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1 Introduction

In this thesis the solution of initial boundary value problems (IBVPs) are con-
sidered. We are particularly interested in time dependent wave propagating
problems. Typical applications are acoustic and electromagnetic wave propaga-
tion and fluid dynamics. A recipe for solving such problems typically require
proper treatment of: i) Convective and diffusive terms. ii) Boundary conditions.
iii) Artificial dissipation. iv) Complex geometries.

For wave propagating problems, the computational domain is often large
compared with the wavelengths, which mean that waves have to travel long
distances during long times. As a result, high order accurate time marching
methods, as well as high order spatially accurate schemes (at least 3rd order)
are required (such as spectral elements, finite elements and finite difference meth-
ods), because of their lower phase error. Such schemes, although they are G-K-S
stable [5] (convergence to the true solution as Az — 0), may exhibit a non-
physical growth in time [1], for realistic mesh sizes. It is therefore important to
device schemes which do not allow a growth in time that is not called for by the
differential equation. Such schemes are called strictly (or time) stable.

In this thesis we are interested in efficient methods with a simple structure
that parallelize easily on structured grids. High order finite difference methods
(HOFDM) fulfill these requirements. The efficiency of high order explicit cen-
tered finite difference methods, when applied to partial differential equations,
was demonstrated already by Kreiss and Oliger [14]. They determined the num-
ber of points per wavelength needed to obtain a certain phase error for semidis-
crete approximations of a hyperbolic model problem with periodic boundary
conditions. A calculation with a 6th order accurate method, using IV grid points
in each of the spatial directions, result in a phase error proportional to (1/N)°.
It is also shown that a 2nd order accurate method require approximately N3
grid points in each of the spatial directions to reproduce the same phase error.

When analyzing HOFDM, the main difficulty is to show that the approxima-
tion is stable. The stability theory and boundary condition for HOFDM applied
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to IBVPs [8], were until recently less developed making these codes less robust.
In [12],[13] Kreiss and Scherer proved stability of difference approximations of
hyperbolic IBVPs by using high order explicit difference operators satisfying a
summation by parts (SBP) rule.

The main objective in this thesis have been to device stable and high order
accurate finite difference schemes for hyperbolic but also for parabolic IBVPs.
On complex domains our recipe to obtain such schemes is to use:

1. Accurate SBP operators.

2. Stable boundary procedures.
3. Efficient artificial dissipation.
4. Multi block structure.

The rest of the thesis will proceed as follows. In Section 1.1 we discuss some
concepts and definitions. In section 1.2 the SBP properties are discussed. In
section 1.3 we discuss boundary procedures. In section 1.4 the use of artificial
dissipation is motivated. In section 1.5 we discuss different methodologies for
solving problems on "real” geometries. In sections 2.1, 2.2, 2.3, 2.4 and 2.5 we
summarize paper [I], [II], [III], [IV] and [V] respectively.

1.1 Concepts and definitions

Before we start describing the stability properties, some definitions are needed.
Let the inner product for real valued functions u,v € L?[a,b] be defined by

(u,v) = fabuvdm and the corresponding norm ||u||? = (u,u). The domain
(a < z <b) is discretized using N equidistant grid points,

b—a

N-1"

zj=a+(j—-1)h, j=12.,N, h=

The numerical approximation at grid point z; is denoted v;, and the discrete
solution vector v!' = [v1,va, -+ ,un]. We define an inner product and norm for
discrete real valued vector-functions u,v € R™ by

(U,U)HZU,THU, ||U||%-I:UTH’U7 (1)

where H = HT > 0.
Consider the IBVP,

ug + Pu= F(x,t) 0<zr <1, t>0

Lu(0,t) = g(t) (2)
u(z,0) = f(z),
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where P is the differential operator, L the boundary operator, F' the forcing
function, f the initial data and g the boundary data. The semidiscrete approx-
imation of (2) can be written as a system of ordinary differential equations

ve + Mv =G(t) t>0
v(0) = 1, ®)

where M is the matrix representing the spatial discretization, including the
boundary conditions and G is a known vector function.

If (2) is well posed (see [8]) and F' = g = 0 (which yield G = 0 in (3)), an
energy estimate of the form

Jul] < Kee!

s (4)

exist. In (4), K. and a, do not depend on t. If (3) is a strictly stable difference
approximation of (2), a corresponding discrete energy estimate of the form

vl < Kae**||fln , ()

exist. In (5), ag < a. + O(h). This means that a strictly stable approximation
has the same asymptotic time growth as the continuous problem.

The asymptotic time growth is determined by the utmost right part of the
spectrum, denoted a. and ag4 in the continuous and discrete case respectively.
Roughly speaking, the spectrum of the continuous problem is obtained as the
singular values of the solution to the Laplace transformed version of (2) [8].
Details on how to compute the spectrum are given in [I]. The discrete spectrum
are the eigenvalues of the matrix M in (3). Note that K. # Kq in general.

1.2 Summation-by-Parts operators

An SBP operator is essentially a centered difference scheme with a specific
boundary treatment, which mimic the behavior of the corresponding continuous
operator with regard to the inner product defined by (1). Consider the hyper-
bolic scalar equation, u; = u,. Notice first that (u,u) + (ue,u) = d/dt||ul|*.
Integration by parts leads to,

d . .
EHUHZ = (u,ug) + (ug,u) = U2|g ) (6)

where we introduce the notation u?|’ = u?(z = b) — u?>(z = a). Consider the
semidiscrete approximation, v; = Dyv, of the hyperbolic equation. A difference
operator D; = H~1Q is an SBP operator if Q + Q* = B, where

B = diag (-1,0...,0,1) , (7)

since this leads to

ol = (0, B Qo) + (H'Qu, o) =0T (@ + QMo =k i (8)
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Equation (8) is a discrete analog of the integration by parts formula (6) in the
continuous case.

To handle parabolic problems we also need an SBP operator for the second
derivative. Consider the heat equation, u; = u,,. Integration by parts leads to,

%HUW = (4, Uge) + (Uga,u) = 2uuz|g — 2/ ||* . (9)
The idea, on how to construct an SBP operator Ds, approximating 0?/0x?,
comes from studying (9). It is easy to realize that in order to fully mimic the
integration by parts property we need Dy = H~'(~DTHD, + BS), where D,
is a consistent approximation of 8/dz, S includes an approximation of the first
derivative operator at the boundary and B is given by (7). The energy method
on the semidiscrete approximation, v; = Dyv leads to,

d

dt
a discrete analog of the integration by parts formula (9) in the continuous case.

However, it is not necessary to fully mimic the integration by parts property
in order to get an energy estimate. Consider the difference operator H~!(—A +
BS), approximating 9?/0 z%. The energy method leads to

a
dt

||v||%{ = (v, Dav) + (Dav,v) = 20N (Sv) N — 2v9(Sv)o — 2||D1v||%{ ,  (10)

||U||§{ = 2un(Sv)N — 209(SV)o — UT(A + AT)U . (11)

To get an energy estimate it suffice that A+A7 > 0, assuming that the boundary
terms are correctly implemented.

The construction of SBP operators for the second derivative is done in paper
[IV], by using the symbolic mathematics software Maple.

1.3 Boundary procedures

By using an SBP operator, a strict stable approximation for a Cauchy problem
is obtained. Nevertheless, the SBP property alone does not guarantee strict
stability for an IBVP, a specific boundary treatment is also required. To impose
the boundary condition explicitly, i.e. to combine the difference operator and the
boundary operator into a modified operator, usually destroy the SBP property.
In general, this makes it impossible to obtain an energy estimate. This boundary
procedure, often used in practical calculations, is referred to as the injection
method and can result in an unwanted exponential growth of the solution.

The basic idea behind the Simultaneous Approximation Term (SAT) method
[1] and the projection method [18],[19] is to impose the boundary conditions such
that the SBP property is preserved and such that we get an energy estimate. A
systematic comparison between the SAT method, the projection method, and
the injection method was first done in [20], where a hyperbolic scalar equation
and a hyperbolic system was considered.
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In [I], a similar study was performed, considering also the linear advection-
diffusion equation for which the projection method fail to be a strictly stable
approximation. A similar method — a cure for the Projection method — which
was introduced in [7] as a “hybrid” between the injection method and the pro-
jection method was also analyzed.

As an example of the simple, yet powerful SAT boundary procedure, we
consider the hyperbolic scalar equation,

u+u, =0, 0<z<1, t>0, wu(0,t)=go(t). (12)

Integration by parts leads to,

d . . ‘
%llull2 =g —u'(z=1). (13)

The discrete approximation of (12) using the SAT method for the boundary
conditions leads to

v+ H'Qu = —H 7 {Eyv — eggo(t)} v, v(0) = f, (14)

where ey = [1,0,...,0]7 and Ey = diag([1,0,...,0]). By choosing 7 = 1, the
energy method leads to

d
ol = 96 = v& — (vo = 90)” - (15)

Equation (15) is a discrete analog of the integration by parts formula (13) in the
continuous case, where the extra term (vo — go)? introduce a small additional
damping.

1.4 Artificial Dissipation

For linear hyperbolic IBVPs, stable and accurate approximations are obtained
if : 1) The first derivative is approximated with high order accurate SBP opera-
tors. and ii) The boundary conditions are implemented with specific boundary
procedures, that preserve the SBP property, see [18], [1].

An SBP operator is essentially a centered difference scheme with a specific
boundary treatment. For nonlinear convection problems it is well known that
centered difference schemes require the addition of artificial dissipation to absorb
the energy of the unresolved modes. This is usually accomplished by adding
dissipation operators, constructed by high order undivided differences, see [17]
and [4].

Consider the semidiscrete approximation

vw=H 'Rv ,v(0)=Ff, (16)
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of a linear initial boundary value problem in one space dimension. Here we
assume that the spatial operator H~! R includes the (homogenous) boundary
conditions. The energy method leads to v¥ H v + v Hv = o3, = v* (R +
RT)v. Most of the relevant continuous problems have a non growing solution
energy. To get a non growing solution energy also for the discrete problem, R +
RT must be negative semidefinite. With the addition of an artificial dissipation
term (—H~! S)v on the right hand side in (16), we get

vy =H ' (R-S)v ,v0)=f. (17)

A sufficient condition for stability is that the symmetric part of (R—S) is negative
semidefinite. However, to separate the analysis of the dissipation operator from
the original problem we specifically require that

S+St>0. (18)

If (16) is stable and if condition (18) hold, then (17) is stable. The remaining
task is then to find S such that we obtain efficient dissipation and preserve the
accuracy at the boundaries. This particular problem is addressed in [II].

1.5 Multi block structure

Generating a grid around a complex configuration is often the most time consum-
ing aspect of the solution procedure. Constraints on the grid such as smoothness
to higher order (necessary to attain design accuracy for high order methods)
severely complicates the grid generation around complex configurations. This
fact has limited the use of HOFDM in practical calculations to the small class
of simple geometries which can be smoothly mapped onto the unit cube and led
many high order practitioners to consider unstructured methods.

Examples of fully unstructured approaches are finite volume, finite element
and spectral element methods. However, computational efficiency continue to
make calculations on structured meshes attractive. An alternative to fully un-
structured methods is the semistructured approach, in which the computational
domain is broken up into a number of smooth and structured meshes in a multi
block fashion. Each subdomain is discretized with a stable formulation and the
blocks are patched together to a global domain by using suitable interface con-
ditions. The main difficulty with this approach is to patch the blocks together
in a stable and accurate way.

A natural way to obtain a stable and high order accurate approximation of
the multi block problem, in the framework of HOFDM, is to discretize each
subdomain using SBP operators and treat both the (external) boundary and
(internal) interface conditions using the SAT boundary procedure. This partic-
ular approach was adopted in [2] and [15] to construct stable and conservative
boundary and interface conditions for the (1D) constant coefficient Euler and
Navier-Stokes equations, on multiple domains. A similar technique was used
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in [11, 10, 9] for Chebyshev spectral methods. In [16] the constant coefficient
analysis in [2] and [15] was extended to scalar multi-dimensional linear problems
in curvilinear coordinates, including block interfaces.

In [III] and [V] numerical studies on the benefit of high order methods on
complex domains were performed, considering numerical computations governed
by the (2D) Euler equations on a multi block domain. Steady and transient aero-
dynamic calculations around an airfoil were considered, where the first derivative
SBP operators and the new artificial dissipation operators developed in [II] were
combined to construct high order accurate upwind schemes. The interface con-
ditions were treated with the technique developed in [16].

2 Summary of the papers I-V

2.1 Paperl

We analyze four methods of imposing physical boundary conditions for finite
difference approximations of the advection-diffusion equation (21) and of a hy-
perbolic system (20). The methods are: the injection method, the SAT method,
the projection method and the modified projection method. To investigate nu-
merically if the methods are strictly stable we compute the error for long time
integrations, and determine the eigenvalue spectrum for the semidiscrete approx-
imations. The semidiscrete approximations to both types of IBVPs can formally
be written as

Apv (projection)
) Agv (SAT)
YT A (injection) ’ (19)

Apv (modified projection)

where Ap s 1, a are the different matrix representations of the spatial discretiza-
tion (including the homogeneous boundary conditions). The discrete spectrum
are the eigenvalues to Ap s 1 M.

The Simultaneous Approximation Term (SAT) method [1] and the projection
method [18],[19] impose the boundary conditions such that the SBP property is
preserved and such that we get an energy estimate. Other types of boundary
procedures destroy the SBP property, which in general mean that an energy
estimate cannot be obtained. In Figure, 1 the discrete spectrum for the sixth
order accurate approximation of the hyperbolic system (20) are shown.

W +u” =0 o0<z<1, t>0
WV —uM =0 0<z<1, t>0

)
)
20
©0,8) =uM(0,8) ,uM(L,t) =u(1,1) 2
)

(z,0) = g(z) , uM(x,0) = h(z) .

The continuous problem have constant energy, i.e. 4 (|lu(®]]? +|JuV[]?) = 0,
which means that the continuous eigenvalues are located on the imaginary axis.
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SAT Method, sixth order, N =30

Injection Method, sixth order, N =30
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Figure 1: Discrete spectrum, sixth order case, N = 30.

Notice that the injection method have positive eigenvalues, which show that
the 6th order approximation is unstable for this particular problem. To further
investigate, numerically, if the methods were strictly stable, the l5-error for long
time integrations were computed, see Figure 2. It is clear that also the 4th order
approximation using the injection method result in an unstable method.

For the hyperbolic system that we considered, the eigenvalue zero is a part of
the continuous spectrum. Hence the zero eigenvalue that is always introduced by
the Projection method does not destroy the growth rate. However, for problems
where the largest real part of the continuous spectrum is negative, like for the
advection-diffusion equation (with proper boundary conditions)

U + AUy = €Uy , (21)

the projection method will not result in a strictly stable approximation. This
causes problem if the boundary and the initial data are inconsistent.

To examine how the solution behaves when the initial data and the boundary
data do not match we compare the computation with and without inconsistent
initial data at the boundaries. The error is defined as the difference between
the disturbed and the undisturbed solution. The [y error as a function of time
is presented in Figure 3, for the 6th order case, with inconsistent initial data
(of magnitude 0.01) at the inflow boundary. 50 grid points are used and the
solutions are advanced to time ¢ = 10, using the standard 4th order Runge-
Kutta method. Figure 3 show that the error introduced by the inconsistency,
remain in the solution when the projection method is used.
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Figure 2: ls-error as a function of t, for 2nd, 4th, 6th order case, NV = 60. Notice
the blowup in the right subfigure. The ls-errors for the injection method are
presented up to t = 400, to show the blowup also for the 4th order case.
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2.2 Paper II

To obtain efficient dissipation in the interior of the domain, the artificial dis-
sipation operator is designed to approximate the highest possible even degree
derivative within the same stencil as the base central approximation. In other
words we use a centered, second order accurate undivided difference scheme of
order 2p for a (2p)th order accurate method. The main difficulty is then to
modify the artificial dissipation operator at the boundaries such that accuracy
and stability is preserved.

There is a variety of SBP operators approximating 0/0« to a certain ac-
curacy, constructed with different norms H, see [12, 13, 20]. With a diagonal
norm, at most pth order accuracy can be achieved at the boundary, where the
internal accuracy is of order 2p. This will result in a (p + 1)th order accurate
approximation of the original problem. With a full norm H (the upper and
lower part of the norm consist of 2p by 2p blocks), a (2p — 1)th order accurate
boundary closure exist, which result in a (2 p)th order accurate approximation
of the original problem. This is due to the fact that one can lower the accuracy
by one order at a finite number of points and still obtain accuracy of order 2p,
see [6].

The form of the dissipation operator for the (2 p)th order case is given by

Dl,=-H"'D, B,D,=H7"S,

where D, = h~?D,, (the tilde sign emphasizes that there is no h dependence) is a
consistent approximation of dP /d P with minimal width, B, +sz; >0,and H is
the (2 p)th order norm. This clearly leads to stability, see (18). The main result,
shown in this paper, is that in order to preserve accuracy at the boundaries in
the full norm case, B, must depend on the number of grid points. To obtain
minimal width and accuracy of order 2p in the interior, B, must be a diagonal
matrix that approximate a smooth function. Without restriction we choose B,
to be diagonal also at the boundaries. To obtain the desired accuracy also at
the boundaries (in the full norm case), we required the diagonal of B, to be the
restriction onto the grid of a piecewise smooth function, that increase from a
low (proportional to O(h?~1)) up to a higher constant level, over a fized portion
of the domain, such that derivatives up to order p — 2 vanish at the boundaries
and at the transition points (see Figure 4).

In [17] a symmetric and negative semidefinite dissipation operator, DI, =
—D~4T B, Dy is presented, where B, = diag(0,0,1,---,1,0,0). This operator is
suitable for a 5th order accurate method since the interior scheme is of order
8 and 4th order accurate at the boundaries. However, using this operator as
artificial dissipation for the 8th order diagonal norm case (which is globally of
order 5) will not result in an energy estimate. A modification that leads to an
energy estimate would be to multiply DI, with the inverse of the norm, i.e.
to let DIy = H'DI,. In Figure 5, the ly-error for long time integrations are
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Figure 4: Example of B, in the 6th order case. In the transition region, which
occupy five percent of the total region, we use a 3rd order polynomial that
increase from h? to one, such that the first derivative is zero at the transition
points and at the boundaries (end points).
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Figure 5: Problem (20), ls-error as a function of ¢ with DI, DIg as dissipation.
N = 50. Also included is the case with no dissipation.
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Pressure, 4:th order, t = 14 Pressure, 3:d order upwind, t = 20
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Figure 6: Pressure contour. Comparing the stability properties for a truly non-
linear problem, with (left subfigures) and without (right subfigures) the addition
of artificial dissipation.

shown, where the hyperbolic system (20) is considered. Clearly the use of DI,
as dissipation for the 8th order diagonal norm case result in an unstable method
for this problem (due to positive eigenvalues in the discrete spectrum).

To test the dissipation operators in a more realistic setting, we considered the
numerical computation of solutions governed by the 2-D Euler equations. The
new dissipation operators were combined with the first derivative SBP operators
to obtain 3rd and 5th order accurate upwind schemes. Figure 6 show the com-
putation of a vortex convected through an empty domain with and without the
addition of artificial dissipation. The calculations (4th and 6th order accurate)
using non-dissipative schemes are stopped a short moment before calculation of
the vortex breaks down at © = 14, due to non linear instability. The calculations
using the dissipative upwind schemes propagate the vortex without any problem,
even after reaching the internal boundary at = = 20.

2.3 Paper III

A numerical study on the benefit of high order methods for transient aerody-
namics is performed. The first derivative SBP operators and the new artificial
dissipation operators derived in [II] were combined to construct 3rd and 5th or-
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Figure 7: The computational domain, divided into 12 blocks, around a
NACAO0012 airfoil. The right subfigure is a close up.

der accurate upwind schemes, which were used to compute solutions to a vortex-
airfoil interaction, governed by the Euler equations. For the sake of comparison,
computations are also done using a 2nd order central scheme with a 4th order
difference as artificial dissipation, scaled as in the 3rd order upwind case.

To obtain a suitable grid for computing the vortex-airfoil interaction, the
computational domain was split into 12 blocks (see Figure 7). To maintain
stability in the multi block setting, the interface conditions were treated with the
SAT method [16]. The computations run in parallel and each block was handled
by a single processor. There are other, more general choices. For instance we
could let processors handle more than one block, or (and) we could let several
processors work together on a single block. With our choice each processor only
has to communicate with the other processors through the block interfaces. This
particular methodology makes the problem particularly easy to parallelize. To
obtain efficiency it is crucial that the number of grid points in each block is
approximately the same (to obtain load balance). Numerical calculations were
performed on a sequence of successively finer meshes (here denoted: coarse, fine
and finest). The number of grid points on successively finer meshes are doubled
in each direction.

To validate the quality of the solver we compared the steady solution of Mach
number 0.63 around a NACA0012 airfoil of 2 degree angle of attack with the
result obtained using a node centered finite volume solver (EDGE [3]). The
results agreed well.

We are interested in computing the interaction of a vortex hitting an airfoil.
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As initial data we used steady solutions and introduced the vortex as bound-
ary data on the left boundary, see Figure 7. The vortex is swept downstream
towards the airfoil and eventually hits it, see Figure 8. The 2nd order method,
although it gives reasonable result for the integrated properties such as lift, gives
a completely different solution compared to the 3rd and 5th order upwind meth-
ods on the fine grid. This shows that a reasonable agreement in the integrated
properties does not necessarily imply good agreement of the fine structures in
the flowfield.

Summing up, numerical results show that the multi block code run effi-
ciently on a parallel computer. The computations of the vortex-airfoil inter-
action showed, that for time dependent problems and fine structures, high order
methods are necessary to accurately compute the solution, on reasonable fine
grids.

2.4 Paper IV

In [IV] finite difference approximations of second derivatives, which satisfy a
summation by parts rule were derived for the 4th, 6th and 8th order case based
on both the full and the diagonal norms, by using the symbolic mathematics
software Maple. For linear initial boundary value problems, strictly stable and
accurate approximations are obtained (shown in [I]) if :

e The derivatives are approximated with accurate SBP operators.
e The proper boundary conditions are implemented with the SAT method.

High order accurate SBP operators for the first derivative were first developed
in [12, 13] and later in [20]. To facilitate the construction of highly accurate
and stable approximations of mixed hyperbolic-parabolic problems, high order
accurate SBP operators also for the second derivative are needed. To obtain
stability it is necessary that the second derivative approximation is based on the
same norm as the SBP operator approximating the first derivative.

The error analysis performed in this paper indicated that the second deriva-
tive approximation could be closed at the boundaries with approximations two
orders less accurate, compared to the design order of the scheme, and still main-
tain the internal accuracy. The error analysis require that the numerical approx-
imation results in an energy estimate. In order to verify the accuracy require-
ments, two types of second derivative approximations were derived (in the full
norm case) for each order of accuracy. The first approximation was closed at the
boundaries with stencils two orders less accurate, compared to the internal ac-
curacy. The second type was closed with one order less accurate approximations
at the boundaries, compared to the internal accuracy.

A convergence study for the semidiscrete approximation of the advection-
diffusion equation (21) was done. Table 1 show the result for the 4th order case
(full norm) where the first derivative approximation is treated with 3rd order
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Mach number, 2:th order. Fine grid Mach number, 3:d order upwind. Fine grid
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Figure 8: Vortex hitting a NACA0012 at x=1. Comparing 3rd and 5th order
upwind to a second order method. Notice the similarity in the flowfields for the
3rd and 5th order methods. The down-right subfigure show the lift at different
times for the same grid as the other subfigures. The solid line is the 3rd order
reference solution on a finer grid.
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(NI B o[ B [¢ [ N[ &[] & [ ]
10 || 431 311 10 || 424 3.84
60 | -5.06 | 4.14 || -3.67 [ 3.11 | | 60 || -4.97 | 4.09 || -4.58 | 4.09
100 || -5.98 | 4.09 || -4.36 | 3.08 | | 100 || -5.89 | 4.06 || -5.48 | 4.02
200 || -7.20 | 4.04 || -5.28 | 3.04 | | 200 | -7.11 | 4.04 || -6.69 | 3.98
300 || -7.91 | 4.02 || -5.82 | 3.03 | | 300 || -7.82 | 4.02 | -7.39 | 3.98

Table 1: log(ly — error) and convergence rate for the 4th order case, based on
the block norm. The left table: with 2nd order boundary closure. The right
table: 3rd order boundary closure. In the computations marked v the stability
conditions are violated by improper choice of penalty parameters. Notice the
loss of convergence, in the left table.

accurate boundary closures. Two types of second derivative approximations was
tested. The first approximation is closed at the boundaries with stencils of order
2. The second type is closed at the boundaries with stencils 3rd order accurate.
We have included also the case where the stability conditions are violated by an
improper choice of penalty parameters, which means that the energy estimate no
longer holds. By violating the stability conditions we obtain a 3rd order accurate
approximation if the second derivative approximation is closed at the boundaries
with 2nd order stencils. A convergence study for a hyperbolic problem (¢ = 0 in
(21)) was also performed. The result showed, in agreement with [6], that in order
to preserve the internal accuracy of the scheme we must close the boundaries
with at most one order less accurate stencils.

This motivated the investigation of an incompletely parabolic system, i.e. a
model of the compressible Navier-Stokes equations. We considered

u; + Cuy = Dug, (22)

where "
ull 1 1 0 0
U = L@)], C = [1 _1], D= [0 J ,e>0
The energy method was used to derive suitable boundary conditions.

The convergence study showed that a difference approximation, with bound-
ary closures two orders less accurate for the approximation of the second deriva-
tive, and a physical boundary condition one order less accurate, compared to
the internal accuracy, maintain the design order of accuracy. If the stability
condition is violated, the overall convergence rate is again reduced by one order.
Table 2 show the result for the 6th order full norm case.

In order to test the second derivative SBP operators in a more realistic set-

ting, we considered the numerical computation of the flow around a NACA0012
airfoil, governed by the 2-D Navier-Stokes equations, where the pure second
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(N[ & [ae [ 8B [ [ N[ & [a]& [ ]
30 || -4.75 157 30 || -4.76 472
60 | -6.66 | 6.20 | -6.05 | 4.79 | | 60 | -6.66 | 6.16 | -6.72 | 6.48
90 | -7.72 | 5.94 | -6.92 | 491 | | 90 | -7.72 | 5.93 || -7.79 | 6.03
120 | -8.48 | 6.01 || -7.55 | 4.96 | | 120 | -8.48 | 6.02 || -8.55 | 5.97
150 || -9.07 | 6.00 | -8.03 | 4.95 | | 150 || -9.07 | 6.05 | -0.13 | 5.98

Table 2: log(l; — error) and convergence rate in the 6th order case, based on
the block norm. The left table: 4th order boundary closure. The right table:
5th order boundary closure. In the computations marked v the stability condi-
tions are violated by improper choice of penalty parameters. Notice the loss of
convergence, in the left table.

Mach-number
05
0.45

04

05 ' . i f|0°¢
-
I +0.25

-0.5 o 05 1 1.5 2 25 3

Figure 9: Navier-Stokes solution around a NACA0012 airfoil at Mach number
0.3 at 20 degree angle of attack, using a 3rd upwind method, and a Reynolds
number of 10000.
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Mach-number

05 = i 1
‘ Ho8

Figure 10: Navier-Stokes solution around a NACAO0012 airfoil at Mach number
0.9 at 20 degree angle of attack, using a 3rd upwind method, and a Reynolds
number of 10000.

derivative terms were approximated with the newly derived SBP operators, see
Figures 9, 10.

Summing up, numerical tests indicate that there is a close connection between
the overall convergence rate and the stability estimate. If the stability conditions
are violated, such that the energy estimate no longer holds, the overall conver-
gence rate is reduced by one order by using a second derivative approximation
with two order lower accuracy at the boundaries, compared to the internal ac-
curacy of the scheme. The numerical results also show that the new second
derivative SBP operators work well in realistic applications.

2.5 Paper V

In this paper energy stability for HOFDM on curvilinear grids and its impact on
steady state calculations were considered. To accurately compute fine structures
for time dependent problems, high order methods are necessary, as concluded
in [III]. Such problems often require good steady state solutions as initial data
and in this paper we addressed some issues related to the computation of steady
state solutions on complex domains. By using SBP operators combined with the
SAT boundary procedure, stable schemes are obtained for IBVPs on Cartesian
grids. In [21] it is shown that stability is destroyed when SBP operator based
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Convergence history, 5:th order case

10° T T ‘
-©- block norm
—B- diagonal norm

Figure 11: Steady state convergence, comparing the 5th order upwind schemes,
based on the 8th order diagonal and the 6th order block norm respectively.

on block norms are used in schemes applied on curvilinear grids. However,
stability is recovered if SBP operator based on diagonal norms are used. The
major disadvantage with the diagonal norm schemes is the loss of accuracy at
the boundaries. A scheme based on a 2p th order diagonal norm is only pth order
accurate at the boundaries, which globally results in a scheme of order p + 1.
Thus, the internal scheme is unnecessary accurate and wide. However, the loss
of efficiency is truly marginal if upwind methods are used.

The first derivative SBP operators and the new artificial dissipation operators
derived in [II] were combined to construct a 5th order accurate upwind scheme
based on the 8th order diagonal norm. As a test case we considered the steady
solution around a NACAO0012 airfoil at 2 degrees angle of attack and Mach-
number (Ma) 0.63, governed by the Euler equations. As a comparison, also
a Hth order accurate upwind scheme based on the 6th order block norm was
constructed. The convergence history for both schemes, are shown in Figure 11,
where it can be seen that only the scheme using diagonal norm converge. The
solution is considered to have reached steady state when the residual is less than
10712,

In [20] analytical expressions for the first derivative SBP operators of dif-
ferent orders are derived. These operators contain free parameters to be cho-
sen. In [20] they are chosen to give the minimal width of the operator near
the boundary. However, in order to speed up convergence to steady state it is
essential that the spectral radius of the numerical scheme is minimal. In par-
ticular when explicit time stepping is performed. In Appendix A in [20] the
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Figure 12: Discrete spectrums for the schemes based on the diagonal 8th order
norm. Note the large imaginary value for the non-optimal case, in the left
subfigure.

parameters 1,2 and xs for the 8th order diagonal norm operator was chosen,
x1 = 1714837/4354560, z» = —1022551/30481920, =5 = 6445687/8709120, to
obtain a minimal bandwidth. Our parameter search led to, ;7 = 0.649, z, =
—0.104, z3 = 0.755, and a much smaller spectral radius was obtained. The term
spectrally optimized is used below to denote the new operator with reduced
spectral radius.

To demonstrate the efficiency we considered the hyperbolic system (20) dis-
cretized using the spectrally and non-spectrally optimized operators. In Figure
12 the discrete spectrums are shown. The spectral radii differs by a factor ap-
proximately 9.4 in favor of the operator with reduced spectral radius. Further-
more, the largest possible quotient CFL = At/Axz was deduced experimentally
and found to be CFL,p; = 1.65 and CF Lyopnopt = 0.176 (also approximately a
factor 9.4). Of course, as dissipation is added to the operator to make it upwind,
the spectrum is altered. But it only seems to give a small perturbation of the
spectrum and C'F'L number. Also in the airfoil computations the timestep could
be increased approximately a factor 9 by using the spectrally optimized SBP
operator.

To test the accuracy obtained in the airfoil calculations, numerical calcula-
tions were performed on a sequence of successively finer meshes. For the sake of
comparison, computations were also done using a 2nd order central scheme with
a 4th order difference as artificial dissipation. The [>-errors of the Mach-number
for the coarser grids are displayed in Table 3. Table 3 show that the errors are
less in the 5th order case. However the convergence rate is about 2 in both cases.
The non-optimal convergence rate of the fifth order method is probably due to a
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| grid | 2nd | 5th |
1 0.0208 | 0.0135
2 0.0058 | 0.0033

Table 3: Steady state solution around NACA0012, Ma = 0.63, 2 degrees angle
of attack. The ls-errors of the Mach-number for different grids and order of
accuracy.

blend of different reasons. The grid, obtained with a standard commercial grid
generator with an elliptical smoother, is probably noon-smooth as indicated by a
bad grid quality index (a measure comparing finite differences of the grid points
at different orders of accuracy.). Further, there are density oscillations in front of
the airfoil. These oscillations are reduced as the grid is refined. Similar oscilla-
tions are also seen in the second order scheme. The reason for these oscillations
are probably due to lack of artificial dissipation perpendicular to the symmetry
line in the flow solution.

Summing up, the numerical results showed that energy stability is impor-
tant when computing steady state solutions to IBVPs. This led us to consider
SBP diagonal norm schemes, where stability proofs using the energy method are
obtainable. Furthermore, we improved the difference operator such that a con-
siderably larger time step could be used, which led to fast convergence to steady
state. The computations indicated that lack of numerical dissipation as well as
bad grid quality may destroy the convergence rate for high order of accuracy.
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