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Abstract
A new form of time-harmonic Maxwell’s equations is developed on the base of the standard
ones and proposed for numerical modeling. It is written for the magnetic field strength H,
electric displacement D, vector potential A and the scalar potential Φ. There are several
attractive features of this form. The 1st one is that the differential operator acting on these
quantities is positive. The 2nd is absence of curl operators among the leading order differential
operators. The Laplacian stands for leading order operator in the equations for H, A and Φ,
while the gradient of divergence stands for D. The 3rd feature is absence of space varied
coefficients in the leading order differential operators that provides diagonal domination of the
resulting matrix of the discretized equations. A simple example is given to demonstrate the
applicability of this new form of time-harmonic Maxwell’s equations.

Supplementary material for this article is available online
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1. Introduction

Time-harmonic Maxwell’s equations are used for modeling
electromagnetic field interaction with media in many sciences,
e.g. biology, medical science, etc. In plasma physics, the main
area of their application is radio-frequency (RF) plasma heat-
ing. RF heating is used both in low and high temperature
plasma. The peculiar feature of the plasma response on elec-
tromagnetic field is its complexity. Another important thing is
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the geometry of the magnetic field which confines plasma. The
last feature requires multi-dimensional modeling, 2D and 3D.
These features give life to plasma-specific electromagnetic
phenomena, such as wave branches with very different space
scale, kinetic waves which behavior is strongly influenced by
plasma temperature, mode conversion in non-uniform plasma,
geometry-induced modes, etc. This all is modeled using time-
harmonic Maxwell’s equations.

The conventional form of time-harmonic Maxwell’s
equations in non-magnetic media is:

∇×E= ik0H; ∇×H=−ik0ε̂ ·E+
4π
c
jext (1a,b)

where E and H are electric and magnetic field strengths, ε̂
is the dielectric tensor, jext is the external (antenna) current
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density, k0 = ω/c, c is the speed of light and the time
dependence of all quantities is realized through the multiplier
exp(−iωt). With proper boundary conditions, such equations
are relevant for problems of RF wave excitation and propaga-
tion in plasmas and other media. For finite element analysis,
the 1st order equations (1a,b) are often combined into the
form:

∇×∇×E= k20 ε̂ ·E+
4πiω
c2

jext, (2)

in which the leading derivatives are of 2nd order.
Numerical solution of the boundary problem normally

implies the discretization in space. The curl operator has some
features which are not always reproduced after the discretiz-
ation: e.g. it has zero-valued eigenvalue, and the eigenvectors
are gradients of different scalar functions. The applied stand-
ard discretization technique born spurious modes, both for
equations (1a,b) as well as equation (2). Since ∇·∇×F= 0
(for any arbitrary vector F), a set of the components of the
curl operator is degenerate. The degeneration is cancelled by
the discretization procedure, and a new wave-like spurious
mode appears which has no physical nature. To avoid this, a
number of methods have been proposed. The 1st one is the
Yee template for the finite differences [1]. In this template
the mesh is staggered, and every E- and H-field component
occupies different mesh nodes. This introduces difficulties for
imposing the boundary conditions, calculation of dissipated
power, and reproducing correctly rotating electric field com-
ponents, E± = Ex±Ey, which are responsible for the cyclo-
tron wave dumping in magnetized plasma (the steady mag-
netic field is in z direction). For equation (2) a special template
has been proposed [2] and used in [3, 4] with the same mesh
for all components of the electric field. These two templates
produce degenerate systems, and the spurious modes do not
appear.

The Yee approach has a finite element analog, a Gruber–
Rappazmethod [5]. Thismethod uses different order Lagrange
and Hermite finite elements for different components of the
electric field. Later on, special curl-conforming finite elements
were invented like Nedelec finite elements [6].

Maxwell’s equations in an alternative form can be obtained
by introducing the vector and scalar potentials substituting
E= ik0a−∇ϕ andH=∇× a yield with the Coulomb gauge
∇· a= 0:

∆a+ k20 ε̂ · a+ ik0ε̂ ·∇ϕ=−4π
c
jext (3)

∇· [ε̂ · (ik0a−∇ϕ)] = 4πρext (4)

where ρext is the electric charge. Here and further on, the
Laplacian of a vector is understood as ∆F=∇∇·F−∇×
∇×F. The form (3), (4) has no degenerate operators and can
be discretized in a standard way which is a serious benefit.

After discretization a system of linear algebraic equations
Mx = b appears that could be solved by direct or iterative
methods. All the above forms of the Maxwell’s equations are
sign indefinite and produce sign indefinite matrices, i.e. the

scalar product (f, Mf) could have any value (here f is an arbit-
rary vector of the domain).

1D problem produces a dense band matrix and is best
for direct methods. 2D and 3D problems result in sparse
matrices. It is comfortable to use direct solvers since they
can be applied to sign indefinite systems. The project PARD-
ISO (Partial Differential Solver) should be mentioned here
since is offers mostly universal and efficient tools for numer-
ical solving (www.pardiso-project.org/). However, factoriza-
tion unavoidably leads tomatrix fill-in and increase ofmemory
requirements. These requirements could be orders of mag-
nitude higher than for initial sparse matrix.

The iterative methods are muchmore economic in memory.
For sign indefinite linear problems we cannot apply iterat-
ive methods of relaxation family and the conjugate gradients
(CGs) methods which otherwise offer good convergence rates.
The GMRes, BiCGStab [7] and other methods are developed
for this. The iterations for Maxwell’s equations do not show
good convergence and often stagnate [8]. The inner and outer
iterations are used to avoid this [9], but performance of the
iterations is still low. An expensive, but robust approach is to
retain time dependence inMaxwell’s equationswhile the prob-
lem is essentially time-harmonic [10].

The aim of the paper is to develop sign definite form of
Maxwell’s equations, discretization of which likely results in
sign definite matrix for linear equations and allows one to use
efficient iterations to obtain the numerical solutions. Another
aim is to eliminate the curl operator at leading derivatives. This
facilitates and simplifies the discretization and likely boosts
the iterations.

2. New alternative form of Maxwell’s equations

The source equations for this study are basically equations (1)
written in the following form:

∇×A− ik0H= 0, (5)

∇×H+ ik0D=
4π
c
jext, (6)

∇·D= 4πρext, (7)

∇Φ+ ik0ζ̂ ·D− ik0A= 0, (8)

where D is the electric displacement, A= ik0a and Φ=
−iϕ/k0 are normalized potentials. The introduction of these
normalized potentials is made to make all the quantities in the
equations (5)–(7) of the same order of magnitude. This is done
having in mind further discretization and combination of all
discretized values to the single vector x of the linear system.
The material equation is ζ̂ ·D= E instead of the commonly
used D= ε̂ ·E. This change is motivated by the want to have
no coefficients before the differential operators of a leading
order in (5)–(8).

With charge continuity assumed to be met, equations
(5)–(7) are dependent since equation (7) can be obtained from
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equation (5). This should be kept in mind during the further
transforms.

Let us denote the left hand sides of the equations (5)–(8) as
LA, LH, LD and LΦ, and right hand sides as RH and RD. Then
we construct the following quadratic form:

Q=

ˆ
dV [L∗

A ·LA +L∗
H · (LH −RH)

+L∗D(LD −RD)+L∗
Φ ·LΦ]. (9)

This form is zero valued if the operatorsL act on the solution of
the system (5)–(7).Q is real and positive if RH = 0 andRD = 0,
and A, H, D and Φ are arbitrary. Using Gauss’s theorem, Q is
transformed into:

Q= QS +QV. (10)

The surface term reads:

QS =

ˆ
dS · (A∗ ×LA)+

ˆ
dS · [H∗ × (LH −RH)]

+

ˆ
dS ·D∗(LD −RD)+

ˆ
Φ∗dS ·LΦ, (11)

where dS is the surface element of the surface surrounding the
domain and directed outward. The volume integral part is:

QV =

ˆ
dV[A∗ ·L ′

A +H∗ · (L ′
H −RH)+D∗

· (L ′
D −R ′

D)+Φ∗L ′
Φ] (12)

with

L′
A =∇×LA + ik0LΦ,L′

H = ik0LA +∇×LH,

R′
H =∇×RH,L′

D =−ik0LH −∇LD − ik0ζ̂
T∗

·LΦ,

R′
D =−ik0RH −∇RD,L

′
Φ =−∇ ·LΦ

If A, H, D and Φ are the solutions of the system (5)–(8) QS

is zero, while for arbitrary vectors A, H, D and Φ, QS could
have any value. For further consideration we restrict the space
of problems under consideration to those ones for which each
integrand for each of four terms in (11) nullify (with RH = 0
and RD = 0), i.e.:

dS · (A∗ ×LA) = 0, dS · (H∗ ×LH) = 0,

dS ·D∗LD = 0, Φ∗dS ·LΦ = 0, (13)

and consider only problems for which at the domain surface:

RD|S = 0, dS×RH|S = 0 (14)

charge density and tangent current density nullify. However,
the space of remaining problems remains rather wide and
includes practically important tasks. In this way we achieve
QS = 0 for all arbitrary vectors from the restricted by (13) sub-
space including the solutions of the source system of equations
(5)–(8).

We combine the quantities vectors A, H, D and Φ into one
ten-component vector X and denote the corresponding ten-
component operator by L. With such a notation the volume
integral is:

QV =

ˆ
dVX∗ ·L(X). (15)

If the conditions (13), (14) are met for vectorsX,QV > 0. This
means, that operator L is positive.

The explicit form of the equations L(X) = R (where R is
the combined right-hand side) is:

−∆A+ k20A− ik0∇×H− k20ζ̂ ·D+ ik0∇Φ= 0, (16)

−∆H+ k20H+ ik0∇×A+ ik0∇×D=
4π
c
∇× jext, (17)

−∇∇ ·D+ k20(D+ ζ̂
∗T

· ζ̂ ·D)− k20ζ̂
∗T

·A− ik0∇×H

− ik0ζ̂
∗T

·∇Φ=−ik0
4π
c
jext − 4π∇ρext, (18)

−∆Φ+ ik0∇·A− ik0∇· ζ̂ ·D= 0. (19)

Here (ζ̂
∗T
)ik = (ζ̂)∗ki. In obtaining the above system, the

formulas ∇×∇×A=−∆A and ∇×∇×H=−∆H have
been used which follow from the Coulomb gauge applied
on A:

∇·A= 0 (20)

and from the divergence-free property of H:

∇·H= 0 (21)

which is a consequence of (5). In this way the curl operator
is deleted from the leading derivatives in the system (16)–
(19). In addition, after such a transformation the dependency
of equations which is inherited from the system (5)–(8) is now
cancelled.

The system (16)–(19) supports the divergence-free property
of A and H in the following way:

∆(∇·A) = 0, (22)

∆(∇·H)− k20(∇·H) = 0. (23)

Each of these equations obtained from (16)–(19) is isolated
and have no right-hand side. They have zero valued solutions
when the appropriate boundary conditions are imposed to the
system (16)–(19).

Some trouble comes from the leading order term∇∇·D in
equation (18). The gradient of divergence operator has a large
zero-space consisting of curls of arbitrary vectors. So, after
discretization, spurious modes may appear. This is maybe not
possible to make an analytical analysis of the spurious modes
for the general case which covers all geometries, discretiza-
tion methods and mesh configurations. Anyway, such analysis
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is made in the next section for the particular case considered
there.

The requirement to the discretization applied to the system
(16)–(19) is not only to reproduce the vector X by the vec-
tor of discrete values x, the system of differential equations
L(X) = R by the linear system Mx = b, but also to reproduce
the integral I=

´
dVX∗ ·Y by the dot product Ĩ= (x,y) =∑

i
x∗i yi.

3. The numerical exercise

As a simple example, the problem of electromagnetic field dis-
tribution in the metallic rectangular cavity (parallelepiped) is
analyzed. The boundaries of the cavity are: x = 0, x = Lx;
y = 0, y = Ly; z = 0, z = Lz. The cavity is assumed to
be empty with ζ̂ = 1. For the numerical solution we use
the finite difference method. The coordinates are Cartesian,
and the system (16)–(19) is projected to the coordinates. The
mesh chosen is rectangular and equidistant. Themesh steps are
hu = Lu/(Nu− 1), where u can be x, y, z; Nu are the numbers
of the mesh nodes.

The differential operators are reproduced by the central dif-
ferences.

3.1. Spurious modes

Spurious modes appear as perturbations over the regular
solutions, and they are described by the discretized system
(16)–(19) with zero right-hand side. The spurious modes are
the result of discrepancy between differential and difference
operators. This difference becomes visible for quickly oscillat-
ing solutions. The quickly oscillating solutions are described
well within the WKB approximation. The WKB approach
gives separate equations for the phase (eikonal) and amp-
litude of the solution. Since the analysis is for existence/non-
existence of the spurious solutions, the treatment of the dis-
persion equation which is used to find the eikonal is sufficient.
So, f (i+1,j,k) = f (i,j,k) exp(ikxhx), f (i,j+1,k) = f (i,j,k) exp(ikyhy)
and f (i,j,k+1) = f (i,j,k) exp(ikzhz). Here f could be Φ and
any component of A, H and D. The wavenumber then
is k = (kx, ky, kz). Since the wavelength is short (kuhu ≫
1/(Nu− 1), u = x, y, z), the first terms in the discretized
equations (16), (17) and (19), the terms with Laplasian oper-
ator, turn into dominant, and A, H and Φ become then negli-
gibly small. The discretized equation (18) can be written as:

κκ ·D+ 2k20D+ p̂ ·D= 0, (24)

where κu = sin(kuhu)/hu is the discrete representation of ku, p̂
is the diagonal matrix with the following components: puu =
[1− cos(kuhu)]2/h2u. The 1st and 2nd terms in (24) represent
the 1st and 2nd terms in (18). The last term of (24) is a creation
of discretization. With k→ 0, it goes to zero much faster then
others, but for large wavenumbers it could be even dominant.
The equation (24) prompts that the sum of the last two terms
is collinear with vector κ:

Gκ = 2k20D+ p̂ ·D, (25)

where G is a constant. This formula is used to find D. Then D
is substituted to (24) which results in the following dispersion
equation:

κ · ŝ ·κ=−1, (26)

where ŝ is a diagonal matrix in which suu = 1/(2k20 + puu).
Every component of the dot product in (26) is positive. This
means that the dispersion equation has no real solutions and,
the spurious modes do not exist.

3.2. Discretization procedure

In our numerical exercise the tangent current densities and the
charge density, following to (14), nullifies at the boundary sur-
face: dS× jext|S = 0 and ρext|S = 0.

The boundary conditions at the metallic surfaces are
dS×A|S = 0, dS×A|S = 0, dS ·H|S = 0, Φ|S = 0. How to
handle with the vector components not covered by the above
conditions is briefly explained in the appendix (available
online at stacks.iop.org/PPCF/63/124007/mmedia).

3.3. Analytical solution

To analyze the numerical results it is good to have an analytical
solution for further comparison.

The constructed analytical solution is the following.
The external current density is prescribed as:

jext = exj0x cos(kxx)sin(kyy)sin(kzz)

+ eyj0y sin(kxx)cos(kyy)sin(kzz)

+ ezj0z sin(kxx)sin(kyy)cos(kzz) (27)

where kx = π/Lx, ky = π/Ly, kz = π/Lz. j0x, j0y and j0z are the
constants. For such currents the analytical solutions are:

A = exA0x cos(kxx)sin(kyy)sin(kzz)

+ eyA0y sin(kxx)cos(kyy)sin(kzz)

+ ezA0z sin(kxx)sin(kyy)cos(kzz) (28)

with:

A0 =
4πik0

c(k2 − k20)

[
j0 −

k(k · j0)
k2

]
. (29)

Magnetic field expression is:

H = exH0x sin(kxx)cos(kyy)cos(kzz)

+ eyH0y cos(kxx)sin(kyy)cos(kzz)

+ ezH0z cos(kxx)cos(kyy)sin(kzz) (30)

and

H0 = (k×A0)/(ik0). (31)

The potential is:

Φ= Φ0 sin(kxx)sin(kyy)sin(kzz), (32)

4
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Figure 1. Convergence rate for mesh size N = 41 × 41 × 41 and
calculation parameters Lx = 1 cm, Ly = 1 cm, Lz = 2 cm and
L0 = 0.8 cm (k0 = π/L0).

Φ0 =− 4π
ck20

k · j0. (33)

The electric displacement has a similar expression as (28)
coefficients of which are calculated using the formula:

D0 = A0 + ikΦ0/k0. (34)

3.4. Numerical results

After discretization, the resulting linear system Mx = b is
solved using the CGs method. No matrix preconditioning
is employed. In the calculations, the normalized residual is
computed:

η(m)r =

√
(Mx(m) −b,Mx(m) −b)

(b,b)
. (35)

Here m is enumerates iterations. The normalized error:

η(m)e =

√
(x(m) − xa,x(m) − xa)

(xa,xa)
(36)

is also calculated (xa contains the analytical solution values
in the mesh nodes). The test show rather quick and smooth
convergence (see figure 1).

While the residual constantly (in average) decreases, the
error saturates converging to the error value of the discretiz-
ation scheme. It is expedient to stop iterations when the error
is close to that value. Figure 2 shows the number of iterations
m2 needed to achieve twice less accuracy than the discretiza-
tion offers as a function of total mesh node numbers N (in this
numerical experiment mesh is scaled proportionally).

Figure 2. Optimum number of iterations m2 as function of total
number of mesh nodes N.

So, the optimum number of iterations scales close to N1/3

which indicates a good performance of the iteration scheme.
In practice the analytical solution is not known. The

optimum number of iterations could be determined either by
detecting the saturation of iterations or using an estimate for
the residual produced by the discretization template.

4. Conclusions

A new form of time-harmonic Maxwell’s equations is
developed and proposed for numerical modeling. It is writ-
ten for the magnetic field strength H, electric displacement D
and vector potential A and the scalar potential Φ. There are
several attractive features of this form. The first is that the dif-
ferential operator acting on these quantities is positive. This
opens a door for usage, after discretization, of standard iterat-
ive procedure such as CGs. Second is absence of curl operat-
ors among leading order differential operators. The Laplacian
stands for leading order operator in the equations forH, A and
Φ and the gradient of divergence stands for D. This arrange-
ment allows one to use the standard discretization procedure
and use the samemesh for all quantities, and also facilitates the
boundary condition applications. The 3rd feature is absence of
space varied coefficients in the leading order differential oper-
ators that provides diagonal domination of the resulting matrix
of the discretized equations.

The analysis of spurious modes showed their non-existence
in case of regular mesh and finite differences usage.

A simple example is given to demonstrate the performance
of time-harmonic Maxwell’s equations; a 3D finite difference
approach is used with the CGs method for iterations. Specifics
of techniques of handlingwith boundaries are explained. In the
example, quite good conversion of the iterations is achieved.
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It is expected that this approach would have wide scope of
usage. The only constraint is that equation (14) should be sat-
isfied. This mean that problems with non-zero external charge
density just at the boundary surface are not allowed. Also, the
external currents at the surface directed along it are not allowed
too. But the problems for which above requirements are not
satisfied seem rather exceptional than practical. Within this
approach, some complexity for imposing the boundary con-
ditions exists, but is solvable. In this respect the finite element
discretization procedure is expected to be much simpler.
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