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Simple Summary: Recent clinical trials suggest that combination therapies that include either gemc-
itabine or 5-fluorouracil (5-FU) both give significant survival benefits for pancreatic cancer patients.
The tumor level of the nucleoside transporter hENT1 is prognostic in patients treated with adjuvant
gemcitabine but not adjuvant 5-FU. This work shows for the first time that hENT1 is only predictive
of benefit from gemcitabine over 5-FU in patients with low levels of CDA transcript. A choice
between adjuvant 5-FU based combination therapies (such as FOLFIRINOX) and gemcitabine-based
therapy (e.g., GemCap) could be made based on a combination of hENT1 protein and CDA mRNA
measured in a resected tumor.

Abstract: Gemcitabine or 5-fluorouracil (5-FU) based treatments can be selected for pancreatic cancer.
Equilibrative nucleoside transporter 1 (hENT1) predicts adjuvant gemcitabine treatment benefit over
5-FU. Cytidine deaminase (CDA), inside or outside of the cancer cell, will deaminate gemcitabine, al-
tering transporter affinity. ESPAC-3(v2) was a pancreatic cancer trial comparing adjuvant gemcitabine
and 5-FU. Tissue microarray sections underwent in situ hybridization and immunohistochemistry.
Analysis of both CDA and hENT1 was possible with 277 patients. The transcript did not correlate
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with protein levels for either marker. High hENT1 protein was prognostic with gemcitabine; median
overall survival was 26.0 v 16.8 months (p = 0.006). Low CDA transcript was prognostic regardless
of arm; 24.8 v 21.2 months with gemcitabine (p = 0.02) and 26.4 v 14.6 months with 5-FU (p = 0.02).
Patients with low hENT1 protein did better with 5-FU, but only if the CDA transcript was low
(median survival of 5-FU v gemcitabine; 29.3 v 18.3 months, compared with 14.2 v 14.6 with high
CDA). CDA mRNA is an independent prognostic biomarker. When added to hENT1 protein status,
it may also provide treatment-specific predictive information and, within the frame of a personalized
treatment strategy, guide to either gemcitabine or 5FU for the individual patient.

Keywords: 5-fluorouracil; gemcitabine; pyrimidine; biomarker; predictive marker; prognostic
marker; chemotherapy

1. Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is predicted to overtake breast cancer as
the second leading cause of cancer death in the USA shortly, with limited survival despite
improved therapeutic options [1–3].

Studies by the European Study Group for Pancreatic Cancer (ESPAC) and others
show that adjuvant chemotherapy with either 5-fluorouracil (5-FU)/Folinic Acid (FA)
or gemcitabine following surgery improves survival [4–10]. Combining gemcitabine or
5-FU with other chemotherapeutics further increases survival, including gemcitabine with
capecitabine [11] or 5-FU with FA, irinotecan, and oxaliplatin (FOLFIRINOX) [12]. It
is evident from trials in different population cohorts that selecting therapies based on
individual profiling leads to improved survival rates [13]. Genetic variations in the patient
and in their tumor [14] cause different protein patterns that can stratify patients into
different sub-groups [15–19]. Broad classification allows association with prognosis [20],
but the further subdivision is needed for treatment-specific predictions.

The activity of pyrimidine-based drugs is dependent on proteins involved in the trans-
membrane uptake and metabolism of endogenous and exogenous pyrimidines [21,22].
Gemcitabine is a nucleoside analog of deoxycytidine that is transported into the cell by
membrane transporter proteins, a major mediator being human equilibrative nucleoside
transporter 1 (hENT1). We have previously reported that high protein expression of hENT1
was associated with improved overall survival in patients treated with gemcitabine in the
ESPAC-3(v2) trial population, but not in those treated with 5-FU [23].

hENT1 has less affinity for cytidine than for its deaminated form (uridine) [24], it
has much less affinity for nucleobases (e.g., 5-FU) than nucleosides (e.g., gemcitabine),
although it has a greater affinity for nucleobases than other nucleoside transporters [25].
Deamination of gemcitabine by cytidine deaminase (CDA) outside of the cell would
increase its transport into the cell, where it can be converted back into gemcitabine or
exert a direct toxic effect [26]. Deamination inside the cell increases transport out. CDA
is predominantly in the cytoplasm of cells but is also seen within the nucleus [27]. CDA
can also be secreted into the extracellular space [28], and although intracellular CDA is
the main determinant of gemcitabine sensitivity in cell lines, even with just pancreatic
cancer cell lines, secreted CDA still accounts for a substantial amount of gemcitabine
metabolism [29]. In vivo, CDA is produced by cancer and stromal cells. Bacteria found in
PDAC (e.g., gammaproteobacteria) also produce CDA, perhaps contributing to resistance
to gemcitabine [30].

Intracellular gemcitabine is phosphorylated by deoxycitidine kinase and nucleotide
kinases to its active metabolites [31]. The phosphorylated forms of gemcitabine (as with all
nucleotides) are not transported by hENT1, trapping them inside the cell. They can still be
deaminated by CDA, reducing cytotoxicity as fluorouridine triphosphate is less readily
incorporated into DNA [32].
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It is estimated that approximately 90% of intracellular gemcitabine is metabolized
by endogenous CDA [33], leaving little gemcitabine triphosphate to incorporate into
DNA. Germline polymorphisms of CDA have been associated with response to gemc-
itabine [34] as has CDA expressed from bacteria [30] and induction of CDA expression by
macrophages [35,36].

In this study, the expression of CDA mRNA and protein was analyzed in tissue from
patients in the ESPAC-3(v2) trial. ESPAC-3(v2) compared gemcitabine with 5-fluorouracil
plus FA (leucovorin) as adjuvant therapy. Since CDA will alter the import and export of
gemcitabine and its metabolites into cells by hENT1, and hENT1 expression is known to be
predictive for gemcitabine efficacy, we further assessed the combined predictive value of
CDA with hENT1 expression.

2. Materials and Methods
2.1. Study Design

Translational analysis of ESPAC-3(v2) was granted ethical approval by the Liverpool
Research Ethics Committee (07/H1005/87). Good Clinical Practice Standard Operating
Procedures were employed throughout. The trial was originally analyzed on an intention-
to-treat basis but for the translational study, patients in the treatment arms were included
only if treatment was received [4,5,10]. This study was conducted in accordance with
REMARK criteria [37].

2.2. Tissue Microarray Manufacture

Tissue microarrays (TMA) were manufactured as previously reported [23]. Arrays
contained cores from 434 patients, 88 patients in duplicate per array, and a total of 4–8 cores
per patient across arrays. Tumor regions were identified by an experienced pancreatic
pathologist (FC) using haematoxylin and eosin-stained sections. Each core on each TMA
was coded and linked separately to trial identifiers ensuring blinding of the analysts to
outcome and treatment.

2.3. RNAscope® In Situ Hybridization (ISH)

Four µm TMA sections were baked at 60 ◦C for 60 min. Sections were deparaffinized
in xylene, dehydrated in ethanol, and air-dried. RNAscope® 2.0HD Assay-Brown kits
(ACD, Newark, CA, USA) were used, according to manufacturer’s instructions, to detect
mRNA transcripts of CDA and hENT1: TMAs were heated to 100–104 ◦C in a citrate buffer
to unmask target mRNA and permeabilize cells, followed by treatment with a protease
inhibitor. The 15 probes for CDA hybridized between position 31 and 957 of the mature
mRNA (NM_001785.2) and the 20 probes for hENT1 were designed to hybridize to the
mature mRNA for gene SLC29A1 (NM_001078177.1) between positions 479 and 1774. PPIB
and DapB were used as positive and negative controls. Probes were hybridized for 2 h at
40 ◦C. Signal amplification from the hybridized probes allowed detection of transcripts by
3,3′-diaminobenzidine. Counterstaining with hematoxylin localized the brown punctate
dots within the cells.

2.4. Quantification Using RNAscope SpotStudio® Software

Sections were scanned with an Aperio ScanScope® microscopy scanner (Leica Mi-
crosystems [UK] Ltd., Milton Keynes, UK) at ×40 magnification. All cores were manually
reviewed by FC, identifying cancerous regions. Damaged tissue was omitted, as were areas
with debris/artifacts obscuring the area of interest. The pathologist and scientists involved
were blinded to patient data, including treatment and outcome. RNAscope Spot Studio®

v 1.0 Software (ACD) was used to detect and count dots on a cell by cell basis over the
entire cancerous region. Full details of the assessment can be found in the Supplementary
Materials. Parameters were the mean number of spots per cell (spot clusters were taken
as equivalent to 10 spots when included) or proportion of cells with a given range of
spots. The ranges were: Group 1, zero spots per cell, Group 2, 1–5 spots per cell and
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Group 3 ≥ 6 spots per cell. For each patient, the scores for individual cores were averaged
as a mean value. The positive control, PPIB, showed detectable spots corresponding to
individual transcripts whereas the negative control, DapB, had none. Following the com-
puterized analysis of each TMA, a final manual quality check of every individual core was
performed.

2.5. Immunohistochemistry

Immunohistochemistry with hENT1 antibody (10D7G2) or CDA antibody (ab137605,
Abcam, Cambridge, UK) was performed as previously reported [23] The intensity of hENT1
cytoplasmic and membrane staining was scored by FC, accompanied by a research assistant
(Elizabeth Garner), and H-scores were derived for each core ([intensity score]× [percentage
of stained tumor cells]) with mean H-score calculated for each patient (Figure S2). For CDA
an automated scoring system was used, described in Supplementary Materials.

2.6. Statistical Analysis

Overall survival, measured from the date of randomization, was estimated using the
method of Kaplan–Meier [38] with unadjusted differences between groups assessed using
the log-rank test. Analyses were carried out using Cox proportional hazards models to
assess the impact of biomarkers, individually and in combination, on overall survival.
All models included tumor stage, lymph node involvement, and resection margins as
prognostic factors with the effect of biomarkers nested within treatment effect. This
allowed for the effects of prognostic clinical factors to be calculated across the patient
cohort, whereas the effects of biomarkers are allowed to differ between treatment arms.

The assumption of proportionality was assessed via inspection of the Schoenfeld
residuals. Comparing the residuals against the rank sum of time produced a global test for
proportionality.

All statistical tests were two-sided and p < 0.05 was considered significant. All analyses
were carried out using R version 3.3 (R Core Team).

3. Results

Tissue samples representing 290 out of 434 patients (67%) were of sufficient quality
to allow scoring of mRNA. Restricting to patients that had matched protein hENT1 H-
scores [23] gave 277 patients for the final analysis.

3.1. Determining Expression Levels of hENT1 and CDA in PDAC

CDA and hENT1 mRNA expression was detected only in epithelial cells and not in the
surrounding stromal matrix. Representative images of RNA analysis are shown in Figure 1.
Different assessment methods were compared and found to give equivalent ranking (high
to low expression) for the patients (Tables S1, S2 and Figure S1). Mean single spots per
cell excluding clusters (MSPC) were chosen for all analyses. The relationship between
mRNA and protein expression was investigated in patientC cores where matched mRNA
and protein data were available, this showed no correlation for either CDA or hENT1 (see
Figure S3).

3.2. Univariate and Multivariable Analyses of Clinical and Pathological Characteristics

The ESPAC-3(v2) clinical trial was designed to show differences in survival according
to treatment and so variation in clinicopathological features was minimized at trial random-
ization. However, univariate analysis by Cox proportional hazard regression, subdividing
the chemotherapy treatment groups, showed that resection margin status (HR 1.56: 95% CI
1.20–2.03 p = 0.001), lymph node involvement (HR 1.94: 95% CI 1.39–2.71 p < 0.001) and
tumor stage (HR 1.51: 95% CI 1.15–2.00 p = 0.004) were all significant prognostic factors for
patients treated with 5-FU. Tumor diameter was a significant prognostic factor for gemc-
itabine (HR 1.64: 95% CI 1.14–2.39 p = 0.010), but did not reach statistical significance as a
prognostic factor for 5-FU treated patients (HR 1.31: 95% CI 0.89–1.96 p = 0.177) (Table 1).
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Figure 1. Representative images of tissue cores showing CDA mRNA expression before and after SpotStudio® analysis. (A): 
Raw and digitized images of tissue expressing low CDA mRNA. (B): Raw and digitized images of tissue expressing high 
CDA, with inset example of cells with high CDA expression. Thick red line surrounds areas with tumor cells. Blue lines = 
Cells without any spots. Green lines = Cells with one single spot. Orange lines = Cells with between two and five spots. 
Thin red lines = Cells with six or more spots. Scale bar = 20 µm. 
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Figure 1. Representative images of tissue cores showing CDA mRNA expression before and after SpotStudio® analysis.
(A) Raw and digitized images of tissue expressing low CDA mRNA. (B) Raw and digitized images of tissue expressing
high CDA, with inset example of cells with high CDA expression. Thick red line surrounds areas with tumor cells.
Blue lines = Cells without any spots. Green lines = Cells with one single spot. Orange lines = Cells with between two and
five spots. Thin red lines = Cells with six or more spots. Scale bar = 20 µm.

3.3. Overall Survival Analysis

CDA protein expression level was not found to be prognostic for either treatment
group (Figure S4A,B). hENT1 mRNA was not prognostic in patients treated with 5-FU;
surprisingly there was a trend toward better survival in patients with low hENT1 mRNA
treated with gemcitabine (Figure S4C,D).

High expression of CDA mRNA conferred a poorer patient outcome regardless of
chemotherapy; this was more pronounced in patients treated with 5-FU than in patients
treated with gemcitabine. The median survival for patients treated with 5-FU expressing
the upper tertile (high) CDA mRNA was 14.6 (95% CI = 8.4–24.1) months compared
with 26.4 (95% CI = 21.4–29.7) months for the remaining patients, defined as low CDA
expressers (χ2 = 5.18, p = 0.02) (Figure 2A). For patients treated with gemcitabine, high
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CDA expressers had a median survival of 21.2 (95% CI = 15.7–26.2) months compared with
24.8 (95% CI = 18.3–33.0) months for low CDA expressers (Figure 2B, χ2 = 5.14, p = 0.02).

Table 1. Univariate analysis of clinical and pathological factors in the 5-FU and gemcitabine arms.

Summary Statistics Hazard Ratio (95% Confidence Interval)

Characteristic Level 5-Fluorouracil Gemcitabine 5-Fluorouracil Gemcitabine Total

Resection Margin

n = 132 n = 145 n = 277

Negative 70 (53%) 86 (59%) 1 1 1

Positive 62 (47%) 59 (41%) 1.80 (1.23–2.63) 1.35 (0.94–1.94) 1.56 (1.20–2.03)

Wald χ2 = 9.05,
p = 0.003 *

Wald χ2 = 2.62
p = 0.106

Wald χ2 = 11.22,
p = 0.001

WHO

n = 132 n = 145 n = 277

0 52 (39%) 49 (34%) 1 1 1

1 67 (51%) 80 (55%) 1.26 (0.86–1.96) 1.40 (0.94–2.07) 1.33 (1.01–1.76)

2 13 (10%) 16 (11%) 0.68 (0.29–1.59) 1.24 (0.68–2.25) 0.92 (0.56–1.53)

Wald χ2 = 2.89,
p = 0.236

Wald χ2 = 2.75
p = 0.253

Wald χ2 = 5.24,
p = 0.073

Lymph Node
Status

n = 132 n = 145 n = 277

Negative 29 (22%) 29 (20%) 1 1 1

Positive 103 (78%) 116 (80%) 2.40 (1.47–3.90) 1.56 (0.99–2.46) 1.94 (1.39–2.71)

Wald χ2 = 12.30,
p = 0.001

Wald χ2 = 3.63,
p = 0.057

Wald χ2 = 15.18
p < 0.001

Tumor Stage

n = 131 n = 144 n = 275

01/02 38 (29%) 46 (32%) 1 1 1

03/04 93 (70%) 98 (68%) 1.69 (1.10–2.59) 1.39 (0.95–2.01) 1.51 (1.15–2.00)

Wald χ2= 5.81,
p = 0.016

Wald χ2 = 2.95,
p = 0.086

Wald χ2 = 8.47,
p = 0.004

Tumor Grade

N = 129 n = 142 n = 271

Well 7 (5%) 10 (7%) 1 1 1

Moderately 89 (67%) 98 (68%) 0.60 (0.37–0.96) 0.83 (0.44–1.58) 0.72 (0.47–1.01)

Poorly 33 (25%) 34 (23%) 0.67 (0.35–1.28) 1.19 (0.58–2.44) 0.91 (0.55–1.51)

Wald χ2 = 4.54,
p = 0.103

Wald χ2 = 2.75,
p = 0.753

Wald χ2 = 3.60
p = 0.165

Local Invasion

n = 132 n = 142 n = 274

No 73 (55%) 72 (50%) 1 1 1

Yes 59 (45%) 70 (48%) 1.25 (0.85–1.84) 1.10 (0.77–1.58) 1.17 (0.90–1.52)

Wald χ2 = 1.31,
p = 0.252

Wald χ2 = 0.26,
p = 0.607

Wald χ2 = 1.37
p = 0.242

Maximum Tumor
diameter

n = 128 n = 139 n = 267

<30 mm 69 (52%) 58 (40%) 1 1 1

≥30 mm 59 (45%) 81 (56%) 1.31 (0.89–1.95) 1.64 (1.13–2.39) 1.47 (1.12–1.92)

Wald χ2 = 1.82,
p = 0.177

Wald χ2 = 6.73,
p = 0.010

Wald χ2 = 7.84
p = 0.005
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Table 1. Cont.

Summary Statistics Hazard Ratio (95% Confidence Interval)

Characteristic Level 5-Fluorouracil Gemcitabine 5-Fluorouracil Gemcitabine Total

Diabetes mellitus

n = 129 n = 141 n = 270

No 102 (77%) 106 (73%) 1 1 1

Yes 27 (20%) 35 (24%) 1.06 (0.65–1.75) 0.99 (0.64–1.53) 1.02 (0.74–1.41)

Wald χ2 = 0.07,
p = 0.797

Wald χ2 = 0.00,
p = 0.951

Wald χ2 = 0.01,
p = 0.905

Gender

n = 132 n = 145 n = 277

Male 75 (57%) 88 (61%) 1 1 1

Female 57 (43%) 57 (39%) 0.88 (0.59–1.32) 1.25 (0.86–1.81) 1.06 (0.81–1.39)

Wald χ2= 0.38,
p = 0.537

Wald χ2 = 1.42,
p = 0.234

Wald χ2 = 0.16,
p = 0.686

Age, years

n = 132 n = 145 n = 277

≥64 65 (49%) 80 (55%) 1 1 1

<64 67 (51%) 65 (45%) 1.37 (0.93–2.02) 0.84 (0.58–1.21) 1.07 (0.83–1.40)

Wald χ2= 2.55,
p = 0.110

Wald χ2 = 0.90,
p = 0.342

Wald χ2 = 0.28,
p = 0.598

Smoking

n = 125 n = 128 n = 253

Never 52 (39%) 58 (40%) 1 1 1

Ex 51 (39%) 52 (36%) 0.93 (0.60–1.43) 1.08 (0.70–1.66) 1.00 (0.74–1.35)

Current 22 (17%) 18 (12%) 0.91 (0.53–1.57) 1.76 (1.02–3.05) 1.20 (0.81–1.78)

Wald χ2 = 0.17,
p = 0.917

Wald χ2 = 4.16,
p = 0.125

Wald χ2 = 0.95,
p = 0.623

* Significant values in bold.

hENT1 protein expression, as expected from previously published data [23], was
prognostic for patients treated with gemcitabine, despite 20% fewer patients being included
in the current analysis (HR = 0.60 (95% CI = 0.42–0.86), Wald χ2 = 7.90, p = 0.05). The
median survival was 26.0 (95% CI = 21.2–32.8) months for high expressers (as defined
previously [23]) compared with 16.8 (95% CI = 14.1–24.8) months for low expressers
(χ2 = 7.58, p = 0.006) (Figure 2C,D). There was no correlation between high or low hENT1
protein expression and survival in 5-FU treated patients.

To rule out confounding factors and investigate the interaction between the biomarker
combination and treatment, CDA mRNA expression was first considered as a continuous
variable. With Cox regression this was shown to be significantly prognostic with 5-FU
treatment (Table 2), giving an HR of 4.35 (95% CI = 1.14–16.62, p = 0.03). The same trend
was seen in the gemcitabine arm but in this case, it did not reach statistical significance
(HR=3.15, 95% CI = 0.93–10.68, p = 0.07). When the Cox model was used with CDA mRNA
expression subdivided into upper tertile and the rest, the same trends were seen in both
arms, but in this case, it reached significance for gemcitabine and not 5-FU (5-FU: HR
1.41 (95% CI = 0.91−2.17), p = 0.12; gemcitabine: HR 1.62 (95% CI = 1.12−2.39), p = 0.011).
The lack of significance for the 5-FU arm was largely due to the impact of nodal status on
the model.

Of the clinicopathological factors, only tumor stage correlated with CDA (Table S3),
although this association was weak. All models included tumor stage, lymph node in-
volvement, and resection margin. A test of proportionality was carried out (see Statistical
Methods), this was not significant [χ2

6 = 18.84, p = 0.096]. The term which had the biggest
contribution towards non-proportionality was tumor stage. Removing this term had no ef-
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fect on the model interpretation. Therefore, the tumor stage did not explain the relationship
between CDA and survival (Table 2).
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continuous variable. With Cox regression this was shown to be significantly prognostic 
with 5-FU treatment (Table 2), giving an HR of 4.35 (95% CI = 1.14–16.62, p = 0.03). The 
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Figure 2. Kaplan-Meier survival curves separated by both treatment arms (5-FU and gemcitabine) and biomarker expression
levels. (A,B): Survival curves for patients with low and high CDA mRNA levels (low ≤ 0.61, high > 0.61 MSPC), for
patients randomized to adjuvant treatment with 5-FU (A) and gemcitabine (B). (C,D): Survival curves for low and high
hENT1 expressing patients (low ≤48, high >48 H-Score), for patients randomized to adjuvant treatment with 5-FU (C) and
gemcitabine (D). All groups and the number of at-risk individuals are shown in each graph. All p-values were determined
by log-rank analyses using two-sided χ2 tests.

When CDA mRNA and protein were combined, the mRNA expression level, as
expected, was prognostic in the 5-FU arm. Stratification with protein level made little
difference. However, no significant prognostic effect of mRNA or protein was observed in
the gemcitabine arm when the mRNA level was stratified by protein (Figure S5A,B). The
small numbers in the subgroups (dividing by treatment, mRNA, protein, and nodal status)
meant that regression analysis was inappropriate. Stratification of hENT1 protein with
hENT1 mRNA showed that the protein remained a prognostic marker in the gemcitabine
arm, but this was only statistically significant where hENT1 mRNA was low (Figure S5C,D).

From Table 2 we know that hENT1 is a predictive marker in a model incorporating
CDA mRNA. The question remained whether a combination of CDA mRNA and hENT1
protein would give greater predictive power than hENT1 alone. All combinations are
shown in Table 3. Kaplan-Meier survival curves confirm that the combined biomark-
ers were only significantly prognostic in the gemcitabine treatment arm (Figure 3A,B).
Correspondingly, 5-FU gave a survival advantage over gemcitabine in patients with low
hENT1 and low CDA (Figure 3C) while, gemcitabine gave a survival advantage where
hENT1 is high and there is low CDA (Figure 3E), but where CDA is high, hENT1 seems
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to have negligible predictive value (Figure 3D,F). With gemcitabine, patients expressing
low CDA mRNA with high hENT1 protein have the longest overall median survival of
28.0 (95% CI = 21.1–45.5) months compared with 23.8 (95% CI = 16.6−28.7) months in
patients with high hENT1 protein and high CDA mRNA. When treated with 5-FU, pa-
tients with high hENT1 protein and low CDA mRNA have a median survival of 22.6
(95% CI = 16.9–29.6) months, and patients with high hENT1 protein and high CDA mRNA
20.1 months (95% CI = 5.0−37.5). In contrast, individuals with low CDA mRNA and low
hENT1 protein do better with 5-FU: median survival 29.3 (95% CI = 21.9–41.9) months
compared to survival of 18.3 (95% CI = 13.9–28.3) months with gemcitabine (Table 3). This
confirms the previous reports that patients with low hENT1 would benefit from 5-FU
rather than gemcitabine. However, patients with low hENT1 and high levels of CDA
transcript have poor survival when treated with either gemcitabine or 5-FU (median 14.6
and 14.2 months respectively).

Table 2. Cox regression analysis of biomarkers in the 5-FU and gemcitabine arms.

5FU Gemcitabine

Characteristic est (se) HR (95% CI) Pval est (se) HR (95% CI) p-Value

Single biomarker: CDA or hENT1 combined with stage, resection margin and lymph node involvement

CDA mRNA Expression Per unit increase in
MSPC 1.47 (0.685) 4.35 (1.14, 16.62) 0.032 1.15 (0.623) 3.15 (0.93, 10.68) 0.066

CDA mRNA Expression
(Low vs. High)

Low 1 (Reference) 1 (Reference)

High 0.34 (0.221) 1.41 (0.91, 2.17) 0.120 0.49 (0.192) 1.62 (1.12, 2.39) 0.011 *

hENT1 protein expression
Per unit increase in

(log) H-score −0.03 (0.159) 0.97 (0.71, 1.33) 0.861 −0.26 (0.129) 0.77 (0.60, 0.99) 0.047

hENT1 protein expression
(Low vs. High)

Low 1 (Reference) 1 (Reference)

High 0.18 (0.207) 1.21 (0.80, 1.81) 0.374 −0.43 (0.192) 0.65 (0.45, 0.95) 0.025

Multiple biomarker: CDA and hENT1 combined with stage, resection margin and lymph node involvement

CDA mRNA Expression
(Low vs. High)

Low 1 (Reference) 1 (Reference)

High 0.39 (0.226) 1.48 (0.95, 2.31) 0.082 0.50 (0.193) 1.65 (1.13, 2.41) 0.009

hENT1 protein expression
(Low vs. High)

Low 1 (Reference) 1 (Reference)

High 0.28 (0.212) 1.32 (0.87, 1.99) 0.193 −0.41 (0.191) 0.66 (0.46, 0.96) 0.030

* Significant values in bold.

Table 3. Median overall survival in subgroups split by treatment arm, 5-FU or gemcitabine (GEM), cytidine deaminase
(CDA) mRNA, and human equilibrative nucleotide transporter-1 (hENT1) protein status.

Arm Biomarker Expression (High or Low) Number Median OS 95% Confidence Interval Log Rank p-Value

5-FU/FA
CDA High 36 14.6 8.4–24.1

5.17 0.0229
CDA Low 96 26.4 21.4–29.7

GEM
CDA High 56 21.2 15.7–26.2

5.14 0.0234
CDA Low 89 24.8 18.3–33.0

5-FU/FA
hENT1 High 59 22.6 17.3–28.6

0.53 0.4658
hENT1 Low 69 24.1 15.9–30.4

GEM
hENT1 High 82 26.0 21.2–32.8

7.58 0.0059
hENT1 Low 58 16.8 14.1–24.8

5-FU

CDA Low, hENT1 Low 44 29.3 21.9–41.9

6.14 0.1050
CDA High, hENT1 Low 25 14.2 7.9–24.1

CDA Low, hENT1 High 49 22.6 16.9–29.6

CDA High, hENT1 High 10 20.1 5.0–37.5

GEM

CDA Low, hENT1 Low 34 18.3 13.9–28.3

12.0 0.0073
CDA High, hENT1 Low 24 14.6 11.1–25.1

CDA Low, hENT1 High 52 28.0 21.1–45.5

CDA High, hENT1 High 30 23.8 16.6–28.7

Significant values in bold.
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Figure 3. Kaplan-Meier survival curves for analyses of combined CDA mRNA and hENT1 protein biomarker interaction
looking at all expression level combinations (CDA low, hENT1 low; CDA high, hENT1 low; CDA low, hENT1 high; CDA
high, hENT1 high). Graphs show response to treatment with 5-FU (A) and gemcitabine (B). In (C,D) the same data as above
is presented showing the difference in survival for patients treated with 5-FU compared to gemcitabine in patients with low
hENT1 protein and either low CDA (C) or high CDA (D), and patients with high hENT1 protein and either low CDA (E) or
high CDA (F). All groups and the number of at-risk individuals are shown for each graph. All p-values were determined by
log-rank analyses using two-sided χ2 tests.

4. Discussion

Analysis of CDA mRNA expression showed that it was prognostic for both 5-FU
and gemcitabine, with high expression of CDA mRNA correlating with poor survival,
regardless of the type of chemotherapy. This was not seen with CDA protein; no discernible
difference in survival between low and high CDA in either treatment group.
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CDA protein may come from a variety of sources, including bacteria, furthermore
secreted CDA could be lost from the extracellular space during tissue processing. The
mRNA sequence assayed is specific for the product of the cancer cell’s CDA gene. As
ESPAC-3(v2) was an adjuvant study, the survival of the patient will depend on the response
of metastatic or residual cancer cells to therapy. These residual cells will reside in a
different environment to the primary tumor, but inherent factors (e.g., genetic or epigenetic)
that influence expression may be shared with the resected tumor cells. Indeed there is
compelling evidence that driver mutations are generally maintained in metastases and
heterogeneity is due mainly to the gain (or loss) of passenger mutations [39].

High levels of hENT1 protein are significantly associated with survival only in
gemcitabine-treated patients [23]. hENT1 mRNA expression was not prognostic with
5-FU and for gemcitabine, the trend was for longer survival with low (not high) mRNA.

hENT1 mRNA and protein expression showed no correlation, as also reported in
previous studies [40,41]. Indeed, Tavano et al. described an inverse relationship between
protein and mRNA expression [42]. This suggests that post-transcriptional mechanisms
determine protein levels in pancreatic tumor cells. The immunohistochemistry protocol
with the 10D7G2 antibody provides the most informative prognostic information

High expression of CDA protein has been linked to gemcitabine resistance [35,43].
In our study CDA mRNA was associated with a worse prognosis with gemcitabine treat-
ment but was also prognostic with 5-FU treatment. CDA may influence the flux of 5-FU
metabolism and its toxicity. Salvage pathways involving orotate phosphoribosyl trans-
ferase (OPRT) play an important role in pancreatic cancer cell metabolism [44]; conversion
of cytidine to uracil (and then orotate) by CDA will change the rate of salvage and the rate
of 5-FU metabolism and uptake [45]. Alternatively, low CDA may associate with better
outcomes for reasons completely independent of benefits from 5-FU or gemcitabine, for
example, because there is a lower proliferation rate and therefore less nucleoside turnover
in less aggressive tumors.

CDA mRNA levels made the greatest difference to survival in patients treated with 5-
FU who had low hENT1. By contrast, for patients with low hENT1 treated with gemcitabine
the impact of CDA was marginal. Perhaps gemcitabine concentration is so low in these
cancer cells that no survival benefit for the patient is offered, hence there is no benefit to be
lost by the action of CDA. Alternatively, a low level of hENT1 could result in deaminated
gemcitabine not being rapidly transported out of cells, reducing the benefit of having low
levels of the deaminase.

Empirically, patients with low hENT1 and low CDA survive significantly better if
given 5-FU than if given gemcitabine: median overall survival with 5-FU 29.3 months
(95% CI: 21.9–41.9) compared to just 18.3 months (95% CI:13.9–28.3). While, patients with
high hENT1 benefit from gemcitabine over 5-FU, irrespective of CDA mRNA levels, it is
clear that patients with low hENT1 and low CDA would benefit more from 5-FU. Patients
with low hENT1 and high CDA appear not to benefit from gemcitabine or 5-FU with a
median survival of just 14 months in either case. The recommendation for the selection
of adjuvant therapy would be to first test for the hENT1 protein level. It can be assumed
that patients with a high level of hENT1 would benefit from gemcitabine, while those with
a low level should have an additional analysis for CDA transcript. A low level of CDA
mRNA would support the use of 5-FU based therapy. One caveat to this recommendation
is that at present only one antibody (10D7G2) is appropriate for measuring hENT1 level for
this purpose [46] and this is in short supply. Development of both hENT1 IHC and CDA
ISH is ongoing.

In this paper, we are considering a subset of the patients in the JAMA paper describing
the full set of patients on the ESPAC 3(v2) clinical trial [5]. Indeed the requirement for data
with both CDA and hENT1 means that this group of patients is even more restricted than
the patients assessed in the original paper describing the predictive value for hENT1 [23].
Bias in the selection of the patients is a concern. Notable differences in comparison to the
previous reports are that performance status, tumor grade, local invasion, and smoking
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all failed to reach significance in the current publication, all of these can be explained by a
reduction in power due to smaller numbers.

A similar reduction in power was seen in our JNCI paper which identified hENT1 as a
biomarker. Median survivals for patients treated with gemcitabine having low hENT1/high
hENT1 protein in our original paper was 17.1/26.2 months. These values are very close to
the observation of 16.8/26.0 months seen with our more restricted population. For 5FU
treated patients the values of 25.6/21.9 months in the previous paper were a little further
from the values seen here (22.6/24.1 months), but still not suggestive of any particular bias.

5. Conclusions

We have demonstrated that patients stratified for adjuvant treatment with gemcitabine
using hENT1 protein can be further stratified using CDA transcript level. The benefit
of 5-FU over gemcitabine in patients with low hENT1 protein is lost in patients with
high CDA. Further work is required to see how this can be applied to patients treated
with combination therapies such as FOLFIRINOX, gemcitabine with nab-paclitaxel, or
gemcitabine with capecitabine.
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survival curves for analyses of combined CDA mRNA with CDA protein or combined hENT1 protein
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