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We discuss the Normal inverse Gaussian (NIG) distribution in modeling volatility
in the financial markets. Refining the work of Barndorff-Nielsen (1997) and Ander-
sson (2001), we introduce a new parameterization of the NIG distribution to build
the GARCH(p,q)-NIG model. This new parameterization allows the model to be
a strong GARCH in the sense of Drost and Nijman (1993). It also allows us to
standardize the observed returns to be i.i.d., so that we can use standard inference
methods when we evaluate the fit of the model.

We use the realized volatility (RV), calculated from intraday data, to standardize
the returns of the ECU/USD foreign exchange rate. We show that normality cannot
be rejected for the RV-standardized returns, i.e., the Mixture-of-Distributions Hy-
pothesis (MDH) of Clark (1973) holds. We build a link between the conditional RV
and the conditional variance. This link allows us to use the conditional RV as a proxy
for the conditional variance. We give an empirical justification of the GARCH-NIG
model using this approximation.

In addition, we introduce a new General GARCH(p,q)-NIG model. This model
has as special cases the Threshold-GARCH(p,q)-NIG model to model the leverage
effect, the Absolute Value GARCH(p,q)-NIG model, to model conditional standard
deviation, and the Threshold Absolute Value GARCH(p,q)-NIG model to model
asymmetry in the conditional standard deviation. The properties of the maximum
likelihood estimates of the parameters of the models are investigated in a simulation
study.
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Chapter 1

Review of volatility models

1.1 Introduction

The modeling of variances of returns of financial assets is crucial for the fi-
nancial practician. The uncertainty of returns measured as variances and
covariances of the returns is important in derivative pricing, hedging and risk
management.

Returns from financial markets are characterized by two stylized facts,
non-normality and volatility clustering. Returns are not normally distributed,
instead the empirical distribution of returns is leptokurtic, that is, it is more
peaked and has fatter tails than the normal distribution. Volatility clustering
means that small changes in price tend to be followed by small changes, and
that large price changes tend to be followed by large price changes. Expressed
differently, one could say that the squared returns are autocorrelated. This
has been known for some time, see e.g. Mandelbrot (1963) and Fama (1965).

The seminal work by Engle (1982), where he introduced the Auto Regres-
sive Conditional Heteroscedasticity (ARCH) model, and Bollerslev (1986),
who introduced the Generalized Auto Regressive Conditional Heteroscedas-
ticity (GARCH) model, triggered one of the most active and fruitful areas
of research in econometrics over the past two decades. The success of the
ARCH/GARCH class of models at capturing volatility clustering in financial
markets is well documented (see, for example, Bollerslev, Chou, and Kroner,
1992). At the same time, the inability of the ARCH/GARCH models coupled
with the auxiliary assumption of conditionally normally distributed errors
to fully account for the mass in the tails of the distributions of, say, daily
returns, is generally well recognized. Indeed, several alternative error distrib-
utions were proposed in the early ARCH literature to better account for the
deviations from normality in the conditional distributions of the returns. For
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2 1. Review of volatility models

example, the t-distribution of Bollerslev (1987), the General Error Distribu-
tion (GED) of Nelson (1991), and more recently, the normal inverse Gaussian
(NIG) distribution of Barndorff-Nielsen (1997), Andersson (2001) and Jensen
and Lunde (2001). Meanwhile, the justification behind these alternative error
distributions has been almost exclusively empirical and pragmatic in nature.

In this thesis, building on the Mixture-of-Distributions-Hypothesis (MDH)
(Clark, 1973) along with the recent idea of so-called Realized Volatilities (RV)
(Andersen, Bollerslev, Diebold and Labys 2001, 2002, and Barndorff-Nielsen
and Shephard, 2001a,b, 2002a), we provide a sound empirical foundation for
the distributional assumptions behind the GARCH-NIG model. Consistent
with the absence of arbitrage and a time-changed Brownian motion (see, for
example, Ane and Geman, 2000, and Andersen, Bollerslev, Diebold, 2002), the
MDH postulates that the distribution of returns is normal, but with a stochas-
tic (latent) variance. In the original formulation in Clark (1973) the variance is
assumed to be i.i.d. lognormally distributed, resulting in a lognormal-normal
mixture distributions for the returns. Numerous theoretical extensions and
empirical investigations of these ideas involving various proxies for the mixing
variable have been conducted in the literature (important early contributions
include Epps and Epps, 1976; Taylor, 1982; Tauchen and Pitts, 1983). Impor-
tantly, to explicitly account for the volatility clustering effect, Taylor (1982,
1986) proposed an extension of the MDH setup by assuming that the (la-
tent) logarithmic variances follow a Gaussian autoregression, resulting in the
lognormal Stochastic Volatility (SV) model; see also Andersen (1996). Since
the joint distribution of the returns in the SV model is not known in a closed
form, estimation and inference for these types of models are considerably more
complicated than for the ARCH/GARCH class of models (see, e.g., Shephard,
1996), which we will consider in the next section.

Barndorff-Nielsen (1997) and Andersson (2001) assume that the condi-
tional variance is inverse Gaussian (IG). This assumption implies that the re-
turns, conditional of an information set, are normal inverse Gaussian (NIG).
That is, the joint distribution of the returns is known in a closed form, and
maximum likelihood estimation is straightforward. Andersson (2001) de-
notes the model the “Normal inverse Gaussian Stochastic Volatility” (NIGSV)
model. In this thesis, we give further empirical support for this model. We
will use a slightly different parameterization of the NIG distribution, which
enable one to consider the model to be a GARCH model, hence we refer to
this model as the GARCH-NIG model.
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1.2 Background to volatility modeling

Here we provide a background to the statistical modeling of financial data.
We highlight the statistical properties of the data and discuss different expla-
nations and ways to model these stylized facts.

From a statistical perspective, when one considers how the daily returns
are constructed, the non-normality of the returns can be quite mysterious.
The daily price changes are made up of many small intraday price changes.
Let

xi = lnPi − lnPi−1,
where Pi is ith intraday price and xi is the intraday log price change. The
daily return can then be written as the sum of the intraday returns, that is

rt = Σ
m
i=1xi,

where m is the number of price changes within day t. According to financial
theory all known information about the security is incorporated in the price.
When new information arrives to the market place, this causes the market
participants to re-evaluate the security and the price adjusts as trading takes
place. In theory, every new piece of information triggers a trade, and therefore
a price change. This means that the daily price is made up of, say, m trades
(assuming that the information flow is constant over time, that is that we
have the same number of trades each day).

Now, assuming that these intraday price changes are independent and
identically distributed, the Central Limit Theorem (CLT) says that the daily
return should be normally distributed. However, there is overwhelming evi-
dence that the returns are NOT normally distributed. So, which assumption
of the CLT is violated?

Mandelbrot (1963) argued that the failure of the CLT is due to the fact
that the intraday changes are independent but they do not have a finite vari-
ance. Given this assumption, by utilizing a generalized CLT, one can show
that the daily price changes follow a stable Paretian law.

Another explanation for the non-normality of the returns was presented
by Clark (1973), who introduced the Mixture-of-Distributions Hypothesis
(MDH). Consistent with the absence of arbitrage and a time-changed Brown-
ian motion (see, for example, Ane and Geman, 2000, and Andersen, Bollerslev,
and Diebold, 2002), the MDH postulates that the distribution of returns is
normal but with a stochastic (latent) variance.

rt ∼ N
¡
0,σ2t

¢
,
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where σ2t is a strictly positive random variable. In the original formulation
in Clark (1973) the variance is assumed to be i.i.d. lognormally distributed,
resulting in a lognormal-normal mixture distribution for the returns.

f (rt) =

Z ∞

0
fNormal

¡
rt|σ2t

¢ ∗ gMixing ¡σ2t ¢dσ2t . (1.1)

It can be shown that the resulting distribution has fatter tails than the nor-
mal distribution. To find the joint distribution of the returns, we need to
integrate out the unobserved variance. For the lognormal assumption of the
mixing variable, the integral in (1.1) is not known in a closed form. Numer-
ous theoretical extensions and empirical investigations of these ideas involving
various proxies for the mixing variable have been conducted in the literature
(early contributions include, Epps and Epps, 1976; Taylor, 1982; Tauchen and
Pitts, 1983)

1.3 The stochastic volatility model

The MDH of Clark (1973) might explain the non normality of the returns,
but it does not explain the volatility clustering, or ARCH effects in the re-
turns. To explicitly account for the volatility clustering effect Taylor (1982,
1986) proposed an extension of the MDH setup by making the (latent) loga-
rithmic variances follow a Gaussian autoregression, resulting in the lognormal
Stochastic Volatility (SV) model; see also Andersen (1996). For an excellent
introduction to SV models, see Ghysels et al (1996). The SV model can be
written

rt|σ2t ∼ N(0,σ2t ),
where

σ2t = σ2 exp(ht),

ht = γht−1 + ηt,

ηt ∼ N(0,σ2η).

We can rewrite the model to make it (more) apparent that the conditional
variance is assumed to be lognormally distributed

σ2t |Ψt−1 ∼ LogN(lnσ2 + γht−1,σ2η),

where Ψt denotes the information up to and including time t. The density of
the returns is given by

rt ∼
Z ∞

0
fNormal

¡
rt|σ2t

¢ ∗ gLognormal ¡σ2t ¢ dσ2t . (1.2)
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Since the density of the returns in the SV model in (1.2) is not known in a
closed form, estimation and inference are considerably more complicated for
these types of models than for the ARCH/GARCH class of models (see, e.g.,
Shephard, 1996).

1.4 The GARCH(p,q) model

Another branch of volatility modeling is the ARCH/GARCH-literature, which
started with Engle (1982) and Bollerslev (1986). In the GARCH(p,q) model
the conditional variance is a deterministic function of lagged squared obser-
vations and lagged conditional variances. The GARCH(p,q) model can be
written as

rt = E (rt|It−1) + σtεt,

where It−1 denotes the information set containing all information up to time t
and E (rt|It−1) is expected value of the return given the information set It−1,
and

εt ∼ i.i.d. (0, 1) ,

and

σ2t = ρ0 +Σ
q
i=1ρir

2
t−i +Σ

p
j=1πjσ

2
t−j , (1.3)

where p is the number of lagged conditional variances, q is the number of
lagged squared returns entering the variance equation, where ρ0 > 0, ρi ≥ 0
i = 1, ..., q and πj ≥ 0 j = 1, ..., p.

Bollerslev (1986) assumes (conditional) normality of the returns, in which
case the model can be written

rt|It−1 ∼ N
¡
µt,σ

2
t

¢
,

where µt = E (rt|It−1) and where σ2t is defined in (1.3).
The GARCH(p,q) model explicitly models the volatility clustering, and

one can show that the unconditional distribution of the returns has fatter
tails than the normal distribution. Still, the normal distribution is not enough
to fully account for the fat tails of the return distribution. For this reason
fat-tailed distributions have been proposed in the literature, such as the t-
distribution by Bollerslev (1987) and the General Error Distribution (GED)
by Nelson (1991). A large number of GARCH-type models have been pro-
posed in the literature, for a survey see Bollerslev et al (1992).
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1.5 The NIGSV(p,q) model

When dealing with models where the conditional variance is random, such
as the SVAR model of Taylor, we have the problem that the likelihood in
(1.2) is not known in a closed form. Therefore, it makes sense to look for
other distributions for the variance. This has been done by Barndorff-Nielsen
(1997), and his model was generalized by Andersson (2001). They use the
inverse Gaussian (IG) distribution as a mixing distribution.1 The density of
the IG distribution is given by

f(z; δ,α,β) = (2π)−1/2δ exp(δγ)z−3/2 exp(−1
2
(δ2z−1 + γ2z)),

where γ =
p
α2 − β2. The first two moments are

E(z) =
δ

γ
,

and

V (z) =
δ

γ3
.

Note that the parameter δ is proportional to the mean of the distribution.2

If we have a normally distributed variable with the variance drawn from
the IG distribution,

x|z ∼ N(µ, z),
where

z ∼ IG(δ,
q
α2 − β2).

Then the distribution of the return is NIG

f (x) =

Z
f (x|z) g (z)dz ∼ NIG (α,β, µ, δ) .

The NIG (α,β, µ, δ) density is given by

g(x;α,β, µ, δ) = a (α,β, µ, δ) q

µ
x− µ
δ

¶−1
∗K1

·
δαq

µ
x− µ
δ

¶¸
exp (βx) ,

(1.4)
1The name inverse Gaussian is due to the fact that the cumulant generating funtion of the

IG density, is the inverse of the cumulant generating function of the Gaussian distribution.
2The inverse Gaussian distribution can be derived as the waiting time for a Brownian

motion with drift α, to hit a barrier δ, see Seshadri (1993).
Alternatively, it can be derived as the number of links an internet ”surfer” uses before

finding the ”right page”, given that the surfing follows a Gaussian random walk, see Huber-
man, Pirolli, Pitkow and Lukose (1998).
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where K1 is the modified Bessel function of third order and index 1, that
is K1(x) =

R∞
0 exp(−x cosh(t)) cosh(t)dt and the functions a (α,β, µ, δ) =

π−1α exp
h
δ
p
α2 − β2 − βµ

i
and q(x) =

√
1+ x2. Restrictions for the para-

meters are 0 ≤ |β| ≤ α, µ ∈ R and δ > 0. The first four central moments are
given by

µ1 = µ+
βδp

α2 − β2
,

µ2 =
δα2¡

α2 − β2
¢3/2 ,

µ3 =
3δβα2¡

α2 − β2
¢5/2 ,

and

µ4 = 3δα
2α

2 + 4β2 + δα2
p
α2 − β2¡

α2 − β2
¢7/2 .

The parameters can be interpreted as follows: α and β are shape para-
meters with β determining the skewness of the distribution and, with β = 0,
α determining the degree of non-normality. The parameter δ is a scale para-
meter and µ is the location parameter, if β = 0, µ denotes the mean of the
distribution.

Barndorff-Nielsen (1997) used the normal inverse Gaussian distribution to
construct a volatility model of the mixing distribution type; his formulation
was generalized by Andersson (2001). We present the model by Andersson
(2001), where

β = µ = 0,

which means that the resulting NIG distribution is symmetric about zero,
however, it is straightforward to model the conditional first moment. It is
also possible to let β be non zero, and include modeling of the skewness of
the distribution. The observed variable rt is, given the variance zt, normally
distributed

(rt|zt) ∼ N(0, zt),
where the variance zt is inverse Gaussian given the information set
It−1 = (δ−p+1, ..., δ0, r−q+1, ..., rt−1) :

(zt|It−1) ∼ IG(δt,α).
Conditional on the information set, the observed variable is now normal in-
verse Gaussian

(rt|It−1) ∼ NIG (α, 0, 0, δt) ,
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and the conditional variance is given by

V (rt|It−1) = δt
α
.

Andersson (2001) makes the parameter δt time varying according to

δt = ρ0 +Σ
q
i=1ρir

2
t−i +Σ

p
j=1πjδt−j. (1.5)

In the NIGSV(p,q) model we do not model the conditional variance directly,
but the parameter δt, which is proportional to the conditional variance.

We can also write (1.5) using slightly different notation.3 Let

B (L) = 1−Σpj=1πjLj , (1.6)

and
A (L) = 1−Σqi=1ρiLi, (1.7)

where Li denotes the lag operator, that is, xtLi = xt−i and yt = rt/
p
(δt/α)

is the sequence of errors. Then we can define the sequence of {δt} to be the
stationary solution to

B (L) δt = ρ0 + (A (L)− 1) y2t . (1.8)

We do not have a latent factor in the NIGSV(p,q) model as we had in
the SVAR model. Instead one of the parameters is made time varying. In
Andersson (2001), the parameter δt is made time varying.4 In contrast to the
SVAR of Taylor (1986), we know the joint distribution of the observed vari-
able in closed form, which makes maximum likelihood estimation/ inference
straightforward.

1.6 Continuous time models and volatility

In order to fully understand the ideas presented later in this thesis, we need
some results from continuous time finance. Let us assume that the log price
follows an univariate diffusion process with no mean dynamics

dp (t) = σ (t)dW (t) , (1.9)
3We will use this notation later, when dealing with the scaling properties of the

NIGSV(p,q) model.
4Because the model does not have a latent factor, some authors claim that the model is

not a stochastic volatility model. However, the model can be written as a product of two
stochastic variables, i.e.,

xt =
√
νtεt,

where νt ∼ IG (δt,α) and εt ∼ N (0, 1) . This is in the same spirit as the (log normal)
stochastic volatility model of Taylor (1986).
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where p (t) denotes the log price at time t, W is a standard Brownian motion,
and σ (t) is the instantaneous volatility or the spot volatility. The return at
time t is defined as

rt ≡ p (t)− p (t− 1) =
Z t

t−1
σ (s)dW (s) , (1.10)

where rt is the continuously compounded return at time t . Andersen, Boller-
slev, Diebold and Labys (2001) (ABDL 2001) used the quadratic variation
(QV) of the process as a volatility measure. The quadratic variation is de-
fined as

QVt =

Z t

t−1
σ2 (s) ds. (1.11)

The expression
R t
t−1 σ

2 (s)ds also defines the so-called integrated volatility
(IVt). An interesting result in (ABDL 2001) is that the conditional expec-
tation of the quadratic variation is the conditional variance of the returns.
That is

E
¡
QVt|ψt−1

¢
= V

¡
rt|ψt−1

¢
, (1.12)

where ψt is all the information up to time t. We will make use of this result
later in this thesis when linking the realized volatility to the conditional vari-
ance. The quadratic variation is a theoretical concept, of course unobservable
in practice. To estimate the quadratic variation at time t, we use an estimate
referred to as the realized volatility (RVt). The RVt is defined as

RVt = Σ
mh
i=1r

2
(m) (t− h+ i/m) , (1.13)

where r(m) is the intraday return, sampled m times a day and h is the fre-
quency, where h = 1 is daily, h = 5 is weekly and so on. This idea is has also
been used in Schwert (1989), Hsieh (1991), and elsewhere. A formal justifica-
tion of the realized volatility is given in (ABDL 2001). The realized volatility
is a consistent estimate of the quadratic variation, that is

p lim
m→∞RVt,h = QVt,h. (1.14)

Given only data on a daily basis or with an even lower frequency, the
standard way to estimate the conditional variance has been to use the square
of the returns as an estimate of the volatility. Andersen and Bollerslev (1998)
showed that the squared return is a very noisy estimate of the variance, so
they preferred to use the idea of realized volatility (RV).

As can be seen from (1.13), by definition, the RV over a week is simply
the sum of the RV for 5 days. That is, we aggregate the realized volatility in
the same way as we aggregate compound returns.
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When we have access to intraday data, we can model the RV directly,
instead of resorting to modeling the squares of the, say, daily returns. Some
steps have been taken in this direction. ABDL (2001) analyzed the RV of
three FX series, and they developed a multivariate model for these series.
The basic idea in their paper was to assume that the RV is lognormal, they
take the natural log of the RV and model the serial dependence using an
ARMA(p,q) model assuming the errors to be normal.

1.7 Outline of the thesis

The rest of the thesis is organized as follows. In Chapter 2 we introduce
and motivate a new scale invariant parameterization of the normal inverse
Gaussian distribution. In Chapter 3 we give further evidence that the MDH
holds. Using an intraday dataset ECU/USD 1989 - 1998, we construct realized
volatility and standardize the returns thereby showing that we cannot reject
the null of normality.

In Chapter 4, using results from continuous time finance, we build a
link between realized volatility and conditional variance. We use the real-
ized volatility of the ECU/USD 1989 - 1998 dataset to show that the inverse
Gaussian distribution gives a good fit to the conditional variance, giving em-
pirical support to the GARCH(p,q)-NIG model.

In Chapter 5 we use the temporal aggregation properties of the realized
volatility, and the convolution formulas of the inverse Gaussian to give further
support to the hypothesis that the conditional realized volatility is well de-
scribed by the inverse Gaussian distribution. Again, this gives direct support
to the GARCH(p,q)-NIG model.

In Chapter 6 we introduce a new General GARCH(p,q)-NIG model. As
special cases of this models we derive four GARCH-NIG models From this
General GARCH(p,q) we derive the three GARCH-NIG models as special
cases.5 The special cases are: the Threshold-GARCH(p,q)-NIG, which is an
asymmetric model for the conditional variance, the Absolute Value GARCH(p,q)-
NIG model, which is a symmetric model for the conditional standard devia-
tion, and the Threshold Absolute Value GARCH(p,q)-NIG model, which is
an asymmetric model for the conditional standard deviation.

Chapter 7 conducts a maximum likelihood study for the four models in
Chapter 6, we focus on a comparison of the small sample performance of the
maximum likelihood (ML) estimator using numerical and analytical gradients.

5 In a concurrent and independent work, Jensen and Lunde (2001) proposed a more gen-
eral model “GARCH-NIG” model, which they refer to as the NIG-S&ARCH model, which
is the A-PARCH model of Ding, Granger and Engle (1993) used with the NIG distribution.



Chapter 2

A new parameterization of
the NIG

Here we propose and motivate a “scale invariant” parameterization of the nor-
mal inverse Gaussian distribution. Barndorff-Nielsen (1997) has also proposed
a scale invariant parameterization of the normal inverse Gaussian distribu-
tion, however, our parameterization uses only one parameter for the variance,
which is more intuitive in the context of conditional variance modeling. This
will lead us to a new parameterization of the NIGSV(p,q) model of Andersson
(2001); we refer to the new formulation of the model as the GARCH(p,q)-NIG
model.

Using this parameterization, we can write the model not only as a SV
model, but also as a (strong) GARCH model with a NIG error distribution.1

We highlight some differences between the two parameterizations, and the
implications for the modeling of the conditional variance.

2.1 Standardization of the NIGSV(1,1)

When we model time dependence of the conditional variance in real data, we
might want to standardize the observed returns, i.e., divide the observed data
by the (estimated) conditional standard deviation to get the standardized
data. In doing so, we can use standard diagnostics to check whether the
model gives a good description of the data. We might want to see if the
standardized returns are normal, or if there are any serial correlations in the
squared standardized returns. In a practical situation, if the model is correct
we should have no dependencies left in the standardized data. Let rt be the

1By strong GARCH, we mean a strong GARCH in the sense of Drost and Nijman (1993).

11
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daily return at time t, and, as in the NIGSV(p,q) model, let δt/α be the
conditional variance at time t, then we can standardize the return

r∗t =
rtq
δt
α

,

where r∗t is the standardized return at time t. To see how the standardized
return r∗t is distributed in the NIGSV(p,q) framework, we need to know the
scaling properties of the NIG distribution. The scaling properties of the pa-
rameterization of the NIG distribution used in the NIGSV(p,q) model are as
follows. Let x ∼ NIG(α, 0, 0, δ), then

cx ∼ NIG(α
c
, 0, 0, cδ). (2.1)

By using (2.1) , the standardized returns from the NIGSV(p,q) model are
distributed according to

r∗t ∼ NIG(
p
αδt, 0, 0,

p
αδt).

We note that the parameters of the standardized returns are still time varying.
The variance of the standardized return is

V (r∗t |It−1) =
√
αδt√
αδt

= 1,

so the conditional variance is constant, but higher moments are time varying.
For instance, the kurtosis of the standardized return is

K4 (r
∗
t ) |It−1 = 3 +

3

αδt
,

that is, we have a time varying conditional kurtosis in the standardized re-
turns. The reason for this is that when setting a time varying structure on
the parameter δt in (1.5) , we not only model the conditional variance, but
since δt determines higher moments as well, we model the conditional dis-
tribution. This is basically what one wants to do when modeling financial
data. Modeling the conditional variance as in the GARCH models, is just a
convenient simplification of reality since one might suspect that higher order
moments are time varying as well. The drawback of this parameterization is
that we cannot standardize the returns to get i.i.d. variables, and then use
the standard diagnostic tools.

We can view this in another way: We cannot write the model like a
GARCH model in the sense of Bougerol and Picard (1992), that is, split
up rt into a time constant distribution and an It−1 measurable one

rt = δtyt, (2.2)
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where, δt is It−1 measurable, so, given the information up to time t−1, δt is a
constant, and where yt is i.i.d. To write the NIGSV(p,q) model as a product,
as in (2.2), we have to choose

yt ∼ NIG (α/δt, 0, 0, 1) ,

where the NIG (α/δt, 0, 0, 1) distribution clearly is not time constant. On
the other hand, if we start out with yt ∼ NIG (α, 0, 0, 1) , it is impossible to
find a scale factor c∗, such that rt ∼ NIG (α, 0, 0, δt), owing to the scaling
properties in (2.1) .

One might also say that the NIGSV(p,q) of Andersson is not a strong
GARCH in the sense of Drost and Nijman (1993). Let us first define the idea
of strong (and semi-strong) GARCH. Let {yt} be a sequence of stationary
errors with finite fourth moments. Let A (L) and B (L) be as defined in (1.7)
and (1.6) respectively, and let the sequence

©
σ2t
ª
be defined as the stationary

solution of
B (L)σ2t = ρ0 + (A (L)− 1) y2t .

Then, the sequence {rt} is defined to be generated by a strong
GARCH(p,q) process if ρ0, A (L) , and B (L) can be chosen such that

yt =
rt
σt
∼ i.i.d. (0, 1) . (2.3)

Similarly, the sequence {rt} is defined to be generated by a semi-strong
GARCH(p,q) process if ρ0, A (L) , and B (L) can be chosen such that

E (rt|rt−1, rt−2, ...) = 0,

and
E
¡
r2t |rt−1, rt−2, ...

¢
= δt.

It is clear from the above that the sequence of δt in (1.8) does not fulfill the
condition for strong GARCH. Instead, the NIGSV(p,q) model of Andersson
(2001) is a semi-strong GARCH.

2.2 A new scale invariant parameterization of NIG

We would like to find a parameterization of the NIG distribution that is a
strong GARCH and where we can write the model as a product of a time-
constant distribution and an It−1 measurable one, i.e., a GARCH model in
the sense of Bougerol and Picard (1992), or a strong GARCH in the sense of
Drost and Nijman (1993). Furthermore, as we are dealing with conditional
variances, it would be more intuitive to find a parameterization of the NIG
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distribution that has only one parameter defining the variance.2 This is pos-
sible if we start out from the scale invariant parameterization in (1.4) , and
we let

β = 0,

α = αδ,

and

σ2 =
δ

α
.

The density of the resulting parameterization, which we shall denote
NIGσ2

¡
α, 0, µ,σ2

¢
can be written

g
¡
α,σ2

¢
=

√
α

π
√
σ2
exp (α) q

µ
z − µ√
σ2α

¶−1
K1

µ
αq

µ
z − µ√
σ2α

¶¶
, (2.4)

where q (x) =
√
1+ x2, and K1 (z) is the modified Bessel function of third

order and index one. Restrictions for the parameters are 0 ≤ α, µ ∈ R and
0 ≤ σ2.

The first four central moments are

µ1 = µ,

µ2 = σ2,

µ3 = 0,

and

µ4 = 3σ
4 +

3σ4

α
.

Note that the variance is represented by one parameter, σ2, which might be
more intuitive in the context of volatility modeling. The kurtosis is given by

K = 3 +
3

α
.

2.2.1 Scaling properties of the new parameterization

The scaling properties of the NIGσ2
¡
α, 0, µ,σ2

¢
parameterization are given

by the following. Let Z1 ∼ NIGσ2
¡
α, 0, µ,σ2

¢
, then

cZ1 ∼ NIGσ2

³
α, 0, µ, (cσ)2

´
,

2 Jensen and Lunde (2001) use the scale invariant parameterization of Barndorff-Nielsen
(1997) to build their model.
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i.e., α does not change under scaling. This means that if we use this pa-
rameterization in a conditional variance modeling framework, we can fit the
model, standardize the observed returns using the conditional standard de-
viation, and the parameters of the distribution for the standardized returns
will be constant. To see this, let

rt ∼ NIG
¡
α, 0, µt,σ

2
t

¢
,

be the daily returns, where µt = E (rt|It−1) is the conditional mean of the
returns and where the conditional variance σ2t is modelled using a GARCH-
specification.3 Now, we standardize the observed returns

zt =
rt − µt
σt

,

and the standardized returns are distributed according to

NIGσ2 (α, 0, 0, 1) ,

V (zt) = 1.

2.3 The GARCH(p,q)-NIG model

We can derive the GARCH(p,q)-NIG model in two ways. We can view the
model as a mixture-of-distributions model and start with the normal distri-
bution, take the inverse Gaussian as the mixing density and then derive the
model. Alternatively, we can view the model as a GARCH model with a NIG
distribution instead of the normal or Student’s t distribution.

In this thesis, we will derive the model using both methods, starting with
the MDH derivation. Later we will use only the GARCH formulation, which
tends to be easier to understand.

To derive the GARCH-NIGmodel we assume that the return rt conditional
on its variance zt is normally distributed

(rt|zt) ∼ N(µt, zt),

where µt = E (rt|It−1) is the conditional mean. The variance zt is inverse
Gaussian given the information set up to, and including time t− 1,

(zt|It−1) ∼ IGσ2(σ
2
t ,α),

3For instance, we can model the conditional mean of the returns, µt by an ARMA(p,q)
model.
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where It−1 =
¡
σ2−p+1, ...,σ2t−1, r−q+1, ..., rt−1

¢
. Note that the E (zt|It−1) = σ2t ,

that is, the parameter σ2t denotes the conditional mean of the variance. Now,
the returns conditionally on It−1 are normal inverse Gaussian

(rt|It−1) ∼ NIGσ2
¡
α, 0, µt,σ

2
t

¢
.

The conditional variance of the returns is given by

V (rt|It−1) = σ2t ,

which we model as

σ2t = ρ0 +Σ
q
i=1ρir

2
t−i +Σ

p
j=1πjσ

2
t−j . (2.5)

The conditional mean of the variance and the conditional variance of the
returns are the same. That is, when we model the returns we implicitly
model the mean of the (latent) variance. One would be justified in discussing
whether it would be more appropriate to call this model a GARCH or a
stochastic volatility model. For simplicity, we refer to this parameterization
of the model as the GARCH-NIG model.

It is clear from the above that the GARCH-NIG is a strong
GARCH(p,q) in the sense of Drost and Nijman (1993). Furthermore, we
can write the model as a GARCH model in the sense of Bougerol and Picard
(1992), with a standardized NIG error distribution. Whereby we split up the
rt into a factor with a time-constant distribution, and an It−1 measurable one,
i.e.,

rt = ytσt,

where yt ∼ NIG (α, 0, 0, 1) and σt follows (2.5) .



Chapter 3

Test of the Mixing
Distribution Hypothesis

The Mixture-of-Distributions Hypothesis of Clark (1973) predicts that returns
standardized by their conditional variance should be normally distributed,
which we refer to henceforth as ‘normal’. In this chapter we use a high
frequency data set ECU/USD 1989 - 1998, sampled every five minutes, to
construct realized volatility. We use these realized volatilities to standardize
the returns and investigate whether the RV-standardized returns are normal,
i.e., if the mixing distribution of Clark (1973) holds.

3.1 Introduction

Consistent with the absence of arbitrage and a time-changed Brownian mo-
tion (see, for example, Ane and Geman, 2000, and Andersen, Bollerslev and
Diebold, 2002), the MDH postulates that the distribution of returns is normal,
but with a stochastic (latent) variance. In the original formulation in Clark
(1973) the variance is assumed to be i.i.d. lognormally distributed, resulting
in a lognormal-normal mixture distribution for the returns. Numerous theo-
retical extensions and empirical investigations of these ideas, involving various
proxies for the mixing variable have can be found in the literature (important
early contributions include, Epps and Epps, 1976, Taylor, 1982, Tauchen and
Pitts, 1983). Importantly, to account explicitly for the volatility clustering
effect Taylor (1986) proposed an extension of the MDH setup by having the
(latent) logarithmic variances follow a Gaussian autoregression, resulting in
the lognormal Stochastic Volatility (SV) model; see also Andersen (1996).
Since the joint distribution of the returns in the SV model is not known in a
closed form, estimation and inference are considerably more complicated for

17
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these types of models than for the ARCH/GARCH class of models (see, e.g.,
Shephard, 1996).

In contrast to the existing SV literature where the mixing variable is
treated as latent, here we proceed to show that by measuring the daily vari-
ance by the corresponding realized volatility, constructed from the sum of
intraday high-frequency returns, the daily return standardized by the real-
ized volatility is approximately normally distributed. Therefore, even though
the realized volatilities are subject to measurement error vis-à-vis the true
daily latent volatilities (see for instance Andreou and Ghysels, 2002, and
Barndorff-Nielsen and Shephard, 2001b, 2002b), the (approximate) normality
of the standardized returns is consistent with the basic tenets of the MDH and
the reliance on the realized volatility as the underlying mixing variable. The
empirical analysis is based on a ten-year sample of high-frequency five-minute
returns for the ECU basket of currencies versus the U.S. Dollar spanning the
period from January 3, 1989 through December 30, 1998.

Our results build directly on recent empirical findings and related the-
oretical developments in the literature. First, however, it should be noted
that the idea of explicitly modeling realized volatility proxies has a long his-
tory in empirical finance (see for example, Schwert, 1989, and Hsieh, 1991, and
more recently Andersen, Bollerslev, Diebold and Labys, 2002, and Maheu and
McCurdy, 2002). Second, empirical results in Andersen, Bollerslev, Diebold
and Labys (2000) and Andersen, Bollerslev, Diebold, and Ebens (2001) have
previously demonstrated the approximate normality of the returns when stan-
dardized by the realized volatility for other asset classes and time periods.

3.2 The Mixture-of-Distributions Hypothesis

TheMixture-of-Distributions Hypothesis (MDH), starts from the premise that
the distribution of discretely sampled returns, conditional on some latent in-
formation arrival process, is Gaussian. This assumption is justified theoreti-
cally if the underlying price process follows a continuous sample path diffusion
as outlined in the introduction (Equation (1.9)), (see also the discussion in An-
dersen, Bollerslev, and Diebold, 2002, and Barndorff-Nielsen and Shephard,
2001b). In this setting, Barndorff-Nielsen and Shephard (1998) show that the
returns conditional on the quadratic variation are normally distributed, that
is

rt|QVt ∼ N (0, QVt) , (3.1)

where rt is given by (1.10) and QVt is the quadratic variation defined in (1.11),
also called the integrated volatility of the process. However, the integrated
volatility process, which serves as the mixture variable in this situation, is
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not directly observable. As noted above, this has spurred numerous empiri-
cal investigations into alternative volatility proxies and/or mixture variables.
Meanwhile, as outlined in Chapter 1 and discussed further below, by using in-
creasingly finer sampled returns, the integrated volatility in a diffusion process
may in theory be estimated arbitrarily well by the so-called realized volatil-
ity, constructed by summing the of the squared high-frequency returns. This
suggests the following empirically testable starting point for the MDH,

f (rt|RVt) ∼ N(0, RVt), (3.2)

where rt refers to the one-period returns sampled discretely from time t − 1
to t, and RVt denotes the corresponding realized volatility proxy measured
over the same time interval. Recall that the realized volatility used in (3.2) is
a consistent esimate of the quadratic variation used in (3.1) . Consistent with
earlier related empirical results in ABDL (2000), the results for the high-
frequency foreign exchange rates discussed in the next section are generally
supportive of this hypothesis.

3.3 Data sources and realized volatility

Our primary data set consists of daily returns and realized volatilities for
the ECU/US Dollar exchange rate from January 3, 1989 through December
30, 1998.1 2Following standard practice in the literature, the daily realized
volatilities are constructed from the summation of squared five-minute high-
frequency returns. Formally, for t = h, 2h, ..., T

V art,h = Σ
288h
i=1 r

2
(288) (t− h+ (i/288)) , (3.3)

where r2(288) (t+ (i/288)) denotes the continuously compounded return for
day t over the ith five-minute interval calculated on the basis of the linearly
interpolated logarithmic midpoint of the bid-ask prices, and where h is the
frequency h = 1, 5, 10 or 20 days, that is, for the daily, weekly, bi-weekly
and monthly frequencies. We omit non-trading days and weekend periods as
described in ABDL (2001). All in all, this leaves us with a total of 2,428
days.3 Time series plots of the relevant returns and realized volatilities are
given in Figures 3.1 and 3.2.

1All of the raw data were obtained from Olsen and Associates in Zürich, Switzerland.
2For simplicity, we refer to this dataset as the ECU/USD 1989 - 1998 dataset.
3We also excluded nine days in January and February 1989 on which the realized volatility

was less than 0.005. These days are directly associated with problems in the data-feed early
on in the sample. None of the results are sensitive to these additional exclusions.
The median of the data before the exclusion was 0.344 and the minimum was 2.3*10−5.

The median of the data after the exclusion was 0.348 and the minimum was 0.016.
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As can be seen from (3.3), by definition, the RV of a week is simply the
sum of the RV over 5 days. That is, we aggregate the realized volatility in
the same way as we aggregate compound returns.

3.4 Raw Returns

We start with a description of the raw returns. Figure 3.1 shows time series
plots of the returns for the daily, weekly, bi-weekly and monthly frequencies.
The volatility clustering-effects are obvious, at least for the daily, weekly and
bi-weekly frequencies. The volatility clustering, or ARCH effects, are also seen
in Figure 3.2 a,b, which shows the time series plots of the realized volatilities
for the different frequencies. Recall, that the dependence in the conditional
variance for the returns, translates into a dependence in the conditional mean
for the realized volatility.

In Figure 3.3 a,b we see the unconditional distribution of the raw returns
together with a fitted normal distribution. The empirical distribution of the
raw returns is peaked and have a fatter tail than the normal distribution, at
least at the daily and weekly frequencies. QQ-plots of the probability integral
transform of the raw returns assuming them to be normal against the quantiles
of the U (0, 1) distribution, are given in Figure 3.4.4 For the daily frequency
(Figure 3.4 a), we see the typical s-shaped QQ-plot, meaning that the daily
raw returns have a fatter tail than the normal distribution. This pattern is
less obvious for the weekly, bi-weekly and monthly frequencies. Descriptive
statistics for the raw returns are presented in the left columns of Table 3.1a
and b. We note, that except for the daily raw returns, the raw returns are
skewed with a coefficient of skewness of about -0.5 for the weekly, bi-weekly
and monthly frequencies. The kurtosis of the daily returns is 5.425, and 5.076
for the weekly returns, while for the bi-weekly and monthly frequencies it is
3.495 and 4.01, respectively.5 The Jarque-Bera test (JB-test) for normality
((Jarque and Bera, 1987)) is rejected for all the frequencies. Taken together,
this is strong evidence for non-normality of the raw returns.

Ljung-Box Q-statistics for serial dependence in the returns and the squared
returns are reported in Table 3.2a and b. As noted frequently in the literature
there seems to be no dependence in the first moment, but the daily squared
raw returns display significant serial dependence, both at lag 1 and lag 10. The
lower frequencies do not show serial dependence for the squared raw returns,

4The PIT is defined as zPITt =
R xt
−∞ f (u) du. If f (u) is the correct distribution, then

zPITt ∼ U (0, 1) .
5This kurtosis measure is K4 =

E(x−µx)4
(E(x−µx)2)2

, so the normal distribution has K4 = 3.
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suggesting that the volatility clustering vanishes with aggregation. The left
panel of Figure 3.5 displays the sample autocorrelation function for the daily
raw returns. The Sample Autocorrelation Function (SACF) of the absolute
returns starts at 0.12 and decays slowly. The SACF of the squared raw returns
also starts at 0.12 and decays slowly, but faster than for the absolute returns.

3.5 RV-standardized returns

Here we report the results for the RV-standardized returns, that is

r∗t =
rt,raw√
RVt

,

where rt,raw is the observed daily return at time t, RVt is the realized volatility,
and r∗t is the RV-standardized return.

Figure 3.6 shows the RV-standardized returns and a fitted normal dis-
tribution. The empirical distributions of the RV-standardized returns is less
peaked than the distribution for the raw returns, and the fit of the normal
distribution is better for the RV-standardized returns than that of the raw
returns in Figure 3.3, which is supported in the QQ-plots in Figure 3.4. The
QQ-plot of the daily RV-standardized returns against the normal distribu-
tion are almost a straight line, and the visual impression is the same for the
weekly, bi-weekly and monthly frequency, indicating that the normal distrib-
ution gives a good fit to the RV-standardized returns.

The normality of the RV-standardized returns is confirmed by the statis-
tics in Table 3.1a and b. Compared to the statistics for the raw returns, the
skewness is lower for all the frequencies, and the kurtosis is closer to three
for all the frequencies for the RV-standardized returns than for the raw re-
turns. Formally, using the JB-test, we cannot reject normality for any of the
frequencies of the RV-standardized returns.

The serial dependence of the squared RV-standardized daily returns is
lower than for the squared daily raw returns, as seen in the right panel of
Figure 3.3, and Table3.2a and b. The p-value of the Ljung-Box statistic for
the squares for one lag is 0.271 for the RV-standardized returns, in contrast
to 0.000 for the raw squared return, indicating that standardizing the returns
by the realized volatility takes out the volatility clustering effect as predicted
by the MDH.

Both the normality of the RV-standardized returns, and the lack of serial
dependence in the squares of the RV-standardized returns provide support for
the Mixture-of-Distributions Hypothesis.
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3.6 Conclusions

Using a high frequency data set consisting of five minute returns from the
ECU/USD 1989 - 1998 exchange rate, for which we calculate the realized
volatility, we have shown we cannot reject normality of the RV-standardized
returns. That is, we found that the Mixture-of-Distributions Hypothesis of
Clark (1973) cannot be rejected for this dataset.

3.7 Futher work

In this chapter, we study only one realized volatility dataset. It would be
interesting to see whether the same result holds true for other datasets. It
would also be interesting to see if the result would change in any direction
if we filter the realized volatilty using the filters proposed in Andreou and
Ghysels (2002). One could also try to incorporate the results concerning the
asymptotic distribution of the (sampling) error in the realized volatility, i.e.,
the results of Barndorff-Nielsen and Shephard, 2001b, 2002b.
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3.8 Tables
Table 3.1a:
Descriptives of unconditional returns of ECU/USD 1989 - 1998.

Daily n=2428 Weekly n=445
Raw RV-Stand. Raw RV-Stand

Mean 0.002 0.008 0.013 0.020
Median 0.000 -0.001 0.016 0.018
Maximum 3.141 3.497 4.374 2.564
Minimum -3.257 -3.212 -7.583 -3.242
Std 0.638 0.950 1.417 0.934
Skewness -0.079 0.027 -0.533 -0.220
Kurtosis 5.426 3.199 5.076 3.057
JB test stat 598.1 4.318 110.1 3.976

(0.000) (0.115) (0.000) (0.137)
Notes: RV-stand. means that returns are standardized by using the realized volatility,
r∗t,h= r

raw
t,h /

p
RVt,h, where r∗t.h is the RV-standardized returns the raw return at

time t for frequency h andRV t,h is the realized at time t and h is the frequency, rrawt,h
is volatility at time t for frequency h. The daily returns are standardized by using the
daily RV and the weekly RV-standardized RV standardized returns are standardized
using the weekly RV. JB stands for the Jarque-Bera test for normality,the p-values
are in parenthesis.
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Table 3.1b:
Descriptives of unconditional returns of ECU/USD 1989 - 1998.

Bi-weekly n=242 Monthly n=121
Raw RV-Stand. Raw RV-Stand

Mean 0.031 0.037 0.062 0.049
Median 0.090 0.049 0.175 0.089
Maximum 4.126 1.987 7.112 2.235
Minimum -7.065 -2.520 -9.945 -2.785
Std 1.998 0.939 2.783 0.916
Skewness -0.541 -0.308 -0.584 -0.334
Kurtosis 3.495 2.673 4.010 3.169
JB test stat 14.26 4.904 12.018 2.390

(0.001) (0.086) (0.003) (0.303)
Notes: RV-stand. means that returns are standardized by using the realized volatility,
r∗t,h= r

raw
t,h /

p
RVt,h, where r∗t.h is the RV-standardized returns the raw return at

time t for frequency h andRV t,h is the realized at time t and h is the frequency, rrawt,h
is volatility at time t for frequency h. The daily returns are standardized by using the
daily RV and the weekly RV-standardized RV standardized returns are standardized
using the weekly RV. JB stands for the Jarque-Bera test for normality,the p-values
are in parenthesis.
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Table 3.2a:
Descriptives of time series properties of returns of ECU/USD
1989 - 1998.

Daily (h = 1) n=2428 Weekly (h = 5) n=445
Raw RV-Stand. Raw RV-Stand

Q (1) 0.041 1.034 0.003 0.051
(0.840) (0.309) (0.954) (0.822)

Q (10) 20.269 21.468 10.772 6.099
(0.027) (0.018) (0.376) (0.807)

Q2 (1) 34.386 1.208 0.990 0.200
(0.000) (0.271) (0.319) (0.654)

Q2 (10) 208.4 30.948 14.673 23.540
(0.000) (0.001) (0.144) (0.009)

Notes: RV-stand. means that returns are standardized by using the realized volatility,
r∗t,h= r

raw
t,h /

p
RVt,h, where r∗t.h is the RV-standardized returns at time and h is

the frequency, rrawt,h is the raw return at time t for frequency h and RV t,h is the
realized volatility at time t for frequency h. The daily RV-standardized returns are
standardized by using the daily RV and the weekly RV standardized returns are
standardized using the weekly RV. JB stands for the Jarque-Bera test for normality,
the p-values are given in parenthesis.
Q (n) denotes the Ljung-Box statistic for serial correlation in the standardized re-
turns forup to lag (n). Q2 (n) denotes the Ljung-Box statistic for the squared stan-
dardized residuals. The p-values are given in parenthesis.
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Table 3.2b: Returns
Descriptives of time series properties of returns of ECU/USD
1989 - 1998.

Bi-weekly (h = 10) n=242 Monthly (h = 10) n=121
Raw RV-Stand. Raw RV-Stand

Q (1) 0.976 0.765 2.545 1.558
(0.323) (0.382) (0.111) (0.212)

Q (10) 8.516 5.575 10.176 8.104
(0.579) (0.850) (0.425) (0.619)

Q2 (1) 1.933 1.639 1.424 0.219
(0.164) (0.200) (0.233) (0.640)

Q2 (10) 17.254 13.782 7.249 11.379
(0.069) (0.183) (0.702) (0.329)

Notes: RV-stand. means that returns are standardized by using the realized volatility,
r∗t,h= r

raw
t,h /

p
RVt,h, where r∗t.h is the RV-standardized returns at time and h is

the frequency, rrawt,h is the raw return at time t for frequency h and RV t,h is the
realized volatility at time t for frequency h. The daily RV-standardized returns are
standardized by using the daily RV and the weekly RV standardized returns are
standardized using the weekly RV. JB stands for the Jarque-Bera test for normality,
the p-values are given in parenthesis.
Q (n) denotes the Ljung-Box statistic for serial correlation in the standardized re-
turns forup to lag (n). Q2 (n) denotes the Ljung-Box statistic for the squared stan-
dardized residuals. The p-values are given in parenthesis.
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Table 3.3:
Descriptives of unconditional raw RV of ECU/USD
1989 - 1998.

Frequency
Daily Weekly Bi-weekly Monthly

Number of obs. 2428 485 242 121
Mean 0.427 2.135 4.271 8.542
Median 0.346 1.902 3.761 7.894
Maximum 3.870 9.477 16.865 28.481
Minimum 0.017 0.353 1.265 3.009
Std 0.311 1.177 2.096 3.703
Skewness 2.813 2.008 1.832 1.617
Kurtosis 17.984 9.231 8.786 8.594
Q (1) 667.9 184.8 79.123 29.352

(0.000) (0.000) (0.000) (0.000)
Q (10) 3147.0 426.1 135.0 43.242

(0.000) (0.000) (0.000) (0.000)

Q (n) denotes the Ljung-Box statistic for serial correlation in the standardized re-
turns forup to lag (n). Q2 (n) denotes the Ljung-Box statistic for the squared stan-
dardized residuals. The p-values are given in parenthesis.
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3.9 Figures

Figure 3.1a:
Returns of the ECU/USD 1989 - 1998.
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Figure 3.1b:
Returns of the ECU/USD 1989 - 1998.
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Figure 3.2a:
Time series plots of realized volatility of ECU/USD 1989 - 1998.
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Figure 3.2b:
Time series plots of realized volatility of ECU/USD 1989 - 1998.
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Figure 3.3a:
Raw returns of ECU/USD 1989 - 1998,
and fitted normal distribution.
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Figure 3.3b:
Raw returns of ECU/USD 1989 - 1998,
and fitted normal distribution.
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Figure 3.4a:
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Figure 3.4b:
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Figure 3.4c:
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QQ plot of PIT of Bi-weekly ECU/USD 1989-1998 assuming
them to be N(0,1).
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Figure 3.4d:
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QQ plot of PIT of Monthly ECU/USD 1989-1998 assuming
them to be N(0,1).
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Figure 3.5:
Sample autocorrelation functions of daily exchange rate returns of the ECU/USD
1989 - 1998.
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Figure 3.6a:
RV-standardized returns of ECU/USD
1989 - 1998, and fitted normal distribution.
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Figure 3.6b:
RV-standardized returns of ECU/USD 1989 - 1998,
and fitted normal distribution.
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Chapter 4

Motivating the
GARCH(p,q)-NIG

In Chapter 3, we found that when using realized volatility the standardized
returns are normal, i.e., that the MDH holds. We need to make a distribu-
tional assumption for the volatility if we are to build a model for it. In this
chapter, building on the Mixture-of-Distributions Hypothesis (MDH) (Clark,
1973) along with the recent idea of so-called Realized Volatilities (RV) (e.g.,
Andersen, Bollerslev, Diebold and Labys 2001, 2002, and Barndorff-Nielsen
and Shephard, 2001a, b, 2002a), we provide a sound empirical foundation for
the distributional assumptions behind the GARCH-NIG model.

We use high frequency data from the ECU/USD 1989 - 1998 FX rate
to motivate the GARCH-NIG model.1 By calculating realized volatilities for
that period, we show that the inverse Gaussian distribution gives a good fit to
the realized volatility, both unconditionally and conditionally on two different
information sets.

In addition to the daily ECU returns and realized volatilities, we perform
an out-of-sample predictive analysis based on 780 daily returns for the Euro
from January 5, 1999 through December 31, 2001.2 We do not have access to
the high-frequency data underlying the construction of the realized volatilities
over this more recent time period. Hence, our empirical verification of the
various distributional hypotheses involving the RVt variable outlined below,
will be based exclusively on the ECU data.

The chapter is organized as follows. We start by establishing the link be-

1This is the same dataset that was used in Chapter 3, i.e., ECU/USD 10 Jan. 1989 - 30
Dec. 1998.

2We refer to this dataset as the Euro/USD 1999 - 2001 dataset, or just the Euro/USD
dataset.

41



42 4. Motivating the GARCH(p,q)-NIG

tween the realized volatility and the conditional variance by linking together
the idea of realized volatility, quadratic variation and conditional variance.
This will enable us to use the (conditional) realized volatility as a proxy for
the conditional variance to evaluate the assumption of an inverse Gaussian
distribution for the conditional variance. We introduce the inverse Gaussian
and the inverse gamma distributions for the variance, and we outline how to
use these distributional assumptions for the variance to derive the distribu-
tions for the returns, starting with the unconditional returns. Then we derive
the distribution of the returns, conditional on lagged realized volatilities, and
the distribution of the returns conditionally on the lagged returns, which will
give us the GARCH(p,q)-NIG model.

4.1 The link between realized volatility and condi-
tional variance

We use the realized volatility to motivate the GARCH-NIG model. Recall
that the GARCH-NIG model assumes that the conditional variance is inverse
Gaussian. We will show that the IG distribution gives a good fit to the
conditional realized volatility. Therefore, we need to establish the link between
the conditional realized volatility and the conditional variance. For this, we
need to use continuous time arguments. As outlined in the introduction,
and repeated here for the reader’s convenience, we assume that the log price
follows a univariate diffusion process with no mean dynamics

dp (t) = σ (t)dW (t) , (4.1)

where p (t) denotes the log price at time t, W is a standard Brownian motion,
and σ (t) is the instantaneous volatility or the spot volatility. The return at
time t is then defined as

rt ≡ p (t)− p (t− 1) =
Z t

t−1
σ (s)dW (s) , (4.2)

where rt is the continuously compounded return at time t. ABDL (2001) use
the quadratic variation (QV) of the process as a volatility measure, that is

QVt =

Z t

t−1
σ2 (s) ds. (4.3)

The expression
R t
t−1 σ

2 (s)ds also defines the so-called integrated volatility
(IVt). ABDL (2001) show that the conditional expectation of the quadratic
variation is the conditional variance of the returns, that is

E
¡
QVt|ψt−1

¢
= V

¡
rt|ψt−1

¢
, (4.4)
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where ψt is the σ field that reflects the information at time t. Equation (4.4) is
of course silent about the distribution of QVt|ψt−1, but if we make an assump-
tion concerning the distribution of QVt|ψt−1, this will imply a distribution for
the conditional return.

However, the quadratic variation is a theoretical concept so it is unob-
servable in practice. The empirical justification of a model requires the use
of observables. Here, we will use the realized volatility as an estimate of the
quadratic variation. The realized volatility is a consistent estimate of the
quadratic variation,

p lim
m→∞RVt,h = QVt,h. (4.5)

This means that we will use the approximation

E (RVt|Ft−1) ' E
¡
QVt|ψt−1

¢
, (4.6)

where Ft−1 is the information set consisting of lagged realized volatilities.
That is,

Ft−1 = σ {RVt−1, RVt−2, ...} . (4.7)

The information set Ft is, of course, only a subset of ψt. Using the result
in (4.4), the approximation in (4.6) implies that we also make the following
approximation

E (RVt|Ft−1) ' V
¡
rt|ψt−1

¢
. (4.8)

Since we can observe RVt, we can investigate different distributional assump-
tions for RVt|Ft−1. This means that, given the approximation in (4.8), we
can use the realized volatility to investigate the validity of the distributional
assumptions for the conditional variance. We will show that the distribution
for RVt|Ft−1 is well described by the inverse Gaussian distribution, that is

RVt|Ft−1 ∼ IGσ2
¡
σ2t ,α

¢
,

this implies
E (RVt|Ft−1) = σ2t , (4.9)

that is, σ2t is the conditional mean of the inverse Gaussian distribution. We
can now write the (conditional) distribution of the returns as

f (rt|Ft−1) =
Z ∞

0
f (rt|RVt) f (RVt|Ft−1) d (RVt|Ft−1) ∼ NIGσ2

¡
α, 0, 0,σ2t

¢
.

Since the returns now are NIG, this implies that the conditional variance of
the returns is given by

V (rt|Ft−1) = σ2t .
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Again, recall that the conditional mean of the inverse Gaussian distribution
is the conditional variance of the normal inverse Gaussian distribution.

However, when we only have access to daily data, we cannot use the
information set Ft−1. In this situation, we define an information set generated
by the historical squared returns

It−1 = σ
©
r2t−1, r

2
t−2...

ª
. (4.10)

Now we proceed to investigate distributional assumptions of RVt|It−1. As-
suming that

RVt|It−1 ∼ IGσ2
¡
σ2t ,α

¢
,

yields that the returns, conditional on the information set It−1 is NIG distrib-
uted, that is

f (rt|It−1) =
Z ∞

0
f (rt|RVt) f (RVt|It−1)d (RVt|It−1) ∼ NIGσ2

¡
α, 0, 0,σ2t

¢
.

We let the conditional variance parameter σ2t be time varying according to a
GARCH specification, which gives us the GARCH(p,q)-NIG model. Showing
that RVt|It−1 is well described by the IG distribution will give us the empirical
motivation for the GARCH(p,q)-NIG model.

To summarize, our link between the realized volatility and the conditional
variance is that the conditional expectation of the quadratic variation is the
conditional variance of the returns, i.e., Equation (1.12) , and the fact that
realized volatility is a consistent estimate of the quadratic variation.

Given this link between the realized volatility and the conditional variance
that we established using continuous time arguments, we will go back to
discrete time in the remainder of this chapter.

We will compare the assumption that the conditional variance is IG dis-
tributed, with the assumption that it is inverse gamma distributed. These
two distributions for the conditional variance, will imply the GARCH-NIG
and the GARCH-t models for the conditional returns, respectively.

4.2 The inverse gamma and the inverse Gaussian
distributions

The distribution in (3.2) and the unconditional and the conditional distribu-
tion of RVt jointly determine the distribution of the returns. In the original
MDH formulation advocated by Clark (1973), the latent mixing variable is
assumed to be i.i.d. lognormally distributed, resulting in an unconditional
lognormal-normal mixture distribution. This same lognormal distribution
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has previously been found to approximate the unconditional distribution of
realized exchange rate volatility closely (Andersen, Bollerslev, Diebold and
Labys, 2001). Meanwhile, the lognormal distribution is not closed under tem-
poral aggregation, and the density function for the resulting lognormal-normal
mixture distribution is only available in integral form. Partly in response to
these concerns, Barndorff-Nielsen and Shephard (2001b, 2002a) have recently
demonstrated that the unconditional distribution of the realized volatility
may be equally well approximated by the inverse Gaussian (IG) distribution.

f (RVt) ∼ IGσ2
¡
σ2,α

¢
, (4.11)

where the density function for the IG distribution may be expressed in stan-
dardized form as,3

IGσ2
¡
z;σ2,α

¢
=

¡
1

ασ2

¢−1/2
z−3/2

(2π)1/2
exp

½
α− 1

2

µ
ασ2

z
+

αz

σ2

¶¾
. (4.12)

The mean, variance, skewness and kurtosis of this IG distribution are, respec-
tively,

E (z) = σ2, (4.13)

V (z) =
σ4

α
,

S (z) =
3√
α
,

and
K (z) = 3 +

15

α
.

In contrast to the lognormal distribution, the IG distribution is formally
closed under temporal aggregation. Hence, if, say, the daily realized volatility
is IG distributed, the weekly realized volatility, defined by the summation of
the daily realized volatilities within the week, will also be IG distributed. The
empirical evidence for the realized exchange rate volatility series in the next
section strongly supports the IG distribution in Equation (4.11).

Now, combining the distributional assumptions in (3.2) and (4.11), the
implied unconditional distribution for the returns should be a normal inverse
Gaussian (NIG),

f (rt) =

Z ∞

0
f (rt|RVt) f (RVt) dRVt ∼ NIGσ2

¡
α, 0, 0,σ2

¢
, (4.14)

3We use the notation z ∼ IGσ2
¡
σ2,α

¢
for this parameterization. Note that cz ∼

IGσ2
¡
c2σ2,α

¢
i.e. the parameter α does not change during scaling.
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where the density of NIGσ2
¡
α, 0, 0,σ2

¢
is given in (2.4).

The NIG distribution may be viewed as a special case of the Generalized
Hyperbolic Distribution in Barndorff-Nielsen (1978). It was first used for
modeling speculative returns in Barndorff-Nielsen (1997).

Another distribution, that is used in order to reproduce the fat tails of
the return distributions is the Student’s t distribution. When using the t-
distribution for the returns, we implicitly assume, that the latent variance
is inverse gamma (IGamma

¡
σ2, ν

¢
) distributed. In deriving the GARCH-

t model, Bollerslev (1987) assumed the latent mixing variable to be inverse
gamma. As an alternative hypothesis, we will assume that the realized volatil-
ity is inverse gamma distributed, that is

f (RV )t ∼ IGamma
¡
σ2, ν

¢
, (4.15)

where the density can be expressed as

IGamma
¡
σ2, ν

¢
= Γ

³ν
2

´−1 ³³ν
2
− 1
´
σ2
´ν/2

(y)−1−
ν

2 exp
³³
1− ν

2

´
σ2y−1

´
.

By combining (3.2) and (4.15) , we find that the unconditional distribution
for the returns will be Student’s t distributed

f (rt) =

Z ∞

0
f (rt|RVt) fIGamma (RVt) dRVt ∼ t

¡
σ2, ν

¢
,

with the following density function

gt = Γ

µ
ν + 1

2

¶
Γ
³ν
2

´−1 ¡
(ν − 2)πσ2¢−1/2 ³1+ x2σ−2 (ν − 2)−1´−(ν+1)/2 .

(4.16)
The Student’s t distribution have fatter tails than the normal distribution,
which is a as desireed when we are looking for distributions with which to
model returns.

By explicitly treating the RVt mixing variable in Equations (3.2), (4.11)
and (4.15) as an observable, the present empirical approach allows for direct
verification of the (implicitly) underlying distributional assumptions of the
distribution of the volatility.

Although the NIG distribution in Equation (4.14) or the Student’s t dis-
tribution in (4.16) may adequately capture the fat tailed unconditional return
distributions, it does not account for the well-documented volatility clustering
or ARCH effects. In order to incorporate conditional heteroscedasticity in the
returns process within the MDH framework, we use the two information sets,
It−1 and Ft−1 as defined above. The standard ARCH class of models then
essentially entails the joint specification of a conditional density for rt given
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It−1 along with a parametric expression for the conditional variance. In the
conditional variance equation, these models use the lagged squared returns as
proxies for the lagged variance. That is

σ2t = ρ0 + ρ1r
2
t−1 + π1σ

2
t−1, (4.17)

where σ2t denotes the conditional variance for time t, and r
2
t−1 is the lagged

squared return.4 Andersen and Bollerslev (1998) showed that r2t is a very
noisy estimator of the true latent variance. They also showed that the realized
volatility is a better estimator of the true latent volatility than r2t . So, when
available, one should use the realized volatility as a proxy for the volatility, i.e.,
we should use the information set Ft−1 as the conditioning set. When we have
access to intraday data, and therefore can calculate the realized volatility, we
should use the lagged realized volatilities in the variance equation. Recently,
Barndorff-Nielsen and Shephard (2001b) showed, that the realized volatility
has a measurement error. However, using the arguments outlined above and
guided by the results in Chapter 3, we will use the realized volatility as an
empirical proxy for the true (latent) volatility.5

Next, we will examine the fit of the inverse Gaussian and the inverse
gamma distribution to the realized volatility. Building on the results in Chap-
ter 3, we will explicitly treat the realized volatility as a proxy for the true
(latent) variance. We will examine the fit of these two alternative distrib-
utions for the realized volatility unconditionally and conditionally upon the
two information sets Ft−1 and It−1. We will use the information in the two
information sets to standardize the realized volatility and thereby examine
the fit of the distributions once we have taken the serial dependence in the
realized volatility into account.

4.3 Unconditional distributions

Results from the estimation of the inverse gamma and inverse Gaussian in
(4.12) and the inverse gamma in (4.15) on the realized volatility are given in
Table 4.1. The σ2 parameter represents the mean of both the distributions,
and the estimates are 0.427 and 0.457 respectively. The log likelihood values
indicate that the inverse Gaussian distribution gives a much better fit than
the inverse gamma distribution. Figure 4.1 shows a QQ-plot of the probability
integral transform (PIT) of the data, assuming them to be IG(0.427, 2.028)

4For simplicity, we use the (1,1) case here. The more general (p,q) parameterization is
given in (1.3) .

5Again, one can say that we use the realized volatility as an estimate of the quadratic
variation and we assume that the error is negligible.
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and with a reference line of 45 degrees.6 Similarly, Figure 4.2 shows the PIT
of the data, assuming them to be IGamma(0.457, 5.344) .

By the MDH argument, the distributions for the unconditional returns
in Equation (3.2) and the realized volatilities in Equation (4.19) imply that
the returns should be unconditionally NIG distributed as in Equation (4.14).
The QQ-plot in Figure 4.3, does indeed indicate that the NIG distribution
gives a very good fit to the daily raw returns. The corresponding maximum
likelihood estimates for the NIG parameters are reported in the second column
in Table 4.2. Meanwhile, the distribution for the unconditional returns in (3.2)
and the assumption that the realized volatilities follows an inverse gamma
distribution, as in (4.15) implies that the returns should be unconditionally
t-distributed. Figure 4.4 shows a plot of the PIT of the fitted t-distribution
against quantiles of the U (0, 1) distribution. This plot indicates a good fit of
the t-distribution to the returns.

Using only visual inspection of Figures 3 and 4, it might be hard to evalu-
ate the fit of the two distributions. However, the results in Table 4.2 indicate
that the inverse Gaussian distribution gives a better fit to the realized volatil-
ity and that for the returns, the corresponding NIG distribution, gives the
better fit.

These results further emphasise the validity of the NIG in characterizing
the unconditional distribution of speculative returns. However, the uncondi-
tional NIG distribution obviously does not account for the well-documented
volatility clustering phenomena. In order to do so, we now turn to a discussion
of the conditional return and volatility distributions.

4.4 Conditional distributions

The significant volatility clustering effects in the squared returns and the lack
of any serial correlation in the squared standardized returns, is further mani-
fested in the strong temporal dependencies in the realized volatility series. For
instance, the Ljung-Box Q(1) statistic for test of first order autocorrelation
in RVt is equal to 667.9.

4.4.1 Distributions conditional on lagged realized volatilities

To take the serial correlation of the RVt into account when fitting the inverse
Gaussian and the inverse gamma distribution, we parameterize the mean of
the two distributions according to a GARCH structure, where we use lagged

6As noted in Chapter 3, the PIT is defined as zPITt =
R xt
−∞ f (u) du. If f (u) is the correct

distribution, then zPITt ∼ U (0, 1) .
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RVt as the explanatory variable in the conditional mean equation. Thereby,
we obtain the distribution of the standardized RVt, that is

RV ∗t =
RVtbσ2t , (4.18)

where RV ∗t is the standardized realized volatility, and bσ2t is the estimated
conditional mean of the RVt, given the two assumptions for the distributions.

To make the discussion more precise, when assuming RVt|Ft−1 to follow
the inverse Gaussian distribution, we estimated the model

RVt|Ft−1 ∼ IGσ2
¡
σ2t ,α

¢
, (4.19)

where the conditional mean of the IG is time varying following a GARCH-like
structure

σ2t = ρ0 +Σ
q
i=1ρiRVt−i +Σ

p
j=1πjσ

2
t−j. (4.20)

The standardized realized volatility in (4.18) should then be IGσ2 (1,α) .

Let us denote the model we get from combining (4.19) and (4.20) the RV-
GARCH(p,q)-IG model.

Similarly, when assuming that the realized volatility follows and inverse
gamma distribution, we fit the model

RVt|Ft−1 ∼ IGamma
¡
σ2t , ν

¢
, (4.21)

where σ2t follows (4.20) . Let us denote the model that is the result of com-
bining (4.20) and (4.21) the RV-GARCH(p,q)-inverse gamma.

Using the two models, the standardized realized volatilities should be in-
verse gamma(1, ν) and inverse Gaussian(1,α) , respectively.

Estimates of the parameters of the two models are reported in Table 4.3.7

We see that the log likelihood for the RV-GARCH(1,1)-IG model is 761.7,
which is higher than the value of 710.20 obtained for the RV-GARCH(1,1)-
inverse gamma, indicating that when we take the serial dependence of the
realized volatility into account, using lagged realized volatilities, the inverse
Gaussian distribution gives a better fit. The Q-statistics for the standardized
realized volatilities (the residuals) in the lower part of Table 4.3, indicates
that the RV-GARCH(1,1)-IG also does a good job of removing the serial
dependence in the realized volatility.

The standardized volatilities from the two models should follow an inverse
gamma(1, ν) and IG (1,α) distribution, respectively. Figure 4.6 displays a
QQ-plot of the PIT of the RV-GARCH(1,1)-IG standardized RV. Figure 4.7

7Throughout this chapter, we use the (1,1) specification of the models. For all the models
estimated, the parameters for higher orders of the lags were not significant.
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presents a QQ-plot of the PIT of the RV-GARCH(1,1)-inverse gamma stan-
dardized RV. Both the plots indicate a good fit.

We have also estimated the corresponding models for the returns. Recall
that, by the MDH argument, when we assume that the conditional variance
follows an inverse Gaussian distribution, the returns follows a NIG distribu-
tion. And when we assume that the conditional variance follows an inverse
gamma distribution, the returns follow a Student’s t distriution. Therefore,
by combining (3.2) , with the different assumptions for the conditional distri-
bution for RVt as in (4.19) and (4.21) with the conditional variance equation
in (4.17) , we obtain two models for the conditional returns. These models
use lagged realized volatilities in the conditional variance equation.

The model for the returns, that we get from (3.2) , (4.19) and (4.20) can
be written

(rt − µ) |Ft−1 ∼ NIG
¡
α, 0, 0,σ2t

¢
, (4.22)

where σ2t follows (4.20) .
8 We will refer to this model as the RV-GARCH-NIG

model.
Similarly to the above, we will get the RV-GARCH-t model by combining

(3.2) , (4.21) and (4.20)

(rt − µ) |Ft−1 ∼ t
¡
σ2t , ν

¢
, (4.23)

where σ2t follows (4.20) . We also estimate a GARCH model with a normal
distribution, that is

(rt − µ) |Ft−1 ∼ N
¡
0,σ2t

¢
, (4.24)

where σ2t follows (4.20) .
These models were fitted to the daily returns of the ECU/USD 1989 - 1998

dataset and the results are reported in Table 4.4. As seen in Table 4.5, AIC
and BIC criteria are minimized for the RV-GARCH(1,1)-NIG model.9 Fig-
ure 4.8 shows the QQ-plot of the PIT of the standardized residuals from the
RV-GARCH(1,1)-NIG model. Figures 4.9 and 4.10 show the corresponding
plots using the RV-GARCH(1,1)-N and RV-GARCH(1,1)-t models respec-
tively. According to Figure 4.9 and 4.11, the NIG and the t-distribution give
an equally good fit to the standardized residuals.

8For the ECU/USD 1989 - 1998 dataset, there are no serial dependencies in the condi-
tional mean. Therefore, for all models throughout this chapter, we use a constant for the
conditional mean and we demean the data and fit the models on the demeaned data. The
estimation of the constant and the equation for the conditional variance are done simulta-
neously.

9We will use the log likelihood values, together with the information criteria AIC and
BIC to evaluate the models, as outlined in Bollerslev and Mikkelsen (1999).
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4.4.2 Distributions conditional on lagged squared returns

Above we used the lagged realized volatilities to model the conditional mean
of the inverse gamma and the inverse Gaussian distribution, and to model
the conditional variance of the NIG, t and normal distribution. Although
intraday data is becoming increasingly available, still most data concerning
assets, and undoubtedly most historical data are comprised of daily data.
Therefore, we repeat the above analysis using the information set It−1, i.e.,
the lagged squared returns.

For the inverse Gaussian assumption we have

(RVt|It−1) ∼ IG
¡
σ2t ,α

¢
.

where σ2t follows (4.17) .We refer to this model as the GARCH(1,1)-IG model.
When we assume the realized volatility, conditional on lagged squared

returns, to be inverse gamma, we have

f (RVt|It−1) ∼ IGamma
¡
σ2t , ν

¢
, (4.25)

where σ2t follows (4.17) . We refer to this model as the GARCH(1,1)-inverse
gamma model.

We use these models to standardize the realized volatilities, while taking
into account the serial dependence in the realized volatility as in (4.18) .

Again, we also estimate the corresponding models for the returns, assum-
ing the realized volatilities conditional on the lagged squared returns to be
inverse Gaussian, which leads to

(rt − µ) |It−1 ∼ NIG
¡
α, 0, 0,σ2t

¢
,

i.e., the GARCH-NIG model of Barndorff-Nielsen (1997), Andersson (2001)
and Jensen and Lunde (2001).

For the assumption that realized volatility, given lagged squared returns,
follows an inverse gamma distribution, the conditional distribution of the
returns will be

(rt − µ) |It−1 ∼ t
¡
σ2t , ν

¢
,

which is the GARCH-t model of Bollerslev (1987). Additionally, we estimate
the standard GARCH-normal model, that is

(rt − µ) |It−1 ∼ N
¡
0,σ2t

¢
,

where σ2t follows (4.17) .
First, we report the estimates of the GARCH-IG and the GARCH-inverse

gamma models, presented in Table 4.5. The log likelihood values for the two
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models show that the GARCH-IG model gives a better fit than the GARCH-
inverse gamma model. The log likelihood values in Table 4.5 indicate a slightly
better fit of the inverse Gaussian distribution, however, this is hard to see in
the QQ-plots. Figure 4.11 shows the PIT of the realized volatilities standard-
ized by the RV-GARCH(1,1)-IG model against the quantiles of the U (0.1)
distribution. Similarly, Figure 4.12 shows the PIT of the realized volatili-
ties standardized by the RV-GARCH(1,1)-inverse gamma model against the
quantiles of the U (0.1).

In Table 4.6, the results of the estimation of the corresponding models for
the returns, i.e., the “usual” GARCH models, are reported . The information
criteria AIC and BIC are minimized for the GARCH(1,1)-NIG model, but
the values for the GARCH(1,1)-t model are very close. This, again, indicates
that the inverse Gaussian gives a slightly better fit to the realized volatility.

4.4.3 Out-of-sample Euro predictions

So far, we have fitted the different models and distributions using the ECU/USD
1989 - 1998 data. Up until 1998, the ECU was a basket of currencies. In the
beginning of 1999 it started to trade as a currency. An interesting question
is, whether we can use the information in the ECU/USD 1989 - 1998 data
to choose the most appropriate model for the Euro/USD 1999 - 2001 data.
We will investigate this by using the estimates of the ECU period to make
predictions for the Euro period.

To start out, we use the unconditional distributions estimated on the
daily ECU/USD 1989 - 1998 data, that is, the normal, NIG and Student’s t
to investigate the fit of these distributions on the 1999 - 2001 Euro/USD data.
Table 4.7 shows the log likelihood, AIC and BIC values for the unconditional
normal, NIG and Student’s t distribution for the Euro/USD 1999 - 2001
data, given the estimates obtained using the ECU/USD 1989 - 1998 data.
That is, we fit the normal, NIG and Student’s t to the ECU/USD 1989 - 1998
data, and given these estimates (from Table 4. 2), we use the data from the
Euro/USD 1999 - 2001 period to calculate the log likelihood, AIC and BIC.
The results in Table 4.7 show that the NIG distribution gives the best fit,
even out-of-sample.

We do not have the realized volatilities for the Euro/USD 1999 - 2001 data,
so we cannot evaluate the fit of the RV-GARCH models for the out-of-sample
data. Still, we can evaluate the GARCH model that uses only the lagged
squared returns in the conditional variance equation. We use the estimates
of the GARCH models (with the NIG, normal and Student’s t distribution)
obtained on the ECU/USD 1989 - 1998 data (results in Table 4.6) to evaluate
the log likelihood, AIC and BIC for the out-of-sample Euro/USD 1999 - 2001
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data. These results are reported in Table 4.8. The last four rows of the table
report the Ljung-Box statistics for test of serial correlation in the Euro-return
residuals based on the model estimates for the ECU.

4.5 Conclusions

In this chapter, we have established a link between the realized volatility and
the conditional variance. Using this link, we have shown that the inverse
Gaussian distribution gives a good fit to the realized volatility. The inverse
Gaussian gives a good fit to the realized volatility both unconditionally, and
conditional on two different information sets. This gives direct empirical sup-
port to the GARCH-NIG model, which uses the assumption that the condi-
tional variance follows the inverse Gaussian distribution. For comparison, we
also tried the inverse gamma distribution for the realized volatility. When the
conditional variance is assumed to be inverse gamma distributed, the returns
are Student’s t distributed. When fitting these distributions to the returns,
the NIG distribution gave a better fit than the Student’s t distribution both
unconditionally, and conditional on the two information sets.

4.6 Further work

It would be of interest to conduct a more comprehensive study of which distri-
bution gives the best fit to the conditional variance using the realized volatility.
This study would include more distributions, such as the lognormal, general-
ized inverse Gaussian (GIG), and all the distributions that are nested in, or
special cases of the GIG distribution, such as the reciprocal inverse Gaussian
and the positive hyperbolic distributions. This fishing expedition would also
include the use of more high frequency datasets, i.e., more datasets where we
can calculate realized volatility. It would also be interesting to see if there
are any differences between different types of data, such as foreign exchange
data, stock data and other equities.

In this thesis we do not deal with the sampling error in the realized
volatilty, as highlighted by Barndorff-Nielsen and Shephard, 2001b, 2002b.
A natural extension of the work in this chapter is to try assume a (small
sample) distribution for the error in the realized volatility, and to incorporate
that in the parametric modeling of the realized volatility.
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4.7 Tables
Table 4.1:
Distributions fitted to the daily unconditional
realized volatility of the ECU/USD 1989 - 1998
dataset.

Distributions
IG(σ2,α) Inverse gamma(σ2, ν)

σ2 0.427 0.457
(0.006) (0.010)

α, ν 2.028 5.344
(0.051) (0.121)

Log lik. 217.32 156.54
AIC -430.64 -309.09
BIC -419.05 -297.50

Notes: For both the inverse Gaussian and the inverse Gamma distribution, the para-
meter σ2 denotes the mean. The estimation is done by maximum likelihood. Stan-
dard errors of the estimates are given in parenthesis.
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Table 4.2:
Distributions fitted to the unconditional returns of
daily ECU/USD 1989 - 1998.

Distributions
Data Normal NIG Student’s t

µ - 0.002 0.005 0.006
(0.013) (0.011) (0.012)

α, ν - - 1.138 4.630
(0.167) (0.489)

σ2 - 0.407 0.407 0.420
(0.008) (0.017) (0.024)

Log lik. - -2353.957 -2251.076 -2252.489
AIC - 4711.915 4508.152 4510.979
BIC - 4723.504 4525.536 4528.363

Q2 (1) 34.4 - - -
(0.000)

Q2 (5) 123.0 - - -
(0.000)

Q2 (10) 208.5 - - -
(0.000)

Notes: The table shows the parameter estimates of the three distributions fitted to
the ECU/USD 1989 - 1998 returns. Estimation is done by maximum likelihood.
Standard errors of the estimates are given in parenthesis. Q2 (n) denotes the Ljung-
Box statistic for serial dependency in the squared standardized residuals up to lag
(n) . The p-values are given in parenthesis.
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Table 4.3:
Models for the daily realized volatility ECU/USD 1989 - 1998
using lagged realized volatilities in the conditional mean equation,
that is, models for RVt|Ft−1.

Models
Data RV-GARCH-IG(1) RV-GARCH-IGamma(2)

α, ν - 3.4178 8.081
(0.071) (0.166)

ρ0 - 0.025 0.024
(0.003) (0.002)

ρ1 - 0.270 0.273
(0.014) (0.012)

π1 - 0.671 0.681
(0.016) (0.012)

Log lik. - 761.7 710.20
AIC - -1515.5 -1412.4
BIC - -1492.4 -1389.2

Q (1) 667.9 1.857 2.201
(0.000) (0.172) (0.137)

Q (5) 2133.9 10.970 11.539
(0.000) (0.052) (0.0417)

Q (10) 3147.0 21.165 21.683
(0.000) (0.020) (0.016)

Notes: For both the inverse Gaussian and the inverse Gamma distribution, the pa-
rameter σ2t denotes the conditional mean of the Standard errors of the estimates are
given in parenthesis. distributions. Ft−1 denotes the information set consisting of
lagged realized volatilities, Ft−1= σ {RVt−1, RVt−2,...} .
(1) RV-GARCH-IG is the model RV t|F t−1∼ IG

¡
σ2t ,α

¢
, where

σ2t= ρ0+ρ1RV t−1+π1σ2t−1.
(2) RV-GARCH-Inverse Gamma is the model RV t|F t−1∼IGamma

¡
σ2t , ν

¢
, where

σ2t= ρ0+ρ1RV t−1+π1σ2t−1.
The lower part of the table shows the results from the realized volatilities standard-
ized using the different models. Q (n) denotes the Ljung-Box statistic for serial
correlation in the standardized residuals for up to lag (n). The p-values are given in
parenthesis.
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Table 4.4:
RV-GARCH models fitted to the daily ECU/USD
1989 - 1998 using lagged RV in the variance equation,
that is, models for (rt − µ) |Ft−1.

Models: RV-GARCH
Data N(1) NIG(2) t(3)

µ - 0.006 0.006 0.006
(0.012) (0.011) (0.011)

α, ν - - 1.500 5.476
(0.244) (0.654)

ρ0 - 0.013 0.001 0.000
(0.005) (0.003) (-)

ρ1 - 0.181 0.090 0.0822
(0.023) (0.019) (0.0166)

π1 - 0.778 0.903 0.915
(0.029) (0.022) (0.017)

Log lik. - -2265.19 -2198.32 -2199.13
AIC - 4538.39 4406.64 4408.26
BIC - 4561.57 4435.62 4437.24

Q2 (1) 34.35 7.758 1.126 0.698
(0.000) (0.005) (0.288) (0.403)

Q2 (5) 123.0 17.139 3.975 2.531
(0.000) (0.004) (0.553) (0.772)

Q2 (10) 208.5 24.139 9.416 6.747
(0.000) (0.007) (0.493) (0.749)

Notes: Ft−1 denotes the information set consisting of lagged realized volatilities,
Ft−1= σ {RVt−1, RVt−2,...} . For all the models, the parameter σ2t denotes the con-
ditional variance. Standard errors of the estimates are given in parenthesis.
(1) RV-GARCH-N is the model (rt − µ) |Ft−1 ∼ N

¡
0,σ2t

¢
, where

σ2t= ρ0+ρ1RV t−1+π1σ2t−1.
(2) RV-GARCH-NIG is the model (rt − µ) |F t−1∼ NIG

¡
α, 0, 0,σ2t

¢
, where

σ2t= ρ0+ρ1RV t−1+π1σ2t−1.
(3) RV-GARCH-N is the model (rt − µ) |Ft−1 ∼ t

¡
σ2t , ν

¢
, where

σ2t= ρ0+ρ1RV t−1+π1σ2t−1.
Q (n) denotes the Ljung-Box statistic for serial correlation in the standardized resid-
uals for up to lag (n). The p-values are given in parenthesis.
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Table 4.5:
Models for realized volatility using lagged squared returns
in the equation for the conditional mean of the RVt, that is
models for RVt|It−1.

Models
Data GARCH-IG(1) GARCH-IGamma(2)

α, ν - 2.732 6.856
(0.062) (0.145)

ρ0 - 0.037 0.033
(0.003) (0.002)

ρ1 - 0.077 0.077
(0.006) (0.005)

π1 - 0.841 0.856
(0.012) (0.009)

Log lik. - 527.5 492.31
AIC - -1047.01 -976.62
BIC - -1023.83 -953.44

Q (1) 667.9 333.84 341.21
(0.000) (0.000) (0.000)

Q (5) 2133.9 953.06 974.73
(0.000) (0.000) (0.000)

Q (10) 3147.0 1355.85 1381.62
(0.000) (0.000) (0.000)

Notes: For both the inverse Gaussian and the inverse Gamma distribution, the pa-
rameter σ2t denotes the conditional mean of the distributions. It−1 denotes the
information set consisting of lagged squared returns, It−1 = σ

©
r2t−1, r2t−2, ...

ª
.

Standard errors of the estimates are given in parenthesis.
(1) RV-GARCH-IG is the model RV t|It−1∼ IG

¡
σ2t ,α

¢
, where

σ2t= ρ0+ρ1r
2
t−1+π1σ2t−1.

(2) RV-GARCH-Inverse Gamma is the model RV t|It−1∼ IGamma
¡
σ2t , ν

¢
, where

σ2t= ρ0+ρ1r
2
t−1+π1σ2t−1.

The lower part of the table shows the results from the realized volatilities standard-
ized using the different models.
Q (n) denotes the Ljung-Box statistic for serial correlation in the standardized resid-
uals for up to lag (n). The p-values are given in parenthesis.
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Table 4.6:
GARCH models fitted to the daily ECU/USD 1989 - 1998 using
lagged squared returns in the variance equation, that is, models
for (rt − µ) |It−1.

Models
Data GARCH-N(1) GARCH-NIG(2) GARCH-t(3)

µ - 0.007 0.004 0.005
(0.012) (0.010) (0.011)

α, ν - - 1.705 5.992
(0.287) (0.768)

ρ0 - 0.006 0.004 0.004
(0.001) (0.002) (0.002)

ρ1 - 0.049 0.041 0.041
(0.006) (0.008) (0.008)

π1 - 0.937 0.950 0.951
(0.007) (0.010) (0.009)

Log lik - -2237.96 -2177.93 -2178.71
AIC - 4483.92 4365.87 4367.42
BIC - 4507.10 4394.85 4396.40

Q2 (1) 34.4 0.044 0.324 0.332
(0.000) (0.832) (0.569) (0.564)

Q2 (5) 123.0 3.164 2.350 2.400
(0.000) (0.674) (0.798) (0.791)

Q2 (10) 208.5 15.78 4.964 4.993
(0.000) (0.106) (0.894) (0.892)

Notes: It−1 denotes the information set consisting of lagged squared returns,
It−1 = σ

©
r2t−1, r2t−1, ...

ª
. For all the models the parameter σ2t denotes the con-

ditional variance. Standard errors of the estimates are given in parenthesis.
(1) GARCH-N is the model (rt − µ) |It−1 ∼ N

¡
0,σ2t

¢
, where

σ2t= ρ0+ρ1r
2
t−1+π1σ2t−1.

(2) GARCH-NIG is the model (rt − µ) |It−1 ∼ NIG
¡
α, 0, 0,σ2t

¢
, where

σ2t= ρ0+ρ1r
2
t−1+π1σ2t−1.

(3) GARCH-t is the model (rt − µ) |It−1∼ t
¡
σ2t , ν

¢
, where

σ2t= ρ0+ρ1r
2
t−1+π1σ2t−1.

Q (n) denotes the Ljung-Box statistic for serial correlation in the standardized resid-
uals for up to lag (n). The p-values are given in parenthesis.
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Table 4.7:
Information criteria for the out-of-sample data
i.e., the Euro/USD 1999 - 2001 data, given the
estimates obtained using the ECU/USD
1989 - 1998 data.

Distributions
Normal NIG Student’s t

Log lik. -693.80 -648.42 -653.58
AIC 1391.60 1302.85 1313.17
BIC 1406.00 1324.45 1334.77

Notes: The distributions were fitted to the ECU/USD 1989 - 1998 data. We assume
that the same distributions hold for the out-of-sample data, that is, for the Euro/USD
1999 - 2001 data. The table shows the information criteria of the Euro/USD
1999 - 2001 data, using the estimates from the ECU/USD data from 1989 - 1998
period.
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Table 4.8:
Information criteria from the out-of-sample period
(Euro/USD 1999 - 2001), given the estimates from the
in-sample period (ECU/USD 1989 - 1998).

Models
Data GARCH-N(1) GARCH-NIG(2) GARCH-t(3)

Log lik. - -679.21 -640.45 -643.65
AIC - 1366.42 1290.91 1297.31
BIC - 1395.22 1326.92 1333.32

Q2 (1) 8.109 0.465 0.659 0.668
(0.004) (0.495) (0.416) (0.413)

Q2 (5) 10.584 0.955 11.467 11.478
(0.060) (0.044) (0.042) (0.042)

Q2 (10) 35.466 17.884 17.990 17.982
(0.000) (0.057) (0.055) (0.055)

Notes: The models were fitted using the ECU/USD 1989 - 1998 data. We assume that
the same models hold for the out-of-sample data, that is, for the Euro/USD 1999 -
2001 data. The table shows the information criteria of the Euro/USD
1999 - 2001 data, using the estimates from the ECU/USD 1989 - 1998 period.
Q2 (n) denotes the Ljung-Box statistic for serial correlation in the squared standard-
ized residuals up to lag (n) . The p-values are given in parenthesis
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4.8 Figures

Figure 4.1:
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QQ-plot of PIT of Inverse Gaussian  fitted on daily
unconditional realized volatility.

Notes: The figure shows a QQ-plot of the PIT for the unconditional daily realized
volatility for the ECU/USD 1989 - 1998 assumed to be IG (0.427, 2.028) against
the quantiles of the U(0,1) distribution.

Figure 4.2:
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QQ-plot of PIT of inverse gamma  fitted on daily
unconditional realized volatility.

Notes: The figure shows a QQ-plot of the PIT for the unconditional daily realized
volatility for the ECU/USD 1989 - 1998 assumed to be IGamma (0.457, 5.344)
against the quantiles of the U(0,1) distribution.
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Figure 4.3:
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QQ-plot of PIT of NIG fitted to daily unconditional
returns against Uniform(0,1) quantiles.

Notes: The figure shows a QQ-plot of the PIT of the daily demeaned returns for
the ECU/USD 1989 - 1998 data assumed to be NIG(1.138, 0, 0, 0.407) against the
quantiles of the U(0,1) distribution.

Figure 4.4:
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QQ-plot of PIT of Student's t fitted to daily unconditional
returns against Uniform(0,1) quantiles.

Notes: The figure shows a QQ-plot of the PIT of the daily demeaned returns for the
ECU/USD 1989 - 1998 data assumed to be t (0.420, 3.630) against the quantiles of
the U(0,1) distribution.
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Figure 4.5:
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QQ-plot of PIT of normal fitted to daily unconditional
returns against Uniform(0,1) quantiles.

Notes: The figure shows a QQ-plot of the PIT of the daily demeaned returns for the
ECU/USD 1989 - 1998 data assumed to be N(0, 0.407) against the quantiles of the
U(0,1) distribution.

Figure 4.6:
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PIT-QQ plot of daily realized volatility  ECU/USD
1989-1998 standardized by RV-GARCH-Inverse Gaussian.

Notes: The figure shows a QQ-plot of PIT of Daily RV of ECU/USD standardized by
the RV-GARCH(1,1)-IG, that is RVt|Ft−1 ∼ IGσ2

¡
σ2t ,α

¢
, where

σ2t = ρ0 + ρ1RVt−1 + π1σ
2
t−1, against the quantiles of the U (0, 1) distribution.

The standardized RVt is assumed to be IGσ2 (1, 3.418) .
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Figure 4.7:
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PIT-QQ plot of daily realized volatility  ECU/USD
1989-1998 standardized by RV-GARCH-inverse Gamma.

Notes: The figure shows a QQ-plot of PIT of Daily RV of ECU/USD standardized
by the RV-GARCH(1,1)-IGamma, that is RVt|Ft−1 ∼ IGamma

¡
σ2t , ν

¢
, where

σ2t = ρ0 + ρ1RVt−1 + π1σ
2
t−1, against the quantiles of the U (0, 1) distribution.

The standardized RVt is assumed to be IGamma(1, 8.081) .

Figure 4.8:
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QQ plot of PIT of Daily returns standardized
by the RV-GARCH(1,1)-NIG against Uniform(0,1) quantiles.

Notes: The figure shows a QQ-plot PIT of the ECU/USD 1989 - 1998 returns stan-
dardized by the RV-GARCH(1,1)-NIGmodel, that is (rt − µ) |Ft−1 ∼NIGσ2

¡
α, 0, 0,σ2t

¢
where σ2t = ρ0 + ρ1RVt−1 + π1σ

2
t−1, against the quantiles of the U (0, 1) distribu-

tion. The standardized residuals are assumed to be NIGσ2 (1.5, 0, 0, 1) .
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Figure 4.9:
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QQ plot of PIT of Daily returns standardized
by the RV-GARCH(1,1)-N against Uniform(0,1) quantiles.

Notes: The figure shows a QQ-plot PIT of the ECU/USD 1989 - 1998 returns
standardized by the RV-GARCH(1,1)-N model, that is, (rt − µ) |Ft−1 ∼N

¡
0,σ2t

¢
,

where σ2t = ρ0+ρ1RVt−1+π1σ2t−1, against the quantiles of the U (0, 1) distribution.
The standardized residuals are assumed to be N (0, 1) .
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Figure 4.10:
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QQ plot of PIT of Daily returns standardized
by the RV-GARCH(1,1)-t against Uniform(0,1) quantiles.

Notes: The figure shows a QQ-plot PIT of the ECU/USD 1989 - 1998 returns
standardized by the RV-GARCH(1,1)-t model, that is, (rt − µ) |Ft−1 ∼ t

¡
σ2t , ν

¢
,

where σ2t = ρ0+ρ1RVt−1+π1σ2t−1, against the quantiles of the U (0, 1) distribution.
The standardized residuals are assumed to be t (1, 5.476) .
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Figure 4.11:
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QQ plot of PIT of  RV standardized by GARCH(1,1)-IG
vs U(0,1) quantiles.

Notes: The figure shows a QQ-plot PIT of the ECU/USD 1989 - 1998 realized volatil-
ity standardized by the GARCH(1,1)-IG model, that is, RVt|It−1 ∼ IG

¡
σ2t ,α

¢
,

where σ2t = ρ0+ρ1r
2
t−1+π1σ

2
t−1, against the quantiles of the U (0, 1) distribution.

The standardized residuals are assumed to be IGσ2 (1, 2.732) .



4. Motivating the GARCH(p,q)-NIG 69

Figure 4.12:
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QQ plot of PIT of  RV standardized by
GARCH(1,1)-Inverse Gamma vs U(0,1) quantiles.

Notes: The figure shows a QQ-plot PIT of the ECU/USD 1989 - 1998 realized volatil-
ity standardized by the GARCH(1,1)-IGmodel, that is,RVt|It−1 ∼ IGamma

¡
σ2t , ν

¢
,

where σ2t = ρ0+ρ1r
2
t−1+π1σ

2
t−1, against the quantiles of the U (0, 1) distribution.

The standardized residuals are assumed to be IGamma (1, 6.856) .
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Figure 4.13:
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PIT-QQ plot of daily ECU/USD 1989-1998 returns
standardized by GARCH-NIG.

Notes: The figure shows a QQ-plot PIT of the ECU/USD 1989 - 1998 returns stan-
dardized by the GARCH(1,1)-NIGmodel, that is, (rt − µ) |It−1 ∼ NIG

¡
α, 0, 0,σ2t

¢
,

where σ2t = ρ0+ρ1r
2
t−1+π1σ

2
t−1, against the quantiles of the U (0, 1) distribution.

The standardized residuals are assumed to be NIGσ2 (1.705, 0, 0, 1) .
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Figure 4.14:
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PIT-QQ plot of daily ECU/USD 1989-1998 returns
standardized by GARCH-N.

Notes: The figure shows a QQ-plot PIT of the ECU/USD 1989 - 1998 returns stan-
dardized by the GARCH(1,1)-N model, that is, (rt − µ) |It−1 ∼ N

¡
0,σ2t

¢
where

σ2t = ρ0 + ρ1r
2
t−1 + π1σ

2
t−1, against the quantiles of the U (0, 1) distribution. The

standardized residuals are assumed to be N (0, 1) .
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Figure 4.15:
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PIT-QQ plot of daily ECU/USD 1989-1998 returns
standardized by GARCH-t.

Notes: The figure shows a QQ-plot PIT of the ECU/USD 1989 - 1998 returns
standardized by the GARCH(1,1)-model, that is, (rt − µ) |It−1 ∼ t

¡
σ2t , ν

¢
, where

σ2t = ρ0 + ρ1r
2
t−1 + π1σ

2
t−1, against the quantiles of the U (0, 1) distribution. The

standardized residuals are assumed to be t (1, 5.992) .



Chapter 5

Temporal aggregation of
realized volatility and the
inverse Gaussian distribution

In this chapter we use another approach to investigate the assumption that
the realized volatility is well described by the inverse Gaussian distribution.
We look at the aggregation properties of the realized volatility and the inverse
Gaussian distribution. Recall that the daily realized volatility is the sum of
the squared intraday returns. This implies, that the lower frequencies can
be calculated as the sum of the higher frequencies, that is, for example, the
weekly realized volatility is the sum of five daily realized volatilities.

We examine the ability of the inverse Gaussian distribution to capture
the aggregation properties of the standardized realized volatility as in (4.18) .
However, here we use a slightly different parameterization of the conditional
mean of the inverse Gaussian, than what we used in Chapter 4.

The inverse Gaussian distribution is closed under aggregation. That is, the
sum of independent inverse Gaussian variables follows an inverse Gaussian dis-
tribution. In our parameterization, we have the following aggregation rules1:
let

Zi ∼ IG
¡
σ2,α

¢
,

E (Zi) = σ2.

If
Y = ΣNi=1Zi,

then
Y ∼ IG ¡Nσ2, Nα

¢
, (5.1)

1Here we present the aggregation results when we aggregate variates from the same (in-
verse Gaussian) distribution. For a more general presentation of the aggregation properties
of the inverse Gaussian distribution, see Barndorff-Nielsen (1978).

73
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where

E (Y ) = Nσ2.

When we use the IG distribution to model the realized volatility, this means
that if the daily variance is distributed according to VDaily ∼ IG

³
σ2Daily,αDaily

´
,

with expected value E (VDaily) = σ2Daily. The weekly variance is then

VWeekly ∼ IG
³
5σ2Daily, 5αDaily

´
. Using the parameter estimates from the

daily frequency, we can calculate the parameter values for the lower frequen-
cies using these aggregation formulas. Below, we will analyze the (aggrega-
tion) implied moments for lower frequencies using the parameter estimates
from the higher frequencies.

The mean and the variance of Y grow linearly with the number of variables
aggregated, whereas the skewness and kurtosis converge to zero and three
respectively. For the aggregated variables, the Central Limit Theorem kicks
in and the sum will be normally distributed, i.e., the sum will have skewness
zero and kurtosis three.

5.1 Fitting IG to realized volatility

Using the fact that the IG is closed under aggregation, we evaluate the dis-
tribution’s ability to recreate the moments of the lower frequencies. If the
IG is a good distribution for the realized volatility, using the aggregation re-
sults in (5.1), we can use the daily data to calculate the implied moments
for the lower frequencies, such as the weekly, bi-weekly and monthly. The
aggregation properties of the IG are valid only under i.i.d. observations, and,
clearly, there is serial dependence in the realized volatility, as documented in
Chapters 3 and 4. This we need to take into account when fitting the inverse
Gaussian distribution to the realized volatility.

5.2 Fitting IG to standardized RV

One way of verifying (4.19) is first to fit the inverse Gaussian distribution to
the daily realized volatility and use (5.1) to calculate the implied parameters
for the lower frequencies, and then compare these “implied” moments with the
sample moments and the parametric moments calculated by the parameter
estimates from estimation of that lower frequency.

To take the serial correlation into account, we model the conditional mean
of the RV using Ft−1, the information set consisting of lagged realized volatil-
ities. We let the mean σ2t of IG be time varying and we assume that it follows
an ARMA(1,1) like structure with lagged RVt as explanatory variables. We
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assume that the daily RVt is conditionally IG distributed, that is

RVt, Daily|Ft−1 ∼ IGσ2
¡
σ2t ,α

¢
,

where
σ2t = φ0 + (φ1 + θ1)RVt−1,Daily − θ1σ

2
t−1. (5.2)

and RVt, Daily refers to the realized volatility at the daily frequency at time
t. We will refer to this model as the ARMA(1,1)-IG model. We recreate
the sequence of the conditional mean σ2t and standardize the raw RV by
RV ∗t, Daily =

RVtbσ2t , where bσ2t is the estimated conditional mean, and RV ∗t, Daily is
the daily RV standardized by the ARMA(1,1)-IG procedure, now distributed
according to RV ∗t, Daily ∼ IGσ2 (1,α) .

The lower RV-standardized frequencies are derived by aggregating the
daily standardized volatility. That is, the weekly standardized RV is actually
the sum of five RV ∗t, Daily, etc.

The ARMA(1,1)-IG standardization procedure is as follows:

• Fit ARMA(1,1)-IG where
σ2t = φ0 + (φ1 + θ1)RVt−1 − θ1σ

2
t−1. (5.3)

• Standardize RV ∗t = RVt
σ2t
.

• RV ∗t is the standardized RV, RV ∗t, Daily ∼ IGσ2 (1,α) .

Having standardized the data, we can now fit the inverse Gaussian to RV ∗t
and the temporal aggregation results in (5.1) should be valid.

Recall that the mean in the IG distribution is σ2, and the variance in the
NIG is σ2, the same parameter. In the ARMA(1,1)-IG model, we model the
conditional mean of the variance as in (5.2) . In the GARCH-NIG we model
the conditional variance of the returns, which has the time varying structure
σ2t = ρ0+ ρ1r

2
t−1+π1σ

2
t−1. So, using the ARMA(1,1)-IG, the standardization

of the RV is very similar to when we model the conditional variance of the
daily returns using the GARCH-NIG model.

Results of the standardization

The results of the standardization are given in Tables 5.1, 5.2 and 5.3 and in
Figure 5.2. Table 5.1 shows the parameter estimates from the
ARMA(1,1)-IG model. The AR-parameter φ is above 0.9, indicating that
there is strong autocorrelation in the data. The plot of the sample autocor-
relation function in Figure 5.2, shows that we have accounted for most of the
serial dependence in the standardized RV.
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The standardized RVs are used later to evaluate the aggregation proper-
ties of the IG, so it is important that these residuals are free from temporal
dependence. Ljung-Box Q-statistics of the raw and standardized RV are re-
ported in Table 5.2. The Q-statistics for test of serial correlation up to the
first and fifth lag are not significant, but the 10th and 20th lag are significant.

The standardized weekly, bi-weekly and monthly RV, are obtained from
the daily standardized RV by aggregation. Table 5.3 reports the descriptives
of the standardized RV for the different frequencies. For the weekly frequency,
the Q-statistic for one lag is significant at the 5% level. For the daily frequency,
the Q-statistic for ten lags is significant. The Q-statistics of the remaining lags
are not significant, indicating that most of the serial dependence is removed
by the standardization.

5.2.1 Fitting IG to standardized RV results

We fit the IG to the different frequencies of the standardized RV. The results
are reported in Figures 5.3 a,b and 5.4 a, b. In Figure 5.3a, b, we illustrate the
fit of the IG to the different frequencies of the standardized RV. Overall, the
IG distribution seems to give a good fit.

In Figure 4, a, b we present the QQ-plots of the PIT of the data against
the quantiles of a U (0, 1) distribution. For all the frequencies, the empirical
quantiles are very close to the 45 degree line, indicating a good fit of the IG
distribution to the standardized RV.

5.2.2 Moment aggregation of the realized volatility

To evaluate the assumption of an IG distribution, we evaluate the ability
of the IG to aggregate moments over the different frequencies. If the IG
distribution is a good approximation of the RV, this should be seen in the
temporal aggregation properties of the IG when compared with the data. We
can estimate the parameters of the IG using the daily frequency, aggregate the
parameter values to the monthly frequency, and calculate the “aggregation
implied” moments using the aggregated parameter values. These implied
moments should then be the same as those parametric moments calculated
when the parameters are estimated on the monthly data. It should also match
the sample moments of the monthly frequency. This idea is reflected in Tables
5.5a to d.

To explain the idea behind these aggregational tables, we first study Table
5.5a. This table reports the aggregated mean of the IG when fitted to the
standardized RV. We do the following: We estimate the sample mean for the
daily, weekly, bi-weekly and monthly standardized RV; the values obtained are
reported in the first row, the “empirical mean”. The part of the table “implied
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parametric means” is constructed as follows. For the first row: We estimate
the parameters of the IG distribution on the daily frequency using the method
of moments based on the first two moments.2 Using the parameter estimates,
we calculate the parametric mean (4.13) for the daily frequency. This number
should be compared to the sample mean for the daily data. Next, we use the
formulas for the temporal aggregation of the parameters (5.1) to calculate the
“implied parameter value” for the weekly frequency. The implied parametric
mean for the weekly frequency, using the parameter estimates from the daily
frequency will be bσ2Weekly, implied from daily = 5bσ2Daily.
This number

¡bσ2implied weekly from daily

¢
is reported in the first row of the table

“implied parametric mean” in the second column, and should be compared
to the sample mean for the weekly frequency in the row above. Next, we
aggregate the parameters from the daily frequency to the bi-weekly:

bσ2Bi-weekly, implied from daily = 10bσ2Daily.
This number is reported in the third column. Finally, we aggregate the para-
meter to obtain the monthly value bσ2Monthly, implied from daily = 20bσ2Daily.

When constructing the second row of the part of the table “implied para-
metric means”, we start by estimating the parameters of the IG on the weekly
raw RV, and in the second column the parametric mean bσ2Weekly.We aggregate
the weekly estimate to bi-weekly using bσ2Bi-weekly, implied from weekly = 2bσ2Weekly .
This number is reported in the third column, we continue in the same manner
for the row bi-weekly. The last row, monthly, has only one number and that
is the parametric mean of the IG using the parameter estimate bσ2Monthly, ob-
tained by estimating the parameters of the IG on the monthly standardized
RV.

If the RV is IG distributed, the number in the columns of Table 5.5a
should be the same. Given the IG distribution, we should have the same
parametric estimate of the mean of, say, the bi-weekly frequency if we estimate
the parameters of the IG using the daily frequency

¡bσ2Daily¢and calculate the
implied parametric mean for the bi-weekly

¡
10bσ2Daily¢ or if we fit the parameter

of the IG directly on the bi-weekly frequency
¡bσ2Bi-weekly¢ .

The procedure for deriving the lower part of Tables 5.5a to d can be
summarized as follows

1. To get the first row:

2 I experimented with other estimation methods, such as the method of moments, and a
minimum chi-square estimation, and found that they yielded similar estimates.
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• Estimate the parameters of the IG on the daily frequency.
• Calculate the “implied parameter values” for the weekly, bi-weekly
and monthly frequency using (5.1) .

• Calculate the “implied moments” of the weekly, bi-weekly and
monthly frequency using (4.13) .

2. To get the second row:

• Estimate the parameters using the weekly frequency, and calculate
the parametric moment for the weekly frequency.

• Calculate the “implied parameter values” for the bi-weekly and
monthly frequencies using (5.1) .

• Calculate the “implied moments” for the bi-weekly and monthly
frequencies using (4.13) .

• Compare these implied moments to the empirical moments calcu-
lated on the raw RV.

3. To get the third row:

• Estimate the parameters using the bi-weekly frequency, and calcu-
late the parametric moment for the bi-weekly frequency.

• Calculate the “implied parameter values” for the monthly frequency
using (5.1) .

• Calculate the “implied moments” for the bi-weekly and monthly
frequency using (4.13) .

• Compare these implied moments to the empirical moments calcu-
lated on the raw RV.

4. To get the fourth row:

• Estimate the parameters using the monthly frequency and calculate
the parametric moment for the monthly frequency.

Tables 5b, c and d are produced in a similar manner, but now calculating
the “aggregation implied” variance, skewness and kurtosis respectively, by
using the aggregation results of (5.1) and the measures (4.13) .
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5.2.3 Analytical aggregation of the moments of IG on stan-
dardized realized volatility

Here we present the results for the aggregation of the moments of the IG over
the different frequencies of the standardized realized volatility. The results are
presented in Tables 5.5a to d. Table 5.5a reports the aggregation of the mean
of the IG distribution. For a given row, the numbers are almost identical
across the different frequencies. This means, that we can use the parameter
estimates from the daily frequency to get a good estimate of, say, the monthly
(implied parametric) mean.

The aggregation seems to work fine for the variance (Table 5.5b) too.
The monthly parametric variance implied from the daily ones is 5.868, to be
compared to 6.026 for the empirical variance and 5.852 for the parametric
variance, where the parameters are estimated on the monthly data. The
numbers in the monthly column are between 5.852 and 6.543, indicating that
the variance aggregates over the different frequencies.

The aggregation of the skewness (Table 5.5c) works reasonable well, al-
though the parametric estimates are lower than the sample analogs. We can
see that the empirical skewness starts at 3.419 for the daily frequency and
decreases over the weekly and bi-weekly frequencies, and the empirical skew-
ness for the monthly data is 0.556. This is an indication of the central limit
theorem kicking in. As we aggregate more and more observations, the distri-
bution of the aggregate should converge to the normal distribution. This is
why the skewness goes to zero.

In Table 5.5d, the empirical kurtosis starts at 28.235 for the daily fre-
quency, for the bi-weekly frequency is 3.835 and for the monthly 2.933. This
is also an indication of the CLT kicking in. The kurtosis for the normal
distribution is three, and the empirical kurtosis for the monthly frequency
is 2.933. The parametric estimate of the kurtosis for the daily frequency
is 7.396 compared to the sample analogue of 28.235, and in column 2 the
weekly parametric kurtosis (3.879) and the weekly kurtosis implied from the
daily parameter estimates (3.980) are below the sample estimate of 5.862, but
otherwise the parametric kurtosis matches the sample kurtosis. Throughout
the monthly column we have numbers about three, indicating that the IG
distribution aggregates nicely over the different frequencies.

5.3 Conclusions

In this chapter, we have shown that the distribution of realized volatility, con-
ditional on the information set Ft−1, consisting of lagged realized volatilities,
is well described by the inverse Gaussian distribution in terms of aggregation
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properties. Empirically, for the ECU/USD 1989 - 1998 dataset, we have shown
that when we aggregate the parameter estimates from the daily frequency to
obtain the lower frequencies, we get a good fit of the implied moments for the
lower frequencies.
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5.4 Tables
Table 5.1:
Parameter estimates of the ARMA-IG(1,1)
standardization of RV of ECU/USD 1989 - 1998.

Estimates

α 3.416
(0.071)

φ0 0.026
(0.003)

φ1 0.940
(0.008)

θ1 -0.700
(0.016)

Notes: The estimation is done
by ML. Standard errors of the estimates
are given in parenthesis. The ARMA(1,1)-IG
standardization procedure
is described in the text.
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Table 5.2:
Ljung-Box Q-statistics of raw and standardized
RV ECU/USD 1989 - 1998.
(standardized by ARMA(1,1)-IG).

RV standardized by
Raw RV ARMA(1,1)-IG

Q (1) 667.9 1.560
(0.000) (0.211)

Q (5) 2133.9 10.637
(0.000) (0.059)

Q (10) 3147.0 20.574
(0.000) (0.024)

Q (20) 3914.6 47.072
(0.000) (0.000)

Notes:Q (n) denotes the Ljung-Box statistic for serial
correlation in the standardized returns for up to lag (n).
The p-values are given in parenthesis.
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Table 5.3:
Descriptives of RV of ECU/USD 1989 - 1998,
standardized by ARMA(1,1)-IG.

Frequency
Daily Weekly Bi-weekly Monthly

Mean 1.000 5.004 10.008 20.016
Median 0.875 4.761 9.880 19.842
Maximum 8.284 12.093 15.948 27.735
Minimum 0.071 2.057 6.249 15.014
Std 0.586 1.335 1.773 2.465
Skewness 3.419 1.252 0.785 0.556
Kurtosis 28.235 5.862 3.835 2.933
Q (1) 1.560 4.245 0.856 0.130

(0.212) (0.039) (0.355) (0.718)
Q (10) 20.574 18.140 17.386 8.815

(0.024) (0.053) (0.066) (0.550)

Notes: The daily RV is standardized by ARMA(1,1)-IG. The
lower frequencies are aggregated from the daily standardized RV.
Q (n) denotes the Ljung-Box statistic for serial correlation in the
standardized returns for up to lag (n). The p-values are given in
parenthesis.

Table 5.4:
Estimates of IG fitted to RV of ECU/USD 1989 - 1998,
standardized by ARMA(1,1)-IG.

Frequency
Daily Weekly Bi-weekly Monthly

σ2 1.000 5.004 10.008 20.016
(0.010) (0.057) (0.111) (0.221)

α 3.411 15.308 33.365 68.463
(0.070) (0.898) (2.939) (9.980)

Notes: The RV has been standardized by the procedure
ARMA(1,1)-IG as described in the text. The
weekly, bi-weekly and monthly RV is aggregated
from the daily standardized RV. Then the IG is
fitted to the standardized RV, estimation method
is ML, the standard errors are given in parenthesis.
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Table 5.5a: Mean
Temporal aggregation of mean of IG fitted to standardized RV
of ECU/USD 1989 - 1998. RV is standardized by ARMA(1,1)-IG.

Frequency
Daily Weekly Bi-weekly Monthly

Empirical mean 1.000 5.004 10.008 20.016
Implied Daily 1.001 5.003 10.005 20.011
parametric Weekly - 5.004 10.008 20.017
means Bi-weekly - - 10.008 20.017

Monthly - - - 20.016

Notes: RV has been standardized by ARMA(1,1)-IG as described in the text.
The weekly, bi-weekly and monthly data is then aggregated from the daily
standardized data. The row empirical mean is the sample mean of these
(standardized and aggregated) data. Rest of the table, first row: We
estimated the parameters of the IG using the daily standardized data, and
then we calculate the parametric mean for the daily frequency.Using the
parameter estimates (from the daily standardized data), we then used the
aggregation formulas described in the text to calculate the implied parameter
values for the weekly, bi-weekly and monthly frequency. Using these
“aggregation-implied” parameter values we calculated the parametric mean of
the weekly, bi-weekly and monthly frequencies. These are presented in the first
row. The procedure is similar to create the second row, but now we estimated
the parameters of the IG using the standardized weekly data, and then aggregated
the parameter values to bi-weekly and monthly values, using these
“aggregation-implied” parameter values to calculate the parametric mean.
The numbers should be compared column-wise.
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Table 5.5b: Variance
Temporal aggregation of variance of IG fitted to the standardized
RV of ECU/USD 1989 - 1998.
The RV is standardized by ARMA(1,1)-IG.

Frequency
Daily Weekly Bi-weekly Monthly

Empirical variance 0.344 1.779 3.129 6.026
Implied Daily 0.293 1.467 2.934 5.868
parametric Weekly - 1.636 3.272 6.543
variances Bi-weekly - - 3.002 6.004

Monthly - - - 5.852

Notes: See notes for Table 5a, here we calculated the parametric variance instead of
the parametric mean.

Table 5.5c: Skewness
Temporal aggregation of skewness of IG fitted to the standardized
RV of ECU/USD 1989 - 1998.
The RV is standardized by ARMA(1,1)-IG.

Frequency
Daily Weekly Bi-weekly Monthly

Empirical skewness 3.419 1.252 0.785 0.556
Implied Daily 1.624 0.726 0.514 0.363
parametric Weekly - 0.767 0.542 0.383
skewness Bi-weekly - - 0.519 0.367

Monthly - - - 0.363

Notes: See notes for Table 5a, here we calculate the parametric skewness instead of
the parametric mean.
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Table 5.5d: Kurtosis
Temporal aggregation of kurtosis of IG fitted to the standardized
RV of ECU/USD 1989 - 1998.
The RV is standardized by ARMA(1,1)-IG.

Frequency
Daily Weekly Bi-weekly Monthly

Empirical kurtosis 28.235 5.862 3.835 2.933
Implied Daily 7.396 3.879 3.440 3.220
Parametric Weekly - 3.980 3.490 3.245
kurtosis Bi-weekly - - 3.450 3.225

Monthly - - - 3.219

Notes: See notes for Table 5a, here we calculate the parametric kurtosis instead of
the parametric mean.
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5.5 Figures

Figure 5.1:
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Notes: The figure shows the SACF of the daily realized
volatility for the ECU/USD 1989 - 1998.

Figure 5.2:
Sample autocorrelation functions of the daily
standardized RV of ECU/USD 1989 - 1998.
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Notes: The RV is standardized by the ARMA(1,1)-IG as
described in the text.
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Figure 5.3a:
Standardized RV of ECU/USD 1989 - 1998 and fitted IG.
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Figure 5.3b:
Standardized RV of ECU/USD 1989 - 1998 and fitted IG.
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Figure 5.4a:
QQ-plots of IG-PIT of standardized RV of ECU/USD 1989 - 1998
against U (0, 1) .
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Figure 5.4b:
QQ-plots of IG-PIT of standardized RV of ECU/USD 1989 - 1998
against U (0, 1) .
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Chapter 6

The General GARCH-NIG
model

Thus far we have motivated the use of the NIG distribution for the conditional
returns when modeling conditional variance in the financial markets. This was
done by linking the conditional variance to the conditional realized volatility,
and by showing that the inverse Gaussian distribution gives a good fit to the
conditional variance. Still, we have only used the “plain vanilla” GARCH
parameterization of the conditional variance. This parameterization captures
the most prominent stylized facts concerning returns, the non-normality of
the returns and the volatility clustering. However, numerous extensions of
the standard GARCH model have been proposed in the literature to capture
other stylized facts, such as the asymmetry and the Taylor effect, to mention
just two.

In this chapter, we introduce a new General GARCH(p,q)-NIGmodel.1 As
special cases we get three models that are designed to capture the asymmetry,
the Taylor effect and the asymmetry and the Taylor effect simultaneously. The
model capturing the asymmetry effect is the Threshold GARCH(p,q)-NIG
(T-GARCH(p,q)-NIG) model, where we model the conditional variance. The
model for the Taylor effect, where we model the conditional standard devia-
tion, is the Absolute Value GARCH(p,q)-NIG (AV-GARCH(p,q)) model, and
the model capturing both the asymmetry and the Taylor effect is the Thresh-
old Absolute Value GARCH(p,q)-NIG (TAV-GARCH(p,q)-NIG) model. In
the last two models, we parameterize the conditional standard deviation.
These models are generalizations of existing models in the literature. The

1A noted in the introduction: In a concurrent and independent work, Jensen and Lunde
(2001) proposed a model they refer to as the NIG-S&ARCH model, which is the A-PARCH
model of Ding, Granger and Engle (1993) used with the NIG distribution. This model has as
special cases the GARCH-NIG, T-GARCH-NIG and the AV-GARCH-NIG. However, they
do not give the moment structure of their model, or any special case, nor do they provide
the analytical gradients or Hessian of the model.
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existing models use the normality assumption for the standardized returns,
and we generalize these models by assuming the NIG distribution for the
standardized returns.

This chapter is organized as follows. First we give a short review of the
asymmetry and the Taylor effect, and the models that are proposed in the
literature to capture these effects. Then we formulate the General GARCH-
NIG(p,q) model that will nest all the GARCH-NIG models proposed in this
thesis. From The General GARCH-NIG(p,q) model, we derive the three mod-
els as special cases, and we go into some detail of the different models. For
brevity, the moment structures, the gradients and the Hessians of the models
are given in appendices.

6.1 Asymmetry

One of the stylized facts concerning asset returns, is that the conditional
variance is sometimes asymmetric. This seems to have been noted first by
Black (1976).2 By this, we mean that the conditional variance at time t is
bigger if the return at time t − 1 is negative, than it is when the return at
time t−1 is positive and of the same size. One could say that we have a non-
zero correlation between r2t and rt−j . For the GARCH(p,q)-NIG model, i.e.,
rt = σtzt, where zt ∼ NIGσ2 (α, 0, 0, 1) , we have E (rt) = 0 and E (zt) = 0,
so

cov
¡
r2t , rt−j

¢
= E

¡
r2t rt−j

¢
= E

¡
σ2t zt−jσt−j

¢
.

If σ2t is an even function of zt−j, this covariance is zero. The first GARCH
model to take this asymmetry into account, was the Exponential GARCH(p,q)
model of Nelson (1991). In the EGARCH(p,q) model we model the log of the
variance, and the specification of the is asymmetric. Another asymmetric
model was introduced by Glosten, Jagannathan and Runkle (1992), their
model is refered to as the GJR-GARCH, and the (1,1) case can be written as

rt = σtεt, (6.1)

2Black(1976) introduced the term leverage effect. The name is due to when the value of
a firm drops, i.e., the stock price falls, the financial leverage of the firm increases. However,
Black (1976), Christie (1982) and Schwert (1989) argues that the leverage effect cannot
explain all the asymmetry in the data. Another explanation to the asymmetry is the volatilty
feedback story. According to the volatility feedback story the increased volatility comes first,
raising required returns on the stock, causing the price to fall. For an excellent discussion
of the origins of asymmetry, see Bekaert and Wu (2000).
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where εt ∼ N (0, 1) and
σ2t = ρ0 + ρ1r

2
t−1 + ω1I (εt−1) r2t−1 + π1σ

2
t−1,

where

I (εt−1) = 1 if εt−1 < 0
= 0 otherwise.

The indicator function I (εt−1) makes the response of the volatility to the
lagged return asymmetric. If yesterday’s return was negative, the conditional
variance today is ω1r2t−1 larger than it would have been if the return had
been positive. Below, we will generalize the GJR-model to allow for NIG
distributed errors.

Zakoïan (1994) introduces an asymmetric model similar to the GJRmodel,
but in Zakoïan’s specification, we model the conditional standard deviation.
The model of Zakoïan (1994) is referred to as the Threshold-GARCH(p,q)
model, or the T-GARCH model. The T-GARCH(p,q) model of Zakoïan can
be written as (6.1) where εt ∼ N (0, 1) , but where we parameterize the con-
ditional standard deviation instead of the conditional variance, that is

σt = ρ0 + ρ1 |rt−1|+ ω1I (rt−1) |rt−1|+ π1σt−1. (6.2)

As seen in (6.2) , this model uses the absolute value of the lagged returns
instead of the conditional variance. Since we model the conditional standard
deviation, and we square the conditional standard deviation to get the con-
ditional variance, Zakoïan claims that we can allow the conditional standard
deviation to be negative.

6.2 Modeling the conditional standard deviation

Taylor (1986) introduced the Taylor effect, which refers to the empirical fact
that the strongest temporal dependence seems to be in the standard deviation,
not in the variance of the returns; see also Ding et al (1993). To capture this
effect, we develop two new models, the Absolute Value GARCH(p,q)-NIG
and the Threshold Absolute Value GARCH(p,q)-NIG. In the next section, we
outline a general GARCH(p,q)-NIG model, that nests all the models proposed
in this chapter. Then, using this general GARCH(p,q)-NIG model, we derive
the new models.

6.3 A general GARCH-NIG(p,q) model

To set the stage for the new models, we introduce a general GARCH(p,q)-NIG
model, that nests all the GARCH-NIG models considered in this chapter. Let
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xt be the return at time t, which we decompose as

xt = σtzt, (6.3)

where
zt ∼ NIGσ2 (α, 0, 0, 1) ,

and where we model σkt as

σkt = ρ0 +Σ
q
i=1ρi |xt−i|k +Σqi=1ωiI (xt−i < 0) |xt−i|k +Σpj=1πjσkt−j. (6.4)

where k is an integer, k = 1, 2 and

I(zt) = 1 if zt < 0

= 0 otherwise,

is an indicator function. I(zt) captures the asymmetry in the conditional
volatility. Sufficient restrictions of the parameters to guarantee positivity of
the σkt process are ρi > 0, ρi + ωi > 0 i = 1, ..., q and πj > 0 for j = 1, ..., p

are The integer k determines whether we model the conditional variance
or conditional standard deviation. With k = 2, we model the conditional
variance and for k = 1 we model the conditional standard deviation. To get
the GARCH(p,q)-NIG model using (6.4), we choose k = 2 and we set ωi = 0
for i = 1, ..., q.

6.3.1 The Threshold-GARCH(p,q)-NIG model

Here, we generalize the GJR model to have NIG errors: we will refer to this
model as the Threshold GARCH(p,q)-NIG model.3 To get the Threshold-
GARCH(p,q)-NIG model, using (6.4) , we let k = 2 and xt follow (6.3) , and
we model σ2t as

σ2t = ρ0 +Σ
q
i=1ρix

2
t−i +Σ

q
i=1ωiI (xt−i < 0)x

2
t−i +Σ

p
j=1πjσ

2
t−j. (6.5)

The indicator function with the extra parameter ωi will give the process an
increase in the conditional variance when the lagged returns are negative.

To see the effect of the different signs of the lagged residual on the σ2t ,
we study the T-GARCH(1,1) process and we write out the process given the

3 In the literature, the name Threshold GARCH(p,q)-Normal model is that given to the
model of Zakoïan (1994), which models the conditional standard deviation. However, we
choose to refer to this model as the Threshold GARCH(p,q)-NIG model to get consistency in
the naming of the new models, rather than retaining the inconsistent historical names. The
generalization of Zakoïan’ss model will be referred to as the Absolute Value GARCH(p,q)-
NIG, since it uses the absolute value of the lagged returns as explanatory variable in the
equation of the conditional standard deviation.
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different signs of the lagged observation. For xt−1 > 0, I (xt−1) = 0 and the
conditional variance becomes

σ2t = ρ0 + ρ1x
2
t−1 + π1σ

2
t−1,

for xt−1 < 0, I (xt−1) = 1 and we have

σ2t = ρ0 + (ρ1 + ω1)x
2
t−1 + π1σ

2
t−1.

Note the additional parameter ω1, which kicks in when the lagged return is
negative. The moment structure of the T-GARCH(p,q)-NIG model is given
in Appendix A and B.

6.3.2 The Absolute Value-GARCH(p,q)-NIG model

Using the general formulation in (6.4) , we get a symmetric model for the
conditional standard deviation by choosing k = 1, and by setting ωi = 0 for
i = 1, .., q. This will give us a model that has a symmetric response to the
sign of the lagged return, and where we use the absolute value of the lagged
returns as explanatory variables in the equation for the conditional standard
deviation. We will call this model the Absolute Value GARCH(p,q)-NIG
model, and it is given by

xt = σtzt, (6.6)

where

zt ∼ NIGσ2 (α, 0, 0, 1) ,

and we model the conditional standard deviation by

σt = ρ0 +Σ
q
i=1ρi |xt−i|+Σpj=1πjσt−j . (6.7)

This model is a direct generalization of the Absolute Value GARCH(p,q)-
normal model of Hentschel (1991). The moment structure of the AV-GARCH(p,q)-
NIG model is given in Appendix A and B.

6.3.3 The Threshold Absolute Value GARCH(p,q)-NIGmodel

In order to model the conditional standard deviation while taking into account
the conditional asymmetry, and still using the NIG distribution, we derive the
TAV-GARCH(p,q)-NIG model. Using the general formulation in (6.4) , we
get an asymmetric model for the conditional standard deviation by choosing
k = 1, and we estimate ωi, i = 1, .., q. This will result in the Threshold
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Absolute Value GARCH(p,q)-NIG model.4 Again, let xt be the returns at
time t, then

xt = σtzt,

where zt ∼ NIGσ2 (α, 0, 0, 1) and we model the conditional standard deviation
by

σt = ρ0 +Σ
q
i=1 [ρi1 + ω1I (xt−1 < 0)] |xt−1|+Σpj=1πjσt−j . (6.8)

To see the effect of different signs of the lagged residual, on the conditional
standard deviation σt, we study the property of the process for the different
signs on the lagged observation. We study the (1,1) case i.e.,

σt = ρ0 + ρ1 |xt−1|+ ω1I (xt−1 < 0) |xt−1|+ π1σt−1.

For xt−1 < 0, I (xt−1) = 1 and we have

σt = ρ0 + ρ1 |xt−1|+ ω1 |xt−1|+ π1σt−1,

hence
σt = ρ0 + (ρ1 + ω1) |xt−1|+ π1σt−1,

and, for xt−1 > 0, I (xt−1) = 0 and we find

σt = ρ0 + ρ1 |xt−1|+ π1σt−1.

It is clear from the above that when the lagged return is negative, the effect
of the lagged return on the conditional standard deviation is larger (ρ1 + ω1)

than when the lagged return is positive (ρ1) . Therefore, the model is expected
to capture the asymmetric behaviour of the data. The moment structure of
the TAV-GARCH(p,q)-NIG model is given in Appendix A and B.

6.4 Estimation of the models

Estimation of the parameters of the different models is straightforward using
maximum likelihood. The log likelihood for the sample for any of the GARCH-
NIG models is given by

ln lt = (T −max (p, q))
µ
1

2
lnα− ln (π)

¶
−ΣTmax(p,q)

µ
1

2
lnσ2t + α

¶
(6.9)

−ΣTmax(p,q)
1

2
ln

µ
1+

x2t
σ2tα

¶
+ΣTmax(p,q) lnK1

Ã
α

µ
1+

x2t
σ2tα

¶1/2!
,

4This model can be viewed as a generalization of the Threshold-GARCH(p,q) model
of Zakoïan (1994), where we use the NIG distribution instead of the normal distribution.
Since this new model uses the absolute value of the returns as explanatory variables in
the equation for the conditional standard deviation, it makes more sense to use the name
Threshold Absolute Value GARCH(p,q)-NIG for this model.
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where T is the number of observations and where σ2t is given by the model
choosen i.e., by one of equations (2.5) , (6.5) , (6.7) or (6.8). Note that σ2t has
to be derived recursively. The expression for the gradients and Hessians of the
different models are given in Appendix C. In the next chapter, we evaluate
the properties of the maximum likelihood estimator for these models.

6.5 Concluding remarks

In this chapter we introduced the General GARCH(p,q)-NIG model that nests
the four models GARCH(p,q)-NIG, T-GARCH(p,q)-NIG, AV-GARCH(p,q)-
NIG and TAV-GARCH(p,q)-NIG. These models are introduced to capture
the asymmetry effect, the Taylor effect, and both effects simultaneously. We
give the moment structure for the (1,1) cases and also the analytical gradients
and Hessians for the models.

6.6 Further work

A natural extension of this chapter is to develop tests for the models. That is,
tests for ARCH-effects, given the assumption of a NIG distribution. In addi-
tion, one could develop tests for asymmetry in the conditional variance given
the NIG assumption. Maybe it would be possible use the realized volatility
and the IG distribution to develop tests for asymmetry. As in Chapter 4, one
could assume that the realized volatility follows an IG distribution and use
the RV-GARCH-IG model, and inlude an indicator function for the sign of
the lagged return. Using realized volatility it should be possible to develop
more powerful tests, since the realized volatility contains more information
than just the squared return. Of course, one could use other distributional
assumptions for the realized volatility in this context. When building models
aimed for capturing the Taylor effect, one could use the idea of realized power
variation, as introduced in Barndorff-Nielsen and Shephard (2001c).

There is a need to develop model tests for the GARCH-NIG models. The
standard tests for ARCH effects assumes normality for the standardized re-
turns, and the normality assumption simplifies the test procedure. With the
normality assumption, in the GARCH case, we can run a regression of r2t on
lagged returns, r2t−i and test whether T times the R

2 from this regression is
zero. This simplified version of the LM test is due to the normality of the
standardized returns. When assuming othter distributions for the standard-
ized returns are NIG, we need to get back to basic concerning the LM test
methods. The basic issue here is that we need to estimate the (nuisance) pa-
rameter α and take the uncertinty of the estimate into account. Alternatively,
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we can use tests based on moment conditions as outlined in Newey (1985) and
Tauchen (1985).



Chapter 7

Simulation study

In this chapter we evaluate the performance of the maximum likelihood es-
timator for the models: the GARCH(1,1)-NIG, T-GARCH(1,1)-NIG, AV-
GARCH(1,1) and the TAV-GARCH(1,1).1 We investigate the normality of
the estimates, the bias and the standard errors. We evaluate the empirical
coverage rates of 95 percent confidence intervals.

Since the analytical derivatives of the GARCH-NIG models, as given in
Appendix C, are quite cumbersome to implement, one might ask if the nu-
merical derivatives perform equally well. Thus, we also make a comparison of
the above measures using analytical and numerical derivatives.

7.1 Simulation setup

We simulate the four different models for different parameter setups and differ-
ent sample sizes. We use three different parameter combinations or parameter
sets, outlined below. The number of observations for each parameter set is
n=250, 500, 1000, 2000 and 4000, in the case of daily data, this would corre-
spond to one, two, four, eight and sixteen years of daily data, respectively,2.
For stocks that have a short history on the stock market, the smallest sample
size is of interest. How well can we estimate the parameters of a GARCH-NIG
model for a stock that has been traded for only a year? Is one year of data
enough to get good estimates of the parameters, what about two years...?
Do we need analytical gradients, or can we rely on the numerical gradients.
For the larger sample sizes, we expect the estimates to be close to the true

1 I would like to thank Johan Lyhagen at the Stockholm School of Economics, for assisting
in the implemenation (i.e., running the simulations) for this study.

2The number of trading days for the stock markets is around 250 per year. For foreign
exchange (FX) markets, the trading can include weekends and holidays, so the number of
trading days for a year can be higher than 250.
For simplicity, we refer to the number of trading days as if we were dealing with data

from the stock market.
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values. One might discuss if the assumed GARCH process is stable over a
period of eight or sixteen years. There might of course be regime shifts (struc-
tural breaks) in the parameters during such a long period of time. However,
the question of occurance of regime shifts in the process is beyond the scope
of this study, where we assume the parameters to be stable over the sample
period.

Since the (1,1)-case is the most commonly encountered in the literature,
we focus our attention on this case. For each model, we examine three dif-
ferent sets of parameters, these parameter combinations are given in Tables
7.1 a,b and 7.2 a,b. The parameter sets were chosen in such a way that,
for Set 1, the unconditional variance and the unconditional fourth moment
of the models from which data were generated exist. In Set 2, the parame-
ters were chosen such that the condition for the fourth moment (i.e., γc4 for
the models modeling the conditional variance, the GARCH(1,1)-NIG and T-
GARCH(1,1)-NIG models, and γc2 for the models modeling the conditional
variance GARCH(1,1)-NIG and T-GARCH(1,1)-NIG models) would be close
to one. In Set 3, the unconditional fourth moment does not exist for the
models.

The setup for the simulation was as follows. The simulation study was
implemented in GAUSS. For each model, data was generated for the different
sample sizes. The model was estimated, the estimates saved, and then the next
replication was generated and so on. The number of replications was 1000 for
every setup.3 Once all the replications had been completed, the evaluation
criteria were calculated. The simulation of the GARCH-NIG variates was
done as follows.4 To start up the recursion of the GARCH equation (4.17),
the initial values of the rt−1 and σ2t−1 were set to zero. Using the parameter
values for that setup, the conditional variance (σ21) was calculated for the first
observation. Then an IG variate was generated given the value of α and σ21,

that is zt ∼ IGσ2
¡
σ21,α

¢
.5 Then an xt ∼ N (0, 1) variate was generated, and

the first simulated GARCH-NIG observation is given by rt =
√
ztxt. Now,

given the (observed) return rt, the variance Equation (4.17) is updated. To
reduce the impact of the starting values (rt = 0 and σ2 = 0), the first 500
observations were discarded. This procedure was repeated until the necessary
number of observations was generated.

3This number of replications for each setup was chosen as a compromize between the
number of setups used, and the notion that “the more replicates the better”, given limited
computer resourses.

4Here, we present the case of generating the GARCH(1,1)-NIG variates, the data from
the other models was generated with the obvious adjustments implemented in the procedure.

5How to generate data from the IG distribution is explained in Michael, Schucany and
Haas (1976).
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The estimation of the parameters of the models were performed as follows.
We use the BHHH algorithm.6 This algorithm uses the outer product of
the gradients (OPG) as an estimate of the information matrix, which we
invert to find the asymptotic covariance matrix of the parameters. Numerical
integration was performed to evaluate the Bessel functions of the analytical
gradient.

The starting values of the estimations were set to the true values of the
parameters. Of course, in practice, this is not realistic. Some sensitivity
analyses were made, and it was found that the starting values do not matter
very much as long as they imply a stationary process. The true values were
chosen to make the simulation results more comparable across parameter sets
and models.

7.2 Evaluation measures

For all the simulations, a number of evaluation measures were calculated.
We present these measures here. For all parameter estimates, the bias was
calculated as

Bias = Σ1000i=1

³bθi − θTrue

´
/M,

where bθi is the parameter estimate for the i:th replication, θTrue is the true
value of the parameter, andM is the number of replications. To calculate the
standard errors of the parameter estimate, the usual formula is used

Se =

vuutΣMi=1 ³bθi − bθ´2
M − 1 ,

where bθ is the sample mean of the estimates.
The bias measure does not take into account the relative error of the

estimate, therefore, we also calculate the Mean Absolute Percentage Error
(MAPE) as

MAPE = 100 ∗
ΣMi=1

³¯̄̄bθi − θTrue

¯̄̄
/θTrue

´
M

.

We also evaluate the empirical size of the 95 % confidence intervals. For
each replication, and for each parameter, a confidence interval was calculated
as bθi ± 1.96 ∗rV ar ³bθi´,

6 See Berndt, Hall, Hall and Hausman (1974).
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where V ar
³bθi´ is the variance of the estimate of bθi. In this simulation setup,

V ar
³bθi´ is the diagonal element of the (asymptotic) covariance matrix, ob-

tained by inverting the outer product of the gradient. The empirical coverage
probability bp corresponds to the number of times the confidence interval cov-
ers the true value of the parameter, divided by the number of replications.
The standard error of the coverage probability is given by the Bernoulli for-
mula

p
p (1− p) /M, and using this standard error, we calculate a test region

of the null that size of the confidence interval is 0.95, that is

0.95± 1.96 ∗
p
0.95 (1− 0.95) /M,

so, the standard error is calculated under the null. Empirical sizes of the 95%
confidence interval of the falling outside of this region are written in boldface
in the tables.

To test for normality of the estimates, we perform the Jarque-Bera test
(Jarque and Bera, 1987) of normality, which is given by

JB =
M

6

Ã
S2 +

(K − 3)2
4

!
,

where S is the skewness of the estimates, K is the kurtosis of the estimates and
M is the number of replications. Under the null of normality, the JB-statistic
is distributed as χ22.

7.3 Results of the simulations

The results of the simulations are found in Tables 7.3 through 7.18.

7.3.1 Results for GARCH-NIG

The results for the GARCH(1,1)-NIG are found in Tables 7.3 to 7.6. For the
bias and standard errors there seems to be no difference between the analytical
and numerical gradients, with the exception of the parameter α, Set 2 and 3
and sample size 250. For Set 2, the bias for the numerical gradient is 3.186
against 0.437 for the analytical gradient. Similarly, for Set 3, the bias for the
numerical gradient is 3.09, while it is 0.433 for the analytical gradient. For
the other parameter sets, sample sizes and parameters, there seems to be no
difference in performance.

Turning to the coverage rate for the estimates (Table 7.5), there seems
to be no clear pattern in the difference between the analytical and numerical
gradients. Even though the empirical size is significantly different from the
nominal size, the deviation is not severe in any case.
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The normality test of the estimates of the GARCH(1,1)-NIG is presented
in Table 7.6. As seen in the table, the value of the JB-test statistic decreases
over the sample sizes, but normality cannot be rejected only for the estimates
for of ρ1 and π1, using the analytical gradient for Set 3, n=4000. Otherwise,
the value of the JB-statistic seems to be lower or about the same, for the
numerical gradients, exception of some entries, such as the estimates of α for
Sets 2 and 3 with n=250 and n=500.

7.3.2 Results for T-GARCH-NIG

The results for the T-GARCH(1,1)-NIG are reported in Tables 7.7 to 7.10. As
seen in Table 7.7, the bias and standard errors for the parameter estimates of
the T-GARCH(1,1)-NIG model are very similar for the estimation using an-
alytical or numerical gradients. This is confirmed in Table 7.8, which reports
the MAPE for the parameter estimates of the T-GARCH(1,1)-NIG.

Turning to the confidence interval coverage in Table 7.9, we see that for
the estimate of α, the coverage rate is better for the estimator using the
numerical gradients, although the empirical coverage rates for the estimates
using analytical gradients are not very far off. For the estimates of ρ1, the
empirical coverage rates are underestimated for the estimator using analytical
and numerical gradients. The empirical sizes increase with the sample size,
but do not reach the nominal size of 95%. For the estimates of the asymmetry
parameter ω1, the empirical size is lower than the nominal size, at least for
Set 1, and for the smaller sample sizes (n=250 and n=500) for Sets 2 and
3. All of the confidence interval coverage of the estimates for π1 have been
underestimated, for all sets of parameters, with the exception of the sample
size of n=1000.

The JB-test statistic for the estimates of the T-GARCH(1,1)-NIG is re-
ported in Table 7.10. For the estimates of α and ρ0 we reject normality for all
parameter sets and all sample sizes. For the estimate of ρ1 we reject normality
at the one percent level for all settings except for the sample size n=4000 for
Sets 2 and 3, using the five percent level we cannot reject the null of normality.
For the asymmetry parameter ω1 we cannot reject normality for the sample
size n=4000 for any of the three parameter sets. The overall impression is
that, for the smaller sample sizes, the estimates are far from normal, while
the for the larger sample sizes, the value of the JB-statistic decreases, i.e., the
estimate are, at least, less nonnormal.

7.3.3 Results for AV-GARCH-NIG

The results for the AV-GARCH(1,1)-NIG are given in Tables 7.11 to 7.14. In
Table 7.11 the bias and standard errors of the estimates of the AV-GARCH(1,1)-
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NIG are reported. For the estimate of α we see that the bias is larger for the
smaller sample sizes when we use the numerical gradients. For Set 1, n=250,
the bias is 3.654 when using the numerical gradients and 0.392 when using an-
alytical gradients, i.e., the values are similar as for the GARCH(1,1)-NIG. For
Set 2, sample sizes n=250, 500 and 1000 the standard error of the estimates
using numerical gradients are also considerably higher than the estimates
that use analytical gradients. For n=250 the standard error is 22.412 and
for n=500 it is 10.731, indicating that for small sample sizes it is difficult to
estimate the parameter α.

When estimating π1, a negative bias is obtained, indicating that we under-
estimate the parameter. The larger bias of the estimate of α using numerical
gradients is confirmed in Table 7.12 where the MAPE of the estimates is
reported.

The confidence interval coverage reported in Table 7.13 indicates that,
at least for Set 3, the estimates using analytical gradients overestimate the
nominal size of the confidence interval for the parameter α. For the estimates
of the other parameters, no general pattern can be seen in the differences
between analytical and numerical gradients.

The Jarque-Bera test of the normality of the estimates of α shows that, for
the smaller sample sizes, the estimates using numerical gradients have a higher
value of the JB-statistics than the estimates using analytical gradients. For
the larger sample sizes, the values are about the same. We reject normality
for all the sets and sample sizes for the estimates of α and ρ0. Looking at the
estimates of ρ1 and π1, for Set 2, we see that we cannot reject normality at the
5 percent level for the estimate of ρ1, n=4000 using analytical gradients, and
of π1 n=4000 using numerical gradients. For Set 3, we cannot reject normality
for ρ1 for n=1000 and n=2000, both for the estimates using analytical and
numerical gradients. This is also true for the estimates of π1 for n=2000 and
n=4000.

7.3.4 Results for TAV-GARCH-NIG

The results for the TAV-GARCH(1,1)-NIG are reported in Tables 7.15 to
7.19. Again, as seen in Table 7.15, we have problems with the estimates of α
when we use the numerical gradients. For Set 2 and 3 the standard error is
much larger than for the estimates using analytical estimates.

There are no differences in the performance with respect to the bias and
standard error between the estimate using analytical and numerical gradients.
This is confirmed in by the MAPE measure in Table 7.16. Turning to the
confidence interval coverage in Table 7.17, we see that the coverage rates of
the confidence intervals around α are overestimated. The coverage rate of
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the confidence intervals for ρ1, ω1 and π1 are severely underestimated for
all parameter sets and sample sizes. A closer look at this indicate that the
reason might be that the OPG was not invertible, and therefore, the standard
errors of the estimates are missing values. One might consider scaling the
parameters in the estimation procedure in order to avoid singularity of the
covariance matrix, however, this was not done in this study.

The JB-test of normality in Table 7.18 indicates that we reject normality
for all the parameter sets and sample sizes.

7.4 Concluding remarks

The study indicates that the ML estimator works reasonably well for the larger
sample sizes often available in practice, i.e., n=1000 and larger. Normality
of the estimates seems to be a problem for the sample sizes studied here,
even though we cannot reject normality in some instances. Extrapolating the
results, it is possible that the we cannot reject normality for sample sizes of
say 5000 or higher. This would correspond to daily data for 20 years.

The confidence interval coverage works well for the GARCH(1,1)-NIG and
the T-GARCH(1,1). The poor performance of the coverage rates for the AV-
GARCH(1,1) and the TAV-GARCH(1,1) models seems to be a result of that
the estimated OPG matrix was not inveertible, which means that we did not
get any estimate of the asymptotic covariance matrix. This might be due to
numerical problems with the Bessel functions, or a scaling problem. Using
other ways of evaluating the Bessel functions, and/ or scale the parameters
might improve the situation.

The overall impression of the results of the simulation study is that, for
smaller sample sizes, it matters whether we use numerical or analytical gra-
dients. For small sample sizes,the estimates of α are very uncertain when
we use numerical gradients. When working with sample sizes of n=250 and
n=500, one should use the analytical gradients. When working with daily
data, this corresponds to one and two years, respectively. If we use weekly
data or even lower frequencies, as in Engle (1982), one might want to use
the GARCH models to model uncertainty in macro data, collected on, say
monthly or even lower frequencies. In these cases, it is preferably to use
analytical gradients.

There are reasons to suspect that the numerical procedures used in GAUSS
when implementing the Bessel functions, are suboptimal and it would be of
interest of implement the simulation study using different software.
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7.5 Tables
Table 7.1a:
Parameter sets for the GARCH(1,1)-NIG.

Set 1 Set 2 Set 3
Parameters α 1.0 1.5 1.5

ρ0 0.03 0.01 0.0043
ρ1 0.070 0.04 0.04665
ω1 - - -
π1 0.90 0.95 0.949

Moment γc1 0.9654 0.9900 0.9956
conditions γc2 1.0000 0.9865 1.0000

Implied Var 1.0000 1.0000 1.0000
moments Kurt 10.2486 7.3704 -

Notes: The table reports the parameter sets that are used in the
simulation study for the GARCH(1,1)-NIG model.
γc1 has to be less than one for the unconditional variance to
exist for models modeling conditional variance.
γc2 has to be less than one for the unconditional fourth
moment to exist for models modeling conditional variance.
- indicates that the quantity does not exist.
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Table 7.1b:
Parameter sets for the T-GARCH(1,1)-NIG.

Set 1 Set 2 Set 3
Parameters α 1.0 1.2 1.2

ρ0 0.03 0.013 0.01725
ρ1 0.05 0.03 0.042
ω1 0.04 0.05 0.0715
π1 0.9 0.932 0.905

Moment γc1 0.970 0.987 0.98275
conditions γc2 0.96780 0.99122 1.00003

Implied Var 1.00000 1.00000 1.00000
moments Kurt 11.01242 16.17931 -

Notes: The table reports the parameter sets that are used in the
simulation study for Threshold-GARCH(1,1)-NIG model.
γc1 has to be less than one for the unconditional variance to exist
for models modeling conditional variance.
γc2 has to be less than one for the unconditional fourth moment
to exist for models modeling conditional variance.
- indicates that the quantity does not exist.
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Table 7.2a:
Parameter sets for the AV-GARCH(1,1).

Set 1 Set 2 Set 3
Parameters α 1.5000 1.5000 1.000

ρ0 0.062365 0.0036951 0.0069569
ρ1 0.0500 0.081 0.113
ω1 - - -
π1 0.900 0.935 0.90915

Moment γc1 0.8797 0.9939 0.9888
conditions γc2 0.7776 0.9987 1.0001

Implied Var 1.000 1.000 1.000
moments Kurt 5.1813 10.8439 -

Notes: The table reports the parameter sets that are used in the
simulation study for the AV-GARCH(1,1)-NIG model.
γc2 has to be less than one for the unconditional variance to
exist for models modeling conditional standard deviation.
γc4 has to be less than one for the unconditional fourth
moment to exist for models modeling conditional standard deviation.
- indicates that the quantity does not exist.
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Table 7.2b:
Parameter sets for the TAV-GARCH(1,1)-NIG.

Set 1 Set 2 Set 3
Parameters α 1.000 1.200 1.500

ρ0 0.0521335 0.0121069 0.010308
ρ1 0.05 0.032 0.031
ω1 0.03 0.0535 0.0689
π1 0.90 0.944 0.940

Moment γc1 0.89958 0.97706 0.98099
conditions γc2 0.85669 0.99183 1.00036

Implied Var 1.000 1.000 1.000
moments Kurt 8.35956 37.31482 -

Notes: The table reports the parameter sets that are used in the
simulation study for the TAV-GARCH(1,1)-NIG model.
γc2 has to be less than one for the unconditional variance to
exist for models modeling conditional standard deviation.
γc4 has to be less than one for the unconditional fourth moment
to exist for models modeling conditional standard deviation.
- indicates that the quantity does not exist.
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Table 7.3a:
Bias and standard errors for the estimates of the
GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.295 0.263 0.126 0.065
(0.710) (0.679) (0.133) (0.135)

500 0.156 0.134 0.084 0.023
(0.432) (0.432) (0.060) (0.057)

1000 0.080 0.061 0.069 0.009
(0.249) (0.260) (0.025) (0.025)

2000 0.054 0.033 0.064 0.004
(0.160) (0.167) (0.012) (0.012)

4000 0.039 0.017 0.062 0.002
(0.107) (0.111) (0.008) (0.008)

Set 2 250 0.437 3.186 0.12 0.093
(1.034) (16.504) (0.208) (0.206)

500 0.231 0.815 0.053 0.034
(0.678) (7.624) (0.095) (0.109)

1000 0.135 0.114 0.028 0.008
(0.464) (0.445) (0.025) (0.019)

2000 0.062 0.066 0.023 0.003
(0.279) (0.288) (0.007) (0.007)

4000 0.039 0.03 0.062 0.001
(0.107) (0.189) (0.008) (0.004)

Set 3 250 0.433 3.09 0.072 0.058
(1.031) (16.227) (0.168) (0.156)

500 0.284 0.711 0.025 0.020
(0.753) (6.971) (0.035) (0.067)

1000 0.089 0.200 0.013 0.005
(0.417) (3.143) (0.009) (0.011)

2000 0.055 0.057 0.010 0.002
(0.301) (0.289) (0.003) (0.004)

4000 0.027 0.025 0.009 0.001
(0.191) (0.189) (0.002) (0.002)

Notes: The table reports the bias and the standard and error of the

estimates for all replicates. Bias is calculated as Σ#Repi=1

³bθi − θTrue

´
/n.

Standard errors of the estimates are given in parenthesis.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.3b:
Bias and standard errors for the estimates of the
GARCH(1,1)-NIG model.

ρ1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.013 0.011 -0.096 -0.091
(0.057) (0.055) (0.201) (0.199)

500 0.004 0.002 -0.032 -0.029
(0.033) (0.033) (0.088) (0.083)

1000 0.001 0.001 -0.012 -0.011
(0.022) (0.021) (0.039) (0.039)

2000 0.000 0.000 -0.005 -0.004
(0.016) (0.016) (0.024) (0.023)

4000 0.000 0.000 -0.002 -0.002
(0.011) (0.011) (0.016) (0.016)

Set 2 250 0.011 0.006 -0.131 -0.146
(0.044) (0.042) (0.259) (0.284)

500 0.005 0.003 -0.043 -0.048
(0.027) (0.024) (0.123) (0.149)

1000 0.002 0.001 -0.012 -0.010
(0.014) (0.014) (0.048) (0.029)

2000 0.001 0.000 -0.005 -0.004
(0.009) (0.010) (0.014) (0.014)

4000 0.000 0.000 -0.002 -0.002
(0.007) (0.006) (0.009) (0.009)

Set 3 250 0.009 0.004 0.109 -0.121
(0.046) (0.044) (0.234) (0.257)

500 0.004 0.002 -0.028 -0.036
(0.025) (0.024) (0.074) (0.118)

1000 0.001 0.001 -0.008 -0.009
(0.015) (0.015) (0.023) (0.036)

2000 0.000 0.000 -0.003 -0.003
(0.010) (0.010) (0.011) (0.011)

4000 0.000 0.000 -0.002 -0.002
(0.007) (0.007) (0.007) (0.007)

Notes: The table reports the bias and the standard and error of the

estimates for all replicates. Bias is calculated as Σ#Repi=1

³bθi − θTrue

´
/n.

Standard errors of the estimates are given in parenthesis.
* means that analytical gradients has been used in the estimation.
∗∗ means that numerical gradients has been used in the estimation.
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Table 7.4a:
MAPE for the estimates of the GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 48.281 47.915 247.216 244.887
500 29.996 30.455 106.068 102.761
1000 18.561 19.036 51.428 51.321
2000 12.805 13.079 31.536 31.399
4000 8.795 8.799 20.309 20.26

Set 2 250 51.447 235.743 1035.881 971.92
500 33.805 73.156 351.188 366.754
1000 23.411 22.192 102.013 103.614
2000 14.23 15.026 51.118 50.174
4000 10.132 10.154 29.177 30.329

Set 3 250 51.532 229.689 1525.338 1379.659
500 36.996 67.329 411.709 474.692
1000 21.339 28.823 119.968 134.483
2000 15.102 15.047 54.357 60.083
4000 9.992 10.198 32.225 34.801

Notes: The table reports the Mean Absolute Percentage error of the

estimates, MAPE=100 ∗ Σ#Repi=1

³¯̄̄bθi − θTrue

¯̄̄
/θTrue

´
/n.

* means that analytical gradients has been used in the estimation.
∗∗ means that numerical gradients has been used in the estimation.
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Table 7.4b:
MAPE for the estimates of the GARCH(1,1)-NIG model.

ρ1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 57.645 55.782 13.13 12.666
500 37.251 36.552 5.900 5.635
1000 24.252 24.046 3.063 3.023
2000 17.652 17.66 2.040 2.018
4000 12.274 12.262 1.383 1.376

Set 2 250 76.744 73.029 15.316 16.919
500 48.824 45.44 5.549 6.135
1000 26.624 27.682 2.047 1.952
2000 18.783 19.36 1.134 1.109
4000 12.785 12.491 0.711 0.721

Set 3 250 69.268 66.662 12.976 14.178
500 40.453 40.342 3.75 4.636
1000 24.167 25.52 1.528 1.700
2000 16.511 17.361 0.896 0.951
4000 11.8 11.048 0.609 0.611

Notes: The table reports the Mean Absolute Percentage error of the

estimates, MAPE=100 ∗ Σ#Repi=1

³¯̄̄bθi − θTrue

¯̄̄
/θTrue

´
/n.

* means that analytical gradients has been used in the estimation.
∗∗ means that numerical gradients has been used in the estimation.
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Table 7.5a:
Confidence interval coverage for the estimates of the
GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.957 0.944 0.920 0.914
500 0.973 0.953 0.955 0.956
1000 0.968 0.949 0.963 0.962
2000 0.970 0.963 0.944 0.947
4000 0.966 0.957 0.942 0.950

Set 2 250 0.938 0.898 0.803 0.782
500 0.948 0.939 0.957 0.946
1000 0.953 0.940 0.976 0.976
2000 0.946 0.952 0.951 0.955
4000 0.914 0.944 0.921 0.949

Set 3 250 0.935 0.898 0.820 0.805
500 0.948 0.933 0.965 0.956
1000 0.953 0.932 0.990 0.979
2000 0.953 0.946 0.976 0.968
4000 0.914 0.945 0.930 0.955

Notes: The table reports the empirical coverage of the 95%
confidence intervals of the estimates. Empirical sizes that are

outside the inteval 0.95± 1.96p0.95 (1− 0.95) /1000
are written in bold face.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.5b:
Confidence interval coverage for the estimates of the
GARCH(1,1)-NIG model.

ρ1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.942 0.937 0.919 0.920
500 0.928 0.929 0.954 0.952
1000 0.941 0.944 0.955 0.957
2000 0.921 0.925 0.933 0.938
4000 0.928 0.937 0.926 0.927

Set 2 250 0.874 0.837 0.832 0.817
500 0.926 0.925 0.941 0.946
1000 0.945 0.933 0.961 0.957
2000 0.933 0.928 0.944 0.890
4000 0.895 0.925 0.908 0.890

Set 3 250 0.886 0.856 0.856 0.845
500 0.930 0.929 0.959 0.949
1000 0.938 0.924 0.954 0.948
2000 0.926 0.926 0.944 0.917
4000 0.897 0.928 0.911 0.890

Notes: The table reports the empirical coverage of the 95%
confidence intervals of the estimates. Empirical sizes that are

outside the inteval 0.95± 1.96p0.95 (1− 0.95) /1000
are written in bold face.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.6a:
Jarque-Bera test of normality of the estimates for the GARCH(1,1)-NIG.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 3973.732 1468.649 5548.607 7482.419
(0.000) (0.000) (0.000) (0.000)

500 4983.597 2194.165 27033.063 32601.058
(0.000) (0.000) (0.000) (0.000)

1000 2349.777 1988.368 89621.661 97934.709
(0.000) (0.000) (0.000) (0.000)

2000 159.702 138.703 471.494 461.511
(0.000) (0.000) (0.000) (0.000)

4000 59.629 61.944 1027.758 1018.317
(0.000) (0.000) (0.000) (0.000)

Set 2 250 501.571 41028.315 8488.405 12798.794
(0.000) (0.000) (0.000) (0.000)

500 514.273 1079915.889 62467.645 158339.825
(0.000) (0.000) (0.000) (0.000)

1000 492.538 812.119 3125981.062 319237.276
(0.000) (0.000) (0.000) (0.000)

2000 656.818 124.229 1281.519 9357.689
(0.000) (0.000) (0.000) (0.000)

4000 101.982 32.679 522.185 230.948
(0.000) (0.000) (0.000) (0.000)

Set 3 250 408.351 44254.401 96607.25 84767.008
(0.000) (0.000) (0.000) (0.000)

500 620.074 1552727.607 103230.768 737038.2
(0.000) (0.000) (0.000) (0.000)

1000 160.029 38187409.92 251783.737 1937024.438
(0.000) (0.000) (0.000) (0.000)

2000 826.715 120.245 7357.923 6201.675
(0.000) (0.000) (0.000) (0.000)

4000 105.143 30.765 430.086 349.687
(0.000) (0.000) (0.000) (0.000)

Notes: The table reports the Jarque-Bera test statistic of normality, in
parenthesis the p-value of the test.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.6b:
Jarque-Bera test of normality of the estimates for the GARCH(1,1)-NIG.

ρ1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 1021.185 1186.504 3118.446 3639.54
(0.000) (0.000) (0.000) (0.000)

500 137.681 115.575 20799.922 22904.177
(0.000) (0.000) (0.000) (0.000)

1000 35.95 29.126 13074.292 14525.236
(0.000) (0.000) (0.000) (0.000)

2000 24.335 23.72 97.461 91.399
(0.000) (0.000) (0.000) (0.000)

4000 18.021 17.302 71.973 74.421
(0.000) (0.000) (0.000) (0.000)

Set 2 250 1332.722 1416.592 1616.659 1126.174
(0.000) (0.000) (0.000) (0.000)

500 1591.028 277.698 39870.182 29608.068
(0.000) (0.000) (0.000) (0.000)

1000 124.367 58.643 3639030.163 30274.717
(0.000) (0.000) (0.000) (0.000)

2000 50.536 34.029 293.228 322.339
(0.000) (0.000) (0.000) (0.000)

4000 9.269 9.107 31.384 19.744
(0.010) (0.011) (0.000) (0.000)

Set 3 250 986.946 1090.835 2902.476 2059.337
(0.000) (0.000) (0.000) (0.000)

500 622.782 181.556 272479.491 83524.289
(0.000) (0.000) (0.000) (0.000)

1000 170.272 55.867 292335.764 8275547.709
(0.000) (0.000) (0.000) (0.000)

2000 81.68 34.677 45.038 60.923
(0.000) (0.000) (0.000) (0.000)

4000 3.106 28.945 0.488 11.711
(0.212) (0.000) (0.784) (0.003)

Notes: The table reports the Jarque-Bera test statistic of normality, in
parenthesis the p-value of the test.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.7a:
Bias and standard errors for the estimates of the
T-GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.320 0.336 0.063 0.061
(0.684) (1.403) (0.132) (0.127)

500 0.169 0.144 0.022 0.023
(0.437) (0.434) (0.067) (0.068)

1000 0.087 0.067 0.007 0.008
(0.252) (0.261) (0.022) (0.022)

2000 0.057 0.036 0.003 0.003
(0.161) (0.168) (0.012) (0.012)

4000 0.041 0.018 0.001 0.002
(0.107) (0.112) (0.008) (0.008)

Set 2 250 0.369 0.324 0.057 0.060
(0.819) (0.784) (0.128) (0.140)

500 0.207 0.190 0.018 0.018
(0.561) (0.573) (0.057) (0.057)

1000 0.103 0.088 0.005 0.005
(0.336) (0.348) (0.013) (0.013)

2000 0.061 0.047 0.002 0.002
(0.208) (0.215) (0.006) (0.006)

4000 0.038 0.022 0.001 0.001
(0.135) (0.140) (0.004) (0.004)

Set 3 250 0.376 0.324 0.041 0.042
(0.849) (0.797) (0.089) (0.090)

500 0.207 0.187 0.013 0.013
(0.565) (0.566) (0.032) (0.032)

1000 0.097 0.089 0.005 0.005
(0.324) (0.347) (0.011) (0.011)

2000 0.062 0.047 0.002 0.002
(0.207) (0.214) (0.006) (0.006)

4000 0.038 0.022 0.001 0.001
(0.135) (0.140) (0.004) (0.004)

Notes: The table reports the bias and the standard and error of
the estimates for all replicates. Bias is calculated as

Σ#Repi=1

³bθi − θTrue

´
/n. Standard errors of the estimates are in

parenthesis.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.7b:
Bias and standard errors for the estimates of the T-GARCH(1,1)-NIG model.

ρ1 ω1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 -0.003 -0.003 0.029 0.028 -0.091 -0.086
(0.051) (0.051) (0.085) (0.085) (0.199) (0.194)

500 -0.004 -0.004 0.011 0.011 -0.028 -0.028
(0.034) (0.034) (0.050) (0.051) (0.095) (0.095)

1000 -0.002 -0.002 0.004 0.004 -0.009 -0.009
(0.024) (0.024) (0.032) (0.032) (0.037) (0.037)

2000 -0.001 -0.001 0.001 0.001 -0.004 -0.004
(0.017) (0.017) (0.024) (0.024) (0.023) (0.023)

4000 -0.001 0.000 0.001 0.001 -0.002 -0.002
(0.012) (0.012) (0.016) (0.016) (0.016) (0.016)

Set 2 250 0.001 0.001 0.020 0.020 -0.086 -0.088
(0.040) (0.040) (0.080) (0.080) (0.192) (0.196)

500 -0.001 -0.001 0.006 0.006 -0.024 -0.024
(0.027) (0.027) (0.042) (0.042) (0.085) (0.085)

1000 -0.001 -0.001 0.003 0.003 -0.007 -0.007
(0.018) (0.018) (0.027) (0.027) (0.026) (0.026)

2000 -0.001 -0.001 0.001 0.001 -0.002 -0.002
(0.012) (0.012) (0.019) (0.019) (0.015) (0.015)

4000 0.000 0.000 0.001 0.001 -0.002 -0.002
(0.008) (0.008) (0.013) (0.013) (0.010) (0.010)

Set 3 250 0.000 0.001 0.020 0.020 -0.069 -0.070
(0.048) (0.047) (0.089) (0.090) (0.166) (0.166)

500 -0.002 -0.002 0.006 0.007 -0.018 -0.018
(0.032) (0.032) (0.053) (0.053) (0.063) (0.063)

1000 -0.001 -0.001 0.004 0.004 -0.006 -0.006
(0.022) (0.022) (0.034) (0.034) (0.027) (0.027)

2000 -0.001 -0.001 0.001 0.001 -0.002 -0.002
(0.015) (0.015) (0.024) (0.024) (0.018) (0.018)

4000 0.000 0.000 0.002 0.002 -0.001 -0.002
(0.010) (0.010) (0.017) (0.017) (0.012) (0.012)

Notes: The table reports the bias and the standard and error of the estimates for

all replicates. Bias is calculated as Σ#Repi=1

³bθi − θTrue

´
/n. Standard errors of the estimates

are given in parenthesis.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.8a:
MAPE for the estimates of the T-GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 49.299 53.661 242.265 234.328
500 30.68 30.915 105.194 106.522
1000 18.877 19.243 47.257 47.596
2000 12.891 13.129 30.212 30.368
4000 8.871 8.844 19.725 19.756

Set 2 250 50.276 48.853 468.063 492.864
500 32.915 33.488 161.361 161.623
1000 20.324 20.737 62.392 62.412
2000 13.671 14.028 34.327 34.45
4000 9.093 9.244 23.100 23.359

Set 3 250 51.181 48.918 267.023 272.725
500 32.998 33.283 97.33 97.726
1000 19.935 20.763 46.516 46.735
2000 13.667 13.942 28.073 28.32
4000 9.072 9.228 19.463 19.562

Notes: The table reports the Mean Absolute Percentage error of

the estimates, MAPE=100 ∗ Σ#Repi=1

³¯̄̄bθi − θTrue

¯̄̄
/θTrue

´
/n.

* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.8b:
MAPE for the estimates of the T-GARCH(1,1)-NIG model.

ρ1 ω1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 78.632 78.602 144.923 144.281 12.833 12.420
500 55.554 55.790 94.602 95.085 5.848 5.878
1000 38.753 38.822 64.242 64.325 2.918 2.913
2000 26.186 26.254 47.663 47.814 1.994 1.993
4000 18.887 19.036 32.437 32.531 1.358 1.361

Set 2 250 99.932 99.721 106.119 106.876 10.959 11.185
500 72.513 72.959 64.337 64.195 4.217 4.211
1000 50.458 50.296 43.396 43.269 1.973 1.970
2000 33.056 33.231 30.474 30.757 1.251 1.256
4000 22.302 22.582 20.785 20.866 0.850 0.851

Set 3 250 87.211 86.317 89.654 90.127 10.071 10.109
500 62.333 62.489 57.02 57.029 4.217 4.210
1000 43.352 43.175 37.747 37.775 2.292 2.286
2000 28.372 28.513 27.245 27.460 1.535 1.543
4000 19.997 20.066 18.438 18.530 1.076 1.078

Notes: The table reports the Mean Absolute Percentage error of the estimates,

MAPE=100 ∗Σ#Repi=1

³¯̄̄bθi − θTrue

¯̄̄
/θTrue

´
/n.

* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.9a:
Confidence interval coverage for the estimates of the
T-GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.964 0.949 0.906 0.909
500 0.975 0.959 0.939 0.940
1000 0.971 0.953 0.950 0.950
2000 0.969 0.964 0.941 0.945
4000 0.962 0.959 0.932 0.943

Set 2 250 0.954 0.940 0.908 0.908
500 0.972 0.953 0.958 0.957
1000 0.964 0.948 0.954 0.956
2000 0.966 0.958 0.946 0.948
4000 0.955 0.958 0.940 0.957

Set 3 250 0.955 0.943 0.927 0.930
500 0.971 0.954 0.962 0.963
1000 0.960 0.951 0.954 0.959
2000 0.965 0.956 0.940 0.948
4000 0.956 0.958 0.937 0.953

Notes: The table reports the empirical coverage of the 95%
confidence intervals of the estimates. Empirical sizes that are

outside the inteval 0.95± 1.96p0.95 (1− 0.95) /1000
are written in bold face.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.9b:
Confidence interval coverage for the estimates of the
T-GARCH(1,1)-NIG model.

ρ1 ω1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗

Set 1 250 0.734 0.737 0.707 0.702
500 0.858 0.859 0.773 0.774
1000 0.895 0.897 0.868 0.869
2000 0.927 0.929 0.933 0.937
4000 0.928 0.931 0.939 0.952

Set 2 250 0.640 0.646 0.775 0.771
500 0.777 0.774 0.875 0.879
1000 0.893 0.895 0.946 0.948
2000 0.924 0.925 0.942 0.945
4000 0.923 0.938 0.928 0.947

Set 3 250 0.712 0.713 0.807 0.809
500 0.848 0.846 0.912 0.913
1000 0.900 0.912 0.944 0.951
2000 0.929 0.932 0.935 0.944
4000 0.914 0.931 0.930 0.947

π1
Anal.∗ Num.∗∗

0.907 0.908
0.924 0.925
0.951 0.951
0.927 0.930
0.915 0.919
0.911 0.913
0.934 0.933
0.952 0.955
0.923 0.919
0.922 0.917
0.917 0.924
0.933 0.933
0.945 0.952
0.919 0.920
0.914 0.923

Notes: The table reports the empirical coverage of the 95% confidence intervals of the

estimates. Empirical sizes that are outside the inteval 0.95± 1.96p0.95 (1− 0.95) /1000
are written in bold face.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.10a:
Jarque-Bera test of normality of the T-GARCH(1,1)-NIG estimates.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 1505.769 12938544.52 5385.185 5119.504
(0.000) (0.000) (0.000) (0.000)

500 3637.52 1966.595 126284.35 124300.707
(0.000) (0.000) (0.000) (0.000)

1000 1990.068 1707.348 51417.779 52761.625
(0.000) (0.000) (0.000) (0.000)

2000 199.208 181.903 481.084 478.098
(0.000) (0.000) (0.000) (0.000)

4000 65.333 65.125 373.04 387.965
(0.000) (0.000) (0.000) (0.000)

Set 2 250 677.302 486.627 20235.625 41103.788
(0.000) (0.000) (0.000) (0.000)

500 1947.094 2098.517 735166.867 732105.82
(0.000) (0.000) (0.000) (0.000)

1000 4884.127 6381.39 76334.054 75521.437
(0.000) (0.000) (0.000) (0.000)

2000 120.521 113.18 520.619 538.485
(0.000) (0.000) (0.000) (0.000)

4000 39.127 45.436 132.784 184.095
(0.000) (0.000) (0.000) (0.000)

Set 3 250 893.872 696.525 10251.69 9614.055
(0.000) (0.000) (0.000) (0.000)

500 1840.787 1661.639 142854.585 142486.598
(0.000) (0.000) (0.000) (0.000)

1000 3835.804 6321.941 9939.746 9747.199
(0.000) (0.000) (0.000) (0.000)

2000 130.939 121.111 296.078 296.522
(0.000) (0.000) (0.000) (0.000)

4000 44.896 45.858 111.603 108.15
(0.000) (0.000) (0.000) (0.000)

Notes: The table reports the Jarque-Bera test statistic of normality, in parenthesis
the p-value of the test.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.10b:
Jarque-Bera test of normality of the T-GARCH(1,1)-NIG estimates.

ρ1 ω1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 1127.464 1130.071 9600.804 9783.384
(0.000) (0.000) (0.000) (0.000)

500 89.653 96.815 1201.606 1198.868
(0.000) (0.000) (0.000) (0.000)

1000 13.651 13.258 108.211 110.391
(0.000) (0.000) (0.000) (0.000)

2000 25.861 26.335 15.410 15.347
(0.000) (0.000) (0.000) (0.000)

4000 19.727 18.443 1.133 1.182
(0.000) (0.000) (0.568) (0.554)

Set 2 250 2463.501 2455.566 14092.905 13873.305
(0.000) (0.000) (0.000) (0.000)

500 241.703 258.036 1291.83 1356.464
(0.000) (0.000) (0.000) (0.000)

1000 34.995 34.868 36.007 37.710
(0.000) (0.000) (0.000) (0.000)

2000 25.258 23.639 5.010 3.960
(0.000) (0.000) (0.082) (0.000)

4000 7.653 6.257 0.145 0.064
(0.022) (0.044) (0.930) (0.969)

Set 3 250 1077.273 1100.488 5203.454 4957.619
(0.000) (0.000) (0.000) (0.000)

500 107.868 106.754 451.006 464.913
(0.000) (0.000) (0.000) (0.000)

1000 22.985 20.664 18.881 19.955
(0.000) (0.000) (0.000) (0.000)

2000 21.895 22.065 3.754 3.358
(0.000) (0.000) (0.153) (0.187)

4000 7.212 6.484 0.172 0.190
(0.027) (0.039) (0.918) (0.909)

Notes: The table reports the Jarque-Bera test statistic of normality, in
parenthesis the p-value of the test.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.10c:
Jarque-Bera test of normality of the T-GARCH(1,1)-NIG estimates.

π1
Par. Set n Anal.∗ Num.∗∗

Set 1 250 2991.384 3393.666
(0.000) (0.000)

500 59153.96 57327.495
(0.000) (0.000)

1000 6893.354 7083.597
(0.000) (0.000)

2000 169.379 170.055
(0.000) (0.000)

4000 35.055 35.464
(0.000) (0.000)

Set 2 250 4774.534 4453.25
(0.000) (0.000)

500 160580.479 159811.827
(0.000) (0.000)

1000 4279.027 4264.638
(0.000) (0.000)

2000 66.392 66.149
(0.000) (0.000)

4000 6.902 7.123
(0.032) (0.028)

Set 3 250 7150.088 7089.334
(0.000) (0.000)

500 103416.45 104460.789
(0.000) (0.000)

1000 405.65 415.114
(0.000) (0.000)

2000 36.061 35.994
(0.000) (0.000)

4000 4.596 4.265
(0.100) (0.119)

Notes: The table reports the Jarque-Bera test statistic
of normality, in parenthesis the p-value of the test.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.11a:
Bias and standard errors for the estimates of the
AV-GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.392 3.654 0.184 0.179
(0.962) (0.298) (0.296) (17.679)

500 0.285 0.835 0.117 0.101
(0.727) (7.627) (0.225) (0.218)

1000 0.143 0.320 0.046 0.048
(0.458) (4.421) (0.132) (0.124)

2000 0.063 0.070 0.014 0.020
(0.287) (0.286) (0.046) (0.061)

4000 0.038 0.033 0.008 0.007
(0.192) (0.189) (0.03) (0.029)

Set 2 250 0.430 5.721 0.062 0.044
(1.06) (22.412) (0.129) (0.105)

500 0.224 1.381 0.023 0.014
(0.727) (10.731) (0.04) (0.039)

1000 0.103 0.288 0.013 0.005
(0.458) (4.421) (0.007) (0.007)

2000 0.051 0.048 0.010 0.002
(0.275) (0.282) (0.003) (0.003)

4000 0.025 0.02 0.009 -0.004
(0.193) (0.185) (0.002) (0.002)

Set 3 250 0.301 0.969 0.054 0.040
(0.713) (8.265) (0.095) (0.096)

500 0.138 0.213 0.026 0.011
(0.426) (3.156) (0.022) (0.022)

1000 0.071 0.049 0.018 0.004
(0.250) (0.258) (0.007) (0.007)

2000 0.044 0.024 0.016 0.002
(0.160) (0.166) (0.004) (0.004)

4000 0.035 0.013 0.015 0.001
(0.106) (0.111) (0.002) (0.002)

Notes: The table reports the bias and the standard and error of the

estimates for all replicates. Bias is calculated as Σ#Repi=1

³bθi − θTrue

´
/n.

Standard errors of the estimates are given in parenthesis.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.11b:
Bias and standard errors for the estimates of the
AV-GARCH(1,1)-NIG model.

ρ1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.023 0.015 -0.206 -0.228
(0.057) (0.057) (0.320) (0.340)

500 0.013 0.007 -0.128 -0.113
(0.039) (0.036) (0.239) (0.237)

1000 0.003 0.003 -0.048 -0.052
(0.026) (0.026) (0.141) (0.137)

2000 0.001 0.002 -0.015 -0.021
(0.017) (0.019) (0.054) (0.071)

4000 0.001 0.001 -0.009 -0.007
(0.013) (0.012) (0.037) (0.036)

Set 2 250 0.008 -0.002 -0.086 -0.120
(0.051) (0.051) (0.184) (0.252)

500 0.004 0.002 0.024 -0.034
(0.029) (0.030) (0.064) (0.117)

1000 0.003 0.002 -0.009 -0.010
(0.020) (0.020) (0.018) (0.045)

2000 0.002 0.001 -0.004 -0.004
(0.014) (0.014) (0.011) (0.011)

4000 0.001 0.001 -0.002 -0.002
(0.009) (0.009) (0.007) (0.007)

Set 3 250 0.008 0.004 -0.065 -0.066
(0.059) (0.058) (0.135) (0.151)

500 0.004 0.003 -0.02 -0.019
(0.035) (0.034) (0.04) (0.046)

1000 0.002 0.002 -0.008 -0.007
(0.024) (0.023) (0.02) (0.020)

2000 0.001 0.001 -0.004 -0.003
(0.017) (0.017) (0.014) (0.014)

4000 0.001 0.001 -0.002 -0.002
(0.011) (0.011) (0.009) (0.009)

Notes: The table reports the bias and the standard and error of the

estimates for all replicates. Bias is calculated as Σ#Repi=1

³bθi − θTrue

´
/n.

Standard errors of the estimates are given in parenthesis.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.12a:
MAPE for the estimates of the AV-GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 47.345 266.844 331.621 327.306
500 35.542 74.111 218.13 197.1
1000 22.308 35.293 108.489 107.701
2000 14.65 14.900 50.216 59.336
4000 10.038 10.144 34.304 33.963

Set 2 250 51.126 404.821 1500.261 1227.429
500 34.377 112.451 418.176 399.153
1000 21.907 34.985 145.019 142.97
2000 14.181 14.664 67.697 67.453
4000 10.19 10.001 36.176 37.273

Set 3 250 49.235 118.702 594.736 590.287
500 29.389 39.815 179.247 176.459
1000 18.356 18.83 78.004 77.384
2000 12.591 13.015 42.673 42.499
4000 8.659 8.79 25.619 25.397

Notes: The table reports the Mean Absolute Percentage error of the

estimates, MAPE=100 ∗ Σ#Repi=1

³¯̄̄bθi − θTrue

¯̄̄
/θTrue

´
/n.

* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.12b:
MAPE for the estimates of the AV-GARCH(1,1)-NIG model.

ρ1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 89.759 85.67 26.475 28.686
500 61.112 57.153 17.163 15.901
1000 40.287 40.406 8.661 8.746
2000 27.06 29.702 4.254 5.002
4000 19.808 19.666 2.980 2.933

Set 2 250 48.115 48.661 10.488 14.14
500 28.891 29.232 3.364 4.423
1000 19.708 19.391 1.626 1.773
2000 13.404 13.273 1.012 0.995
4000 8.615 8.518 0.620 0.627

Set 3 250 39.274 38.661 8.558 8.879
500 24.166 23.717 3.244 3.209
1000 16.802 16.556 1.845 1.791
2000 11.951 11.818 1.252 1.228
4000 7.770 7.756 0.815 0.809

Notes: The table reports the Mean Absolute Percentage error of the

estimates, MAPE=100 ∗ Σ#Repi=1

³¯̄̄bθi − θTrue

¯̄̄
/θTrue

´
/n.

* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.13a:
Confidence interval coverage for estimates of the
the AV-GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.955 0.945 0.804 0.955
500 0.953 0.941 0.909 0.890
1000 0.964 0.946 0.907 0.920
2000 0.945 0.955 0.902 0.914
4000 0.930 0.950 0.897 0.888

Set 2 250 0.942 0.875 0.893 0.840
500 0.952 0.924 0.982 0.969
1000 0.941 0.934 0.986 0.989
2000 0.958 0.952 0.947 0.955
4000 0.927 0.945 0.932 0.945

Set 3 250 0.961 0.936 0.949 0.937
500 0.972 0.948 0.990 0.989
1000 0.969 0.945 0.975 0.977
2000 0.969 0.958 0.960 0.962
4000 0.969 0.957 0.952 0.960

Notes: The table reports the empirical coverage of the 95%
confidence intervals of the estimates. Empirical sizes that are

outside the inteval 0.95± 1.96p0.95 (1− 0.95) /1000
are written in bold face.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.13b:
Confidence interval coverage for the estimates of the
AV-GARCH(1,1)-NIG model.

ρ1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.873 0.928 0.802 0.890
500 0.925 0.928 0.903 0.890
1000 0.928 0.941 0.916 0.926
2000 0.928 0.921 0.916 0.905
4000 0.900 0.929 0.898 0.876

Set 2 250 0.929 0.871 0.909 0.862
500 0.946 0.933 0.963 0.954
1000 0.920 0.920 0.945 0.943
2000 0.902 0.904 0.912 0.912
4000 0.926 0.907 0.922 0.870

Set 3 250 0.928 0.921 0.940 0.942
500 0.935 0.939 0.963 0.968
1000 0.936 0.939 0.959 0.966
2000 0.922 0.924 0.932 0.936
4000 0.932 0.931 0.925 0.922

Notes: The table reports the empirical coverage of the 95%
confidence intervals of the estimates. Empirical sizes that are

outside the inteval 0.95± 1.96p0.95 (1− 0.95) /1000
are written in bold face.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.14a:
Jarque-Bera test of normality of the estimates of AV-GARCH(1,1)-NIG.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 568.306 29257.825 363.696 388.165
(0.000) (0.000) (0.000) (0.000)

500 929.736 1074865.852 1651.825 2430.822
(0.000) (0.000) (0.000) (0.000)

1000 930.07 9865338.702 17008.999 15883.476
(0.000) (0.000) (0.000) (0.000)

2000 352.41 141.668 5197.055 18206.14
(0.000) (0.000) (0.000) (0.000)

4000 99.098 36.305 4464.821 4537.384
(0.000) (0.000) (0.000) (0.000)

Set 2 250 653.846 9774.879 90377.277 60248.612
(0.000) (0.000) (0.000) (0.000)

500 1207.166 264478.163 628395.795 764739.791
(0.000) (0.000) (0.000) (0.000)

1000 2769.45 9878765.061 10813.671 11186.439
(0.000) (0.000) (0.000) (0.000)

2000 149.592 119.608 8238.964 6903.283
(0.000) (0.000) (0.000) (0.000)

4000 41.46 27.909 257.025 227.875
(0.000)) (0.000) (0.000)) (0.000)

Set 3 250 2263.598 791782.208 496086.056 477734.971
(0.000) (0.000) (0.000) (0.000)

500 5071.627 38490315.32 289672.311 298866.721
(0.000) (0.000) (0.000) (0.000)

1000 2241.127 1971.27 2224.514 2283.252
(0.000) (0.000) (0.000) (0.000)

2000 125.002 112.037 2210.671 1868.274
(0.000) (0.000) (0.000) (0.000)

4000 54.246 53.176 443.205 476.906
(0.000) (0.000) (0.000) (0.000)

Notes: The table reports the Jarque-Bera test statistic of normality, in
parenthesis the p-value of the test.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.14b:
Jarque-Bera test of normality of the estimates of AV-GARCH(1,1)-NIG.

ρ1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 286.499 447.019 258.77 211.482
(0.000) (0.000) (0.000) (0.000)

500 194.566 145.918 1123.115 1559.568
(0.000) (0.000) (0.000) (0.000)

1000 308.483 126.865 12052.218 9697.554
(0.000) (0.000) (0.000) (0.000)

2000 37.877 70.978 2724.796 11713.339
(0.000) (0.000) (0.000) (0.000)

4000 25.648 8.392 2650.436 2049.818
(0.000) (0.015) (0.000) (0.000)

Set 2 250 235.001 144.451 6981.872 2174.832
(0.000) (0.000) (0.000) (0.000)

500 39.841 16.622 459987.623 99628.054
(0.000) (0.000) (0.000) (0.000)

1000 9.691 13.131 208.695 5326826.096
(0.008) (0.001) (0.000) (0.000)

2000 13.079 10.727 11.28 8.912
(0.001) (0.005) (0.004) (0.012)

4000 5.799 13.158 17.291 3.952
(0.055) (0.001) (0.000) (0.139)

Set 3 250 181.461 137.745 16563.94 14900.249
(0.000) (0.000) (0.000) (0.000)

500 34.439 24.156 28271.227 378850.644
(0.000) (0.000) (0.000) (0.000)

1000 2.113 0.363 43.145 32.255
(0.348) (0.834) (0.000) (0.000)

2000 2.330 1.757 3.152 2.317
(0.312) (0.415) (0.207) (0.314)

4000 9.604 8.513 4.771 3.735
(0.008) (0.014) (0.092) (0.155)

Notes: The table reports the Jarque-Bera test statistic of normality, in
parenthesis the p-value of the test
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.15a:
Bias and standard errors for the estimates of the
TAV-GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.296 0.282 0.237 0.235
(0.668) (0.691) (0.318) (0.320)

500 0.168 0.141 0.156 0.158
(0.440) (0.433) (0.261) (0.266)

1000 0.089 0.069 0.109 0.113
(0.253) (0.262) (0.202) (0.212)

2000 0.059 0.038 0.074 0.072
(0.161) (0.168) (0.147) (0.142)

4000 0.042 0.019 0.039 0.039
(0.106) (0.112) (0.068) (0.069)

Set 2 250 0.353 0.416 0.180 0.184
(0.825) (3.212) (0.281) (0.286)

500 0.215 0.196 0.103 0.109
(0.574) (0.575) (0.191) (0.205)

1000 0.104 0.095 0.058 0.057
(0.329) (0.349) (0.115) (0.105)

2000 0.065 0.052 0.035 0.036
(0.206) (0.214) (0.052) (0.053)

4000 0.039 0.024 0.026 0.026
(0.134) (0.140) (0.019) (0.019)

Set 3 250 0.382 0.441 0.153 0.147
(0.965) (2.525) (0.247) (0.247)

500 0.250 0.286 0.092 0.089
(0.682) (1.449) (0.172) (0.170)

1000 0.136 0.128 0.051 0.050
(0.445) (0.466) (0.088) (0.088)

2000 0.077 0.067 0.034 0.033
(0.282) (0.292) (0.037) (0.031)

4000 0.038 0.026 0.028 0.028
(0.181) (0.194) (0.016) (0.017)

Notes: The table reports the bias and the standard and error of the

estimates for all replicates. Bias is calculated as Σ#Repi=1

³bθi − θTrue

´
/n.

Standard errors of the estimates are given in parenthesis.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.15b:
Bias and standard errors for the estimates of the TAV-GARCH(1,1)-NIG model.

ρ1 ω1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 -0.013 -0.015 0.020 0.018 -0.241 -0.236
(0.053) (0.051) (0.062) (0.062) (0.343) (0.344)

500 -0.021 -0.022 0.004 0.003 -0.145 -0.144
(0.035) (0.034) (0.043) (0.042) (0.277) (0.279)

1000 -0.023 -0.024 -0.005 -0.005 -0.091 -0.094
(0.027) (0.026) (0.028) (0.028) (0.213) (0.220)

2000 -0.025 -0.026 -0.010 -0.010 -0.053 -0.05
(0.020) (0.020) (0.020) (0.020) (0.157) (0.151)

4000 -0.025 -0.026 -0.013 -0.013 -0.016 -0.016
(0.014) (0.014) (0.014) (0.014) (0.075) (0.076)

Set 2 250 -0.009 -0.009 -0.003 -0.005 -0.178 -0.181
(0.043) (0.042) (0.056) (0.058) (0.304) (0.309)

500 -0.013 -0.013 -0.015 -0.015 -0.090 -0.095
(0.027) (0.026) (0.037) (0.037) (0.207) (0.219)

1000 -0.016 -0.016 -0.021 -0.021 -0.040 -0.038
(0.019) (0.019) (0.024) (0.024) (0.123) (0.114)

2000 -0.017 -0.017 -0.024 -0.024 -0.014 -0.014
(0.013) (0.013) (0.017) (0.017) (0.059) (0.060)

4000 -0.016 -0.017 -0.025 -0.025 -0.004 -0.005
(0.009) (0.009) (0.011) (0.011) (0.024) (0.024)

Set 3 250 -0.009 -0.009 -0.014 -0.017 -0.147 -0.138
(0.040) (0.043) (0.054) (0.055) (0.274) (0.272)

500 -0.013 -0.013 -0.025 -0.026 -0.074 -0.071
(0.027) (0.027) (0.038) (0.037) (0.189) (0.187)

1000 -0.015 -0.016 -0.030 -0.031 -0.029 -0.027
(0.018) (0.018) (0.024) (0.024) (0.097) (0.097)

2000 -0.016 -0.016 -0.033 -0.032 -0.009 -0.009
(0.013) (0.013) (0.017) (0.016) (0.044) (0.038)

4000 -0.016 -0.016 -0.033 -0.033 -0.003 -0.003
(0.009) (0.009) (0.011) (0.011) (0.020) (0.021)

Notes: The table reports the bias and the standard and error of the estimates for

all replicates. Bias is calculated as Σ#Repi=1

³bθi − θTrue

´
/n. Standard errors of the estimates

are given in parenthesis.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.16a:
MAPE for the estimates of the TAV-GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 47.362 48.449 485.467 482.85
500 30.310 30.388 331.34 333.847
1000 18.882 19.190 233.726 241.165
2000 12.989 13.181 164.684 160.239
4000 8.836 8.854 89.006 89.18

Set 2 250 48.774 56.27 1518.312 1547.913
500 33.158 33.188 863.704 915.314
1000 20.087 20.66 487.244 474.182
2000 13.581 14.041 293.881 296.211
4000 8.996 9.254 213.787 215.416

Set 3 250 47.260 53.051 1509.051 1446.817
500 33.538 38.231 898.542 868.599
1000 21.958 23.442 496.164 482.845
2000 14.722 14.942 324.168 316.668
4000 9.617 10.282 266.089 264.194

Notes: The table reports the Mean Absolute Percentage error of the

estimates, MAPE=100 ∗ Σ#Repi=1

³¯̄̄bθi − θTrue

¯̄̄
/θTrue

´
/n.

* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.16b:
MAPE for the estimates of the TAV-GARCH(1,1)-NIG model.

ρ1 ω1 π1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 89.442 88.234 148.745 146.628 30.613 30.225
500 71.162 71.301 105.351 104.05 20.370 20.360
1000 61.897 62.208 74.891 74.942 13.993 14.370
2000 57.336 57.795 62.291 62.157 9.816 9.533
4000 52.436 52.584 53.843 54.114 5.124 5.155

Set 2 250 104.346 104.345 79.815 81.544 21.065 21.446
500 80.708 79.969 61.808 62.357 11.451 12.034
1000 66.858 66.966 51.737 51.863 6.008 5.830
2000 58.896 59.262 48.999 48.861 3.227 3.238
4000 53.335 53.429 47.769 47.889 1.767 1.773

Set 3 250 103.536 106.785 64.727 66.494 17.914 17.169
500 82.481 82.187 55.954 56.288 9.964 9.577
1000 67.338 67.98 49.311 50.100 4.943 4.776
2000 59.209 59.147 48.123 46.996 2.662 2.552
4000 53.531 53.15 47.683 48.192 1.576 1.605

Notes: The table reports the Mean Absolute Percentage error of the estimates,

MAPE=100 ∗Σ#Repi=1

³¯̄̄bθi − θTrue

¯̄̄
/θTrue

´
/n.

* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.17a:
Confidence interval coverage for the estimates of the
TAV-GARCH(1,1)-NIG model.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 0.969 0.949 0.786 0.786
500 0.975 0.963 0.860 0.864
1000 0.974 0.949 0.909 0.904
2000 0.970 0.962 0.910 0.913
4000 0.974 0.963 0.950 0.942

Set 2 250 0.963 0.939 0.794 0.792
500 0.971 0.959 0.928 0.917
1000 0.964 0.953 0.970 0.975
2000 0.967 0.958 0.951 0.950
4000 0.961 0.959 0.803 0.791

Set 3 250 0.958 0.936 0.843 0.825
500 0.963 0.926 0.939 0.937
1000 0.954 0.957 0.977 0.979
2000 0.969 0.955 0.902 0.893
4000 0.946 0.923 0.503 0.489

Notes: The table reports the empirical coverage of the 95%
confidence intervals of the estimates. Empirical sizes that are

outside the inteval 0.95± 1.96p0.95 (1− 0.95) /1000
are written in bold face.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.17b:
Confidence interval coverage for the estimates of the
TAV-GARCH(1,1)-NIG model.

ρ1 ω1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗

Set 1 250 0.518 0.516 0.643 0.635
500 0.629 0.630 0.642 0.642
1000 0.672 0.663 0.717 0.713
2000 0.600 0.602 0.748 0.744
4000 0.462 0.456 0.742 0.740

Set 2 250 0.407 0.417 0.706 0.688
500 0.538 0.545 0.732 0.734
1000 0.636 0.635 0.739 0.745
2000 0.623 0.625 0.583 0.589
4000 0.507 0.519 0.356 0.374

Set 3 250 0.409 0.394 0.755 0.728
500 0.510 0.517 0.730 0.736
1000 0.629 0.642 0.657 0.638
2000 0.648 0.653 0.458 0.457
4000 0.532 0.527 0.196 0.184

π1
Anal.∗ Num.∗∗

0.764 0.766
0.828 0.832
0.880 0.873
0.862 0.864
0.900 0.890
0.786 0.784
0.891 0.879
0.916 0.919
0.895 0.894
0.906 0.895
0.830 0.816
0.891 0.895
0.922 0.915
0.900 0.890
0.896 0.834

Notes: The table reports the empirical coverage of the 95% confidence intervals of the
estimates. Empirical sizes that are outside the inteval

0.95± 1.96p0.95 (1− 0.95) /1000 are written in bold face.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.18a:
Jarque-Bera test of normality of the TAV-GARCH(1,1)-NIG estimates.

α ρ0
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 1447.561 1569.101 205.903 210.496
(0.000) (0.000) (0.000) (0.000)

500 6581.475 2965.17 751.162 764.677
(0.000) (0.000) (0.000) (0.000)

1000 2612.359 2288.417 2812.351 2677.011
(0.000) (0.000) (0.000) (0.000)

2000 153.244 140.174 9635.963 9971.776
(0.000) (0.000) (0.000) (0.000)

4000 57.634 61.209 68437.056 67459.699
(0.000) (0.000) (0.000) (0.000)

Set 2 250 1033.305 32346619.74 771.613 704.236
(0.000) (0.000) (0.000) (0.000)

500 2609.844 2690.202 5142.781 4474.377
(0.000) (0.000) (0.000) (0.000)

1000 4993.501 12193.942 50211.155 46694.094
(0.000) (0.000) (0.000) (0.000)

2000 127.309 111.944 211389.889 208236.671
(0.000) (0.000) (0.000) (0.000)

4000 47.711 45.134 5917.551 5427.252
(0.000) (0.000) (0.000) (0.000)

Set 3 250 535.428 1551125.494 1336.522 1574.512
(0.000) (0.000) (0.000) (0.000)

500 844.85 14042738.86 9202.383 8348.255
(0.000) (0.000) (0.000) (0.000)

1000 2052.968 511.515 105628.189 96096.895
(0.000) (0.000) (0.000) (0.000)

2000 152.200 437.788 473681.242 52791.561
(0.000) (0.000) (0.000) (0.000)

4000 51.534 35.559 3403.874 17406.364
(0.000) (0.000) (0.000) (0.000)

Notes: The table reports the Jarque-Bera test statistic of normality, in parenthesis
the p-value of the test.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.18b:
Jarque-Bera test of normality of the TAV-GARCH(1,1)-NIG estimates.

ρ1 ω1
Par. Set n Anal.∗ Num.∗∗ Anal.∗ Num.∗∗

Set 1 250 1322.88 1482.811 1421.24 1565.788
(0.000) (0.000) (0.000) (0.000)

500 537.826 594.594 1205.51 1188.517
(0.000) (0.000) (0.000) (0.000)

1000 513.069 459.987 704.632 1201.169
(0.000) (0.000) (0.000) (0.000)

2000 360.428 380.115 301.021 301.536
(0.000) (0.000) (0.000) (0.000)

4000 58.089 59.912 236.641 240.233
(0.000) (0.000) (0.000) (0.000)

Set 2 250 4830.932 4431.961 1473.634 2323.245
(0.000) (0.000) (0.000) (0.000)

500 1200.321 1521.435 1189.421 1171.199
(0.000) (0.000) (0.000) (0.000)

1000 634.157 662.885 468.975 532.009
(0.000) (0.000) (0.000) (0.000)

2000 451.407 431.21 159.859 143.243
(0.000) (0.000) (0.000) (0.000)

4000 68.958 58.127 56.069 56.340
(0.000) (0.000) (0.000) (0.000)

Set 3 250 4039.119 7929.707 1062.129 1633.326
(0.000) (0.000) (0.000) (0.000)

500 1826.554 2140.778 723.273 539.531
(0.000) (0.000) (0.000) (0.000)

1000 581.554 785.558 432.78 172.582
(0.000) (0.000) (0.000) (0.000)

2000 541.859 138.891 46.802 85.29
(0.000) (0.000) (0.000) (0.000)

4000 30.612 22.666 51.054 14.579
(0.000) (0.000) (0.000) (0.000)

Notes: The table reports the Jarque-Bera test statistic of normality, in parenthesis
the p-value of the test.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.
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Table 7.18c:
Jarque-Bera test of normality of the TAV-GARCH(1,1)-NIG estimates.

π1
Par. Set n Anal.∗ Num.∗∗

Set 1 250 168.554 175.178
(0.000) (0.000)

500 602.186 601.999
(0.000) (0.000)

1000 2206.974 2050.645
(0.000) (0.000)

2000 7630.818 7735.419
(0.000) (0.000)

4000 42781.77 42790.59
(0.000) (0.000)

Set 2 250 519.559 487.394
(0.000) (0.000)

500 4160.307 3579.114
(0.000) (0.000)

1000 36086.466 34148.855
(0.000) (0.000)

2000 119513.933 118650.626
(0.000) (0.000)

4000 3339.034 3053.212
(0.000) (0.000)

Set 3 250 901.308 1087.704
(0.000) (0.000)

500 7325.622 6403.841
(0.000) (0.000)

1000 67060.403 68027.858
(0.000) (0.000)

2000 202894.719 21400.02
(0.000) (0.000)

4000 1485.418 7109.667
(0.000) (0.000)

Notes: The table reports the Jarque-Bera test statistic of normality, in
parenthesis the p-value of the test.
* means that analytical gradients.has been used in the estimation.
∗∗ means that numerical gradients.has been used in the estimation.



Remarks and further work

There is much to do in the area of financial econometrics. The intraday data
literature is still in its cradle, screaming for attention. The use of realized
volatility is a vibrant area, and one can only speculate on which direction this
line of research is going.

One obvious thing to do in the area of realized volatility is to model the
realized volatility directly for the purpose of asset pricing and risk manage-
ment. Some steps have been taken in this direction in ABDL (2001), where
they assume that the realized volatility follows a lognormal distribution, (they
take logs of the RV and model it with an ARMA(p,q)-model). Of course, one
could model the RV directly by assuming other distributions, such as the
generalized inverse Gaussian family of distributions. In addition, one might
introduce long memory models for the realized volatility. Barndorff-Nielsen
and Shephard (2001b, 2002b) discuss the asymptotic distribution of the mea-
surement error of the realized volatility, but what about the small sample
properties of the error? An important task for future research is to find ways
to deal with the measurement error in a “good” way. Future models for re-
alized volatility would need to take into account the sampling error of the
realized volatility.

In the GARCH-models, we model the conditional variance, but there is
reason to believe that higher moments of the returns, such as the fourth
moment, are also time varying. As in the NIGSV(p,q) model of Andersson
(2001), we need to develop models to take into account the possible variation
in the higher moments. Maybe we could build a model where we specify a
separate “GARCH-equation” for the fourth moment to let the (conditional)
second moment follow one process, and the conditional fourth moment another
process.

When dealing with asymmetry in the conditional variance, one could de-
velop a News Impact Curve (NIC) in the same spirit as the NIC of Engle
and Ng (1993), but where we use the realized volatility instead of the squared
daily returns. This would also give rise to new tests for different types of
asymmetry, such as shift and rotation asymmetry. Maybe it is possible to
use the realized volatiltiy to shed some light on the origins of the asymmetry.

145
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Can realized volatility help us to answer the question: Is asymmery caused
by the leverage or by the volatility feedback effect, or a mix of both? Can
we link the (technical) types of asymmetry: shift and rotation, to economic
theory?

Another important area of research is how to price options and other
derivatives using the realized volatility. How should we deal with the sampling
error in the realized volatility when pricing options? To what extent does this
error affect the results? Can models and methods based on realized volatility
outperform traditional option pricing methods that only use daily data? It
would be interesting to conduct an extensive study of this topic, using realistic
loss functions. Is it be possible to have access to intraday option prices in the
future? If so, we could use these intraday option prices to better estimate the
risk neutral density of the returns.

In the GARCH literature, more and more distributional assumptions are
proposed. There seems to be a need for formal test procedures to test the
different distributional assumptions against each other. That is, to (jointly)
test which distribution, the normal, t, NIG or any other distribution for the
standardized residuals, gives the best fit. We can investigate the impact of
the different distributional assumptions in a practical situation, for exam-
ple, by asking: What is the impact in terms of Value-at-Risk (VaR) related
loss functions, such as “dollars lost”, when using the different distributional
assumptions?

Is it possible to have regime shifts, not just in the parameters of the
GARCH equation, but also in the distribution of the standardized return?
If so, can we build a framework to test this? The generalized hyperbolic
distribution could be worth testing in this situation.

The Lévy processes introduced in financial econometrics by Barndorff-
Nielsen and Shephard (2001a) is also likely to generate interesting research.
A Lévy process is nothing more than a subordinated Brownian motion, or, if
you like, Brownian motion where time is random. One special type of Lévy
process uses the IG distribution as subordinator. In discrete time, this would
correspond to a discrete process with normally distributed increments where
the variance at a given time follows an IG distribution, i.e., the GARCH-NIG
model. To estimate the parameters of a Lévy process, one could use indirect
inference and use the GARCH-NIG model as an auxiliary model. One needs
to find the theoretical links, if any, between the Lévy processes and discrete
time GARCH processes.

Another use of the IG distribution could be in the Autoregressive Condi-
tional Duration (ACD) models pioneered by Engle and Russel (1993). The
underlying idea in these models is to model the times between trades. It would
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be interesting to try the IG (or GIG) distribution for the waiting times, and
compare the resulting models to the ones in the literature.

The flip side of modeling times between trades is to model the number
of trades in a given interval of time. This is the purpose of the BIN-model
by Rydberg and Shephard (1999). They use a Possion distribution where
they put a GARCH-like structure on the intensity parameter. If we assume
that the intensity parameter of the Poisson distribution is drawn from an IG
distribution, the number of trades in that BIN would be Sichel distributed
(Sichel, 1974). So, a natural exension of the BIN model of Rydberg and
Shephard (1999) is to assume that the number of trades in a BIN is Sichel
distributed. The Sichel distribution exists in a multivariate setting, which
would come in handy when modeling portfolios of assets.

Of course, the ideas outlined above are just ideas. Some might be bad, or
even infeasible to implement, however others might be worthwhile investigat-
ing further. Surely, some results are already on the way, but results do not
come by themselves. So, let’s get to work!
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Appendix A

Moments of the models

A.1 Moment structure of the GARCH(1,1)-NIG

We use the results of He (1997) to derive the moment structures of the (1,1)
case of the model. First, we need some notation, let

νk = E |zt|k , k = 1, ..., 4, (A.1)

that is, νk is the expected value of the absolute value of the standardized
return, note that zt is NIGσ2 (α, 0, 0, 1) . As shown in Appendix B, we find
that the absolute moments of zt ∼ NIGσ2 (α, 0, 0, 1) are

ν1 =
K0 (α) 2

√
a exp (α)

π
, (A.2)

ν2 = 1,

ν3 =
4
√
αK1 (α) exp (α)

π
,

and
ν4 = 3 +

3

α
,

where K1 (x) denotes the modified Bessel function of order three and index
one, and K0 (x) denotes the modified Bessel function of order three and index
zero.

Further we need the following definitions

γc1 = π1 + ρ1ν2,

and
γc2 = π21 + 2π1ρ1 + ρ21ν4.

Now, we can state that the second order moment of the observed xt exists if
and only if

π1 + ρ1ν2 < 1. (A.3)
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If (A.3) holds, then the unconditional variance of xt is given by

Ex2t =
ρ0

[1− γc1]
. (A.4)

The fourth order unconditional moment of the observed process, exists if and
only if

γc2 < 1,

i.e.
π21 + 2π1ρ1ν2 + ρ21ν4 < 1. (A.5)

If (A.5) holds, then the fourth order moment is given by

Ex4t = µ4 =

·
ν4

[1− γc2]

¸··
2ρ20γc1
[1− γc1]

¸
+ ρ0

¸
,

µ4 =

"
ν4£

1− £π21 + 2π1ρ1ν2 + ρ21ν4
¤¤# · 2ρ20 [π1 + ρ1ν2]

[1− [π1 + ρ1ν2]]
+ ρ0

¸
. (A.6)

If (A.5) holds, then the kurtosis of the observed process is given by

κ04 =
κ4(zt) [[1− γc1] + 2γc1] [1− γc1]

[1− γc2]
,

where κ4(zt) = ν4
ν22
is the kurtosis of the standardized process. If (A.5) holds,

then the autocorrelation function of the squared observed process is given by

ρ01 =
ν2γc

£
1− γ2c1

¤− γc1 [1− γc2]

ν4
£
1− γ2c1

¤− ν22 [1− γc2]
, (A.7)

and
ρ0n = ρ01γ

n−1
c1 . (A.8)

where
γc = ρ1ν4 + π1.

A.2 Moment structure of the T-GARCH(1,1)-NIG

Again, we use the results from He (1997) and for the T-GARCH(1,1) model
we have that

γc1 = π1 +
h
ρ1 +

ω

2

i
,

γc2 =

µ
ω2

2
+ ρ21 + ωρ1

¶
ν4 + (π1ω + 2π1ρ1) + π21.
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The second order moment of the observed εt exists if and only if

π1 +
h
ρ1 +

ω

2

i
ν2 < 1. (A.9)

If (A.9) holds, then the unconditional variance of εt is given by

Ex2t =
ρ0ν2£

1− ¡π1 + £ρ1 + ω
2

¤
ν2
¢¤ . (A.10)

The fourth order unconditional moment of the observed process, exists if
and only if µ

ω2

2
+ ρ21 + ωρ1

¶
ν4 + (π1ω + 2π1ρ1) + π21 < 1. (A.11)

If (A.11) holds, then the fourth order moment is given by

µ4 =

·
ν4

[1− γc2]

¸··
2ρ20γc1
[1− γc1]

¸
+ ρ0

¸
,

µ4 =

 ν4h
1−

³
ω2

2 + ρ21 + ωρ1

´
ν4 − (π1ω + 2π1ρ1) ν2 − π21

i


∗
"
2ρ20

£
π1 +

£
ρ1 +

ω
2

¤
ν2
¤£

1− £π1 + £ρ1 + ω
2

¤
ν2
¤¤ + ρ0

#
. (A.12)

If (A.11) holds, then the kurtosis of the observed process is given by

κ04 =
κ4(zt)

£
ρ20 [1− γc1] + 2ρ

2
0γc1

¤
[1− γc1]

ρ20 [1− γc2]
.

If (A.11) holds, then the autocorrelation function of the squared observed
process is given by

ρ01 =
γc
£
1− γ2c

¤− γc [1− γc2]

ν4
£
1− γ2c1

¤− [1− γc2]
,

where
γc1 = ρ1ν4 +

ων4
2
+ π1,

and for n > 1

ρ0n = ρ01γ
n−1
c1 ,

ρ0n = ρ01

h
π1 +

h
ρ1 +

ω

2

iin−1
.
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A.3 Moment structure of the AV-GARCH(1,1)-NIG

We use the results in He (1997) to derive the moment structure of the (1,1)
case. The moment structure for the general (p,q) case can be derived by using
a system of equation methods as outlined in Andersson (2001).

For the AV-GARCH(1.1)-NIG the second order moment of the observed
process xt exists if and only if

π21 + ρ21ν2 + 2π1ρ1ν1 < 1. (A.13)

If (A.13) holds, then the unconditional variance of xt is given by

Ex2t =
ν2£

1− £π21 + ρ21ν2 + 2π1ρ1ν1
¤¤ · 2ρ20 [π1 + ρ1ν1]

[1− [π1 + ρ1ν1]]
+ ρ20

¸
. (A.14)

The fourth order unconditional moment of the observed process, exists if and
only if

π41 + 6ρ
2
1ν2π

2
1 + 4π

3
1ρ1ν1 + ρ41ν4 + 4ρ

3
1ν3π1 < 1 (A.15)

If (A.15) holds, then the fourth order moment is given by

µ4 = ν4ρ
4
0∆

0
4Π

4
i=1 [1− γci]

−1 . (A.16)

where

γc1 = π1 + ρ1ν1,

γc2 = π21 + ρ21ν2 + 2π1ρ1ν1,

γc3 = π31 + 3ρ
2
1ν2π1 + 3ρ1ν1π

2
1 + ρ31ν3,

and
γc4 = π41 + 6ρ

2
1ν2π

2
1 + 4π

3
1ρ1ν1 + ρ41ν4 + 4ρ

3
1ν3π1.

If (A.15) holds, then the kurtosis of the observed process is given by

κ+4 =
κ4(z)∆04 [1− γc1] [1− γc2]

[1+ γc1]
2 [1− γc3] [1− γc4]

. (A.17)

The ACF of the squared observations of the AV-GARCH(1,1)-NIG model is
given by

ρ01 =
ν2 (1− γc1) (1− γc2)

£
2γc (1− γc4)∆

0
3 + γc2∆

0
4

¤
∆0

(A.18)

−ν
2
2 (1+ γc1) (1− γc3) (1− γc4) [2γc + γc2 (1− γc1)]

∆0
,

and
ρ+n = γc2ρ

+
n−1 + θ0γn−1c1 , (A.19)
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where

∆0 = ν4∆
0
4 (1− γc1) (1− γc2)− ν22 (1+ γc1)

2 (1− γc3) (1− γc4) ,

θ0 =
1

∆0
£
2ν2 (1− γc2) (1− γc4)

£
∆03γc (1− γc1)

¤− ν2γc1 (1+ γc1) (1− γc3)
¤
,

∆03 = 1+ 2γc1 + 2γc2 + γcγc2,

and

∆04 = 1+ 3γc + 5γc2 + 3γc3 + 3γcγc2 + 5γcγc3 + 3γc2γc3 + γcγc2γc3.

A.4 Moment structure of the TAV-GARCH(1,1)-
NIG

The second order moment of the observed xt exists if and only if

ν2ρ
2
1 +

2ν2ρ1ω

2
+ 2ν1ρ1π1 +

ν2ω
2

2
+
2ν1ωπ1
2

+ π21 < 1. (A.20)

If (A.20) holds then the second order unconditional moment of xt can be
expressed as

Ex2t = 2ν2ρ
2
0 ∗
4ρ0ρ1ν1 + 2ρ0ων1 + 4ρ0π1 + 2− 2ρ1ν1 − ων1 − 2π1¡−2 + 2ν2ρ21 + 2ν2ρ1ω + 4ν1ρ1π1 + ν2ω2 + 2ν1ωπ1 + 2π21

¢
∗ 1

(−2 + 2ρ1ν1 + ων1 + 2π1)
.

Fourth moment of the observed process E
¡
x4t
¢

γc4 < 1 (A.21)

where

γc4 = 4ρ31ν4ω
1

2
+ 4ρ31ν3π1 + π41 + 4ω

1

2
ν1π

3
1 + 4ω

31

2
ν3π1 +

6ω2
1

2
ν2π

2
1 + 12ρ1ν2ω

1

2
π21 + 12ρ1ν3ω

2 1

2
π1 + 4ρ1ν4ω

31

2

+ρ41ν4 + 6ρ
2
1ν4ω

21

2
+ 12ρ21ν3ω

1

2
π1 + ω4

1

2
ν4 + 4ρ1ν1π

3
1 + 6ρ

2
1ν2π

2
1

If (A.21) holds, then the fourth order moment of xt is given by

µ∗4 = ν4ρ
4
0∆

0
4Π

4
i=1 [1− γci]

−1 ,
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and the kurtosis by

κ+4 =
κ4(z)∆

0
4 [1− γc] [1− γc2]

[1+ γc]
2 [1− γc3] [1− γc4]

,

where κ4(z) is the kurtosis of the standardized process and

∆04 = 1+ 3γc + 5γc2 + 3γc3 + 3γcγc2 + 5γcγc3 + 3γc2γc3 + γcγc2γc3,

γc1 = ρ1ν1 +
ω

2
ν1 + π1,

γc2 = ν2ρ
2
1 +

2ν2ρ1ω

2
+ 2ν1ρ1π1 +

ν2ω
2

2
+
2ν1ωπ1
2

+ π21,

and

γc3 = ρ31ν3 + 3ρ
2
1ν3ω

1

2
+ 3ρ21ν2π1 + 3ρ1ν3ω

2 1

2
+ 6ρ1ν2ω

1

2
π1 + 3ρ1ν1π

2
1

+ω3
1

2
ν3 + 3ω

2 1

2
ν2π1 + 3ω

1

2
ν1π

2
1 + π31.

The ACF of the squared observations from the TAV-GARCH(1,1)-NIG model
is given by

ρ01 =
ν2 (1− γc) (1− γc2)

£
2γc (1− γc4)∆

0
3 + γc2∆

0
4

¤
∆0

−ν
2
2 (1+ γc) (1− γc3) (1− γc4) [2γc + γc2 (1− γc)]

∆0
,

and
ρ+n = γc2ρ

+
n−1 + θ0γn−1c ,

where

∆0 = ν4∆
0
4 (1− γc) (1− γc2)− ν22 (1+ γc)

2 (1− γc3) (1− γc4) ,

θ0 =
1

∆0
£
2ν2 (1− γc2) (1− γc4)

£
∆03γc (1− γc)

¤− ν2γc (1+ γc) (1− γc3)
¤
,

∆03 = 1+ 2γc + 2γc2 + γcγc2,

∆04 = 1+ 3γc1 + 5γc2 + 3γc3 + 3γc1γc2 + 5γc1γc3 + 3γc2γc3 + γc1γc2γc3.



Appendix B

Absolute moments of NIG

In this appendix we derive the expectation of the absolute value of a normal
inverse Gaussian distributed variable.

We derive the quantity

νk = E |zt|k ,
where z ∼ NIGσ2 (α, 0, 0, 1), for k = 1, ..., 4.

From Barndorff-Nielsen and Shephard (1998) we know that if
z ∼ NIGσ2 (α, 0, 0, 1) we can write

zt =
√
ηtεt,

where εt ∼ N(0, 1) and ηt ∼ IGσ2 (1,α) . Now, we can write

E(|zt|i) = E(
¯̄√

ηtεt
¯̄i
),

The variable ηt is always positive so

E
³¯̄√

ηtεt
¯̄i´

= E

µ
η
i
2
t |εt|i

¶
,

ηt and εt are independent

E

µ
η
i
2
t |εt|i

¶
= E

µ
η
i
2
t

¶
E
³
|εt|i

´
. (B.1)

The problem reduces to calculate E
µ
η
i
2
t

¶
and E

³
|εt|i

´
for i = 1, 2, 3, 4.

Following Seshadri (1993), we have

E
³
η
1/2
t

´
=

√
2αK0 (α) exp (α)

π1/2
,

E
³
η
2/2
t

´
= 1,

E
³
η
3/2
t

´
=

√
2αK1 (α) exp (α)

π1/2
,
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and
E
³
η
4/2
t

´
= 1+

1

α
.

If εt ∼ N (0, 1) , then it is straightforward to show that

E
³
|εt|1

´
=

r
2

π
,

E
³
|εt|2

´
= 1,

E
³
|εt|3

´
=

r
8

π
,

and
E
³
|εt|4

´
= 3.

The moments in (A.2) are given by multiplication as in (B.1) .



Appendix C

Gradients and Hessians of the
models

In this appendix, we derive the gradient and Hessian for the models
GARCH(p,q)-NIG, T-GARCH(p,q)-NIG, AV-GARCH(p,q)-NIG and
TAV-GARCH(p,q)-NIG. These models all rely on the NIG distribution, so
the gradients and Hessians differ only in the derivative with respect to the
parameters in the conditional variance (standard deviation) equation, i.e.,

the term ∂σ2t
∂θ . Therefore, we start by deriving an expression for a General

GARCH-NIG gradient and Hessian, leaving the derivative with respect to the
parameters in the variance equation unspecified.

For all the GARCH-NIG models, the log likelihood for one observation
is given by

ln lt =
1

2
lnα−ln (π)−1

2
lnσ2t+α−

1

2
ln

µ
1+

x2t
σ2tα

¶
+lnK1

Ã
α

µ
1+

x2t
σ2tα

¶1/2!
.

(C.1)
For ease of derivation, we split up the gradient in two parts. Let ψ be the
vector of all parameters of the model, which we can split up into ψ =(α,θ),
where θ contains the parameters for the variance equation. We write

∂ ln lt
∂ψ

=

 ∂ ln lt
∂α

∂ ln lt
∂θ

 .
The derivative of the log likelihood with respect to (wrt) to the parameter α,
i.e., ∂ ln lt

∂α is common to all the models1. The gradient of the log likelihood

1 In the derivation of the gradients and Hesssians, we will make use of the derivative of a
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function for the General GARCH-NIG is given by

∂ ln lt
∂ψ

=


1
2α + 1+

1
2

x2t
α(σ2tα+x2t )

− 1
2

·h
K0(τ t)τ t
K1(τ t)

+ 1
i
(2σ2tα+x2t )
α(σ2tα+x2t )

¸
1
2

µ
x2t

σ2t (σ2tα+x2t )
− 1

σ2t
+

x2t
σ4t

³
K0(τ t)
K1(τ t)

+ 1
τ t

´³
1+

x2t
σ2tα

´−1/2¶ ∂σ2t
∂θ

 ,
(C.2)

where

τ t = α

µ
1+

x2t
σ2tα

¶1/2
.

We have left the terms σ2t and
∂σ2t
∂θ unspecified since these depend on the

different models, see below.
To derive the Hessian, we take the second derivative of (C.1) ,

∂2 ln lt
∂ψ∂ψ0

=

 ∂2 ln lt
∂α∂α

∂2 ln lt
∂θ∂θ0

 .
We start with the second derivative with respect to α

∂2 ln lt
∂α∂α

=

Ã
1

2

¡−2aσ2t − x2t ¢
σ2t

+
K0 (τ t)

¡
4σ2ta+ 2x

2
t

¢
τ tK1 (τ t)σ2t

+
K0 (τ t)

2 ¡2aσ2t + x2t ¢
K1 (τ t)

2 σ2t

!

+

Ã
−2σ

4
ta
2 + 2σ2tax

2
t + x

4
t¡

σ2ta+ x
2
t

¢2
a2

!

−1
2

µ
K0 (τ t) τ t
K1 (τ t)

+ 1

¶Ã
−2σ

4
ta
2 + 2σ2tax

2
t + x

4
t¡

σ2ta+ x
2
t

¢2
a2

!

−1
2

" ¡
2σ2ta+ x

2
t

¢
a
¡
σ2ta+ x

2
t

¢ Ã1
2

¡−2aσ2t − x2t ¢
σ2t

+
K0 (τ t)

¡
4σ2ta+ 2x

2
t

¢
τ tK1 (τ t)σ2t

!#

−1
2

" ¡
2σ2ta+ x

2
t

¢
a
¡
σ2ta+ x

2
t

¢ ÃK0 (τ t)2 ¡2aσ2t + x2t ¢
K1 (τ t)

2 σ2t

!#
.

To find the second order derivative wrt the parameter of the conditional
variance equation we rewrite the second order derivative wrt the parameters
of conditional variance equation as

∂2 ln lt
∂θ∂θ0

=
∂
¡
1
2 (AB)C

¢
∂θ0

,

Bessel function. The derivative of a Bessel function with index ν s given by

d (Kν (x))

dx
= −Kν+1 (x) x− νKν (x)

x
.
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where

A =

Ã
x2t

σ2t
¡
σ2tα+ x

2
t

¢ − 1
σ2t
+
x2t
σ4t

µ
K0 (τ t)

K1 (τ t)
+
1

τ t

¶!
,

B =

µ
1+

x2t
σ2tα

¶−1/2
,

and

C =
∂σ2t
∂θ
.

The second order derivative is given by

∂2 ln lt
∂θ∂θ0

= BC
∂A

∂θ0
+AC

∂B

∂θ0
+AB

∂C

∂θ0
, (C.3)

where

∂A

∂θ0
=

µ
−x2t

µ
α

φ2
+
1

φ

1

σ4t

¶
+
1

σ4t
− 2K0 (τ t)
K1 (τ t)

x4t
σ6t

¶
∂σ2t
∂θ0

+
1

2

x4t

σ8t

r
1+

x2t
σ2tα

Ã
1−

Ã
K0 (τ t)

2

K1 (τ t)
2 +

K0 (τ t)

K1 (τ t) τ t

!!
∂σ2t
∂θ0

+

µ
x4t
φ

1

2τ t

1

σ6t
− 1

τ t

2x2t
σ6t

¶
∂σ2t
∂θ0

+
x2t
σ2t
,

∂B

∂θ0
=
1

2

µ
1+

x2t
σ2tα

¶−3/2
x2t
σ4tα

∂σ2t
∂θ0

,

and
∂C

∂θ0
=

∂2σ2t
∂θ∂θ0

.

To obtain the gradient and Hessian of the different models, we specify the
derivative wrt the parameter of the variance equation ∂σ2t

∂θ0 , this is done below
for the four different models.

C.1 GARCH(p,q)-NIG

To find the gradient of the GARCH(p,q)-NIG model, we need to find the
derivative of the variance equation wrt the parameters. Let us start with
some convenient notation. Let yt,GARCH =

¡
1, x2t−1, ..., x2t−q,σ2t−1, ...,σ2t−p

¢0
be a data vector and ψGARCH = (α, ρ0, ρ1, ..., ρq,π1, ...,πp). In ψGARCH
we have the parameters for the GARCH(p,q)-NIG model. Now, partition
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ψGARCH =
¡
α,θ0GARCH

¢0 where θGARCH =
¡
ρ0, ρ1, ..., ρq,π1, ...,πp

¢0 con-
tains the parameters in the GARCH equation. The variance equation now
becomes

σ2t,GARCH = ρ0 + ρ1x
2
t−1 + ...+ ρqx

2
t−q + π1σ

2
t−1 + ...+ πpσ

2
t−p, (C.4)

or
σ2t,GARCH = y

0
t,GARCHθGARCH .

For the GARCH(p,q)-NIG, the derivative of the parameters wrt the variance
equation is given by the recursion

∂σ2t,GARCH
∂θGARCH

= yt−1,GARCH +Σpi=1πi
∂σ2t−i,GARCH
∂θGARCH

. (C.5)

which we plug into (C.2) . And the Hessian of the GARCH(p,q)-NIG is given
by (C.3) where we plug in σ2t,GARCH in the place for σ

2
t and

∂2σ2t,GARCH
∂θGARCH∂θ

0
GARCH

=
∂yt−1,GARCH
∂θ0GARCH

+
∂
³
Σpi=1πi∂σ

2
t−i,GARCH

´
∂θGARCH∂θ

0
GARCH

.

in the place of ∂2σ2t
∂θ∂θ0 .

C.2 T-GARCH(p,q)-NIG

For the T-GARCH(p,q)-NIG model choose the data vector as
yt,T−GARCH =

¡
1, x2t−1, ..., x2t−q, I (xt−1 < 0)x2t−1, ..., I (xt−q < 0)x2t−q,σ2t−1, ...,σ2t−p

¢0
and the parameter vectorψT−GARCH =

¡
α, ρ0, ρ1, ..., ρq,ω1, ...,ωq,π1, ...,πp

¢0.
Partition ψT−GARCH =

¡
α,θ0T−GARCH

¢0 where
θT−GARCH =

¡
ρ0, ρ1, ..., ρq,ω1, ...,ωq,π1, ...,πp

¢0. The conditional variance
equation for the T-GARCH(p,q)-NIG becomes

σ2t,T−GARCH = y0t,T−GARCHθT−GARCH
σ2t,T−GARCH = ρ0 + ρ1x

2
t−1 + ...+ ρqx

2
t−q + I (xt−1 < 0)ωx

2
t−1 + ...

+I (xt−q < 0)ωx2t−q + π1σ
2
t−1 + ...+ πpσ

2
t−p.

For the T-GARCH(p,q)-NIG, the derivative of the parameters wrt the vari-
ance equation is given by the recursion

∂σ2t,T−GARCH
∂θT−GARCH

= yt−1,T−GARCH +Σ
p
i=1πi

∂σ2t−i,T−GARCH
∂θT−GARCH

. (C.6)

which we plug into (C.2) .
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The Hessian of the GARCH(p,q)-NIG is given by (C.3) where we plug
in σ2t,T−GARCH in the place of σ

2
t and

∂2σ2t,T−GARCH
∂θT−GARCH∂θ0T−GARCH

=
∂yt−1,T−GARCH
∂θ0T−GARCH

+
∂
³
Σpi=1πi∂σ

2
t−i,T−GARCH

´
∂θT−GARCH∂θ0T−GARCH

,

in the place of ∂2σ2t
∂θ∂θ́

.

C.3 AV-GARCH(p,q)-NIG

For the Absolute-Value GARCH(p,q)-NIG we model the conditional stan-
dard deviation that is σt, instead of the conditional variance

¡
σ2t
¢
as in the

GARCH(p,q)-NIG and the T-GARCH(p,q)-NIG.
For the AV-GARCH(p,q)-NIG let the data vector be

yt,AV−GARCH = (1, |xt−1| , ..., |xt−q| ,σt−1, ...,σ0t−p) and
ψAV−GARCH =

¡
α, ρ0, ρ1, ..., ρq,π1, ...,πp

¢0 be the vector of parameters. Now,
partition ψAV−GARCH =

¡
α,θ0AV−GARCH

¢0 where
θAV−GARCH =

¡
ρ0, ρ1, ..., ρq,π1, ...,πp

¢0 is the parameters specific to the
equation for the conditional standard deviation of the AV-GARCH(p,q)-NIG
model.

The equation for the conditional standard deviation for the
AV-GARCH(p,q)-NIG becomes

σt,AV−GARCH = ρ0 + ρ1 |xt−1|+ ...+ ρ1 |xt−q|+ ...+ π1σt−1 + ...+ πpσt−p,

or

σt,AV−GARCH = y0t,AV−GARCHθAV−GARCH .

Therefore we need to adjust the term ∂σ2t
∂θ in (C.2) . We need the derivative

wrt the parameter in σt, we have

∂σ2t
∂θ

=
∂σ2t
∂σt

∂σt
∂θ

= 2σt
∂σt
∂θ
.

To get the gradient of the AV-GARCH(p,q)-NIG we replace ∂σ2t
∂θ in (C.2) by

2σt,AV−GARCH
∂σt,AV−GARCH
∂θAV−GARCH , and we get the gradient for AV-GARCH(p,q)-
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NIG

∂ ln lt
∂ψAV−GARCH

= (C.7)
1
2α + 1+

1
2

x2t
α(σ2tα+x2t )

− 1
2

·h
K0(τ t)τ t
K1(τ t)

+ 1
i
(2σ2tα+x2t )
α(σ2tα+x2t )

¸
µ

x2t
σt(σ2tα+x2t)

− 1
σt
+

x2t
σ3t

³
K0(τ t)
K1(τ t)

+ 1
τ t

´³
1+

x2t
σ2tα

´−1/2¶ ∂σt,AV−GARCH
∂θAV−GARCH

 .

and the recursion is given by

∂σt,v
∂θAV−GARCH

= yt +Σ
p
i=1πi

∂σt−i,AV−GARCH
∂θAV−GARCH

, (C.8)

which we plug into (C.2) .
The Hessian of the GARCH(p,q)-NIG is given by (C.3) where we plug

in

∂2σt
∂θAV−GARCH∂θ0AV−GARCH

=
∂yt−1

∂θ0AV−GARCH
+

∂ (Σpi=1πi∂σt−i)
∂θAV−GARCH∂θ0AV−GARCH

,

in the place of ∂2σ2t
∂θ∂θ´

.

C.4 TAV-GARCH(p,q)-NIG

To derive the gradient of TAV-GARCH(p,q)-NIG define the following vectors
yt = (1, |xt−1| , ..., |xt−q| , I (xt−1 < 0) |xt−1| , ..., I (xt−q < 0) |xt−q| ,σt−1, ...,σt−p)0
and ψ =

¡
α, ρ0, ρ1, ..., ρq,ω1, ...,ωq,π1, ...,πp

¢0. As before partition
ψ =

¡
α,θ0

¢0 where θ = ¡ρ0, ρ1, ..., ρq,ω1, ...,ωq,π1, ...,πp¢0.
For the TAV-GARCH(p,q)-NIG model, the equation for the conditional

standard deviation becomes

σt,TAV−GARCH = y0t,TAV−GARCHθTAV−GARCH
σt,TAV−GARCH = ρ0 + ρ1 |xt−1|+ ...+ ρ1 |xt−q|+ I (xt−1 < 0)ω |xt−1|+ ...

+I (xt−q < 0)ω |xt−q|+ π1σt−1 + ...+ πpσt−p

For the TAV-GARCH(p,q)-NIG, the derivative of the parameters wrt the
conditional standard deviation equation is given by the recursion

∂σt,TAV−GARCH
∂θTAV−GARCH

= yt−1,TAV−GARCH +Σpi=1πi
∂σt−i,TAV−GARCH
∂θTAV−GARCH

. (C.9)
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which we plug into (C.2) . The Hessian of the TAV-GARCH(p,q)-NIG is given
by (C.3) where we plug in

∂2σt
∂θTAV−GARCH∂θ0TAV−GARCH

=
∂yt−1

∂θ0TAV−GARCH
+

∂ (Σpi=1πi∂σt−i)
∂θTAV−GARCH∂θ0TAV−GARCH

,

in the place of ∂2σ2t
∂θ∂θ´

.



There are no ends, only beginnings.


	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Chapter 1 Review of volatility models
	1.1 Introduction
	1.2 Background to volatility modeling
	1.3 The stochastic volatility model
	1.4 The GARCH(p,q) model
	1.5 The NIGSV(p,q) model
	1.6 Continuous time models and volatility
	1.7 Outline of the thesis

	Chapter 2 A new parameterization of the NIG
	2.1 Standardization of the NIGSV(1,1)
	2.2 A new scale invariant parameterization of NIG
	2.2.1 Scaling properties of the new parameterization

	2.3 The GARCH(p,q)-NIG model

	Chapter 3 Test of the Mixing Distribution Hypothesis
	3.1 Introduction
	3.2 The Mixture-of-Distributions Hypothesis
	3.3 Data sources and realized volatility
	3.4 Raw Returns
	3.5 RV-standardized returns
	3.6 Conclusions
	3.7 Futher work
	3.8 Tables
	3.9 Figures

	Chapter 4 Motivating the GARCH(p,q)-NIG
	4.1 The link between realized volatility and conditional variance
	4.2 The inverse gamma and the inverse Gaussian distributions
	4.3 Unconditional distributions
	4.4 Conditional distributions
	4.4.1 Distributions conditional on lagged realized volatilities
	4.4.2 Distributions conditional on lagged squared returns
	4.4.3 Out-of-sample Euro predictions

	4.5 Conclusions
	4.6 Further work
	4.7 Tables
	4.8 Figures

	Chapter 5 Temporal aggregation of realized volatility and the inverse Gaussian distribution
	5.1 Fitting IG to realized volatility
	5.2 Fitting IG to standardized RV
	5.2.1 Fitting IG to standardized RV results
	5.2.2 Moment aggregation of the realized volatility
	5.2.3 Analytical aggregation of the moments of IG on standardized realized volatility

	5.3 Conclusions
	5.4 Tables
	5.5 Figures

	Chapter 6 The General GARCH-NIG model
	6.1 Asymmetry
	6.2 Modeling the conditional standard deviation
	6.3 A general GARCH-NIG(p,q) model
	6.3.1 The Threshold-GARCH(p,q)-NIG model
	6.3.2 The Absolute Value-GARCH(p,q)-NIG model
	6.3.3 The Threshold Absolute Value GARCH(p,q)-NIGmodel

	6.4 Estimation of the models
	6.5 Concluding remarks
	6.6 Further work

	Chapter 7 Simulation study
	7.1 Simulation setup
	7.2 Evaluation measures
	7.3 Results of the simulations
	7.3.1 Results for GARCH-NIG
	7.3.2 Results for T-GARCH-NIG
	7.3.3 Results for AV-GARCH-NIG
	7.3.4 Results for TAV-GARCH-NIG

	7.4 Concluding remarks
	7.5 Tables

	Remarks and further work
	References
	Appendix A Moments of the models
	A.1 Moment structure of the GARCH(1,1)-NIG
	A.2 Moment structure of the T-GARCH(1,1)-NIG
	A.3 Moment structure of the AV-GARCH(1,1)-NIG
	A.4 Moment structure of the TAV-GARCH(1,1)- NIG

	Appendix B Absolute moments of NIG
	Appendix C Gradients and Hessians of the models
	C.1 GARCH(p,q)-NIG
	C.2 T-GARCH(p,q)-NIG
	C.3 AV-GARCH(p,q)-NIG
	C.4 TAV-GARCH(p,q)-NIG


