top”(Z, ) denotes the position of the cells whose input s
are on the boundary of the circuit (i.e. not connected to the outputs of other cells),
and ct}(T, ¢,1) is the result of replacing each occurence of the form s(T,f,t — 7) in
ct(F,7,t) by it;(%,4,t — 7).

Repeat the above procedure until no inputs are left in F(Z,7, ).

2. Let F'(,7,1) be the result of applying step (1) above to F(F,7,t). We get F*(z,1,1)

by applying the second step to F'(%,{,t). Let s be any output whose value is defined by
branching, i.e. whose computation is of the form:
s(z,0,t) = s§'(F,70,1)
Let:
p(E 1) = ct(F,4,1)
be any case in F'(Z,7,t). Then replace the case above by the case:
p(Z,61) = ct'(z,0,1)

where ct'(Z,7,t) is the result of replacing each occurence of the form s(Z,7,t — 7) in
ct(z,4,t) by &'(z,Z,t — 7).

Repeat the above procedure until no signals, whose values are defined by branching,
occur in F(T, L, t).
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Theorem 30 Consider an acyclic systolic circuit. Then the values of the signals of the
circuit can be described as an acyclic system of recurrence equations, where the signature
of the equation system is the same as the signature of the circuit and the function variables
of the equation system are the signals of the circuit.

Proof: The acyclic system E of recurrence equations defining the value of the signals of
the circuit is given by the smallest set containing the following elements:

1. If s is an output or a local variable whose value is defined by a linear cell computation,
then let the result of normalization of the cell computation of s be of the form:

case _
n(T,4,t) = cti(T,4,1)
p@Et) = cta(@ 1)
endcase
Let the initial function corresponding to s be of the form:
case - -
Py, 6, t) = ity (T,4,t)
P(Z,4,1) — o o A
endcase
Let the delay of s be 7. Then E contains the equation:
s(Z,01) = FiEit)
where the set of cases of F(7,7,1) is the smallest set containing:
e The case:
(0<t<7) A top(z,0) A pi(T,0,t) = iti(T,0,1)
foreach1 <7< m.
e The case:
(r <t) A top(Z,8) A pi(T,6,t) = cti(T,4,1)
for each 1 <7 < n.

2. If s is an output or local variable whose value is defined by branching, then let the
value of s be defined by an equation of the form:

s(z,t) = §'(F,4,1)

then F contains the above equation.
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3. If s is an input, then let the connection vector corresponding to s be 8, the output
connected to s be s’; and the input function corresponding to s be of the form:

case
pl{f,?,t) = Ztl(f,z,i)

(T 1) = i.(T, 1)
endcase

then F contains the equation:
simd,t) = FFL1)

where the set of cases of F(Z,Z,t) is given by the smallest set containing the following
elements:

e The case:
top'(7,1) = s'(T+39,0,t)

where top/(%,{) denotes the position of the cells whose inputs s are connected to
the outputs of other cells

o The case:

top"(T, ) A pi(Z,0t) = iti(T,0,1)

for each 1 < ¢ < n, where top”(%, ) denotes the position of the cells whose input s
are on the boundary of the circuit (i.e. not connected to the outputs of other cells)

The correctness of the equations in E follows from (2.2) (2.3), (2.6), (2.15), (2.16), (5.1)
(6.2), (6.3), and (6.4).

That E is acyclic follows easily from the restrictions on the cell computations in acyclic
systolic circuits (see section 6.2). O

6.5.1 First Step of Verification of The String Matching Cir-
cuit: Describing it by Recurrence Equations

We will show how the implementation of the string matching circuit, introduced in section
3.2 can be described as an acyclic system of recurrence equations.

Let Fout, s Foutys and Fi,. be the cell computations defining the values of outy, outs,
and loc, as described by equations (3.35), (3.36), and (3.37) respectively. Let F,, . Fr.,. .
and F;, be the the results of normalization of F,.;,,Fou,, and F,.. Then:

Fois; (Bly g 1) = ‘case
t—xzmod?2=0
endcase

} = O'Htl(ﬂf—l,gl,eg,t—l)
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Fruta(@, €1, 45,1) = case

t—zmod2 =0
endcase

} = Out?_(I'l‘],f;,gz,i—l)

ﬁ',:)c(xvflr ‘€21 t} =
case

z<0
oyl | = galloc(z + 1,£6,,45,t - 1))
=20, -1<2 <2,

0<z
=z+41 = g(loc(z — 1,41, 42,1 — 1))
—c+1<t
r+1<t
t+z+1mod2=0 = 9l Ouil(w_}‘ghgz,;_i)‘
ot <z <98 outy(z + 1,64, 85, t — 1),

loc(z — 1,6y, ¢, — 1),

loc(z + 1,6, 65,1 — 1),

loc(z, by, 05,1 — 2))
endcase

The acyclic system of recurrence equations describing the implementation of the cir-
cuit is given by:

outy(z,€y,0,,t) = case
0<t<1
9 1< 2<% +1
s | B e <3 = (-
(z4+1)mod2 =0

1<t L,
{ —2 —1<2 <2 +1 } = Flu (2,0, 6,1)
endcase

outy(x,l,02,t) = case

3<z<U+1
(z+1)mod2=20

U= 11
26 -1<2<2+1
} = fo'm2(a:,€1,€-2,t)

15t
26 -1<z <241
endcase
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loc(z,€1,4,,1) = case

=20

0<t<2

2<t i
{-251—1S,’L’S2£2+1} = Eoc(xaglae2,t)

endcase
outz(z,ly, €y, 1) loc(z, by, €5,1)
outy(z, £y, 4y, 1) loc(z, €y, €5,1)
ing(z,f1,6,,t) = case
{2<2<2441} = outs(x—1,6,,6,t)
endcase

Il

Il

ing(z,01,6,,1) = case
{-26-1<2<26 ) = outi(z+1,0,6,1)
endcase
ina(z, 0y, 42,1) = case
{—26<a<241) = ouls(z—1,6,,6,1)
endcase
ing(z,fy,€5,t) = case
{ —2, — 1<z <2, } = outy(z + 1,00y, 1)
endcase

6.6 Equality Checking

In this section we show that, given two acyclic systems E; and FE, of recurrence equations
with a signature STG, two function variables f; and f, in F; and E,, and a conjunction
p(T1,T2) of linear predicates, it is decidable to check the validity of:

SPEC | p(F1,T2) — (fi(T1) = f2(T2)) (6.14)

where SPEC is the algebraic specification of all STG-algebras. This is done in several
steps.

In section 6.6.1 we introduce the class of Presburger formulas.

In section 6.6.4 (lemma 46) we show that, given an acyclic system of recurrence
equations F over a signature STG and a function variable f in I, there is a Presburger
formula P(T) such that for each value @ of T:

P@) iff f(@) =1

for each SIG-algebra A.

In section 6.6.5 (lemma 49) we show that, given two acyclic systems £, and £, of
recurrence equations with a signature SIG, two function variables f; and f; in £ and
E,, there is a Presburger formula P(T;,T;) such that for each value @; and &, of 7; and
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T, if fi(@) # L and fa(@a) # L, then:
P(@y,@,;) iff SPEC = (fi(@) = f2(@2))

In section 6.6.6 we combine the results of sections 6.6.4 and 6.6.5 to show that (theorem
50) there is a Presburger formula which is equivalent to the formula in (6.14). The
decidability of the validity of formulas of the form of (6.14) follows (corollary 51) from
the decidability of Presburger formulas. In sections 6.6.2 and 6.6.3 we introduce some
auxiliary definitions and lemmas which we will use in the proofs of the other sections of
this chapter.

6.6.1 Presburger’s Arithmetic

The class of Presburger formulas is the class of first order formulas over the structure
<I,+,—,<,0,1 > of integers. The class of Presburger terms is given by the following:

e Each integer is a Presburger term.
o Each variable over the integers is a Presburger term.

o If ,(T) and t3(T) are Presburger terms then ¢,(T) +1t2(T) and —#,(T) are Presburger
terms.

The class of Presburger formulas is given by the following:

o If t,(T) and t5(T) are Presburger terms then ,(T) = #2(T) and ;(T) < t2(T) are
Presburger formulas.

o If P(T) and F»(T) are Presburger formulas then =P (T), P (T)APL(T), PL(T)V P, (T),
and P;(T) — P,(T) are Presburger formulas.

e If P(Z,y) is a Presburger formula then Jy. P(T,y) and Vy. P(T,y) are Presburger
formulas.

The class of Presburger formulas was shown to be decidable by Presburger [End72,
Rab77]. This means that given a Presburger formula P(Z) it is decidable to check whether
P(7T) is valid or not.

6.6.2 Constrained Integer Lattices

In this section we introduce the notion of integer lattices, and then prove some properties
about them. These will be used in the proofs of the later sections in the chapter.

A (constrained integer) lattice L(T), with origin T, basis & =< &,,...,8,, >, where §;
is a tuple of integers, and constraint p(y), where p(7) is a conjunction of linear inequalities
and equalities is defined by:

{ -p(T) 0
L(Z) = (6.15)
p(E) {E+7T;E € LT +6;) for some 1 <i <m}uU {0}
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where w; is a unit vector. Intuitively if 7 € L(F) then T+7-8 is an integer point inside the
polytope defined by p(7), which can be reached from T by a finite number of steps inside

the polytope, moving in the direction of one of &,...,8, at each step. The boundary
B(T) of the lattice is defined by:
-p(@) {0}
B@ = {5 g (6:16)

Z; E¢ L(T) and there is a 7 such that g =7+ %,
7 € L(T), for some 1 <1 < m}

Intuitively if # € B(T) then T + - § is a point outside the polytope defined by p(7),
which can be reached from a point on the lattice by one step, moving in the direction of
one of §,...,8,. The closure C(T) of the lattice is defined by:

C(z) = L(T)UB(®) (6.17)
The predecessor relation <,, on C(T) is defined in the following way:

i =p i
ift
(7, =T, + 7, where 7 is a positive vector) A (7, € L(T))

As an example, consider a lattice L(z, 2z;), with origin < z;, 2, >, basis << -1, -1 >, <
1,—1>,<0,-2 >>, and constraint (z; < zz 4+ 2) A (z; + 22 > 10), illustrated in figure
6.1. The points marked by filled circles are of the form < 9— puy + o, 15— gty — po — 23 >,
where < py, gz, pps >€ L(9,15). The points marked with hollow circles are of the form
<9 — pq 4 o, 15 — py — pp — 2p3 >, where < puq, p12, p3 >€ B(9,15).

Let p(Z) be a conjunction of linear inequalities and equalities of the form:

R(Ei-f+ﬂ,~§0)/\ K (@ -7+ 5 =0)
1=1 i=ni+1

Consider a two-dimensional integer vector 8. Then we say that p(Z) is finite with respect
to & iff there is no positive vector 7 such that;

ny ng
(/\ (a{.ﬁ.zgo)) A ( A (ai-ﬂ'-gr— 0))
=1 t=nj+1

A conjunction of linear predicates p,(T) A po(T), where p,(T) is a conjunction of linear
inequalies and equalities and p,(T) is a conjunction of linear modulo predicates, is said to
be finite with respect to a two-dimensional integer vector §if p1(T) is finite with respect
to 8.

In the following proofs we denote unit vectors by @;, ;, Ty, etc.

Proposition 31 Let L(F) be a lattice with origin T, basis 8, and constraint p(§). Then:

me L@ — pE+E-9)
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T2

-+

, ¥ + + + I +—+ } + + t + } + + 1 t Iy
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Figure 6.1: The lattice and the boundary of the lattice with origin < 9,15 >, basis
<< -1,-1><1,-1>,<0,-2 >>, and constraint (z; < 29+ 2) A (2, + 2, > 10).
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Proof: By induction on 1:
Base Case: If 7 = 0. From (6.15):

0e L(x) — p(T) — p(T+E-J)

Induction Step: If @ > 0. Let § =< &;,...,8,, >. Suppose that @ € L(Z). From (6.15)
it follows that there is a 7 such that 7 = 7 + 7, for some 1 < ;7 < m and such that
7 € L(T +§;). By the induction hypothesis it follows that p(Z +8; + 7 - 8) is true. It
follows that:

pEZ+E-8) = pT+TF+7;) 8) = pT+6;+7:8) = true
[m]

Proposition 32 Let B(T) be the boundary of a lattice L(T) with origin T, basis &, and
constraint p(g). Then:

TEBET — -p(T+7 9B

Proof: By induction on T:
Base Case: If 7 = 0. From (6.16):

0€ B() — -p(T) — -~p(T+7-9)

Induction Step: Let § =< &;,...,8,, >. There are two cases:
1. If @ = 1w, for some 1 < j < m. From (6.16):
¢ LE (6.18)
and:
0 € L(3)
From (6.15):
p(T) = true (6.19)

From (6.18), (6.19), and (6.15):

From (6.16):

2. 7 > wy, for some 1 <1 < m. Suppose that:
I € B(T)
From (6.16) it follows that:

7 ¢ L@ (6.20)
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and that:
-1 € L) (6.21)
for some 1 < j < m. From (6.15):
p(T) = true (6.22)
From (6.20), (6.22), and (6.15):
A—T € L(T+6) (6.23)

foreach 1 < k <m. As @ > W we know that 7—7; > 0. From (6.21), (6.22), and (6.15),
it follows that there is a &y, where 1 < k£ < m, such that:

A-T;—-T € L(T+8) (6.24)
From (6.24), and (6.15):
p(T+8:) = true (6.25)

From (6.23), (6.24), (6.25), and (6.15):

E—Tx € B(TH+ o)

By the induction hypothesis:

B(z+E-8) = B +8+ (FE—-1)-8) = false
(m]

Proposition 33 Let L(T) be a lattice with origin T, basis § =< &,...,8,, >, and con-
straint p(y). Let B(T) be the boundary of the lattice. Then:
* p(T) — (ﬂ € L(T) ff ((ﬁ =0) v (\/ (m-m)e L(ﬂa)))))

i=1
o p(7) — (ﬁ € B(T) iff ( ((7-m) e Bz +1-J)))
i=1
Proof:
o The proof of the first claim follows directly from the definition of a lattice (see (6.15)).
o We will prove the second claim. Suppose that:

p(z) = true (6.26)

We will show the equivalence in both directions.
(—): Suppose that:

€ B(@ (6.27)

There are three cases:
1. If 7 =0. From (6.16) it follows that p(T) is false, which is a contradiction.
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2. f 7 =7, for some 1 < j < m. From (6.26), (6.27), and (6.16):
B ¢ L=
From (6.15):
0 ¢ LT+6;)
and:
p(T+38;) = false
From (6.16):
0 € B(T+9;)
so:
- € B(E+3§;)
and: "
i\_/1 ((-m) € B(z +5))
3. 7>, forsome 1 <[ < m—. From (6.27) and (6.16) it follows that:
7 ¢ LT (6.28)
and that there is a 7; such that:
= 740 (6.29)
for some 1 < j < m and:
1 € L(T) (6.30)
From the fact that @ > % it follows that 7@ > %;, and:
7, > 0 (6.31)
From (6.26), (6.30), (6.31), and (6.15) it follows that there is a 7, such that:
T o= Tyt (6.32)
for some 1 < k < m, and such that:
7, € L(T+8) (6.33)

As T > 7 > T, it is clear that there is a 73 such that:

T = T3+ (6.34)
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From (6.29), (6.32), and (6.34):

Ty = Ty+T; (6.35)
From (6.26), (6.28), and (6.34) and (6.15):

7s & L(T+6) (6.36)
From (6.33) and (6.15):

p(T+8) = true (6.37)
From (6.33), (6.35), (6.36), and (6.16):

T3 € B(T+738) (6.38)

From (6.34) and (6.38):

So:

(+—): Suppose that:
-, €B(T+)) (6.40)

for some 1 < 7 < m. There are two cases:
1. If  =4;. We have:

0 € B(@+3;) (6.41)
From (6.16):
p(T+38;) = false
From (6.15):
0 ¢ LT+
From (6.26) and (6.15):
u; ¢ L(T) (6.42)
From (6.26) and (6.15):
0 € L@ (6.43)

From (6.26), (6.42), (6.43), and (6.16):
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So:

€ B(z)

=

2. If @ > w;. Let 7; be such that:
£ = T+

From (6.40):

7 € B(E+8;)
From the fact that 7 > %; it follows that:
71 >0
From (6.45), (6.46), and (6.16):

p(T+6;) = true
From (6.45), (6.47), and (6.16) it follows that:

7 ¢ LT+3))

and that there is a 7, such that:

for some 1 < k < m, and:

Let:

From (6.50), (6.51) and (6.15):

V3 € L(T)

Irom propositions 31 and 32, and equations (6.44) and (6.45):

r ¢ L)
From (6.44), (6.49), and (6.51):
£ = T3+

From (6.26), (6.52), (6.53), (6.54), and (6.16):

7 € B(@)
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(6.46)

(6.47)

(6.49)

(6.52)

(6.53)

(6.54)
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Corollary 34 Let L(T) be a laitice with origin T, basis § =< &y,...,0m >, and constraint
p(¥). Let B(T) be the boundary of the lattice. Let P(T) be any predicate. Then for each

value & of T:

o If p(@) then:

iff:
P(0)
and:
Vi€ L(@+§;). P(A+T)
forl1 <1< m.

o If p(@) then:

iff:

forl <i<m.

e [f p(@) then:
iff:
or:

for some 1 <1< m.
e If p(@) then:
g € B(@). P(u)
iff:
e B@+$6). P(E+)

for some 1 <i<m.
Proof: The proof follows immediately from proposition 33.

Proposition 35 Consider a lattice L(T) with origin T, basis §, and constraint p(7).
Let B(T) and C(T) be the boundary and the closure of the lattice, and let <, be the
predecessor relation on C(7), for some value ¥ of T. Then <, is a partial order, and the
bottom elements of <, are the elements of B(7).
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Proof: The irreflexitivity and transitivity of <, is clear from its definition. Let § =<
81,...,6m >. Suppose that %, € B(¥). From the definition of <, it is clear that there
is no T, such that @, <, ;. Suppose that @ € L(7). From (6.15) it follows that p(¥) is
true. Consider f + @;, for any 1 < 7 < m. There are two cases: The first case is when
E+u; € L(7). From (6.16) it follows that 7+%; € B(¥) which means that 7+7%u; € C(7)
and Z+%; <, 7. The second case is when Z+%; € L(¥) which means that T+%; € C(¥)
and T4T; <, . 0O

Proposition 36 Consider a lattice L(T) with origin T, basis §, and constraint p(7), such
that p(g) is finite with respect to 8. Let C(T) be the closure of the lattice. Then for each
value 5 of T, if <, is the the predecessor relation on C(7), then <, is well-founded.

Proof: Let § =< 9;,...,8&, >. Let p(T) be of the form:
p(T) = m(T) A paAT)

where:

and:

ny

ZE = A @-T+6=0)

i=ny+1
That p(T) is finite with respect to § means that we have no positive 77 such that:

ne

1=1 i=ni+1

Let <, be the predecessor relation on C(¥), for some value ¥ of T. Suppose that <, is
not well-founded. Tt follows that there is an infinite decreasing chain:

My =p By 7p fig = oo (6.56)

where 71,1, = E; + Ty, for some 1 <k < m, and fr; € C(F), for ; = 0. From proposition
35 it follows that ji; € L(¥), and from proposition 31 it follows that p(¥ +72; - 8) is true,
for j =2 0.

It is clear that ps(7 + 7; -8) will be true for j > 0. This means that:

nz2
A (@7 5=0) (6.57)
t=nj+1
for j = 0.
Now consider any 7i; and 7, where 7 < k. Then it is true that:

7

V(@ 7 -8 <@ F-0) (6.58)

1=1
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because otherwise, we define the positive vector 7i:

From (6.57) it follows that:

| /{ (@-7-5=0) (6.59)

K (@-7-5<0) (6.60)

The formulas in (6.59) and (6.60) together are contradictory with the finiteness condition
in (6.55). It follows that (6.58) is true. Consequently there is at least an 1 < i < ny,
such that for each j > 0 there is a k > 7 where:

Tof 8 < W0

It follows that for each j > 0 there is a k£ > j such that:

@ V+Bi+® B8 <T@ F+Bi+E -8 <0
But this is impossible because @; - 7 + f; 1s finitely negative

This implies that there is no inifinte decreasing chain of the form of (6.56), which
means that <, is a well-founded relation. O

Proposition 37 Consider a lattice L(T) with origin T, basis § =< &,...,0,, >. and
constraint p(y). Let B(T) and C(T) be the boundary and the closure of the latiice, and
=, the predecessor relation on C(@) for some value @ of T. Suppose that p(T) is stable
and not finite with respect to 8. Then if p(@) is true then there is an infinite decreasing
chain:

ﬁl >':uﬁz >'ipﬁ:’,>';v"'

where fiy =0, f;yy = F; + Uk, for some | < k <m, and p(@ +7; - &) is true for j > 0.

Proof: Let p(T) be of the form:

ny ng

p(T) = (/\(m-mﬂism) A ( A (a,--f+ﬂl=0)) (6.61)

i=1 1=n;+1
That p(Z) is not finite with respect to § means that there is a positive 7 such that:
Ty

(R(at_ﬁ.ggo)) A ( A (5,-;7.3—0)) (6.62)

i=1 1=nj+1
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is true. From (6.61) and (6.62), it follows that, for each T, if p(Z) is true then:

n1 n2
(/\ (ai T+ B +TT6< 0)) A ( /\ (a‘-.f+,6,-+a,-.p.3= 0))
i=1 i=ny 41
= p(T+7E -8 = true
It follows that for each T, if p(T) is true then:
p(T) — pT+E-9) (6.63)
We consider the sequence:

Bo =p Ty =p T2 =p "+ >p Fop > p Fng1 7p Fng2 >p = 7p Fan =p Fang1 7p Bongz 7p "
where 71, = 0, Fip1 =B +Tr, 1 Sk <mfor 0 <j <n,and Ps1)nti = Blnyi T B for
0<j<nand0< .

Suppose that p(¥) is true. We will use induction on [ to show that p(F + 7, - 8) is

true for [ > 0:
Base Case: If [ = 0 then:

P(T+Fn-9) = p(T+Ho) = p(F) = true
Induction Step: Suppose that p(¥ + 7;.,) is true. From (6.63) it follows that:
p(7 + .‘_‘(u]).n} = p(¥ + A, + ) = true

Now we will show that p(¥ + 7,4, - &) is true for > 0 and 0 < j < n. Suppose that
P(F + By - 0) is false. We know from the induction proof above that p(¥ + 7., - §) and
P(F + Fpyn - 0) are true. We define:

V1 = Wngj; — Pra
and:
Vs = Fipgn = Blntj
It is clear that 7; and T, are positive vectors and that:
POT+Tin 8) A =p(T+ T +70-8) A p(T+ T + 715 +72-8)
which is contradictory to the stability assumption. O

Proposition 38 Let L(T) be a lattice with origin T, basis 6 =< 8y,...,8,, >, and con-
straint p(y). Let p(T) be stable with respect to 6. Then:

p(T) A p(T+E-8) — TELET)
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Proof: By induction on 7.
Base Case: If 7 = 0. Then from (6.15):

p(T) — Fe L(T)
Induction Step: If 7 > 0. Suppose that:
p(T) A p(T+7-8) = true (6.64)
and:
7 ¢ L (6.65)
By (6.65) and (6.15) it follows that for each 1 < j < m:
A-T; ¢ L(T+E;)
From the induction hypothesis it follows that:
p(ZT+8) A p(T+8;+(F—7,)-8) = false (6.66)
Suppose that p(z + &;) is false. Then:
P(ET) A —p(T+8;) A p(T+8;+(F—1;)-9) = true
which is contradictory to the stability assumption. It follows that:
p(T+8;) = true (6.67)
From (6.66) and (6.67) it follows that:
P+ +(FE—-1;)-8) = p(T+7-8) = false
which is contradictory to (6.64). O

Proposition 39 Let L(T) be a lattice with origin T, basis § =< 8y,...,8,, >, and con-
straint p(§). Let p(Z) be stable with respect to 8. Then:
EE L) if p@) A pE+7E-0)

Proof:

(—): Suppose that 7 € L(T). From (6.15) it follows that p(Z) is true. By proposition
31 it follows that p(Z + 7 - &) is true.

(+—): Follows from proposition 38. O

Corollary 40 Let L(T) be a lattice with originT, basis & =< 6;,..., 8w >, and constraint
p(¥). Let p(T) be stable with respect to 6. Then there are Presburger formulas lf(ZT,7)
and bf (T, L) such that:

melL@ iff (@7

ZeBE) iff bf(T,7)
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We call If(Z,7) and bf (T, %) the lattice formula and the boundary formula respectively

of L(T).

Proof: From proposition 39 it follows that [f(T,7) and bf(Z,7) can be defined as:
If(z,E) = p(E) A p(T+7-8)

and:

—p(T) A (A=10)
A%

( p(@) A ~FEE) A (fER-T) Vo V(T +T—Tn)) )

respectively. Both of these formulas are obviously Presburger formulas. O

bf(z,m) =

Proposition 41 Given a conjunction p(T) of linear inequalities and equalities, and a
two-dimensional integer vector é, it is decidable to check whether p(T) is finite with respect
to 8.

Proof: From the definition of finiteness, it can be easily shown that the probelm is
reducible to the integer linear programming problem which is decidable (see section 5.6.4).
O

6.6.3 Complexity of Systems of Recurrence Equations

We define a measure of complezity of systems of recurrence equations which we will use
in the proofs of section 6.6.4. Let E be an acyclic system of recurrence equations. Let:

f(z) = F(@)

be an equation in £. Then the complexity of f in £, denoted C(E, f) is equal to the pair
< e,c >, where e is the number of equations in E, and c is the number of cases in F(T).

6.6.4 Definedness of Systems of Recurrence Equations

In this section we show that, given an acyclic system of recurrence equations over a
signature SIG and a function variable f in E| then there is a Presburger formula P(T)
such that for each value @ of T, P(@) is true iff f(@) = L. The constuction of the formula
P(T) will be independent of the particular STG-algebra in which £ is interpreted.

Let E be an acyclic system of recurrence equations. Let:

f@) = F(=)
be an equation in E. Let F(Z) be of the form:

case
mnE) = 4(7)

m(T) = L(T)
endcase

Suppose that p;(&) is true, then the guard defined by [ and @ is p;(T) and the result
defined by f and @ is t,(T).
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Lemma 42 Let:

e f be a function variable in an acyclic system of recurrence equations over a signature

SIG.

@ be a tuple of integers.

p(T) and t(T) be the guard and the result respectively defined by f and &, where 1(T)
is a linear systolic term in which f occurs.

e =<%,....6m > and t(T),. ., t.(T) be the recursive vector and non-recursive
terms respectively of f in 1(T).

e L(Z), B(T), and C(T), be the lattice, the boundary of the lattice, and the closure of
the lattice with origin T, basis §, and constraint p(7).

o p(ZF) be finite with respect to d.

then:
f@=1
iff:
e B@). fla+m-6) =1
or:

Ime L@). ti(a+m-8) =1

for some 1 <1< n.

Observe that the claim of the lemma is independent of the particular STG-algebra in
which the equation system is interpreted.

Proof: Let <, be the predecessor relation on C(&). As p(T) is finite with respect to &, it
follows by proposition 36 that <, is well-founded. We will use induction on <, to prove
the stronger claim that: for each 7 € C(@):

f@+7-9) = 1L (6.68)

iff:
e B@+7v-6). f@a+v-864+m-6)=1 (6.69)

or:
JpeLl@+v-8).t(@a+7v-6+71-8) =L (6.70)

for some 1 < i < n. The result follows immediately from the special case 7 = 0.

Base Case: By proposition 35, the bottom elements are those of boundary of the lattice.
If 7 € B(@) then by proposition 32 we know that p(@ 4 7 - 8) is false. From (6.15) and
(6.16) it follows that:

L@+v-8) = 0
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and:
B(@+7-6) = {0}
This means that the formula in (6.70) is false, while the formula in (6.69) is equivalent
to:
f@+7-§+0-8)=1

which is equivalent to the formula in (6.68).

Induction Step: Suppose that the claim is true for each ¥7 <, 7. We will show the
claim for 7. If ¥ € B(@) then the proof is reduced to that of the base case above. If
7 € L(@) then we know from proposition 31 that p(@+ 7 - §) is true and consequently:

f@+7.%) = t@+7v-9) (6.71)

We will prove the equivalence in both directions.
(—): Suppose that:

f@+v.8) = L (6.72)
We will show that:
e B@+7v-8). f@a+v7-6+m-8) =1 (6.73)
or:
JpeL@+7v-8). ti(@+7-0+7-6) =1 (6.74)
for some 1 < i < n.
From (6.72) and (6.71):
t@+7.8) = L (6.75)

From (6.75) and the definition of semantics of recurrence equations (section 4.3) it follows
that:

f@+wv;-8) = L (6.76)
for some 1 < j < m, where 7; =7 + @, or:

t(@+7-8) = L (6.77)
for some 1 <1 < n.

We consider the formula in (6.76). It is clear that ¥; <, 7. From the induction
hypothesis it follows that:

e B@+7v;-8). fa+7v;-64+4m 8 =1 (6.78)
for some 1 < j < m or:

JpeL@+7v;-6). ti(@+v;-6+m-8)=1 (6.79)
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forsomel <j <mand1<:<n.

By applying corollary 34 on (6.78), where P(Z) is f(@+7 -8 +7-8) = L, we get
(6.73).

By applying corollary 34 on (6.77) and (6.79), where P (%) is t{(@+7-§+7 - 8) = L,
for some 1 <1 < n, we get (6.74).
(+—): Suppose that:

e B@+7v-8). f@+7-6+m- &)=L (6.80)
or:
Jpel@+7v-8). ti(@+7v-8+m-8) =L (6.81)
for some 1 < i < n. We will show that:
f@+7v-9) = 1 (6.82)

Let 7, =747, for 1 < j <m.
By applying corollary 34 on (6.80), where P(f) is f(@+7-6+7-6) = L, we get:

Ji€ B(@+7;-0). f@+7;-6+7-0) =1 (6.83)

for some 1 < j < m. - -
By applying corollary 34 on (6.81), where P(m) is ti(@+ 7 -6+ 7 - 6) = L, for some
1 <1 < n, we get:

ti(a+7-6) = L (6.84)
for some 1 <17 < n, or:
e L@+v;-8).t(@+7,-64+7-6) =1 (6.85)

forsome 1 <j<mand 1l <:<n.
We know that each 7; <, 7. From (6.83), (6.85), and the induction hypothesis it
follows that:

fl@+7;-8) = L (6.86)

for some 1 < j < m.
From (6.86), (6.84), and the definition of semantics of recurrence equations (section

4.3):
HE+7-6) = L (6.87)
From (6.71) and (6.87) we get (6.82). O

Lemma 43 Let:

e [ be a function variable in an acyclic system of recurrence equations over a signature

SIG.
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e @ be a tuple of integers.

o p(T) and t(T) be the guard and the result respectively defined by [ and @, where ()
is of the form f(T + B).

» L(Z), B(Z), and C(T), be the lattice, the boundary of the lattice, and the closure of
the lattice with origin T, basis B, and constraint p(y).

o p(T) be finite with respect to B.
f@=1

JpeB@). f@+p-B)=1

Observe that the claim of the lemma is independent of the particular SZG-algebra in
which the equation system is interpreted.

Proof: Let <, be the predecessor relation on C(&). As p(T) is finite with respect to 3, it
follows by proposition 36 that <, is well-founded. We will use induction on <, to prove
the stronger claim that: for each v € C(@):

f@+v-B) = L (6

=
fos
&0

JueB@+v-B). fl@a+v-B+p-B)=1 (6.89)

The result follows immediately from the special case v = 0.

Base Case: By proposition 35, the bottom elements are those of boundary of the lattice.
If v € B(@), then by proposition 32 we know that p(@ + v - B) is false. From (6.16) it
follows that:

B@+v-3) = {0}
This means that:
JueB@+v-B). f@+v-B+p-B)=L iff f@+v-f+0.5)=L iff f(@+v-B)=1

Induction Step: Suppose that the claim is true for each ' <, v. We will show the
claim for v. If » € B(@) then the proof is reduced to that of the base case above. If
v € L(@) then we know from proposition 31 that p(@ + r - ) is true and consequently:

f@+v-B) = fla+v-B+83) = fl@a+(v+1)-5) (6.90)

We will prove the equivalence in both directions.
(—): Suppose that:

f@+v-B) = L (6.91)
We will show that:

JueB@+v-B). f@+v-B+p-f)=1 (6.92)
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From (6.91) and (6.90):

fla+(v+1)-8) = 1 (6.93)

It is clear that ¥ + 1 <, v. From the induction hypothesis it follows that:

JueB@+w+1)-8). f@a+(w+1)-B+u-8)=1 (6.94)

By applying corollary 34 on (6.94), where P(u) is f(@+v B+ pu-B) = L, we get (6.92).
(«—): Suppose that:

JueB@+v-B). f@a+v-B+u-B)=1 (6.95)
We will show that:
f@+v-B) = L (6.96)
By applying corollary 34 on (6.95), where P(p)is f(@+ v -3+ p-B) = L, we get:
JueB@+(w+1) B).f@+(v+1) - B+p B)=1L (6.97)
It is clear that v 4+ 1 <, v. From (6.97) and the induction hypothesis it follows that:
fe+v+1)-8) = L (6.98)
From (6.90) and (6.98) we get (6.96). O
Lemma 44 Let:

o f be a function variable in an acyclic system of recurrence equations over a signature

SIG.
e @ be a tuple of integers.

e p(T) and {(T) be the guard and the resull respectively defined by f and &, where (T)
is a linear systolic term in which f occurs.

e §=<¥8,...,8, > be the recursive vector of [ in i(T).
o p(%) be not finite with respect to 9.
then:
f(a) =

Observe that the claim of the lemma is independent of the particular STG-algebra in
which the equation system is interpreted.

Proof: Let C(T) be the closure of the lattice with origin Z, basis §, and constraint p(7).
By proposition 37 there is an infinite decreasing chain:

P >p g =p iy =p o
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where <, is the predecessor relation on C(@), &, = 0, [i;41 = &; +x, for some 1 < k < m,

and p(@ + i, - 0) is true for j > 0. this means that:

From the semantics of recurrence equations (section 4.3) we get:
fl@ = 1

(m]

Lemma 45 Let:

e f be a function variable in an acyclic system of recurrence equations over a signature

SIG.
e @ be a tuple of integers.

e p(T) and t(T) be the guard and the result respectively defined by [ and @, where {(T)
is of the form f(T + B).

o p(T) be infinite with respect to 3.

then:
fl@)=1

Observe that the claim of the lemma is independent of the particular SZG-algebra in
which the equation system is interpreted.
Proof: Let C(ZT) be the closure of the lattice with origin T, basis 3, and constraint p(7).
By proposition 37 there is an infinite decreasing chain:

1 >‘:,J Ha2 >_P K3 >_7J
where <, is the predecessor relation on C(@), yty = 0, pj41 = p1; + 1, and p(@ + p; - B) is
true for j > 0. This means that:

f@)=f@+B)=f@+28) = f(@a+3p) = f(@+4f) =
From the semantics of recurrence equations (section 4.3) we get:

f@) = 1



128 CHAPTER 6. CLASS OF ALL ALGEBRAS

Lemma 46 Let [ be a function variable in an acyclic system of recurrence equations
over a signature SIG. Then there is a Presburger formula P(T), such that for each @:

P@) o (f(@)=1)

Observe that the equivalence is not dependent on the particular STG-algebra in which
the equation system is interpreted.
Proof: Let E be an acyclic system of recurrence equations over a signature SIG. Let the
definition of f in E be of the form:

where F(T) is of the form:
case
" (T) = (E)

Pe(T) = 4(T)
endcase
For each &, if p;(@) is false for | < i < k, then f(@) = L. If there is a p;(T) such that
pi(@) is true then f(@) = t;(@). We will use induction on the complexity C(E, f) of [ in
E to give a Presburger formula P;(T) such that for each @, if p;(@) is true then Pi(@) iff

f(@) = L.

Base Case: If C(E, f) is of the form < e,0 >, i.e. k =0, then f(T) = L, for all 7, and:
Fi(z) = true

which is a Presburger formula.

Induction Step: If £ = 0 then the proof is reduced to that of the base case above.
Suppose that & > 0. A number of cases are possible. In each case we will write P;(T) as
a Presburger formula.

1. If ¢;(Z) is a stream expression of the form a(g(T)). As t,(T) is well-defined under p;(T),
it follows from the definition of semantics in section 4.3 that:

Pi(z) = false
which is a Presburger formula. B
2. If £;(Z) is a function variable expression of the form f(T + 3), where " # f. Let £
be the system of recurrence equations we get from £ by deleting the equation:
f(z) = F(T)
We note that f’is a function variable in £’. From the acyclicity of F(T) it follows that:
f@ = f@+5)
where f’ is considered as a function variable in E’. Also we know that:

C(E',f) < C(E.f)
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From the induction hypothesis it follows that there is a Presburger formula P!/(T) such
that:

Pi(T) it (f(7)= 1)
Now P;(T) can be defined to be:
Pi(z) = Fi(T+P)

which is a Presburger formula.

3. If t;(Z) is a function variable expression of the form f(F 4 B). By proposition 41
we can check whether p;(T) is finite with respect to B or not. If p;(Z) is not finite with
respect to B then it follows by lemma 45 that:

P(z) = true

which is a Presburger formula. If p;(%) is finite with respect to 3 then let B(T) be the
boundary of the lattice with origin T, basis 3 and constraint p,(7). By lemma 43 it follows
that:

(f@) =1) if (JueB@). f@+p-B)=1) (6.99)
let bf(T) be the boundary formula corresponding to B(T), then:
bf(z,u) = (k€ B(T)) (6.100)
Let £~ be the equation system we get from E by replacing the equation:
fz) = F(=)
in F by the equation:
f1@ = F(@
where F*(T) is the result of deleting the case p;(Z) = ,(T) in F(T). By proposition 32

we know that for each p € B(T), p(T + - f) is false. By the acyclicity of F(7) it follows
that:

Vi€ BE). (fE+u-B)=fE+u-B) (6.101)

We know that C(E=*, f*) < C(F, f). By the induction hypothesis it follows that there is
a Presburger formula P*(T) such that:

PiE) it (@)= L) (6.102)
From (6.99), (6.100), (6.101), and (6.102) it follows that P(T) can be defined as:
P(E) = 3 bfE ) A BlE+u- )

which is a Presburger formula.
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4. If t;(T) is a linear systolic term in which f does not occur. Let ¢;(Z) be of the form
g(t}(Z),...,t,(Z)). From the definition of semantics in section 4.3 it follows that:

We will show that for each 1 <1 < n there is a Presburger formula P,—U)(T) such that:
POE) iff (t(z) = 1)
There are a number of cases. In each case we will write P,-“)(E) as a Presburger formula.

o If /() is a stream expression. This case is similar to case (1) above.

e If (T) is a function variable expression, whose function variable is not f. This case
is similar to case (2) above.

1t follows that P;(T) can be defined as:

P@E) = \/PO@)

=1

which is a Presburger formula.

5. If t;(T) is a linear systolic term in which f occurs. Let § =< §,,...,8,, > be the

recursive vector of f in t;(T). Let ¢{(T),..., ¢, (T) be the non-recursive terms of [ in ¢;(T).
By proposition 41 we can check whether p;(%) is finite with respect to § or not. If

p;(Z) is not finite with respect to & then it follows by lemma 44 that:

P(T) = true

which is a Presburger formula. If p;(T) is finite with respect to @ then let L(T) and B(T)
be the lattice and the boundary of the lattice with origin T, basis & and constraint p;(7).
From lemma 42 it follows that:

fz)=1
iff
37 € B(z) f(\jc +E-8)=1 (6.103)
V (3 e L) 4z +7-3) = 1)

Let [f(Z,F) and bf(Z, %) be the lattice and the boundary formulas respectively of
L(Z). This means that:

If@,F) = (Fe L) (6.104)
and:

bf(T.E) = (F€ B(@) (6.105)
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In a similar manner to case (3) above we can show that there is a Presburger formula
Pr(Z) such that:

Vi€ B(Z). Pr(z+1-8) iff (f(z+E-9)=1) (6.106)

In a similar manner to case (4) above we can show that for each 1 < [ < n there is a
Presburger formula P.-“) (Z) such that:

POz) i (4(F) = 1) (6.107)

From (6.103), (6.104), (6.105), (6.106), and (6.107), it follows that FP;(T) can be defined
as:

(37 bf@. ) A Pr(E+77))
P@ = | . ¥
V (3z. ifz.m) A PO +7-3))
=1

which is a Presburger formula.
Now the formula P(T) in the claim of the lemma can be defined as:

&
r@ = (A-»@) V (Vi » )
=1 1=
which is a Presburger formula.
Observe that the construction of P(T) in the lemma was independent of the particular
STIG-algebra in which E is interpreted. O

6.6.5 Equality of Defined Systems of Recurrence Equations

In this section we show that, given two systems £ and F; of acyclic recurrence equations
over a signature SIG, and two function variables f; and f; in Ey and F;, then there is a
Presburger formula P(T, T;) such that for each value @; and &, of T; and 7o, il f1(&@) # L
and f(@;) # L, then P(@,@,) is true iff fi(@) = fo(@,) for every SIG-algebra.

By a common lattice L°(T1,T,) with origins T; and T, bases 8, =< &;y,.... i >
and 8, =< b1, ..., 82m >, and constraints p;(F) and py(T), we mean a lattice with origin
< T1,Tz >, baSlS << 611,001 >y < 51,,“52,,1 >>, and constraint p(T;) A pa(T3).
Intuitively if @ € L°(T;,T;,) then T; + 7.6, and Ty + i - &, are two integer points inside
the polytopes defined by p,(7;) and py(T;) which can be reached from 7, and 7, by a
finite number of steps inside the two polytopes, moving in the direction of §,; and &,
respectively, for some 1 < i < m, at each step.

As an example, consider a common lattice L(xy, z,y1,y2), with origins < 2,1y >
and < y1,y; >, bases << —-1,-1 >, < 1,-1 >,< 0,-2 >> and << 0,-1 >,< 1,0 >
,<1,—1 >>, and constraints (2, < 29 +2) A (2, + 22 2 10) and (y; < 13) A (y2 = =8),
illustrated in figure 6.2. The points marked by filled circles in the upper half of the
plane are of the form < 9 — p; + o, 15 — by — ftg — 2pt3 >, where < puy, jia, iz >€
L5(9,15,4,—3). The points marked by filled circles in the lower half of the plane are
of the form < 4 + pg + p3,—3 — p1 — pa >, where < py, g, 3 >€ L°(9,15,4,-3).
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The points marked by hollow circles in the upper half of the plane are of the form <
9—piy+ 2, 15— pq — pig—2p3 >, where < py, 2, p3 >€ B(9,15,4, —3). The points marked
by hollow circles in the lower half of the plane are of the form < 4+ py+ ps, =3 —py — 3 >,
where < pq, ptg, pia >€ B¢(9,15,4,-3).
Consider two function variables f; and f, and two linear systolic terms g¢(t;(T),
- t1n(Z)) and g(t21(T),. .. ,t2n(Z)). Let 41;,(F),. .., t1in(T) and £2;,(T),. .., 12:,,(T) be
such that t,;(Z) and t5;(Z) are of the forms fi(Z + é,;) and fg(I + é2;) respectively,
and such that there are no #;(T) and #,(T) where ¢ ( ) € {tu(T), .., (@)} {1, (Z),
@)} 5 (@) € {ta@), . 1@} \ {12 (@), - taig (B)), 6(T) is 2 function
va,rla.ble expression which has fl as a function varla.ble and 1,(ZF) is a function vari-
able expression which has f; as a function variable. Then < Sty bim > and <
8214+ ., 02 > are called the common recursive vectors of fi and f; in g(tn( )y ey t1a(T))
and g(tgl(x) ,t2n(T)), and the elements of {t1;(T),- .., t1a(F)} \ {t14,(T),- .-, i, (T))
and {t,(7),. .. ,tgn(f)}\{tg;1 (T);. .- 112, (T)}, are called the common non-recu:‘sive lerms
of fi and fy in g(£11(F), . .-, t1a(T)) and g(ta1(F), . .-, t2a(T)). For example, let:

ti(z) = g(filz +4),a(3z), h(z), Hi(z = T), filz +3))
and:
t2($) = g(f?('r""7)1h(x‘4)35(2'1'):&2(1')’(‘(23]]

then the common recursive vectors of f; and f; in t;(z) and ty(x) are < 4, -7 > and
< 7,0 >, and the common non-recursive terms are a(3z), h(x), fi(z + 3), and h(z — 4),
b(2z), a(2z).

Lemma 47 Let:

e fi and f; be function variables in two acyclic systems of recurrence equalions over
a signature SIG.

o @, and @, be tuples of integers.

o pi(Z) and 1;(T) be the guard and result vespectively deﬁued by fi and &;, where t;(T)
is a linear systolic term in which f; occurs, for i = 1,2, and such that 1,(T) and
t2(T) have the same operation symbol.

® 8 =< 811y...,01m > and 8y =< 891....,62m > be the common recursive vectors of

fi and fy in 1,(T) and t,(7).

e 111(T),...,t1n(T) and t2:(T),. .., 12.(T) be the common non-recursive terms of f
and fy in 1(Z) and t2(T).

o L°(Ty,T), BY(T1,T2), and C°(T,T,), be the common lattice, the boundary of the
common lattice, and the closure of the common lattice with origins T, T,, bases
b1, 62, and constraints py(T), p2(T).

o fil@i) # L, and fr(@) # L.
e SPEC be the algebraic specification of the class of all SIG-algebras.
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Figure 6.2: The common lattice and the boundary of the common lattice with origins
< 9,15 > and < 4,—3 >, bases << —1,-1 >,<1,-1>,<0,-2>>and << 0,-1 >, <
1,0 >, < 1,-1 >> and constraints (z; < 2,+2)A(z1+2, = 10) and (y; < 13)A(yz = —3).
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then
SPEC E fil@) = f(da)
iff:
Vi € BY(@,@,). SPECE fil@ +T-61) = (@ + 7 - 82)
and:
VE € LY(@,@;). SPEC = ty(@ + B - 6,) = to(@ + - 63)
for1<i<n.

Proof: Let <, be the predecessor relation on C°(@,@;). As fi(@;) # L, it follows by
lemma 44 that p;(Z) is finite with respect to §; for 1 = 1,2. It follows that p,(T) A p,(T)
is finite with respect to < &;,8; >. By proposition 36 it follows that <, is well-founded.
We will use induction on =<, to prove the stronger claim that: for each 7 € C°(&,,@;):

SPEC E filay +7-8)) = (@ + 7 8,) (6.108)
iff:
Vi€ B (@ +7-6,,a@+7-6). (6.109)
SPECE filer +7-861+F-61) = fo(@ + 762 + 71 - 2)
and:

Vie L@ +7-8,@ +78,). (6.110)
SPEC (@ +7 -8+ - 81) = tai(@a + 7 02 + i - 63)

for 1 <i < n. The result follows immediately from the special case 7 = 0.

Base Case: By proposition 35, the bottom elements are those of the boundary of the
common lattice. If 7 € B*(@,;,@;), then by proposition 32 we know that p, (&, +7-8;) A
p2(@; + 7 - 6;) is false. From (6.15) and (6.16) it follows that:

L@ +7-6,8:+7-8,) = 0
and:
B(@ +7-6,@+7-8;) = {0}

This means that the formula in (6.110) is true, while the formula in (6.109) is equivalent
to:

SPEC E i@ +7-61+0:-8) = fo(@+7:-6,+0-6,)

which is equivalent to the formula in (6.108).
Induction Step: Suppose that the claim is true for each v’ <, 7. We will show the
claim for 7. If ¥ € B*(@,@z) then the proof is reduced to that of the base case above.
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If 7 € L°(@,a,) then we know from proposition 31 that p;(@; + 7 - &) is true and
consequently:

SPEC = fil@+7 &) =t(@+7 5) (6.111)

for 1 = 1,2. We will prove the equivalence in both directions.
(—): Suppose that:

SPEC = fil@+7-8) = fi(@a+7-8;) (6.112)
We will show that:
Vi € B(@ +7- 6,0+ 7 &) (6.113)
SPEC | i@y +T -8, +F-61) = fo@ + T -8+ T 8,)
and:
Vi€ L(@ +7-61, @ +7-8). (6.114)
SPEC =ty (T +7-84+T-8) =to(@+7 -8, + 1 8,)
for 1 <i < n.

From (6.112) and (6.111):
SPEC E (T 4+7-61) =t +7-8) (6.115)

From (6.115) and the definition of semantics of recurrence equations (section 4.3) it can
be shown that:

SPEC | [(@m+7;-8) = fil@+7;-8) (6.116)
for 1 <j <m, where 7; =7 + 7;, and:
SPEC E tu(@m +7-8) = ty(m; +7-83) (6.117)

forl1 <i<n.
We consider the formula in (6.116). It is clear that 7; <, 7. From the induction
hypothesis it follows that:

Vi€ BY@ +7;- 61,0 47, - 82). (6.118)
SPEC |= fi(m +7; -31 +ﬁ-51J = fo(@s +Vj -32 +ﬁ'52}

for 1 <7 <m and:

Vi € Lé(ay +7; - 61,@2 + 7; - 83). (6.119)
SPECE 11T +7; - 61 +F-61) = 12i(T + T - 62 + T - 62)

forl1 <j<m,and 1 <i<n.
By applying proposition 34 on (6.118), where:

@ = (SPEC F A +7- & +T &) = (@ + 76, +ﬁ32))
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we get (6.113).
By applying proposition 34 on (6.117), and (6.119), where:
P(E) = (SPECEfi(@+7-8i+7-81) = h@+7 5 +7 &)
we get (6.114).
{(+—): Suppose that:
VE € B (@ +7-0,,@ +7-62). (6.120)
SPECE fil@i+7 -8, +7-8) = ful@ +7-8

+
R
o

and:
Vie L@ +7 8,8 +7-6,). (6.121)
SPECE (@ +7-81+F-8) =ty(@+7 -6+ 7 &)
for 1 <4 < n. We will show that:
SPEC E filan +7-6)) = fu@ + 7 6,) (6.122)

Let 7; =7 +a;, for 1 <j <m.
By applying proposition 34 on (6.120), where:

P(p) = (SPECEH@m+7 51+ -81) = fo(@+7 -8, + - 5))
we get:
VE € BY(@y +7; 61,0 +7; - 8a). (6.123)
SPEC|= fi(@ + 7 81 +F-01) = fa(@2+7; - 8y + T 63)
for1 <j<m.
By applying proposition 34 on (6.121), where:
P() = (SPECE @ +7 - 51+ 8) = fol@+7 -8+ 7 5))
we get:
(@ +7-61) = (@ +7-8) (6.124)
for 1 <: < n, and:
VI € LY(@ +7; - 81,82 + T; - b2). (6.125)
SPEC (@ +7; 61 +7-61) = toi(@2 +7; - 62 + T - 82)

forl<j<mandl1<:<n.
We know that each 7; <, 7. From (6.123), (6.125), and the induction hypothesis it
follows that:

SPEC = fil@ +7;-6) = fo(@2 +7; - &) (6.126)
for1 <j <m.
From the definition of semantics, (6.126), and (6.124) we get:
SPEC E 4(@ 47 -8) =t(@+7-8) (6.127)

From (6.111) and (6.127) we get (6.122). O
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Lemma 48 Let:

o f1 and fy be function variables in two acyclic systems of recurrence equalions over
a signature STG.

@, and @, be tuples of integers.

e p(T) and t(T) be the guard and the result respectively defined by f; and &,, where
t(Z) is of the form fi(T + B).

e L(%), B(T), and C(T), be the lattice, the boundary of the lattice, and the closure of
the lattice with origin T, basis B, and constraint p(F).

o p(T) be infinite with respect to B.
o SPEC be the algebraic specification of the class of all STG-algebras.
then:
SPEC | fil@) = f(@)
iff:
Vu € B(@,). SPEC |= fi( + p- 81) = fo(@a)

Proof: Let <, be the predecessor relation on C(&). As p(T) is finite with respect to 3, it
follows by proposition 36 that <, is well-founded. We will use induction on <, to prove
the stronger claim that: for each v € C'(@):

SPEC = fila+v-B) = fal@) (6.128)
iff:
Vue B(@ +v-B).SPEC = f(@+v-B+p-B)= fo(@) (6.129)

The result follows immediately from the special case v = 0.

Base Case: By proposition 35, the bottom elements are those of boundary of the lattice.
If v € B(@,), then by proposition 32 we know that p(@; + v - B) is false. From (6.16) it
follows that:

B(@ +v-8) = {0}
This means that:
V€ B@ +v-B). SPEC | fi(@ +v-B+pu-B) = fo(@)
SPEC E fil@ + uff-fﬁ +0-8) = fo @)

iff
SPEC = fi(@ + v - B) = fo@,)
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Induction Step: Suppose that the claim is true for each v <, v. We will show the
claim for v. If v € B(@,;) then the proof is reduced to that of the base case above. If
v € L(@,), we know from proposition 31 that p(& + v - B) is true and consequently:

SPEC = film+v-B)=fl@m+v-B+B) = film+(v+1)-5) (6.130)

We will prove the equivalence in both directions.
(—): Suppose that:

SPEC = filai+v-B) = fo(@) (6.131)
We will show that:
VueB(@ +v-B).SPECKE fili+v-B+p-B) = fol@) (6.132)
From (6.131) and (6.130):
SPEC | fil@+ (v +1)-B) = fol@) (6.133)

It is clear that v + 1 <, . From the induction hypothesis it follows that:
Vp e B@ + (v+1)-B). SPEC = fu(@ + (v +1)- B+ p - B) = fa(@2) (6.134)
By applying corollary 34 on (6.134), where:
P(p) = (SPECE fi(@ +v-B+u-B) = fo(@))

we get (6.132).
(«—): Suppose that:

Vue Bl +v-B).SPEC = fi@+v-B+u-B) = fo(@) (6.135)
We will show that:
SPEC | fila+v-B) = fol@) (6.136)
By applying corollary 34 on (6.135), where:
Pp) = (SPEC fi@+v B +p-B) = fol@))
we get:
Ve € B(@ +(v+1)-B).SPEC = fil@+ (v +1)-B+pu-B) = fol@) (6.137)
It is clear that » + 1 <, ». From (6.137) and the induction hypothesis it follows that:
SPEC £ fil@m+(w+1) -B) = fol@) (6.138)

From (6.130) and (6.138) we get (6.136). O
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Lemma 49 Let f1 and f be function variables in acyclic systems of recurrence equations
with a signature SIG. Then there is a Presburger formula P(T,,T,), such that for each
@, and @,, if fi(ay) # L and fo(@,) # L, then:

P(an,a,) if (SPECE fil@) = f(a))
where SPEC is the algebraic specification of the class of all STG-algebras.
Proof: Let the definitions of f; in E; and f; in F3 be of the forms:
h(@E) = FA(@)
and:
f(Z)

respectively, where F; () is of the form:

Fa(T)

case
m(T) = tn(7)

5

)

P (T) =t
endcase

and JF»(T) is of the form:
case
pu(T) = tu(?)

P2k, (3"—) =l (T)
endcase

For each @, and @, if fi(@) # L and fy(&;) # L, then there are py(T) and py;(T),
where 1 <i < ky and 1 < j < ky, such that py;(@,) and py;(@;) are true.

We will use induction on C(Ey, fi, Bz, f2) = (C(E1, f1),C(E2, f2)) to give a Presburger
formula P;;(T1,T,) such that for each @; and @, if pi:(@;) and po, (@) are true, then
Pii(ay, @) iff fi(@h) = fa(@s,) for each STG-algebra A.

Base Case: If C(Ey, fi, E2, f2) =< €1,¢1,€2,¢2 >, where ¢; =0 or ¢ = 0, i.e. ky = 0 or
ky = 0, then f1(ZT) = L or fo(Z) = L, for all T, and the proof is trivial.

Induction Step: Suppose that C(E, fi, Eq, f2) =< e1,¢1, 6,6 >, where ¢; > 0 and
¢y > 0,1e ky >0and k; > 0. A number of cases are possible. In each case we will write
P;j(Z1,T2) as a Presburger formula.

1. If both t,;(T) and to;(T) are stream expressions. Let 11;(T) and t5;(T) be of the forms
a1(4,(Z)) and az(€2(Z)) respectively. From the definition of semantics it follows that if
ay # ay then:

Py;(T,,T;) = false
which is a Presburger formula. If a; = a; then:

Pi(71,72) = (L(71) = L(7))
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which is a Presburger formula.
2. If ¢,;(T) is a stream expression and 1,;(T) is a linear systolic term. Then from the
definition of semantics it follows that:

Pii(71,72) = false

which is a Presburger formula.

3. If t3;(T) is a stream expression and t;(T) is a linear systolic term. This case is similar
to case (2) above.

4. If ¢;;(T) is a function variable expression of the form f(7Z + f), where f] # f;. Let £
be the system of recurrence equations we get from E; by deleting the equation:

A@) = A@)
We note that f] is a function variable in E]. From the acyclicity of F;(T) it follows that:
LE) = fi@+5)
where f; is considered as a function variable in Ej. Also we know that:
C(EL, fis By f2) < C(Ev, fr, En, fo)

From the induction hypothesis it follows that there is a Presburger formula F);(T,,73)
such that:

Pi(71,7,) ff (SPEC = £i(T1) = fa(T2))
Now P;;(Ty,T2) can be defined to be:
Pij(71,72) = Pi(@ + B, T2)

which is a Presburger formula.

5. If ¢5;(T) is a function variable expression of the form f}(Z + B), where f; # f,. This
case is similar to case (4) above.

6. If t,;(F) is a function variable expression of the form f,(T + ). By proposition 41
we can check whether py;(T) is finite with respect to 3 or not. If pi,(T) is not finite with
respect to 3 then it follows by lemma 44 that the proof is trivial. If py;(T) is finite with
respect to @ then let B(T) be the boundary of the lattice with origin 7, basis § and
constraint py;(7). By lemma 48 it follows that:

(SPEC = (@) = fo(F)) it (V4 € B(F). SPEC | f(F1 + - B) = f(T2)) (6.139)
let bf(Z,u) be the boundary formula corresponding to B(Z), then:
bf(@,p) = (n€ B(T)) (6.140)
Let E} be the equation system we get from F; by replacing the equation:

h(@) = FA(7)
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in Fy by the equation:
i@ = FHE)

where F7(Z) is the result of deleting the case py;(Z) = t1:(T) in F1(T). By proposition
32 we know that for each u € B(T), pi;(T + p - B) is false. By the acyclicity of F,(T) it
follows that:

Ve € BE). (h(Z+p-B)=fi@+p-B)) (6.141)

We know that C(EY, fr, Es, f2) < C(Ex, fi, Ea, f2). By the induction hypothesis it follows
that there is a Presburger formula PJ(Z1,Z,) such that:

P5(1,72) ff (SPEC | fi(T1) = f2(T2)) (6.142)
From (6.139), (6.140), (6.141), and (6.142) it follows that P,;(T;,T;) can be defined as:
P;(T1,%2) = Vu. bf(T,p) — P:;(fl +pu-B,7)

which is a Presburger formula.

7. If t5;(%) is a function variable expression of the form fo(Z + 3). This case is similar to
case (6) above.

8. If t1;(T) is a linear systolic term in which f; does not occur. Let ¢1;(T) and t5,(T) be of
the forms g, (t1,(%),. .., 11, (Z)) and g2(t5,(T),. .. .t4,,(T)) respectively. Then if g, # g,
then from the definition of semantics it follows that:

Pi(71,T,) = false

which is a Presburger formula. If g; = g, then let n = n; = ny. From the definition of
semantics it follows that:

(SPEC E fu(T1) = fu(m) N\ (SPEC E ti(7:) = t(F))

=1

We will show that for each 1 <[ < m there is a Presburger formula Pi(_:)(fl.i_'g) such
that:

PO@,T,) iff (SPEC =ty (T1) = th(T2))

: . ) —
There are a number of cases. In each case we will write Pi(j)(:lf],ﬂfg) as a Presburger
formula.

o If t1;(T) and t(T) are stream expressions. This case is similar to case (1) above.

o If ¢},(Z) is a function variable expression, whose function variable is not f;. This
case is similar to case (4) above.

o If #5,(Z) is a function variable expression, whose function variable is not f;. This
case is similar to case (5) above.
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It follows that P;;(Z1,%2) can be defined as:

Pij(T1,T,) = /\ing',)(-fls?fi)
=1

which is a Presburger formula.

9. If t5;(T) is a linear systolic term in which f, does not occur. This case is similar to
case (8) above.

10. If both #1;(Z) and t,;(T) are linear systolic terms. Let the operation symbols in {1;(T)
and 1,;(T) be g; and g, respectively. If g; # g, then from the definition of semantics it
follows that:

P;(71,T;) = false

which is a Presburger formula. If g; = g, then let §; =< &;4,...,8;, > and &, =<

321,...,32,,1 > be the common recursive vectors of fi and f; in t1;(Z) and £,;(T). Let

t1(T), . .., 11.(T) and t5,(F), ..., 15,(T) be the common non-recursive terms of f; and f;

in £1;(T) and t2;(T). Let L°(T1,Ta), B(T1,T2) be the common lattice, and the boundary

of the common lattice with origins Ty, T, bases 8;, 82, and constraints py;(T), p2,(Z).
From lemma 47 it follows that:

SPEC |= f1(m) = fa(T2)

iff
VI € B(T1,T,). SPEC | (@i + T -61) = fo(To + 7+ 62) i
5 (6.143)
A (V7 € L8z, 72). SPEC k= ty(Ta + T - §1) = thy(Ta + - 52))

=1

Let If°(Ty, Ty, 71) and bf°(Ty, Ty, 1) be the lattice and the boundary formulas of
L%(T,T3). This means that:

f(@T20) = (FEL(T,T) (6.144)
and:
bf(T1, %2, 1) = (€ B (T1,72)) (6.145)

Let Ej and Ej be the equation systems we get from £, and E; by replacing the
equation:

h(@) = FAF)
in £ by the equation:

@) = F@)
and the equation:

H(T) = FaT)
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in Fy by the equation:
5@ = F@
where F;(Z) and F; () are the results of deleting the cases p;;(T) = ¢1;(T) and py;(T) =
t2;(Z) in F1(T) and F,(T) respectively. By proposition 32 we know that for each 7 €
BTy, T3), pri(Ty + 75 61) Apo; (T2 +70-82) is false. From the acyclicity of Fy(F) and Fy(Z)
it follows that:
Vi € BT, T2). (-pi(@ + - 81) — [T +T- &) = fi(T + 7 81)) (6.146)

and:

Vi € B5(Z1,%s). (~po(Ta + B 82) — fa(T2+E-8) = f5(T2 + 7+ 82)) (6.147)
We know that:
C(ET, fi, En, f2) < C(En, fr, En, o)
and:
C(Ey fiy B3, f7) < C(Ey AL Es )

By the induction hypothesis it follows that there are Presburger formulas £,
P,(T1,T,) such that:

152

(T1,72) and

Pl (T,72) ff (fi(T1) = fa(Ta)) (6.148)
and:

Po(@,%) it (A7) = (7)) (6.149)
In a similar manner to case (8) above we can show that for each 1 < [ < m there is a
Presburger formula P (.:cl,fg) such that:

PP(@, %) i (tu(F) = tu(T2) (6.150)

From (6.143), (6.144), (6.145), (6.146), (6.147), (6.148), (6.149), and (6.150), it follows
that P,;(T) can be defined as:

(Vﬁ- bfe(T1, T, ) — —pu(Ty + 7 6) — Plj1(1'1+ﬁ'31-.f'z+'ﬁ'3ﬂ)
A
(Vﬁ bfc(ilef%ﬁ) —He ﬁPZJ(E2 +ﬁ-5'2) —* 1:.2(?1—:1 +ﬁ-31,fg -i-EEQ))

A (VA 1f(Z0, %20, ) — PP @ +E- 6,5 +7-5))
I=1

which is a Presburger formula.
Now the formula P(Z,,T2) in the claim of the lemma can be defined as:

ki ks
P(E,T2) = AN 0u@) A po(T2) A Py(T1.72))

i=1j=1

which is a Presburger formula. O
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6.6.6 Equality of Systems of Recurrence Equations

Theorem 50 Let fi and f; be function variables in acyclic systems of recurrence equa-
tions with a signature SIG. Then there is a Presburger formula P(T,,T,) such that:

P(,7) iff (SPECE fi(T1) = f2(T2))
where SPEC is the algebraic specification of the elass of all STG-algebras.
Proof: We know that:
SPEC = (h(T1) = f2(72))
iff
(6.151)
(fi(@) =1) A (fo(T2) = L)

SPEC |= ( v
(@) # L) A (fa(T2) # L) A (L(T) = falF2))

From lemma 46 it follows that there are Presburger formulas P\(T) and P,(T) such that:
P(z) it (fi(z)=1) (6.152)
and:
Py(z) it (foZ) = 1) (6.153)
From lemma 49 it follows that there is a Presburger formula Py(T,,7;) such that:

(fu(Z1) # L) A (fa(T2) # L) — (6.154)
(P3(T1, %) iff (SPEC | fi(T1) = f2(T2)))

From (6.151), (6.152), (6.153), and (6.154) it follows that:
SPEC = (A(T1) = f2(T2))
iff
(PuT1) A Po(T)) V (~P(T1) A —Pa(T2) A Pa(E1,%2))
1 $illiows Chuab P 35) i ¥hieclaiin of the lemmpiean he definad. a5
P(T1,%2) = (A(T) A P(F2) V (RP(F1) A —P(T) A B(T,T)
which is a Presburger formula. 0O

Corollary 51 Let f) and f, be function variables in acyclic systems of recurrence equa-
tions over a signature SIG. Lel p(T;,T;) be a conjunction of linear predicates. Then it
s decidable to check the validity of:

SPEC | p(1,T2) — (L(T1) = f2(T2))
where SPEC is the algebraic specification of all STG-algebras.
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Proof: From theorem 50 it follows that there is a Presburger formual P'(Z1,73) such that:
P(@,,7) iff (SPEC k= fi(m) = fu(T2)
We define:
P(T1,%) = (p(T1,T2) — P(T1,T))
It is obvious that P(T;,T2) is a Presburger formula and that:
P(z1,%;) iff SPEC | p(71,72) — (f(T1) = fu(T))
The decidability of the problem follows from the decidability of Presburger formulas (see

section 6.6.1). O

6.6.7 Second Step of Verification of The String Matching Cir-
cuit: Checking Equalities

In section 7.5.2 we carried out the first step of the verification of the string matching cir-
cuit. We described the signals of the circuit as an acyclic system of recurrence equations.
In this section we give a sketch of how the second step can be performed. We use the
ideas of theorem 50 and corollary 51 to check whether the values of loc at different cells
and time instants agree with the values demanded by the circuit specification.

Let SIG =< {D},{¢1, 92,93} >, and let SPEC be the algebraic specification of the
class of all §TG-algebras. We recall from section 3.2.2 that the specification formula of
the circuit was of the form:

spec(z,ly,ly,t) =
ALY A 102 B & em Bt K4 =ty BedT) <
(loc(.’n,fl,EQ,t) = d(f],fg,gljgg))

Let:
plz, b, lo,t) = (0<b) AO<b) A{la=by—0) A (t=0+6+1)
According to corollary 51 there is a Presburger formula P(z, ¢;,¢,,t) such that:
P(x, by, 4,,t) iff SPEC |= spec(z, by,¢5,1t)
Furthermore P(z,#,,{3,1) is of the form:
p(z, b, 8y, t) — Pz, l,,0,1)
where P'(z,{,,€,,t) is a Presburger formula such that:
Pz, y,6,,t) iff SPEC |= loc(z, by, la,t) = d(by, €2, 41, 4,)
According to theorem 50, P'(z, ¢, l,,1) is of the form:
(Py(y, 3,61, 65) A Py(x,y,0y,1))

P'(2,0y,60,t) = ( v )(6.155)
("'P](el,gg,fl,fg) A —ng(:c,é’l,fg,t) A P3($,El,é’2,t))
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where:

Pi(y1,¥2, 61, 62) ff (d(y1, 92,61, 62) = L)
Py(z, 8y, 6p,t) iff (loc(z,f1,€5,t) = L)
—Pi(61,62,61,€3) N ~Pa(x,1,60,1)
Py(z,4y,6,,t) iff -
S'PEC |: (lOC(JZ,El,eg,t) = d(l’, el,fg, t))

In the following we will sketch how Pi(y1,¥2, 1, ), Pa(z, 01, €5, 1) and Ps(z, ¢y, 03, 1) can
be constructed. From (3.47) we know that:

d(ylay'lx‘ql:g?) =

case
{n2t} =
{ ’ ‘Z:J;S . } = g(d(y1 — 1,y2,6,£2))
(6.156)
{ 0<yly2:< A } = ga(d(y1,y2 — 1,6,£2))
{ 3§§1§§; } = g3 (a(yn),b(y2),d(v1,y2 — 1,61, &a),

d(yl = 1,92,51,52)‘d(y1 -1y - 1,€,,63))
endcase
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From section 6.5.1 we know that:

loc(x,€1,€2,t) =

case
g iz

2 —1<a< Uy +1

z=0

2<t
—281—1S3’:£2£2
z<0
-z +1

2:L08
—26 Sz <241

0<z

t=z+4+1

2<t
—2£1£IS2£2
-+ 1<t
z+1<t
t+z+1mod2=10

endcase

Recalling equation (6.156) above, let:
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= N

|

galoc(z + 1,4, £2,1 — 1))

(6.157)
ga(loc(z — 1,4,,65,1 — 1))

93{ outy(a — 1,4y, £3,t - 1),
outa(x + 1,€6y,4,t — 1),
IOC(I = 1,f1,€2,t == 1),
loc(z + 1,6, 65,1 — 1),
loc(z,by,Ly,t — 2))

pdi(y1,92,61,82) = (11 =0) A (y2=0)
pda(yr, 92,41, 42) = (0<y <4) A (y2=0)
pda(y1,y2,61,62) = (11=0) A (0 <y, < 03)

= 0<ysh) A (0<y <86)
tdi(y1,92,6,82) = @

tdy(y1, 42, €1, £
td.’i ylayQaely 2

)
( )
( )
( )
pda(ys, y2, 61, )
( )
( )
( )
tds(y1, 92,01, 42)

Recalling equation (6.157) above, let:

gZ(d(yl - 1&y2>gl1£2))
{d(y]sy2 = l)glaeﬂ))

93 (a
dlyr — Lys, 6, 62), d(yy — Loye — 1,4, 6,))

( ) (y2) d(yleZ—]!glng)s

pli(z, by, loyt) = (0<L<2) A (=26 —1<z<2+1) A (2 =0)

pla(z,81,85,t) = (2<t) A (=26 -1<a<26) A (2<0) A (t=—-2+1)

pla(z, b1, €2,t) = (2<t) A (=26 <22 +1) A (0<z) A (t=2+1)

pla(z, b1, l,t) = (2<t) A (=26 S <2) A (—z+1<t)A
(z+1<t) A(t+a+1mod2=0)

th(z, by, by, t) 91
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tly(z,41,42,t) = ga(loc(z + 1,£1,42,t — 1))
tlhy(z, 4, 0,t) = galloc(z —1,6y,6,1—1)
tly(z, 0y, 02,t) = ga outy(z —1,8,45,t — 1), 0uta(z + 1,4, 65,1 — 1),
loc(z — 1,4y, 8,t — 1),loc(z + 1,4y, 85,0 — 1), loc(z, £y, {a,t — 2))

Construction of P;(y1,ys, 4, )
According to lemma 46, P;(y1,y2, £1,{2) is of the form:

Ny ~pdi(y1, 32,61, &) )
1%

Pl(ylayhglaB?) = (
Vi (pdi(y1, y2, 6, 6) A Pdi(y1,y2, 61, 62))

where:
Pdi(y1,y2,60,62) iff (tdi(ya, y2,61,6) = L)
It can be checked (by linear integer programming) that:
4
p(;[,'_'fhfhi) A (/\ _'Pdl'(gla 32: ghe?-])
f=1
is unsatisfiable, and that:
p(‘?‘lrflvfﬁ'Jt) A pd‘i(‘el1£2)f11£2)
is unsatisfiable for 1 = 1,2, 3. This means that P (¢, ¢z, 01, £;) in (6.155) can be replaced
by:
pda(ly, €z, 8y, 8y) N Pdy(£y,02,6,,8)
Now we sketch how Pdy(y1, 2,41, ¢2) can be constructed.
Construction of Pdy(y1,y2,41,{2)

We use the method of lemma 46 to construct Pdy(y1,y2, €1, ¢2). The recursive vector §
of d in tds(y1,y2, {1, ¢2) is given by:

§ = <<0,-1,0,0>,<-1,0,0,0 >, < —1,-1,0,0 >>

The non-recursive terms of d in tds(yy, ye, 1, €2) are a(y,) and b(y,).
It can be shown by the method of proposition 41 that pd4(yi,y2, f1,£2) is finite with
respect to . From the method of lemma 46 we know that:

Pd4(yh y2ﬂ€11€2)
iff

A< p, pa, p3 >€ Blyr, y2, 41, 62). d(yy — pa — pa, y2 — o — ps, G, 6) = L\ (6.138)
V

< py, pa, 3 >€ L(ya, y2, b1, 6a). alyy — po — p3) = L
\Y

< py, pas iz >€ L{yr,y2, €1, ). by — gy —pa) = L
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where L(y1,y2,01,¢2) and B(y1,y2,61,{2) are the lattice and the boundary of the lattice
with origin < yi,y2,41,¢2 >, basis é, and constraint pds(y1,y2, 1,€2). We know that:

d(yl — a2 — f3,Y2 — p1 — pa, by, €2)
V< iy, pia, s >€ By, v2, 61, £2). = (6.159)
d™(y1 — pa — pa, Y2 — pa — pa, b1, o)

where:
d*(y1,y2,61,62) =
case

{0<y1§81

Y2 = 0 } = gZ(d.(yl - 13y2u£11£2))

O<y, <t
endcase

{ b =0 }=~“’ ga(d* (1,92 — 1,61, 82))

As the equation system is acyclic we know that pdy(yi, ya2, {1, €2) is stable with respect to
4. By corollary 40 it follows that:

(< p1, pray 3 >€ Ly, y2, 60, 62)) M Lf (1, v, b, €y o, o pi3) (6.160)

where [f(y1,y2, %1, 02, i1, 2, pt3) 1s the lattice formula corresponding to L{yi, vz, 61, (2),
and is defined by:

lf(yl'l yiaglﬁe'hp'l:nuhp(i) =
Pd‘:(ylaymfhfz) A Pd4(yl — {2 — M3, Y2 — 1 — f3, b1, £2)
Similarly:
(< pa, p2, pa >€ Blyr, ya, 01, 82)) it bf(y1, vz, b1, €2, i1, 2, pi3) (6.161)

where bf (y1, Y2, €1, €2, f1, ft2, p£3) is the boundary formula corresponding to B(yi, y2, €1, £2),
and is defined by:

bf(yy, 2, 1, Loy i, i, pia) =

( ~pda(yr, Yo, b1, 2) )
A
(11 =0) A (p2=0) A (3 =0)

\

pd4(y1,yz,51,fz)
A

**pd‘i(y] — M2 — H3,Y2 — 1 — U3, el» 32)
A

pda(y1 — p2 — pa, y2 — p1 — pa + 1,44, 42)
V

pds(y1 — pt2 — pa+ 1,92 — pin — pa, by, £2)
V

pda(yn — p2 — pa + Lyz — jy — ps + 1,61, £y)
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We know also from the method of lemma 46 that:

(a(yy — po — pa) = L) = false (6.162)
and:

(b(ys — g — pa) = L) = false (6.163)
From (6.158), (6.159), (6.160), (6.161), (6.162), and (6.163) we get:

Pdy(y1,y2,61,62) = (6.164)

bf (y1,y2, 41, €2, i1, 2, pa)
s, pa, ps. A
d*(y1 — po — pa, Yz — 1 — pia, b, ) = L

By applying lemma 46 recursively on d*(yy, ya, £1, €2, pt1, f2, pt3) we get a Presburger for-
mula Pd;(y1, y2, f1, €2, p11, 2, pia) such that:

Pd;(yl,yz,fl, 79 Hi, #2,#3) iff (d'(yl — {3 — {3, Y2 — ph — pa, €1, 0) = L)(6.165)
From (6.164) and (6.165) we get:

bf(yl'y?aglsg'hﬂ'la#?l“'d)
Pdy(y1,y2,61,62) = g, pa, pa. A
Pd;(ylay25€11€2=lllaf12=.ui})

which is a Presburger formula.

Construction of Py(z, ¢, {,,1)
The formula Py(z, €1, £2,1) can be constructed in a similar manner to Py(fq, {2, 4, (3).

Construction of Py(x,£y,05,1)
According to lemma 49, P(z,{,,{3,t) is of the form:

4
Pg(x,fl,gg,t) = /\ /\ (pd;(é’l,fg,el,ﬁ’g) A plj(:r,l?l,é’g,t] A P{j(.’t‘,el,fg,t))
i=17=1
where:
Rj(:rvglag?yt) lﬂ: S?EC |= (tdf(fhf‘h[}lsg?} = “_j('l:!elag'b”)
It can be checked (by integer linear programming) that:
p(‘rjgls£2:t) A pdi(£1)£21€]1e2) A plj'(:rygllf27tj

is unsatisfiable if 1 <7 < 3 or 1 < j < 3. This means that Py(x,¢;,{3,¢) in (6.155) can
be replaced by:

pda(€y, €y, 6, €2) N ply(z, by, €a,t) A Pag(z, 0o, 1)
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Now we sketch how P;4 can be constructed.
Construction of Py,
We use the method of lemma 49 to construct Py4(z,41,4,1).
The common recursive vectors of d and loc in pds(y1, y2, £1,€2) and ply(z, &y, £y,1) are
given by:

61

<< 0,-1,0,0 »,< -1,0,0,0 >, < —-1,-1,0,0 >>

and:

b = << -1,0,0,-1>,<1,0,0,-1>,<0,0,0,-2>>

The common non-recursive terms of d and loc in pdy(yq, Y2, €1, &) and ply(z, €y, €5, t) are
ﬂ‘(yl)a b(?fz): al’]d OUtl(IaehEht)J Out?(maelv‘eh t)'
From the method of lemma 49 we know that:

P4,4(1"1£11E2}t)
iff

V< pa,pz, pa >€ Bz, 4, t).
d(€y — p2 — p3, €2 — py — p3, €1, €2)

loc(z — py + pa, €1, 82,0 — py — po — 2p3)

A

¢ 166
V< i, o, pz >€ LE(2, €y, €9, 1), (6.166)

a(fy — p2 — p3)
outi(z — 1 + po2 — 1,6, 69,0 — pg — ppz — 203 — 1)
A

V< a1, fig, i3 >€ LC{I,El,E'Z,I).
b{fy — p1 — p3)

outy(x — py + p2 + 1,0 fo b — g — g — 23 — 1)

where L°(z, 41, €3,t) and B°(z,{;,{,,t) are the common lattice and the boundary of the
common lattice with origins < £, 4€,,6,,€, > and < z,{;,{;,1 >, bases 6; and 8, and
constraints pdy(€y, £y, ¢1,0,) and ply(x, €1, 0y, t). We know that:

pds(€y — pg — pa, by — py — pz, Oy, 6y)

V< pa, pi2, 3 >€ Bz, 1, £, 1). d(€y — p2 — pz, €2 — 1 — pa, €y, £2) ) (6.167)

d‘(fl — K2 — #’3=E'Z il }LS,E],e'z)
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and:

pla(z — py + po, by, oyt — oy — po — 2u3)

—_

V< iy, po, i3 >€ BC($,£1,£2,t). ( [OC(.’E — 1+ #z,fl,ez,ﬂ — 1 — M2 — 2u3) ) (6.168)

loe*(z — p1 + pa, €1, €2, — 1 — po — 2p3)

where:

(Y1, y2, 01, b2) =
case

} = g?(d‘{yl - lay'i,g}ae?))

= "
{ 0<y, <y } = g(d*(y1,92 — 1, 61, £2))

endcase

and:

IOC‘(.’L‘,E]_, Eg, t) —
case

0<it<?2

=10

2<¢
=2 —-1<z<2
<0
t=—-z+1

— gg(IOCt(fL“i‘ 1,€l,€g.£—l))

2<t
—2E1S$S2£2+1
O<ze
t=z+1

= ga(loc™(x —1,4,,6,,t — 1))

endcase

As the equation systems are aiyclic we know that pdy(yy, y2, £1. €;) is stable under &, and
pla(z, £y, €y, t) 1s stable under é,. By proposition 39 it follows that:

(< p, oz, 3 >€ Lz, €, 6o, 8)) iff 1f%(2, &, 8,8, pa, pra, pa) (6.169)

where [f¢(x,€1,€,t, jt1, p12, p3) is the lattice formula corresponding to Le(z, £y, ¢5,t), and
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is defined by:

Pd4(£1a52,€1, 52)

A
pla(z, €1, £, 1)
Uf(@, by, €2, 8, p, o, pi3) = A
pdy(€y — pa — pa, b — py — pig, by, )
A

pla(z — p1 + pa, b1, byt — 1y — o — 2p3)
Similarly:
(< Hi, B2, H3 >e BC(I1£11£2}1)) Iﬁ‘ bfc(;clel’gﬁatv #]a“?a#:‘l) (6170)

where bf¢(x, ¢y, €2,1, i1, po, pia) is the boundary formula corresponding to B¢(z,{,, {,,1),
and is defined by:

bfe(z, by, byt i, o, i3) =
_'pd4(gh€21'€la£‘2) Vv _‘p[‘t(‘tafhebt)

A
(11 =0) A (2 =0) A (na=0)
Vv
pda(€y,€2,01,€) A ply(z,£y,8,1)
A
pdy(€y — po — pz, by — pt1 — pa, by, £2)

Vv

Apla(z — py + po, €y, €o, L — py — po — 2p3)
A

pda(yr — p2 — pa, Y2 — pa — pa + 1,6, 62)
A

pla(z —py +pe + 1,6, 6,0 — g — po — 2u3 + 1)

Vv

pds(yr — p2 — p3 + Ly2 — 11 — p3, 41, £a)
A

pla(z —p1 + p2 — 1,61, 8o, 6 — g — pa — 2u3 + 1)
V
pda(yh — p2 — pa+ Ly — 1 — ps + 1,41, 42)
A
pla(z — g1 + pa, b, bo,t — iy — o — 23+ 2)

By applying lemma 49 we get Presburger formulas Py 4;(x, 01, €2, 1, g1, po, ta), Paaolz, €y,
Loyt i,y pigy pt3)y Praa(z, €y, 8o, 0, iy, piay ps), and Pyg gz, 0y, o 8, oy, fta, ps) such that:

—pda(fy — pg — pa, €2 — py — pz, by, £y)

Pyaa(z, €y, 8,1, 01, pa, pz) AT d* (6 — po — pa, by — py — pa, b1, €3) (6.171)

loc(z — p1 + pz, €y, Loyt — iy — po — 2u3)
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and:

—pla(z — py + pa, by, foyt — 1 — pa — 2p3)

—_—

Pyao(z, €y, 8,1, 0, g, pa) i ( d(€y — pg — piz, € — p1 — pi3, 41, 02) ) (6.172)

loe*(z — puy + pa,f1,€a,t — pa — pz — 2p13)
and:
a(fy — p2 — pa)
Pyaa(m, b1, 82,t, 01, po, p3)  iff = (6.173)
outy(z — py + p2 — 1, €1, €2, t — py — iz — 2p3 — 1)
and:
b(fy — pa — ps)
Pyga(z, by, 02,8,y piz, pua) i = (6.174)
outy(z — g + po + 1,8y, 02,1 — py — pp — 2p3 — 1)

From (6.166), (6.167), (6.168), (6.169), (6.170), (6.171), (6.172), (6.173), (6.174) we get:

Pyylzx, fl,ez,t)

V<t oy pra > 0f (w0, f’hfzsta#l»#z,#s) — Pyaale, b lay b g, pra, is)
v< ,‘11,}L27N3> bf (I el:£27t1#17.“2=’-[3) == P4’4'2(1',31,£’2,t,,u1,p2,,u3)
V< iy, pgy pia > U2 by, gt oo, oy pta) — Pyaalz, by, bt iy, pa, pa)
V< 1, pa, 3 > (f ($ €11£21t:#11#2ap’3) == P4.4.4($1£1’€21iaﬂ1:#21["’3)

which is a Presburger formula.



Chapter 7

Class of Boolean Algebras

In this chapter we consider verification of systolic circuits which operate on boolean
algebras. We will construct a decision method for automatic verification of a class of
such circuits. The cell computations in the circuits of this class are defined by the
boolean operators V, A, =, ff, and #. The methods of this chapter can be applied to
circuits which are modeled on the “bit level”, where the data on which the cells compute
are “1”s and “0”s. We will also consider a class of circuits where the cells operate on
two disjoint sets of function symbols. The elements of the first set are interpreted as the
operators of a boolean algebra, while the elements of the second set are interpreted in
some arbitrary algebra A. This is used to model “data-dependent” circuits. In a data-
dependent circuit the computations inside a cell do not depend only on the time instant
and the cell position, but also on the data input to the cell. This data dependency is
described by a set of relations over the algebra A. An example of a data-dependent circuit
is the substring detecting circuit of section 3.3, where at each clock cycle the inputs of
a cell are compared for equality. The results sent out through the outputs of the cell in
the next clock cycle are dependent on the result of comparison.

Examples of circuits on which the methods of this chapter can be applied are the sub-
string detecting circuit in section 3.3, the boolean matrix multiplication circuit in [Ull84],
the graph transitive closure circuit in [Ull84], the palindrome recognizer circuits in [Hen86]
and [LS81], and circuits for realization of bit addition, multiplication, convolution, etc.

We will illustrate the ideas of the chapter by sketching how the verification method
can be applied to the substring detecting circuit introduced in section 3.3.

In section 7.1 we give some preliminaries on boolean algebras. In section 7.2 we define a
class of systolic circuits which we call fail-recursive boolean systolic circuits. In section 7.3
we study what the general definition of semantics amounts to when restricting ourselves
to the class of boolean algebras. In section 7.4 we give an overview of a decision method
for automatic verification of a subclass of tail-recursive boolean circuits. In section 7.5 we
show that the values of signals in the implementation and specification of a tail-recursive
boolean systolic circuit can be described as a class of guarded expressions over boolean
algebras. In section 7.6 we show, for a class of guarded boolean expressions, that deciding
equality can be reduced to Presburger’s arithmetic which is decidable [End72], and hence
the verification problem is decidable.
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7.1 Preliminaries

We will use the same notation as in the previous chapters. Linear (J/-polynomials, linear
inequalities, linear equalities, linear modulo predicates, and linear predicates have the
same meanings as defined in section 5.1. We will work with an arbitrary boolean algebra
B =< B,V,A,~, U, ff >, and with a signature STG, where SIG =< SU {B},G >, and
B & §. We call each element of G an uninterpreted operation symbol. We assume that
we have a set A of stream variables, where each stream variable has a sort S € S.

The class of uninterpreted terms over SIG and their sorts are defined in the following
way:

e Each linear stream expression a(g(T)) is an uninterpreted term over SIG with the
same sort as the sort of a.

o If44(T),...,1,(T) are uninterpreted terms over SIG of sorts Sy, ..., S, respectively,
and g € G is an uninterpreted operation symbol with a domain sort §; - --- - S,
and a range sort S € §, then ¢g(4:(T),...,1,(T)) is an uninterpreted term over STG
of sort S.

An atomic boolean expression over SIG is of the form g(t,(T),...,t.(T)), where {;(T),
.., t,(T) are uninterpreted terms over SIG of sorts Sy,...,.5, respectively, and ¢ € G
has a domain sort Sy - --- - S5, and a range sort B.

The class of boolean expressions over SIG is defined by:

e it and ff are boolean expressions over SIG.
e Each atomic boolean expression over SZG is a boolean expression over STG.

e If by (T) and by(T) are boolean expressions over SIG, then t,(T) V12(T), t1(T) Al2(T),
and —t1(T) are boolean expressions over SIG.

e If b(T,1) is a boolean expression over STG, and (%) is a linear ) I-polynomial then
Vf(;.) b(z,1) and /\f(zxo) b(T,7) are boolean expressions over SIG.

We will denote boolean expressions by b.
A linear guarded boolean expression over STG is of the form:

n@) = u@

Pa(T) = b.(T)
endcase

where b;(T) is a boolean expression over SIG, and p;(T) is a conjunction of linear pred-
icates. In addition, we assume that p;(@) A p;(@) is false for each @il j # i, and that
b:(7) is well-defined under p;(T) (well-definedness is defined in a similar way to that in
section 5.1). Each p;(T) is called a guard of the expression, and each b;(T) is called a
result of the expression, while every p,(T) = b;(T) is called a case of the expression. It
can easily be shown that each linear guarded boolean expression can be defined by a
system of recurrence equations over B and SIG. We use €,¢€;,¢€3,€3,... to range over
linear guarded boolean expressions.
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7.2 Tail-recursive Boolean Circuits

A tail-recursive boolean systolic circuitis a linear systolic circuit, where certain restrictions
are imposed on the cell computations and the specification formula of the circuit.

With each tail-recursive boolean circuit is associated a signature SIG =< S U {B},
G >, where B ¢ S, called the signature of the circuit. The circuit operates on a boolean
algebra B and and a S§TG-algebra A

The set of signals in a tail-recursive boolean circuit can be divided into two disjoint
sets. One set of signals carry values from the sorts of § and are called the uninterpreted
signals of the circuit. The other set of signals carry values from the boolean algebra B
and are called the boolean signals. The uninterpreted signals of the substring detecting
circuit of section 3.3 are in;, out;, and loc;, while the boolean signals are ingy, outs, ins,
outs, and loc,.

Cell Computations in Tail-recursive Boolean Systolic Circuits FEach uninter-
preted signal s has a sort S € §. The set of uninterpreted cell computation terms and
their sorts are defined by:

e If s is an uninterpreted input or a local variable of sort S, then s(%,7,t — 7), where
T is a positive integer, is an uninterpreted cell computation term with sort .S,

o If cty(7,7,1),. .., ct (T, 7,1) are uninterpreted cell computation terms with sorts S,
50 respectlvely, and if ¢ € G is an uninterpreted opudmon symbol with a
domam sort S - --- -5, and a range sort S € S, then g(ct,(T,7,t),. ... ct, (T, 0, 1))

is an uninterpreted Lell computation term with a sort S.

An atomic boolean cell computation term is of the form g(ct,(T),. .., ct,.(T)), where ct(T),
.., ¢ty (T) are uninterpreted cell computation terms of sorts Sy,..., .5, respectively, and
¢ € G is an uninterpreted operation symbol with a domain sort S; - --- - S, and a range
sort B.
The class of boolean cell computation terms is defined by the following:

e Each atomic boolean cell computation term is a boolean cell computation term.

° If bl(_f, 7,t) and by(7, ?,t)_a,re boolean cell computation terms, then by(%,,t) v
(7,4,1), by(T, 0, 1) A by(T, 2, t), and —by (T, 7, t) are boolean cell computation terms.

The cell computation associated with a signal s of a tail-recursive boolean circuit is of
one of the following two forms:

¢ If 5 is an uninterpreted signal then the cell computation associated with s will be
of the form:

s(Z,0,t) = §'(F,4t-7)

where 7 is a positive integer, s’ is the input corresponding to s if s is an output,
while ¢’ is the same as s if s is a local variable

o If 5 is a boolean signal then the cell computation associated with s is of the form:
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S(T, E, t) =
case

pm( 1?1 t)
it

b (T, 2, ¢ B (7.1)
Pm+1( S

(T, 0 t) = (T, 0t —7) O b, (T,0,1t)
endcase

where O is V or A, and b(%,%,t) is a boolean cell computation term. The dependency
relation <p is defined among the boolean signals of a tail-recursive boolean circuit in
a similar way to that in tail-recursive ring circuits (see section 5.2.2). In the class of
tail-recursive boolean circuits, the dependency relation is acyclic, i.e. for each signal s,
we have s £}, s, where <}, is the transitive closure of <p. The dependency relation of the
substring detecting circuit in section 3.3 is given by the set {< outa, iny >, < ouls, ouly >
, < ing,tng >, < ing,outy >, < locz,tng >, < locg, outy >, < locy,ing >, < loecy, outy >}.
Observe that the relation is acyclic.

Specification Formulas of Tail-recursive Boolean Systolic Circuits The speci-
fication formula of a tail-recursive boolean circuit is of the form:

spec(T,0,t) =
(pl(f??!t) - (Sl(fvi! t) = bl("f‘?: i’))) A e (pm(.f:?"t) - (Sm{fail t)= bm(fa?a f)))

where s; is a boolean signal in the circuit, and b;(Z,¢,t) is a boolean expression which is
well-defined under p;(7,7,1).

7.3 Semantics

Let SIG =< SU{B},G >, where B ¢ § be a signature. Let B be any boolean algebra,
and let A be any SIG-algebra such that! B4 = B. A stream interpretation 7 over A
maps each stream variable into a function from tuples of integers into the domains of A.
Thus if 7 is a stream interpretation then, for each a € A of arity n and sort S, Z(a) is a
function of type I" — &4,

Let L be an element such that L ¢ SU{B}. By [¢(%)],; we mean the interpre-
tation of the uninterpreted term ¢(Z) under A and Z. Let a be a stream variable, and

1By BA = B we mean that A interprets the sort B in the signature STG as the domain of the
boolean algebra B. Throughout this chapter we assume that for each boolean algebra B, signature
SIG =< SU{B},G >, and SIG-algebra A, BA = B.
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g(t1(T), . .. ,ta(T)) an uninterpreted term, then:

[e@@)]azr =

af (g(T)) i g(Z) is a tuple of integers
|- otherwise

g ([t@)]azs- - a@ar) H [E(T)]sg # L for
1<i<n

Eg(tl (T)'n SO in(.‘f))]IA.I =
1 otherwise

By [b(Z)]5.47 we mean the interpretation of the boolean expression b(T) under B, A
and Z. Let g(,(Z),...,t,(T)) be an atomic boolean expression, and b(T), by(T), b5(T) any
boolean expressions, then:
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flgar

[t]p a1

lo(ta(Z),- - -, ta(Z)]B a1

[6:1(Z) V 02(F)]g 4 1
[-0(Z)]p,a 1
[6:(Z) A b2(Z)p 4z

[Vi& o 0)]

BAT

A& b= ]

B,AT

case
p(T) = 0(7F);

Pm(E) = bm(%)

endcase BAT

9 ([(@)]azs-
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IItn("’E)]]A.I) if [[ti(f)]l,q.,;r ?é L

for1<i<n

otherwise

[b1(@Ng.az V02T azr i [:(T)]par# L

forg=:1.2

otherwise

if [b()]p.az # L

otherwise

[r(F) g az A B2ZNgar H0:(F)pgar# L

fori=1,2

otherwise

J)g a7 if £(T) is a nonnegative integer

otherwise

& [b(z, i)lp 4z if £(T) is a nonnegative integer

otherwise

(b)) g a7 if pi(T) is true

if pi(T) is false for 1 <i<m

The well-definedness and equality properties for boolean expressions are defined in a

similar way to that for ring expressions (section 5.3).

7.4 Overview of the Verification Decision Method

We will give a sketch of an automatic decision method for a subclass of tail-recursive
boolean circuits. In section 7.2 we mentioned that the specification of a circuit with a

signature STG was of the form:

spec(T) =
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(P1(Z) — (51(F) = 0a(@))) A -+ A (pn(T) — (3m(T) = bn(7)))

where p1(T), . .., pm(T) are conjunctions of linear predicates, s, ..., $,, are boolean signals
in the circuit, and b(T),...,bn(T) are boolean expressions over STG such that b(T) is
well-defined under p;(T).

In section 7.3 we defined formally the notion of equality for linear guarded boolean
expressions with a signature SIG over any boolean algebra B and STG-algebra A.

Let B be a class of boolean algebras and K a class of STG-algebras. By the circuit
verification over B and K, we mean that the specification formula in (7.2) is valid when
interpreted in every boolean algebra B € B and §ZG-algebra A € K; in symbols:

B,K |= spec(T)

Notice that spee(T) contains stream variables (which occur in by,...,b,,) and integer
variables (Z, ¢, and t). Thus to interpret spec(Z), the stream variables are interpreted
in the algebras of X, while the integer variables are interpreted in the standard model of
integers.

The verification process is carried out in the following two steps, each of which is
carried out automatically:
1. The first verification step is similar to the first step of verification of tail-recursive
ring circuits (described in section 5.5). In section 7.5 we show that, for each tail-recursive
boolean systolic circuit, the value of each boolean signal in the circuit can be described
by a class of functions which we will introduce in section 7.5.1, and which we call tail-
recursive boolean functions. Furthermore we will show that for each tail-recursive boolean
function over a signature STG, there is a linear guarded boolean expression over STG,
which is equal to it over each boolean algebra B and STG-algebra A. This means that,
considering the specification formula in (7.2), there are linear guarded boolean expressions
e1(T), ..., en(T) such that:

31{5) = tEﬁl(?ﬁ) LRI Sm(T) = Em(:-r'-)

over each boolean algebra B and §TG-algebra A, so that the specification formula can
be rewritten as:

spec(T) = (7.3)
(P1(T) — (ea(T) = ba(T))) A - A (Pm(T) — (en(T) = bu(T)))

which is equivalent over B and XK.
2. In section 7.6 we consider decidability of validity of formulas of the general form:

p(T) — (e(@) =0(T)) (7.4)

where p(Z) is a conjunction of linear predicates, e(F) is a linear guarded boolean expression

over a signature SIG, and b(T) is a boolean expression over STG which is well-defined

under p(T). From the formula in (7.3) we conclude that if the validity, over B and K, of

the formula in (7.4) is decidable, then the validity of the specification formula is decidable.
We know that e(T) in (7.4) is of the form:

case pi(T)=b(T); ... ; pL(T) = b (T) endcase
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Thus, for B and X, the validity of the formula in (7.4) is equivalent to the validity of the
formula:

A (7.5)
(@) A pi(E) — (B@) =H(@) A - A (p(T) A po(T) — (U(T) = (7))

We will consider the special case where B is the two-valued boolean algebra B, (introduced
in appendix B), and K is the algebraic specification SPEC of the class of all STG-
algebras, where SZG is the signature of the boolean expressions in (7.5). We will define
a subclass of boolean expressions (by imposing certain restrictions on the existence of
the — operator and the number of the higher order operators \ and A which occur in a
boolean expression) and show that deciding equality of any pair of boolean expressions
in the subclass over B; and SPEC is equivalent to the validity of a Presburger formula.
Regarding equation (7.5), this implies that there are Presburger formulas P, (T),..., P,(T)
such that:

P(T) it (b(z) = 4(3))
over By and SPEC. 1t follows that the formula in (7.5) can be rewritten into:

p(T) — (p1(Z) V -+ V p(T))
A (7.6)
(p(Z) A Pi(E) — A(Z) A -+ A (p(T) A PL(T) — Pu(T))

which is equivalent over B; and SPEC. We notice that the formula in (7.6) is a Presburger
formula. The decidability of the problem follows from the decidability of Presburger
formulas (see section 6.6.1).

7.5 Boolean Circuits as Guarded Boolean Expres-
sions

In this section we carry out the first step of the automatic verification of tail-recursive
boolean systolic circuits. We show that, for a tail-recursive boolean circuit, the values of
outputs, inputs, and local variables of the different cells at different time instants can be
described as linear guarded boolean expressions. The algorithm is similar to that given
in section 5.5, and is performed in two steps. In the first step we define the class of tail-
recursive boolean functions, and show that for each tail-recursive boolean function over
a signature SIG, there is a linear guarded boolean expression over SIG, which is equal
to it over each boolean algebra B and SIG-algebra A. In the second step we show that
the values of cell outputs, inputs, and local variables can be described as tail-recursive
boolean functions, and hence as linear guarded boolean expressions.
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7.5.1 Tail-Recursive Boolean Functions

A tail-recursive boolean function f over a signature SIG and a tuple 9 of integers, where
at least one element &; of & is not equal to 0, is of the following form:

f(T) = case (2T)
pi(T) = bi(@) 5 - ;5 Pul(T) = () 5 _
Pmi1(T) = f(T40) O bnia(T); ... Pa(T) = f(T+6) D b(3)

endcase

where b;(T) is a boolean expression over SIG, p;i(T) is a conjunction of linear predicates,
and each O isa V or a A. In addition, §(%) is well-defined under p;(Z), and p;(@) A p;(@)
is false for each @ if j # i. The semantics of tail-recursive boolean functions can be defined
in a similar manner to that of tail-recursive ring functions (see section 5.5.1).

Theorem 52 For cach tail-recursive boolean function f over a signature SIG, there is

a linear guarded boolean expression e over SIG, such that f(T) = e(T) over each boolean
algebra B and SIG-algebra A.

Proof: The proof is similar to that of theorem 15. 0O
An uninterpreted linear guarded expression over a signature SIG is of the form:

case
n(E = u(7T)

(@) = t.(7)
endcase

where each ¢;(T) is an uninterpreted term over SIG.

Theorem 53 Consider a tail-recursive boolean systolic circuit with a signature SIG. Let
s be any boolean signal in the circuit. Then there is a linear guarded boolean expression
e over SIG such that:

(T, 1) = €T, 4t)
over each boolean algebra B and SIG-algebra A.

Proof: It can easily be shown that for each uninterpreted signal s in the circuit, there is
an uninterpreted linear guarded expression e such that:

s(Z,6,t) = e(T,0,t)

over each S§TG-algebra A.
Given a boolean signal s in the circuit, we can use theorem 52 and a similar method
to that of theorem 16 to show that there is a linear guarded boolean expression e over

STG which fulfills the claim of the lemma. O
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7.5.2 First Step of Verification of The Substring Detecting
Circuit: Describing it by Linear Guarded Boolean Ex-
pressions

Theorem 53 can be applied to the equations describing the implementation of the sub-
string detecting circuit in section 3.3.1 to express the values of the signals of the circuit
as linear guarded boolean expressions. This can be done in a similar manner to which
theorem 16 is applied in section 5.5.3 to the equations describing the implementation
of the convolution circuit in section 3.1.1 to describe the signals of the circuit as linear
guarded ring expressions.

The value of loc; can be expressed as:

locy(z, 4y, 4,,t) =

case
1<z<4
0<t a (172i+22~x+2)
(t+z)mod2=0 o1 5 32 2
z <1 = Vil Aido =
1< 2 +z—2 b(é, — i)
\ t+ Ir = 26] )
1<z<4,
0<t
(t+z) mod2 =10 o~ a(, —1)
e <t = Vied A = (78)
‘£ ! 20428 —t—21427—1
t<2+z-2 b( %t )
=1
t "l" z > 2f]
[ 1<z<b
0<t
(t+z+1)med2=10 " a(ly —1)
i — Vi A =
t<2%4+x-1 b (2@; +2£2;t~2;+21)
T=1
{ t+’-’b“ > 251
endcase

7.6 Equality Checking

In this section we will carry out the second step of the verification of tail-recursive boolean
circuits. We will study validity of formulas of the general form:

pE) —  (e(@) = b(T)) (7.9)
where p(Z) is a conjunction of linear predicates, e(T) is a linear guarded boolean expres-

sion, and b(T) is a boolean expression which is well-defined under p(T).
We need the notion of normal forms for boolean expressions.
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7.6.1 Normal Forms for Boolean Expressions

The class of first order boolean ezpressions is the class of expressions including the class
of atomic boolean expressions and closed under V, A, and -. This means that a first
order boolean expression is a boolean expression which does not contain the higher order
operators \/ and A .

A first order boolean expression is said to be in disjunctive normal form if it is of the

form:
(ba(Z) A oo A by (B)) V o+ V (bu(Z) A o A by, (T))

where each b;;(T) is either an atomic boolean expression, or the negation of an atomic
boolean expression.
A first order boolean expression is said to be in conjunctive normal form if it is of the

form:
(bll(E) N Y blrru(i)) A s N (bnl(-f} Wi s bnmn(j))

where each b;;(T) is either an atomic boolean expression, or the negation of an atomic
boolean expression.

A first order boolean expression is said to be in normal form if it is in disjunctive or
conjunctive normal form.

A normal boolean expression is of the form:

[F @) ypta(Tois) [le (@i ine) o i)
] ={J .2£0 m:o yhLy e 1 0m
where each [TisaV/ ora A, and b(T,¢;,...,,) is a normal first order boolean expression.

Lemma 54 For each boolean expression b(T), over a signature SIG, there is a normal
boolean expression N(Z) over SIG, such that b(T) = N(T) over each boolean algebra B
and SIG-algebra A.

Proof: The proof can be carried out easily by structural induction on boolean expressions,
and rewriting by distributive laws as:

bi(T) A (62(T) V b3(T)) = (ba(T) A 6:(T)) V (01(T) A ba(T))
bi(T) V (b(T) A b3(T)) = (B(@) V ba(T)) A (01(T) V ba(T))
(0(T) A Ba(T)) = bi(T) V by
(bi(z () (T) A b

()

A b(T) = V bi(T,1) A by(T)

=0
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£(z) £(7)

-V bE,i) = A -bF,i)
1= i=0
oz 2§(7)

- AWE) =V -bF,0)
1= =0

O
From now on we consider only normal expressions.

7.6.2 Boolean Conditional Equalities

A boolean conditional equality over a signature STG is a formula of the form:
p(E) —  (e(Z) = (7))

where p(T) is a conjunction of linear predicates, e(T) is a linear guarded boolean expression
over STG, and b(T) is a boolean expression over STG, which is well-defined under p(7).

In the rest of this chapter we consider decidability of validity of boolean conditional
equalities. To do this we need to consider equality of boolean expressions.

7.6.3 Equality of Boolean Expressions

In this section we consider a subclass of boolean expressions, and show that the equality
of any two boolean expressions, with signatures STG, in the subclass, over the two valued
boolean algebra B; (introduced in appendix B) and the algebraic specification SPEC of
the class of all STG-algebras, is equivalent to the validity of a Presburger formula. To
define the subclass and perform the proofs we need some definitions.

A normal boolean expression is said to be disjunctive if it is first order and in disjune-
tive form, or if it is of the form Vf_(fo) b(Z,7). A normal boolean expression is said to be
conjunctive if it is first order and in conjunctive form, or if it is of the form /\ffu) b(T,1).

The alternation degree D(b(T)) of a normal boolean expression O(T) is defined as
follows:

e If b(7) is disjunctive and first order, where each element of the disjunction is either
an atomic expression or the negation of an atomic expression, then D(b(Z)) = 1. If
b(T) is conjunctive and first order, where each element of the conjunction is either
an atomic expression or the negation of an atomic expression, then D(b(T)) = L.

e If b(Z) is disjunctive and first order, where at least one element of the disjunction
is a conjunction then D(b(T)) = 2. If b(T) is conjunctive and first order, where at
least one element of the conjunction is a disjunction then D(b(T)) = 2.

o If b(%) is of the form V'C ¥(%,4), where V/(F,i) is disjunctive then D(b(T)) =
D(¥(T)). If b(T) is of the form Vf(jo) b'(z,1), where b'(7,7) is not disjunctive then
D(b(T)) = D(V(F)) + 1. If b(F) is of the form A'C) ¥/(T,i), where b(T, i) is conjunc-
tive then D(b(Z)) = D(V(T)). If b(Z) is of the form AL b(F,i), where b(T,i) is
not conjunctive then D(b(T)) = D(V(T)) + 1.
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Let b,(Z) and b,(T) be normal boolean expressions. We say that b,(T) and b(T) are
similar® if D(b;(T)) = D(b2(T)), and both are disjunctive or both are conjunctive.
Two uninterpreted terms ¢;(T) and t3(T) are said to be matching if:

e by(T) and b,(T) are of the forms a,(7,(T)) and ay(7,(T)), and a; = a,.

® b,(Z) and by(Z) are of the forms g1(411(%),. .., 410, (T)) and g2(l21(T),- . ., 120, (T))
respectively, and ¢; = g2 and 1,;(T) and tg,(_) are matching for 1 < ¢ < n; = ns.

Two atomic boolean expressions ¢1(t11(T), . . ., tin, (T)) and ga(t21(T), . .., L2, (T)) are said
to be matching if g, = g, and ¢,;(T) and tg,( ) are matching for 1 < ¢ < n; = ny.

A boolean expression is said to be plain if it does not contain the — operator.

The index of an uninterpreted term #(T) is a tuple of linear @/-polynomials defined
as follows:

o If t(T) is of the form a(g(T)) then the index of ¢(T) is §(T).

e If#(T) is of the form g(#1(T), ..., t.(T)) then the index of ¢(T) is < G, (F),. .. ,7,.(T) >,
where G;(T) is the index of ¢;(T).

The index of an atomic boolean expression ¢(t1(T),...,t.(T)) is < G(T),...,7.(T) >,
where G,(T) is the index of ¢;(Z).

Lemma 55 Let b(T) and by(T) be similar plain boolean expressions over a signature
S8IG, each with alternation degrees < 2. Let SPEC be the algebraic specification of the
class of all STG-algebras. Then there is a Presburger formula P(T) such that for each
@, if b (@) and by(&@) are well-defined, then P(@) is true iff by(@) = by(@) over By and
SPEC.

Proof: We will carry out the proof for some of the cases where all the atomic hoolean
expressions in b (T) and by(T) are matching. The proof can easily be generalized to any
similar pair of plain boolean expressions with alternation degrees less than or equal to 2.
We will assume that D(b;(T)) = D(by(T)) = 2. The proofs for D(by(T)) < 2 or
D(by(T)) < 2 will be special cases.
We will consider a number of cases:

1. If by(T) and by(Z) are of the forms:
(b1a(T) A oo A by (T) Voo V(b (T) A - A by, (T))

and:

(du(T) A - A dy(T)) VoV (dia(®) A A di,(T))
respectively. Let the indices of b;;(7) and d;;(T) be qb (T) and ‘(ﬁu(ﬁ) respectively. Then
P(T) can be defined as:

P(E

N

V(1<ip<n).I(1<j <k).Y(1 <) <£],) 3(1 < iy < my,). (qbw( Z) = ¢d, (T ))
A
V(1< <k).3(1 < iy <n). V(L < ig Smiy). 31 < o < 4). (84,4, () = 75,5, (7))

2The definitions of the notions of similarity and matching as defined in this chapter are not related
to their definitions in chapter 5.
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Now we will show that for each @, P(@&) is true iff (@) = b2(&) over B, and SPEC.
(—): Suppose that P(@) is true. We will show that b;(@) = # over B, and SPEC iff
by(@) = tt over By and SPEC.

First we will show that [by(@)]g, 47 = & iff [ba(@)]p, 41 = # for any STG-algebra A
and stream interpretation I over A.

Suppose that:

[[bl (5)1]132,.4,1 =t

then:
(1 <ir < ). V(1 < ip < my). ([ (@]p, a7 = 1)

From the definition of P(T) it follows that:

(1< < k). VA <Gz < 4y). ([dins (@] a7 = 1)
This implies that:

|[b2(a)]]32,A,1 =t

Now suppose that by (@) = # over B; and SPEC. This means that [bi(@)]p, 47 = t for
each §TG-algebra A and stream interpretation 7 over A. From the discussion above it
follows that [by(@)]g, 4 7 = U for cach STG-algebra A and stream interpretation 7 over
A. This implies that b;(@) = # over B, and SPEC. It follows that if b1(@) = # over B,
and SPEC then by(@) = # over By and SPEC.

In a similar manner we can show that if by(@) = # over By and SPEC then by (@) = #
over By and SPEC.
(«—): Suppose that P(@) is false. We will find a $ZG-algebra A and a stream interpre-
tation T over A such that [by(@)]g, 47 # [02(@)]p, 4 1-

That P(@) is false means that either:

J1<i <) V(1< h <k).3(1 <52 <1y) V(1 < da Sy, ). (R,-,.-z(a} #4d;,;,(@)) (7.10)
or:
1< <)Y S i S n).3(1 S ig S my,). V(L < G2 S 4. (8,0, (@) # 0, (@) (7.11)

In case the formula in (7.10) is true we will find a STG-algebra A and a stream inter-
pretation T over A such that [by(@)], 47 = # and [0(@)]p, 47 = ff- Similarly if the
formula in (7.11) is true we will find a §TG-algebra A and a stream interpretation I over

A such that [by(@)]g, o7 = t and [0(@)]p, 47 = I
Suppose that the formula in (7.10) is true. We define a STG-algebra A and a stream
interpretation Z over A in the following way:

[bii,(@)] g, ur = H (7.12)
for each 1 < i; < my,, and:

[[djlji(a)]}BZIA_I = ff (7.13)
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for each 1 < j; < k. It is clear that such an algebra and stream interpretation exist.
From (7.12) we get:

i[bm(a) A A bﬁmu(a)]laz,A,I -

[[bill(a}]]BLA,I A e Ilb"lm-:(a)]lgg,,u = %

which means that:

[[bl(ﬁ)]lsz,A,z =
[(b(@) A ~-o A by (@) V o+ V (bu(@) A -+ A .E;m,.('a])}]f,z_fmr =
[Bu(@ A - A bim, @] guz V - V 6@ A oo A by, (@) g, a7 =

From (7.13) we get:

|[dill(a) A A dy,, (a)]s AT
dell(a)]]azz,,;,r ’ [[ i, (@) ]IB;,A‘I =

for each 1 < 7; < k, which means that:

[b2(@)] g, 47 =
[(du@ A - A dy,(@) V-V (da(@) A - A d(@)]g, 07 =
[di(@) A - A di,( @], a7 V -0 V [du(@) A du, (@], ar = K

In a similar manner we can show that if the formula in (7.11) is true then we can find
a STG-algebra A and a stream interpretation T over A such that [b(@)]p, 47 = # and

ﬂbl (a)]lsz,,q'z = ff
2. If b;(T) and by(T) are of the forms:

(b1a(Z) V oo V by (T)) A oo A (bna(T) V ooV by, (T))
and:

(di(Z) V oo V d, (T) A oo A (d(T) Vo0V dig, (T))
respectively. The proof can be carried out in a similar manner to case (1) above.

3. If by(F) and by(T) are of the forms®:

#(z)
W (@, 8) A o A by (T,0)) Voo V(0 (Z07) A v A b, (T,7))

=0
and:

0(7)
W (du(@,7) A - A di(F,7)) V oor V (dia(T ) Ao A di (T4]))

7=5

3We write \W-?fa)b(f,?) instead of Vf:(jJ) Vf:(foh net) |l in), whenever n is known or

irrelevant in the context. The same applies to /X\é(w?b(f,;)
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Let the indices of b;;(7,7) and d;;(Z,7) be ﬂ‘-j(f,;) and @,J(E 7) respectively. Then P(T)
can be defined as:
VO <Ti<l(T)V(1<i; <n).30<T <EB(F) 31 <41 < k).
V(1 <j2 S 15)- 31 S i S myy). (B,5,(3,7) = 0d;,;, (3, 7))
P(T) = A
VO <T <h@) V(1 <1 <k).3I0<T<L(T). 3(1 < iy <)
V(1 <dp < myy). (L < 52 S 1Gy). (qbw(z 1) =qd; (%, J))

The rest of the proof can be carried out in a similar manner to case (1) above.
4. If b;(T) and b2(T) are of the forms:

#(T)
M (01 (Z,7) VooV b, (T,7) A s A (ba(ToT) Voo Vb, (F,7))

=0

If‘\

and:

()
m (dll(T?}-) Vo v dlh(f=})) Ao A (dkl(fa._?') Vo dkik(fs}r))

7=0
The proof can be carried out in a similar manner to case (3) above.
5. If 5:(T) and by(T) are of the forms:

L(%) L(Z4)

W m(bl(fszlagz) Ao A bﬂ(EaZIaEQ))
and:
71=0

72
Let the indices of b;(Z,%;,72) and di(Z, J,,74) be ¢b;(T, 71, 22) and ¢d,(Z,7,
Then P(T) can be defined as:

‘-0 4
=
47}
o
=)
@
(e
2
=
3
&

The rest of the proof can be carried out in a similar manner to case (1) above.
6. If b,(Z) and by(T) are of the forms:

b(7) B(70) o
/Y\ W(bl(fsilaﬁ) Vo v bﬂ(T?ilaiQ))
1=0 12=0

and:
6(%) L(7.,)

m W(d] x 31,32) Voo m(:‘a;lvj?}]

J[*U .72‘lJ

The proof can be carried out in a similar manner to case (5) above. O
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7.6.4 Deciding the Validity of Boolean Conditional Equalities

In this section we use the results of section 7.6.3 to define a subclass of boolean condi-
tional equalities and show that the problem of validity of the elements of the subclass is

decidable.
Consider a boolean conditional equality ¢(Z) of the form:
p(T) — (e(T) = b(T))

where €(Z) is of the form:

case p(T) = 0(T); ... ; pm(T) = bu(T) endcase
The alternation degree D($(T)) of ¢(T) is maz(D(b(T)), D(b:1(T)), ..., D(b.(T))). We say
that ¢(T) is balanced if b,(ZT),...,b,(T) all are similar to b(T). We say that ¢(T) is plain

if (Z), b1(T),- ., bn(T) all are plam.

Lemma 56 The validity of plain balanced boolean conditional equalities, with signatures
SIG and alternation degrees < 2, over By and the class SPEC of all STG-algebras, can
be reduced to the validity of Presburger formulas.

Proof: Consider a conditional equality ¢(T), with a signature STG and an alternation
degree < 2, of the form:

p(E) — (e(T) = (7))
Let ¢(T) be of the form:
case pi(T) = bi(T); ... ; pm(T) = b,(T) endcase
It is clear that the validity of ¢(Z) over B; and SPEC is equivalent to the validity of:
(p(T) — (M(T) V -+ V p(T)))
A

(2(F) A pi(T) — ((F) =b(Z)) A - A (pE) A pm(E) — (b(F) = bn(T)))
over B, and SPEC.

From lemma 55 it follows that there are Presburger formulas P (T),. .., P(T) such
that for each @ if b(@) and b;(@) are well-defined then P;(@) is true iff b(@) = ( over B,
and SPEC. We know that b(T) is well-defined under p(T), and that b;(T) is well-defined

under p;(T) for 1 < ¢ < m. It follows that the validity of ¢(T) over By and SPEC 1s
equivalent to:

(@) — (1@ V -V pa(T))
A
(p() A ;@) — RAE) A A (p(E) A pu(T) — Pu(T))
which is a Presburger formula. O

Theorem 57 The validity of plain balanced boolean conditional equalities, with signa-
tures SIG and alternation degrees < 2, over By and the class SPEC of all STG-algebras
is decidable.

Proof: The result follows immediately from lemma 56 and decidabilty of validity of
Presburger formulas (see section 6.6.1). O
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7.6.5 Second Step of Verification of The Substring Detecting
Circuit: Checking Boolean Conditional Equalities

In section 7.5.2 we carried out the first of the two verification steps on the substring
detecting circuit. We described locy(x, €y, £;,1) as a linear guarded boolean expression

(see equation (7.8)).

Here we perform the second step. Let SIG =< {D, B},{=} >. We use the algorithm
in theorem 57 to check whether the value of locy(z, €1, €, 1) described by (7.8) fulfills the
specification of the circuit as stated in (3.49), over the two-valued boolean algebra B,
and the algebraic specification SPEC of the class of all STG-algebras.

Recalling the specification formula as stated in (3.49)

spec(z, by, 03,1) =
(1 SEQ) A (ﬂzsgl) N (t=e1+€2f1) A (.13=f]—€2+1) g
(loca(m, b1, o, 1) = VA2 NS (ali + 5 +1) = b(i + 1))
N
(1<b) A (L<l) A(z=1) A (t=20) —
(loca(a, by, o, 1) = VL NG (a(i+1) = b(i + 5 + 1))

Here we will consider only the first element of the conjunction in the specification formula
above. The second element can be treated similarly. Let:

p(.:c,fl,é’g,t) = (1 582) A (egéé’]) A (i:€|+€3—1) A (.’L‘=€1—62+])
0H—t -1

bz, b, lo,t) = N A (ali+7+1)=bi+1))

1=0 =0
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From equation (7.8) we know that:

lO(.'g(.’E,f],fz,f) -

case

endcase

Let:

pl(xa glueﬂa t)

p?{zufl-ﬁ €21 t)

p3($a£11 E?s t)

and:

bl(zaglaeht}

bg(I,f],Eg, t)

53(1,51152: t)

1<z< 4
0<t
(t+z)mod2=10
21
tS2£2+$—2
t+x =24

lgxst’]
0<t
(t+z)med2=10
<t
t<2+z-2
z=1
t+ a2 > 24

153:58;
0<t
(t+z4+1)med2=0
L
t<2y+2-1
z=1
t4z> 24

(1<z<b) A(0<t) A ((t+
(t<2+2z-2) A

Vsiél'ﬂ Af; 1 (a(zl _ 2) s (2E1+2f2*¢2*2‘-+21-*1))

t—2¢

Vi

=0

(t+z=

(a (t—2i+z;1'—x+2) = b(t; — i))

+z)meoed2=0) A
)31)

(I<a<f)AN0<t) A ((t+2)mod2=0) A

(1<z<t) A
(t<2€2+171)

Il

A(t+a>20)

(t+2>24)

v

1= 2:,41
& -1

VA

4-1

A

t—2¢
2

i=0

/"\( (t—)1+2j—1+
£y 9

o

) = bty — t))

G4 By~ § — B4 1

) /\fl_ml ( (4 —i)=b (28.+2i2;£—2i+21))

=) A

(x < t)A

0<t) A ((t+az+1)mod2=0) A
(z=1) A

(x <t)A

(fli—b( ~ 2

08 + 28 —t—%+72j

2

)

)

173
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Let:
QS(.‘L‘,El,fg,t) = (p(xael,fht) — (10c2($1£11€2$t)=b(xaf‘hg?yt”)

We notice that ¢(z, ¢, £2,t) is a boolean conditional equality which is balanced, plain,
and with an alternation degree of 2.

According to the method of lemma 56, there is a Presburger formula P(x,{,¢5,1)
such that for each ay, ay, a3, and ay, P(ay, s, as, ay) is true iff ¢(ay, ay, oa, ay) is true,
and:

Pz, £,45,1)

plz, by,45,1) — (pl(.'c,fl,.‘?z,t)—v pa(z, €1, 80,t) V pa(z,y,€2,1))
plz, b, 62,t) A pi(a, by, o, 1) -ﬁ» (b(z, by, €2 t) = by(z, €y, 42,1))
plz,€1,02,t) A pa(x,bq,€5,t) —’l (b(z, &y, €a,1) = bo(z, by, €5,1))
plz, b, €2,t) A pa(z, by, 02, t) -—A—> (0(z,1,€2,1) = by(x, €y, 0,1))

It can be shown (by integer linear programming) that:
plz, b, b2,t) —  (pu(w, b, 62,t) V pa(z, by, 6a,1) V pa(z, by, 62, 1))

is valid and that:
p(xiflaeh t) A p2($)£1562)t)

and:

p(mj’e11 627 t) A p3(wveli 22’ t)

both are unsatisfiable. This implies that:

P(I,fl,eg,t) —
p(mafheht] A P1($1€]1€2:t) — (b(l‘,e],gz,i) = b](it,g],ez,i))

According to the method of lemma 55 there is a Presburger formula P (2, £y, ,,¢) such
that for each oy, a9, a3, and ay, Pi(o, 02, a3, aq) is true iff b(ay, ag, az, a4) = bi(ay, o,
az,04) over By and SPEC. The indices of:

ali+j+1) = b(i +1)

and :

— %42 —z+2
o (IS i - )
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1—2142)—x42

are <t+j+ 1,1+ 1>and < +,32 — 1 > respectively thus:

|
|

P(T)

VO0<i<b-£).30<n<e-1).Y(0<j2$55).30< i <6 - 1)
(in 4 iz + 1 = E2HBE) A (G 41 =y )

A
VO0<ii £2-1).30< i <4 —£6). V(0 <z <6 1). 30 < jp < 55).

(il +ip4+ 1= =2 25242 l1+22.2_$+2) A (2'1 +1=14; ﬁjl)

It follows that:

P(Ia‘e'l:g%t) =
p(I!elafiht) A Pl(-'l','glafz,t) — Py(z,4,5,1)

which is a Presburger formula.

|
|
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Chapter 8

Conclusion and Future Work

In this section we summarize the main contributions of the thesis, and give some directions
for future work.

8.1 Results

We have presented methods for automatic verification of several classes of systolic cir-
cuits. This was done in several steps. We provided a model for the formal description of
implementations and specifications of systolic circuits as systems of recurrence equations
over a signature. The implementation description of a circuit reflects the mathematical
operations performed inside the cells and the interconnection pattern among the cells of
the circuit. The specification is a statement of the desired relation between the output
data and the input data of the circuit. We used basic ideas from the theories of abstract
data types and fixed points to provide a semantics for our model, and then defined the
formal meaning of circuit verification. The notion of algebras was used to give mathe-
matical interpretations of the operations performed inside the circuit cells. Fixed point
theory was used to relate the equation system corresponding to a circuit implementation
to the equation system representing the specification.

Methods for automatic verification of three classes of circuits have been described
in the thesis. The cell operations of the circuits of the three classes are interpreted as
operators of a commutative ring, uninterpreted function symbols, and the operators of a
boolean algebra respectively. For each class, we have shown how the respective automatic
verification method may be applied to a non-trivial circuit in the class.

8.2 Future Work

The main directions for future work include:

Complexity and Feasibility No formal complexity analysis has been provided for
our decision methods. However integer linear programming is NP-complete, and Pres-
burger’s arithmetic is doubly exponential, which suggests that the decision methods of
chapters 5, 6, and 7 have at least the above complexities. Nevertheless, our experience
with manual application of the decision methods on case studies indicates that they are
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feasible in practice. This is because the complexity of the equation system describing
the implementation of a circuit reflects the number of dimensions of the circuit and the
number of states of the cell computations. These parameters are small in all the circuits
known to us from the literature. Also, the size of the circuit does not affect the com-
plexity of the verification method. This is due to the fact that we perform verification
for families of circuits. The circuit parameters (which decide the size of the circuit) are
considered as parameters of the verification problem. When we say that “a circuit is
verified” then we mean that the circuit implementation is correct with respect to the
specification for all values of the circuit parameters and consequently for all sizes of the
circuit. It seems to be interesting to investigate the possibility of providing heuristics for
efficient implementation of the algorithms.

Undecidability We have considered three classes of circuits for which we have shown
that the verification problem is decidable. There are many ways in which these classes
can be modified and the verification problem of the respective class made undecidable.
In chapter 5 we introduced linear systolic circuits, where we restricted ourselves to linear
equalities and inequalities. In fact if we work with arbitrary equalities and inequalities, it
can be shown that Hilbert’s tenth problem (which is undecidable [Dav73]) can be reduced
to the verification problem of tail-recursive ring circuits (see section 5.2.2). In chapter
7 Hilbert’s tenth problem can be reduced to the verification of arbitrary tail-recursive
boolean circuits (and hence the restrictions of section 7.6.3). It would be interesting to
give a more precise characterization of modifications which lead to undecidable problems
for the classes of circuits discussed above.

Circuit Equivalence As mentioned earlier in the thesis, the notions of synthesis and
verification are closely related. Often, synthesis is carried out by starting with a correct
(but possibly inefficient) circuit, and then applying a sequence of transformations to
derive the final implementation. Each transformation preserves the correctness of the
implementation in the sense that the circuit to which it is applied is “equivalent” to the
circuit it generates. In order that the final circuit would be guaranteed to be correct each
transformation should be verified to be correct, i.e. the equivalence of its input circuit
with its output circuit should be proven. Two circuits may be considered equivalent if
they fulfill the same class of specifications. The notion of circuit equivalence is derivable
form the notion of circuit verification. Consequently our verification algorithms seem
to be applicable with some minor modifications to provide decision methods for proving
correctness of circuit transformations.

Other Classes of Architectures Modifications of our methods to deal with other
classes of architectures, which are closely related to systolic circuits as defined in this
thesis, seem to be possible. Examples of such architectures are toroidal networks [Mar81,
Seq81].



Appendix A

Rings

The algebraic specification R of (commutative) rings is defined by the following:

sorts: S

operation symbols: + : §x S
5 K5
- S

0 :
equations: ry+ (rz +73)
T+ T2
r+0
T+ (=r)
(ri+r2)-rs
ry-(rg +73)
™ T2

S
g
S
S
(r1+12) + 73
Ty T

”

0

Ty T3+ 719713
rperet Ty
LS R

A ring R is an R-algebra < {S®}, {+5, %, —f 0R} >. For notation convenience we will
denote the ring R by < R,+,-,—,0 > whenever R is known or irrelevant in the context.
Note that we use the same notation to denote the algebra R and the domain of the
algebra R. Examples of rings are the ring of integers under addition and multiplication,
and the ring of natural numbers modulo m (for some fixed natural number m) under

addition and multiplication modulo m, etc.
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Appendix B

Boolean Algebras

The algebraic specification B of boolean algebras is defined by the following:

sorts: S
operation symbols: V SxS — §
A Sx§ — S
= s — 5
ff — 8
it — S
equations: bAb = b
byAby, = byAly
(blf\bz)/\bg = by A (b2 Aby)

blA(blvbg) = bl
batt = b

by A(byVbs) = (by Aby)V (by Abs)
bA=b = ff
bvb = b
blvbg = bngl

(V) Vb = by V(b Vbs)

bV (byAb) = b
bV = b

bV (b Abs) = (b Vby)A (b V bs)
bv-b =

A boolean algebra B is a B-algebra < {SB},{VE AB B ffB #P} >. For notation
convenience we will denote the boolean algebra B by < B,V, A, -, ff,#t > whenever B is
known or irrelevant in the context. Note that we use the same notation to denote the
algebra B and the domain of the algebra B.

An example of a boolean algebra which occurs often when modeling hardware circuits
is the two valued boolean algebra B,, where:

B’Z = < {ﬁsff},va/\aﬁaﬁaﬁ >

where:
fFvif=108f
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v ff =
fvte =t
t vt = t
fnf =10
tAff = f
fFae = f
Al = ¢
~ff = #

= ff
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