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of the extremum of a quadratic regression model for
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ABSTRACT
Many economic theories suggest that the relation between two vari-
ables y and x follow a function forming a convex or concave curve.
In the classical linear model (CLM) framework, this function is usually
modeled using a quadratic regression model, with the interest being
to find the extremum value or turning point of this function. In the
CLM framework, this point is estimated from the ratio of ordinary
least squares (OLS) estimators of coefficients in the quadratic regres-
sion model. We derive an analytical formula for the expected value
of this estimator, from which formulas for its variance and bias fol-
low easily. It is shown that the estimator is biased without the
assumption of normality of the error term, and if the normality
assumption is strictly applied, the bias does not exist. A simulation
study of the performance of this estimator for small samples show
that the bias decreases as the sample size increases.
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1. Introduction

Many economic theories suggest that the relation between two variables y and x follow
a function forming a convex ([ shaped) or concave (\ shaped) curve, often called
U-shaped and inverted U-shaped relations, respectively. The most famous example is
probably the Kuznets hypothesis that the relation between a country’s income equality
and economic development is concave, with income equality first increasing and then
decreasing as the country’s economy is developing (Kuznets 1955). Extensions of this
“Kuznets curve” include e.g., the “environmental Kuznets curve”, suggesting a concave
relation between a country’s environmental degradation and economic development
(Dinda 2004). Other examples of concave relations are those between union member-
ship and age (Blanchflower 2007) as well as between innovation and competition
(Aghion et al. 2005). A convex relation has been postulated between e.g., a country’s
female labor force participation and economic development (Goldin 1995) as well as
between life satisfaction and age (Blanchflower and Oswald 2016). For a more detailed
discussion, see Hirschberg and Lye (2005).
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For these situations, the relation between the dependent variable y and the independ-
ent variable x may in the classical linear model (CLM) framework be described by the
quadratic regression model

y ¼ b1 þ b2x þ b3x
2 þ e (1)

also known as the second-order polynomial regression model (in one variable), where bk,
k¼ 1, 2, 3, are regression coefficients and e is an unobserved random error term with
expected value EðeÞ ¼ 0 and variance VarðeÞ ¼ r2: Usually, it is also assumed that e is
normally distributed, i.e., e � Nð0, r2Þ: A problem with this model is that the regression
coefficients b2 and b3 in general do not have any simple interpretations. The common
interpretation of b2 in the CLM framework as giving the change in the expected value
of y when x increases with one unit while all other independent variables are held con-
stant (i.e., DEðyÞ ¼ b2Dx, ceteris paribus) is not possible, since x2 will always change
when x changes. The same problem of course also affects the interpretation of b3.
However, an easily comprehensible interpretation of this model is to look at the
extremum value or turning point h of the model, assuming that this value lies within
the range of the independent variable x. It is well-known that this value is obtained by
setting the partial derivative of y with respect to x to zero and solving for x,

@y
@x

¼ b2 þ 2b3x ¼ 0 (2)

which, with h denoting the value of x for which this function is zero, gives

h ¼ � b2
2b3

(3)

where it is assumed that b3 6¼ 0: The extremum value h is a minimum value if b3 > 0
and a maximum value if b3 < 0:
In the CLM framework, the values of b2 and b3 are estimated by the ordinary least

squares (OLS) estimators bb2 and bb3, and a natural estimate of h is thus the estimated

extremum value bh given by

bh ¼ �
bb2

2bb3

(4)

However, while bb2 and bb3 are unbiased estimators of b2 and b3, even without the nor-
mality assumption e � Nð0, r2Þ, it is well known that the ratio of two unbiased estima-

tors is not, in general, itself an unbiased estimator. As we will show in this paper, bh is

not only a biased estimator of the true extremum value h, i.e., EðbhÞ 6¼ h, in the CLM
framework without the normality assumption, when the normality assumption is strictly

applied EðbhÞ does not even exist.
Despite these theoretical shortcomings, in most practical applications, where the CLM

normality assumption only could be expected to hold approximately, bh may still be a
useful estimator of h, with a limited bias. However, the extension of this bias and how
it is affected by how close h is to the edge of the range of the observed values of the
independent variable x, the sample size n, and the size of the variance of the error term

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 2871



e, has not previously been studied. Moreover, analytical formulas for the mean, variance,

and bias of bh have not previously been derived. This study aims to rectify these short-

comings by studying these aspects of bh: Since many econometric applications of the
quadratic regression model (1) only has a small sample of observations available for

analysis, the focus of this paper will be on the biasedness of bh for small samples, and
especially how this bias changes as n increases. The purpose is to provide some insight

regarding when the bias of bh may be considered small or negligible, thus making it pos-

sible for the applied econometrician or statistician to identify situations where bh may be
used as a reliable estimator of h.

Section 2 discusses the theoretical properties of bh and derives an analytical formula

for the expected value of bh, from which formulas for the variance and bias of bh follow

easily. The setup of a simulation study of the small-sample biasedness of bh under vary-
ing conditions is described in Section 3, with the results of the simulation study given
in Section 4. Section 5 concludes the paper with a discussion of the results as well as a
suggestion of topics for future research.

2. Properties of bh
This section will introduce the notation and assumptions that will be used in the
remaining parts of the paper, review what is known about the expected value of a ratio
of random variables, and show how this carries over to insights about the expected

value, variance, and bias of bh:
2.1. Notation and assumptions

For a random sample of n independent observations, let xi, yif g denote the pair of
observed values of the independent variable x and the dependent variable y for observa-
tion i ¼ 1, 2, :::n, while ei denotes the value of the unobserved random error term e for
observation i. The quadratic regression model (1) may then be written as

yi ¼ b1 þ b2xi þ b3x
2
i þ ei, i ¼ 1, 2, :::, n (5)

For an n� 1 column vector y with row elements yi, an n�K matrix X with row ele-
ments 1, xi, x2i , an n� 1 column vector e with row elements ei, and a K � 1 column
vector b with row elements bk, (5) may be written as

y ¼ Xbþ e (6)

where b is estimated using the standard OLS estimatorbb ¼ X0Xð Þ�1
X0y (7)

with bb being a K � 1 column vector with row elements bbk: Without loss of generality,
for the current study, we have K¼ 3. Moreover, let 0 denote an n� 1 column vector
with 0’s and I denote an n� n identity matrix.

Assumptions. We make the following standard assumptions for (6):
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1. The error terms ei are independent and identically (but not necessarily normally)
distributed random variables with EðeÞ ¼ 0 and VarðeÞ ¼ r2I:

2. The matrix X is fixed in repeated samples.
3. There is no perfect collinearity, i.e., rank ðXÞ ¼ K:
4. The number of observations n is larger than the number of columns in X,

i.e., n>K.
Alternatively, assumption 2 may be replaced with the assumption that X is a random
matrix that is independent of e, in which case assumption 1 is to be interpreted as
being conditional on X. These are thus the standard assumptions in the CLM frame-
work without the normality assumption.

2.2. The expected value of a ratio of random variables

For any two random variables X and Y, the covariance is known to be given by

Cov X,Yð Þ ¼ E XYð Þ � EðXÞ � EðYÞ ()
E XYð Þ ¼ EðXÞ � EðYÞ þ Cov X,Yð Þ (8)

A ratio of two random variables is itself a random variable. Thus, as noted by Frishman
(1975), it follows from (8) that the expected value of the ratio between X and Y, pro-
vided that all moments exist, is given by

E
X
Y

� �
¼ E X � 1

Y

� �
¼ EðXÞ � E

1
Y

� �
þ Cov X,

1
Y

� � (9)

Moreover, it follows from (8) that

Cov Y ,
X
Y

� �
¼ E Y � X

Y

� �
� EðYÞ � E

X
Y

� �
¼ EðXÞ � EðYÞ � E

X
Y

� � (10)

By rearranging these terms, provided that EðYÞ 6¼ 0, we obtain

E
X
Y

� �
¼ EðXÞ

EðYÞ �
1

EðYÞ � Cov Y ,
X
Y

� �
(11)

which corresponds to formula (8) in Frishman (1975).

2.3. The expected value and variance of bh
The estimator bh of the extremum value or turning point h is a ratio between the two

random variables bb2 and bb3: Thus, we can derive a formula for the expected value of bh
using the results in Section 2.2, from which the variance of bh follows easily.

Theorem 1. Under assumptions 1–4, provided that b3 6¼ 0 and bb3 6¼ 0, the expected

value of bh is given by
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EðbhÞ ¼ hþ 1
2b3

� Cov bb3,
bb2bb3

 !
(12)

Proof. Using (11), the expected value of bh is given by

EðbhÞ ¼ E �
bb2

2bb3

 !
¼ � 1

2
E
bb2bb3

 !

¼ � 1
2

E bb2

� �
E bb3

� �� 1

E bb3

� �� Cov bb3,
bb2bb3

 !264
375 (13)

provided that Eðbb3Þ 6¼ 0 and bb3 6¼ 0: Under assumptions 1–4, the OLS estimators bb2

and bb3 are unbiased, i.e., Eðbb2Þ ¼ b2 and Eðbb3Þ ¼ b3: Thus, with b3 6¼ 0, it follows that

EðbhÞ ¼ � 1
2

b2
b3

� 1
b3

� Cov bb3,
bb2bb3

 !" #

¼ � b2
2b3

þ 1
2b3

� Cov bb3,
bb2bb3

 !

¼ hþ 1
2b3

� Cov bb3,
bb2bb3

 ! (14)

w

Corollary 2. Under assumptions 1–4, provided that b3 6¼ 0 and bb3 6¼ 0, the variance of bh
is given by

VarðbhÞ ¼ 1

4 b23 þ Var bb3

� �h i� b22 þ Var bb2

� �
� Cov bb2

3,
bb2

2bb2

3

0@ 1A24 35
� hþ 1

2b3
� Cov bb3,

bb2bb3

 !" #2 (15)

Proof. Using the standard variance formula

VarðbhÞ ¼ E bh2� �
� EðbhÞh i2

(16)

and utilizing that Eðbb2Þ ¼ b2 and Eðbb3Þ ¼ b3 under assumptions 1–4, it follows from
(11) that
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E bh2� �
¼ E �

bb2

2bb3

 !2
24 35 ¼ 1

4
E
bb2

2bb2

3

0@ 1A ¼

¼ 1

4E bb2

3

� �� E bb2

2

� �
� Cov bb2

3,
bb2

2bb2

3

0@ 1A24 35
¼ 1

4 E bb3

� �h i2
þ Var bb3

� �� �

� E bb2

� �h i2
þ Var bb2

� �
� Cov bb2

3,
bb2

2bb2

3

0@ 1A8<:
9=;

¼ 1

4 b23 þ Var bb3

� �h i� b22 þ Var bb2

� �
� Cov bb2

3,
bb2

2bb2

3

0@ 1A24 35

(17)

provided that b3 6¼ 0 and bb3 6¼ 0: Inserting (12) and (17) in (16) gives (15). w

2.4. The bias of bh
With the expected value of bh known from (12), a formula for the bias of bh fol-
lows easily.

Corollary 3. Under assumptions 1–4, provided that b3 6¼ 0 and bb3 6¼ 0, the bias of bh is
given by

biasðbhÞ ¼ 1
2b3

� Cov bb3,
bb2bb3

 !
(18)

Proof. It follows from (12) and the definition of bias that

biasðbhÞ ¼ EðbhÞ � h

¼ hþ 1
2b3

� Cov bb3,
bb2bb3

 !
� h

¼ 1
2b3

� Cov bb3,
bb2bb3

 ! (19)

w

The estimator bh is thus in general a biased estimator of the true extremum value h even

if its components bb2 and bb3 are themselves unbiased, with the size of the bias of bh depend-

ing on both b3 and the covariance between bb3 and the ratio bb2=
bb3: Since the values of bb2

and bb3 depend on the particular sample values of y and X, the size of the bias of bh will also
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be dependent on the particular sample that is used. With bb2 and bb3 being dependent, the
size of this bias is even harder to derive analytically, especially for small samples.

2.5. The normal distribution assumption and the possible nonexistence of EðbhÞ
and Var ðbhÞ

A crucial assumption of (9) is that the moment EðY�1Þ exists. If it does not exist, then

EðX=YÞ does not exist either. For the case of E
�bh�, and thus also Var

�bh�, this trans-
lates into the assumption that E

�bb�1

3

�
exists. However, as noted by e.g., Craig (1942)

and Frishman (1975), EðY�1Þ does not exist if Y is normally distributed. In the CLM

framework with the normality assumption, where it is assumed that e � Nð0, r2IÞ, bb2

and bb3 are known to be normally distributed. Thus, E
�bb�1

3

�
does not exist for this

case, and neither does E
�bh�, Var

�bh�, or bias
�bh�: However, in most practical appli-

cations, the CLM normality assumption is only expected to hold approximately.
Moreover, since the normal distribution is a continuous distribution, and the probability
P of observing a single value a is zero for a continuous distribution, we have that

P
�bb3 ¼ 0

�
¼ 0 even if the CLM normality assumption holds exactly. Thus, one could

usually expect that bb3 6¼ 0 and that (18) holds at least approximately for b3 6¼ 0, mean-

ing that bh may still be a useful estimator of h, with a limited bias.
The nonexistence of EðY�1Þ when Y is normally distributed may not come as a sur-

prise, since zero is included in the range of Y. As noted by Craig (1942), this is also
true for the case when Y is uniformly distributed with zero included in its range.
However, there are cases when EðY�1Þ does exist, although the distribution of Y
includes zero in its range. An example of this is given by Craig (1942). Conditions for

the existence of EðY�1Þ, and thus also for the existence of E
�bb�1

3

�
,E
�bh�, and

Var
�bh�, are discussed by Frishman (1971).

3. Setup of the simulation study

Since results on the biasedness of bh for small samples are hard to derive analytically, we
have to resort to the use of simulation techniques. This section describes the setup of

the simulation study for model 5, focusing on how the bias of bh changes as n increases,
varying the values of the true extremum value h, the true regression coefficients b2 and
b3, and the variance of the error terms ei, under assumptions 1–4.

3.1. Parameter values and distributions

In practical applications of quadratic regression models, the observed values xi of the
independent variable x are often centered to have mean zero, in order to decrease the
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influence of possible multicollinearity on the OLS estimation procedure. Moreover, in
order to not extrapolate outside of the observed values of x, it is necessary to ensure
that h lies within the range of xi. Against this background, the values of xi used in this
simulation study were constructed by first drawing a random sample of n – 2 observa-
tions from a standard normal distribution. Secondly, this sample of n – 2 simulated x
values was centered to have a mean of zero. Finally, by setting xn�1 ¼ �1:65 and xn ¼
1.65 it was ensured that the true value of h was always within the range of xi. We thus
have that the variance of xi is VarðxiÞ � 1:
Values of h closer to the edge of the range of xi should be harder to estimate precisely

than those being closer to the center. It is thus of interest to study the biasedness of bh as h
approaches the edge of the range of xi. Against this background, with xi being approxi-
mately standard normally distributed, we used values of h corresponding to the 50th, 75th,
and 95th percentile of the standard normal distribution, i.e., h was set to 0, 0.6744898, and
1.644854, respectively. Thus, the chosen values of h were at approximately 50%, 25%, and
5%, respectively, of the distance from the upper edge of the range of xi.
Regarding the regression coefficients bk, the intercept term b1 seems to have no influence

on the biasedness of bh: Thus, for the sake of simplicity, we use b1 ¼ 1: Obviously, the biased-

ness of bh is mainly influenced by the value of b3. Without loss of generality, we will focus on
the case of a convex ([ shaped) curve, and thus require that b3 > 0: The main interest is to

study the biasedness of bh as b3 approaches zero, since bias
�bh� breaks down for b3 ¼ 0: To

this end, b3 was set to 0.1, 0.5, and 0.9. From (3), the values of b2 are, for fixed values of b3
and h, given by b2 ¼ �2b3h: While the values of b1 and b3 are constant over varying values
of h, the values of b2 will thus differ depending on the value of h. The values of b1, b2, and b3
used in the present simulation study are given in Table 1.

To get a detailed picture of the development of the biasedness of bh as n increases, we used
the n values 25, 50, 75, 100, 150, 200, 300, 400, 500, 750, and 1000. Although, as noted in

Section 2.5, bias
�bh� does not exist if the assumption e � Nð0, r2IÞ is strictly applied, study-

ing the biasedness of bh as n increases using this assumption is still of major interest, since
this is the standard assumption used for inference in the CLM framework. Moreover, we

have that P
�bb3 ¼ 0

�
¼ 0 if the error terms ei are normally distributed. Against this back-

ground, the error terms ei were simulated such that e � Nð0, r2IÞ, with the variance of ei
set to r2 ¼ 1 and r2 ¼ 4, respectively (i.e., r ¼ 1, 2). Thus, since Var ðyiÞ ¼ Var ðeiÞ under
assumptions 1–4, we have that the variance of y is also 1 and 4, respectively.

Table 1. Values of b1, b2, and b3 used in the simulation study for values of h corresponding to the
50th, 75th, and 95th percentile.

h¼ 0 h ¼ 0:6744898 h ¼ 1:644854
(50th perc.) (75th perc.) (95th perc.)

b1 b2 b2 b2 b3
1 0 �0.1348980 �0.3289708 0.1
1 0 �0.6744898 �1.6448540 0.5
1 0 �1.2140816 �2.9607372 0.9
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3.2. Implementation

The simulation study was performed in Microsoft R Open 3.5.1 using the package
‘SimDesign’ version 1.11 (Sigal and Chalmers 2016). Let R denote the number of repli-
cations in a simulation. Then, for each combination of parameter values, a simulation
of model 5 was performed using R¼ 10,000 replications with random samples of the n

– 2 values of xi and the n values of ei, thus resulting in 10,000 simulated values of bh:
At the start of each simulation cycle, the random number generator was set to a com-

mon seed. The estimated regression coefficients bbk were calculated using the lm() com-

mand in the package ‘stats’ version 3.5.1. With bhr, r ¼ 1, 2, :::,R, denoting the value ofbh for a single replication, the bias of bh given by (18) was then estimated by

dbiasðbhÞ ¼ 1
R

XR
r¼1

bhr � h
� 	

(20)

i.e., dbiasðbhÞ gives the average deviation of bh from the true value h.

Table 2. Results of dbiasðbhÞ for the 50th (h¼ 0), 75th (h ¼ 0:6744898), and 95th (h ¼ 1:644854)
percentile with r2 ¼ 1 and r2 ¼ 4:

r2 ¼ 1 r2 ¼ 4

50th 75th 95th 50th 75th 95th
b3 n perc. perc. perc. perc. perc. perc.

0.1 25 0.0872 �0.2850 �0.8205 1.7594 5.0535 9.7925
0.1 50 �0.3881 0.5269 1.8434 0.9437 0.7268 0.4147
0.1 75 �0.2434 0.7980 2.2962 �0.1036 �0.7137 �1.5914
0.1 100 0.0176 �0.7367 �1.8219 �0.0888 �0.3370 �0.6941
0.1 150 2.2235 3.8669 6.2310 1.2390 1.3685 1.5548
0.1 200 �0.0862 0.0668 0.2868 �0.5010 �1.3501 �2.5716
0.1 300 �0.0295 0.1152 0.3234 �0.4402 �0.8896 �1.5361
0.1 400 0.0943 0.5279 1.1516 �0.3006 0.1043 0.6868
0.1 500 �0.0071 0.1272 0.3205 �1.3287 0.8078 3.8814
0.1 750 0.0003 0.0609 0.1480 0.0114 0.2632 0.6253
0.1 1000 �0.0005 0.0366 0.0900 0.0830 0.1406 0.2234
0.5 25 �0.0041 0.0946 0.2365 0.2258 0.6895 1.3565
0.5 50 0.0023 0.0484 0.1147 0.0948 0.4322 0.9176
0.5 75 �0.0002 0.0254 0.0623 �0.1151 �1.1370 �2.6071
0.5 100 �0.0005 0.0153 0.0380 �0.0043 0.1030 0.2575
0.5 150 0.0003 0.0115 0.0276 �0.0019 0.0485 0.1210
0.5 200 �0.0006 0.0076 0.0195 �0.0011 0.0351 0.0871
0.5 300 �0.0012 0.0036 0.0105 �0.0025 0.0182 0.0481
0.5 400 �0.0003 0.0044 0.0113 �0.0007 0.0167 0.0417
0.5 500 0.0000 0.0031 0.0077 �0.0001 0.0125 0.0307
0.5 750 �0.0001 0.0014 0.0035 �0.0002 0.0067 0.0166
0.5 1000 �0.0001 0.0008 0.0019 �0.0001 0.0044 0.0109
0.9 25 �0.0014 0.0292 0.0731 0.0608 �0.0050 �0.0998
0.9 50 0.0006 0.0123 0.0293 �0.0034 0.0561 0.1417
0.9 75 �0.0001 0.0072 0.0176 �0.0002 0.0328 0.0802
0.9 100 �0.0003 0.0040 0.0101 �0.0005 0.0196 0.0486
0.9 150 0.0001 0.0036 0.0087 0.0003 0.0143 0.0345
0.9 200 �0.0004 0.0023 0.0062 �0.0007 0.0095 0.0242
0.9 300 �0.0006 0.0008 0.0029 �0.0013 0.0047 0.0132
0.9 400 �0.0002 0.0016 0.0041 �0.0004 0.0054 0.0137
0.9 500 0.0000 0.0010 0.0025 0.0000 0.0038 0.0095
0.9 750 �0.0001 0.0003 0.0008 �0.0001 0.0018 0.0045
0.9 1000 0.0000 0.0001 0.0002 �0.0001 0.0010 0.0026
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4. Results of the simulation study

This section presents the results of the simulation study, with the aim being to give an

overview of the development of the biasedness of bh over the range n¼ 10 to n¼ 1000
for the varying values of b3, h, and r2: This will provide some insight regarding when

the biasedness of bh may be considered small or negligible, making the use of bh as an
estimate of h reliable for practical applications. With approximately 95% of the xi values

being within the range –2 to 2, we will consider the biasedness of bh to be small if the

average absolute deviation of bh from the true value h is < 1% of this range and negli-

gible if it is < 0:1% of this range. Thus, it will be required that dbiasðbhÞ


 


 < 0:04 for the

biasedness to be considered small and dbiasðbhÞ


 


 < 0:004 for the biasedness to be consid-

ered negligible.

Figure 1. Graph of dbiasðbhÞ for the case b3 ¼ 0:1 and r2 ¼ 1:
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4.1. Varying b3 and h for r251

Table 2 and Figures 1–3 give values of dbiasðbhÞ for the basic case r2 ¼ 1, i.e., ei follows
a standard normal distribution, with values of h corresponding to the 50th, 75th, and
95th percentile of x and b3 ranging from 0.1 to 0.9. In the ideal case, to be able to esti-
mate h accurately, we would like to have equally many observations xi below and above
h. For the present study, this is equivalent to setting h to the 50th percentile, i.e., the
median of x. However, even for this ideal case, b3 ¼ 0:1 results in very volatile values

for dbiasðbhÞ, mirroring that dbiasðbhÞ has an increasing risk of breaking down as bb3 ! 0

(Figure 1). However, dbiasðbhÞ has stabilized at n¼ 500, with the average absolute devia-

tions of bh from the true value h being < 1% (i.e., dbiasðbhÞ


 


 < 0:04), and for n¼ 750 the

deviation is negligible at < 0:1% (i.e., dbiasðbhÞ


 


 < 0:004).

Figure 2. Graph of dbiasðbhÞ for the case b3 ¼ 0:5 and r2 ¼ 1:
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Having few observations above h should reduce the ability of bh to estimate h accur-
ately. In the present study, this is equivalent to setting h to the 75th and 95th percentile,

thus approaching the maximum value of the range of xi. This reduced ability of bh to

estimate h accurately is obvious in the behavior of dbiasðbhÞ for b3 ¼ 0:1, with overall

larger values of dbiasðbhÞ


 


 the closer h gets to the maximum value of the range of xi, and

with even mote pronounced volatility than for the 50th percentile (Figure 1). Thus,dbiasðbhÞ


 


 has for the 75th percentile stabilized at a deviation of < 1% only for n¼ 1000,

while it for the 95th percentile never reaches this level.

When b3 is increasing to 0.5 and 0.9, the values of dbiasðbhÞ


 


 are decreasing for all

values of h. Thus, for b3 ¼ 0:5, dbiasðbhÞ


 


 has for the 50th percentile stabilized at < 1%

already for n¼ 25 and has stabilized at < 0:1% for n¼ 50, for the 75th percentile it has
stabilized at < 1% for n¼ 75 and at < 0:1% for n¼ 500, while it for the 95th percentile

Figure 3. Graph of dbiasðbhÞ for the case b3 ¼ 0:9 and r2 ¼ 1:
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has stabilized at < 1% for n¼ 100 and at < 0:1% for n¼ 750 (Figure 2). For b3 ¼
0:9, dbiasðbhÞ


 


 has for the 50th percentile stabilized at < 0:1% already for n¼ 25, while it

for the 75th percentile has stabilized at < 1% for n¼ 25 and at < 0:1% for n¼ 150, and
for the 95th percentile has stabilized at < 1% for n¼ 50 and at < 0:1% for n¼ 500
(Figure 3).

4.2. Varying b3 and h for r254

Table 2 and Figures 4–6 give values of dbiasðbhÞ for the case r2 ¼ 4 with values of h cor-
responding to the 50th, 75th, and 95th percentile of x and b3 ranging from 0.1 to 0.9.
Overall, most of the patterns observed for r2 ¼ 2 are mirrored here, but with an ampli-

fied magnitude, and thus larger deviations of bh from the true value h. Thus, for b3 ¼

Figure 4. Graph of dbiasðbhÞ for the case b3 ¼ 0:1 and r2 ¼ 4:
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0:1, dbiasðbhÞ


 


 has even for n¼ 1000 not stabilized at a deviation of < 1% for any of the

studied percentiles.

For b3 ¼ 0:5, dbiasðbhÞ


 


 has for the 50th percentile stabilized at a deviation of < 1%

for n¼ 100 and at < 0:1% for n¼ 150, while it for the 75th percentile has stabilized at
< 1% for n¼ 200, but has not reached < 0:1% even for n¼ 1000. For the 95th percent-

ile, dbiasðbhÞ


 


 has stabilized at a deviation of < 1% for n¼ 500, but has not reached <

0:1% for n¼ 1000 (Figure 5). For b3 ¼ 0:9, dbiasðbhÞ


 


 has for the 50th percentile stabi-

lized at both < 1% and < 0:1% for n¼ 50, while it for the 75th percentile has stabilized
at < 1% for n¼ 75 and at < 0:1% for n¼ 500. For the 95th percentile, finally, hasdbiasðbhÞ


 


 stabilized at a deviation of < 1% for n¼ 150 and at a deviation of < 0:1% for

n¼ 1000 (Figure 6).

Figure 5. Graph of dbiasðbhÞ for the case b3 ¼ 0:5 and r2 ¼ 4:
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5. Discussion

In this paper, we have derived an analytical formula for the expected value of the OLS

based estimator bh of the extremum value or turning point h in the quadratic regression

model, from which formulas for the variance and bias of bh followed easily. Notably, the
distributional assumptions for the error term e were quite weak, not assuming that e
follows any specified distribution, such as e.g., the normal distribution. It was shown

that bh is in general biased under these weak distributional assumptions for the error

term e, and if the normality assumption is strictly applied, neither E
�bh� nor Var

�bh� or

bias
�bh� exist.

A simulation study of the performance of bh for small samples showed that, overall,

the bias of bh decreases as the sample size increases. It seems safe to conclude that

bias
�bh�! 0 as n ! 1: The bias is mainly affected by how close b3 is to zero.

Figure 6. Graph of dbiasðbhÞ for the case b3 ¼ 0:9 and r2 ¼ 4:
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However, if b3 is reasonably far away from zero, preferably b3 � 0:5, the bias of bh
should be small or negligible for n � 500: Moreover, the closer b3 is to the median of

the observed sample of the independent variable, the lower is the bias of bh and the

faster is the bias approaching zero. In these situations, bh may thus be used as a reliable
estimator of h.

5.1. Topics for future research

In applied econometric and statistical analyses, the point estimate bh should be accompa-
nied with a confidence interval for the extremum value h. Moreover, there may also be
interest in performing hypothesis tests regarding the value of h. There has been some
previous research on constructing approximate confidence intervals for h using the OLS

based estimator bh, applying e.g., the delta method, the Fieller method, bootstrap meth-
ods, and the likelihood ratio interval method, see Hirschberg and Lye (2005) and Wood

(2012). However, none of these methods have taken account of the bias of bh in estimat-
ing h, which should be a prerequisite for constructing a reliable confidence interval
for h.

A crucial part in estimating the bias of bh, in order to obtain unbiased estimates of h,

is to estimate the covariance term Cov
�bb3, bb2=

bb3

�
in (18). A possible approach to han-

dle this would be to apply bootstrap methods. After obtaining unbiased estimates of h,
these may be combined with bootstrapping of (15) for constructing confidence intervals
for h. It should be of interest to examine in which cases the unbiased estimates of h
obtained in this way would be outside the usual 95% confidence intervals constructed
using e.g., the delta or Fieller method, i.e., how large the bias would have to be to shift
the confidence intervals away from the true value of h. Another approach would be to
apply the delta method to (18) and (15) to obtain better approximate confidence inter-
vals. These questions will be the topics of forthcoming papers. Further topics for future

research, which may be examined in simulation studies, are e.g., the bias of bh for other
distributions of the independent variable x and the error term e than the normal distri-
bution, especially non-symmetric distributions such as the log-normal distribution, and

the bias of bh when estimating the quadratic regression model (1) using least absolute
deviation (LAD) or quantile regression methods.
Finally, it should be noted that there are several econometric and statistical applica-

tion areas where other functional forms for the independent variables in the linear
regression model than the quadratic function in (1) are used, and where statistical infer-
ence regarding ratios of regression coefficients are of interest. An overview of econo-
metric applications, such as e.g., the willingness to pay value, i.e., the maximum price
someone is willing to pay for a product or service, is given by Lye and Hirschberg
(2018). The method for deriving analytical formulas for the expected values of estima-
tors of ratios of regression coefficients outlined in this paper may be useful even for
these cases.
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