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In this thesis, high order accurate discretization schemes for partial differential equations
are investigated.

In the first paper, the linearized two-dimensional Navier-Stokes equations are considered. A
special formulation of the boundary conditions is used and estimates for the solution to the
continuous problem in terms of the boundary conditions are derived using a normal mode
analysis. Similar estimates are achieved for the discretized equations. For the discretization,
a second order finite difference scheme on a staggered mesh is used. In Paper II, the analysis
for the second order scheme is used to develop a fourth order scheme for the fully nonlinear
Navier-Stokes equations. The fully nonlinear incompressible Navier-Stokes equations in two
space dimensions are considered on an orthogonal curvilinear grid. Numerical tests are performed
with a fourth order accurate Padé type spatial finite difference scheme and a semi-implicit BDF2
scheme in time.

In Papers III-V, a class of high order accurate time-discretization schemes based on the
deferred correction principle is investigated. The deferred correction principle is based on
iteratively eliminating lower order terms in the local truncation error, using previously calculated
solutions, in each iteration obtaining more accurate solutions. It is proven that the schemes
are unconditionally stable and stability estimates are given using the energy method. Error
estimates and smoothness requirements are derived. Special attention is given to the implementation
of the boundary conditions for PDE. The scheme is applied to a series of numerical problems,
confirming the theoretical results.

In the sixth paper, a time-compact fourth order accurate time discretization for the one-
and two-dimensional wave equation is considered. Unconditional stability is established and
fourth order accuracy is numerically verified. The scheme is applied to a two-dimensional wave
propagation problem with discontinuous coefficients.
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1

Introduction

Differential equations describe processes in many scientific fields. Tradition-
ally, they occur in physics and engineering. Lately, mathematical models lead-
ing to differential equations have been increasingly studied in other fields such
as biology, medicine, chemistry, financial mathematics and even psychology.

For some of the equations, exact solutions can be calculated. Others are too
complex to be solved exactly. There, numerical methods are used.

When considering numerical methods for the solution of a partial differ-
ential equation (PDE) or ordinary differential equation (ODE), a number of
aspects have to be considered.
• The solution of the numerical scheme should be a good approximation to

the exact solution.
• The numerical scheme should be efficient in that the computational cost and

the memory requirements on a computer are within a reasonable limit.
An important aspect when studying differential equations and their numeri-

cal solution is wellposedness and stability. On the one hand the original prob-
lem and the associated numerical problem should be uniquely solvable when
corresponding initial and boundary conditions are given. The solution should
also depend continuously on the data, i.e., small changes in the initial and
boundary data should result in small changes in the solution. For the numer-
ical scheme, this is important to establish estimates for the error. Stability is
also crucial for the performance of the scheme. Unstable schemes are practi-
cally useless in applications.

In the first part of this thesis, we consider a special set of differential equa-
tions, the incompressible Navier-Stokes equations. We consider a finite differ-
ence scheme for discretizing the equations and investigate the wellposedness
of the equations and the stability of the scheme under a special set of boundary
conditions.

In the second part, we consider time discretization schemes for general sys-
tems of PDEs and ODEs and their stability.

In both parts of the thesis, we investigate high order accurate schemes. High
order accurate schemes have the advantage of admitting a coarser grid to reach
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2 CHAPTER 1. INTRODUCTION

a certain accuracy. Common arguments against using high order schemes are
that they tend to be more complicated to implement and more expensive to
calculate than lower order schemes. High order time discretization schemes
are often less stable. In this thesis, we consider high order discretizations that
do not give rise to these kinds of problems. A compact fourth order accurate
scheme in space is considered. In the second part of the thesis, we present
high order accurate time discretizations that are unconditionally stable and the
computational complexity is comparable to that of a second order method.



2

Navier-Stokes equations

The dynamics of fluids and gases are governed by the Navier-Stokes equations
which are derived from basic physical laws, the conservation of mass, momen-
tum and energy. The derivation of the Navier-Stokes equations can be found
in many textbooks, e.g., [1], [21] and [22], which are also a good introduction
into the field of computational fluid dynamics. When making certain assump-
tions about the fluid (incompressible, non-heat conducting, viscous, homoge-
neous flow with no body forces), one obtains the incompressible Navier-Stokes
equations,

ut +(u ·∇)u+∇p = ν∆u ,

∇ ·u = 0 ,
(2.1)

for the velocity vector u and the kinematic pressure p. The quantity ν is the
kinematic viscosity coefficient. The incompressibility assumption is valid for
fluids. For gases, which are generally highly compressible, it is possible to
show that the variation in the density is negligible at low Mach number flow,
i.e., low velocities compared to the speed of sound. Thus, the use of the in-
compressible Navier-Stokes equations for low Mach number flow is justified.
When formulating the Navier-Stokes equations, several different variants are
used. The most direct formulation is the primitive variable formulation (2.1).
The vorticity-stream function formulation introduces the vorticity ω = ∇×u
and the vector potential ψ defined by ∇×ψ = u. Equations for ω and ψ are
derived from the original Navier-Stokes equations.

ωt +∇× (ω× (∇×ψ)) = ν∆ω ,

∆ψ = −ω .

The pressure has been completely eliminated from the equations. Another
formulation is the vorticity-velocity formulation, using ω and u.

ut +ω×u+∇pT = −ν∇×ω ,

∇ ·u = 0 ,

3



4 CHAPTER 2. NAVIER-STOKES EQUATIONS

introducing the total pressure pT = p + 1
2 |u|2. The vorticity-velocity formu-

lation is of advantage for nearly irrotational flow since the first equation sim-
plifies to approximately ut + ∇pT = 0. Another feature is the fact that only
first order derivatives are present in the equations. This might simplify the dis-
cretization. A difficulty, when introducing the vorticity is the choice of bound-
ary conditions that give rise to an equivalent system to the original Navier-
Stokes equations. An overview over the different formulations is given in [11].
In the first part of this thesis, we consider the primitive variable formulation
of the Navier-Stokes equation (2.1). Due to the lack of a time derivative for
the pressure, some complications arise in the discretization and often, an alter-
native formulation is used. Taking the divergence of the first equation in (2.1)
and using the continuity equation, ∇ ·u = 0, one arrives at a Poisson equation
for the pressure, which can be used instead of the original continuity equa-
tion. This is referred to as the pressure Poisson equation (PPE) formulation
. Another way to overcome the lack of a time derivative for the pressure is
the artificial compressibility formulation introduced in [4]. The modification
of the equations is necessary for the direct implementation of explicit time in-
tegration methods, as there is no way of explicitly advancing the pressure in
time in the original formulation. A problem with the alternative formulations
(PPE and artificial compressibility) is to obtain correct boundary conditions
for the pressure. In [35], an analysis of different boundary conditions for the
pressure is performed. This issue is also addressed in [11], where the “correct”
boundary conditions for the pressure are derived for some problems.

We will here discuss the Navier-Stokes equations in primitive variable for-
mulation with the original continuity equation. We use a semi-implicit time
integration, treating all linear terms implicit in time. This allows us to solve
the equations directly without the use of a pressure Poisson equation or artifi-
cial compressibility.

2.1 Spatial discretization

To solve the Navier-Stokes equations numerically, a large variety of techniques
are in use. We here focus on finite difference methods. High order accu-
rate methods in space are necessary when trying to solve problems with very
small scales. In order to resolve a certain wavelength in space there is a mini-
mum number of required points per wavelength (PPW). The required PPW for
higher order methods are usually some factors lower than for a first or second
order scheme. A recent paper examining this is [23]. For computations of
realistic flow with small scale structures, the memory requirements for lower
order methods will be extensive and the use of high order schemes is essen-
tial. The best resolution is of course achieved with spectral methods. These



2.2. PAPER I 5

methods are, however, more difficult to apply for complicated geometries. A
general complication when using higher order schemes is the treatment of the
boundary conditions. The computational stencil becomes wider for higher or-
der schemes, and numerical boundary conditions have to be introduced. It is
not trivial how to choose numerical boundary conditions, to retain the stability
of the scheme [3]. Another matter is the fact that using higher order schemes
leads to an increase in the amount of work per grid point in time, especially
when using implicit time-marching schemes. The number of grid points in
time can, however, often be dramatically reduced for higher order schemes. In
addition, there exist methods, for which the amount of work and the stencil
size will not be very much higher. One such example are compact schemes of
Padé type. The fourth order Padé type approximation for the first derivative of
a function f (x) is given by

1
6

f ′(x−h)+
2
3

f ′(x)+
1
6

f ′(x+h) =
1
2h

( f (x+h)− f (x−h)) .

The stencil is similar to that of a centered second order scheme, with the dif-
ference that the derivative is solved for implicitly. To solve for f ′, a tridiagonal
system needs to be solved, which can be done in a very efficient way.

A problem with some discretization schemes is the existence of spurious,
oscillatory solutions. This can be remedied by using a staggered grid, i.e., the
different components of the solution are stored at different points in space and
sometimes even time. In addition to removing the oscillatory solutions, stag-
gered grid schemes often add compactness to the stencil. In [42], a high order
compact upwind scheme on a staggered mesh is used for the Navier-Stokes
equations. Fourth and sixth order schemes on a regular grid have been consid-
ered e.g. in [20] and [37]. In [30], the conservation properties of some high
order schemes are discussed and a fourth order conservative scheme is pre-
sented. Recently, conservative staggered grid approaches have been used on
unstructured grids in [34]. In [27] and [28], a fourth order compact scheme is
considered for the vorticity formulation. In [38], a comparison of several high
order methods is done. Compact schemes for the velocity-vorticity formula-
tion in two dimensions are discussed in [9] and in [29], a compact fourth order
scheme in velocity-vorticity formulation for 3D flow is presented.

2.2 Paper I
In order to guarantee the convergence of the discrete solution to the exact so-
lution of the Navier-Stokes equations, the wellposedness of the continuous
problem and the stability of the numerical scheme need to be established, i.e.,
we need to obtain an estimate of the solution in terms of the initial and bound-
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ary data. One important aspect is the formulation and the discretization of the
boundary conditions.

There are two important steps in the stability analysis. The first prob-
lem consists of establishing the stability of the corresponding Cauchy prob-
lem where the domain stretches over the entire space. For the discretization
scheme, this will in general give conditions for the maximal permissible time-
step. Under the assumption that the Cauchy problem is stable for a given time-
step, one then considers the original initial boundary value problem with zero
initial data and zero forcing function and studies the influence of the boundary
conditions on the solution. The results of these two investigations can then be
combined to an estimate for the solution of the original problem in terms of
the initial and boundary data and forcing terms.

In Paper I, we consider the influence of the boundary conditions on the
solution. A commonly used formulation of the boundary conditions is the pre-
scription of the velocity components on the boundary and one condition for
the pressure, either prescribing the pressure at one point in the domain, or pre-
scribing the integral of the pressure over parts of the domain. The divergence
equation will impose an additional restriction on the velocity on the boundary
since

∫
∂Ω

u ·n = −
∫

Ω
∇ ·u = 0 . (2.2)

This condition is of course natural for the continuous problem. It is not straight-
forward how to transfer it to the discrete problem, and it is susceptible to per-
turbations in the sense that the system becomes unsolvable if condition (2.2)
is slightly violated. In Paper I, we therefore consider an alternative way of
formulating the boundary conditions.

The original Navier-Stokes equations are nonlinear. In order to perform an
analysis, the problem is linearized by freezing the coefficients. We consider
the linearized Navier-Stokes equations in two spatial dimensions with the ve-
locity u and v in x and y-direction, respectively. We assume periodicity in one
direction. With these assumptions, we arrive at the following problem in two
space dimensions.

ut + ūux + v̄uy + px = ν(uxx +uyy) ,
vt + ūvx + v̄vy + py = ν(vxx + vyy) , (2.3)

ux + vy = 0 ,

with constants ū and v̄. We investigate the wellposedness of the system for
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boundary conditions of the form

u(t,0,y)− 1
2π

∫ 2π

0
u(t,0,y)dy = w0(t,y) , with

∫ 2π

0
w0(t,y)dy = 0 ,

u(t,1,y) = u1(t,y) , v(t,0,y) = v0(t,y) , v(t,1,y) = v1(t,y) , (2.4)∫ 2π

0
p(t,0,y)dy = q0(t) ,

and periodicity conditions in the y-direction. Now, (2.2) is not affected by
the boundary conditions. The boundary conditions are such that small per-
turbations in (2.4) will still render a solvable set of equations. We refer to
[14] for details, where a corresponding analysis has been done for the steady
state Stokes equations. With the periodicity assumption, one can use a Fourier
transform in the y-direction and a Laplace transformation in time, to write the
general solution in the following form

(u,v, p)T (t,x,y) =
∫ η+i∞

η−i∞

∞

∑
ω=−∞

(ũ, ṽ, p̃)T (s,x,ω)eiωy+stds η > 0 .

Applying this to the differential equation, one is left with a system of ordinary
differential algebraic equations (DAE) for (ũ, ṽ, p̃). A general solution in terms
of the transformation variables ω and s has the form

(ũ, ṽ, p̃)T (s,x,ω) = as
ωf1(s,x,ω)+bs

ωf2(s,x,ω)+ cs
ωf3(s,x,ω)+ds

ωf4(s,x,ω) .

There are four undetermined coefficients (as
ω,bs

ω,cs
ω,ds

ω) in the general solu-
tion. They will be determined by the four boundary conditions. The next step
is to find an estimate of the solution in terms of the boundary data. It turns out
that the dependence of the undetermined coefficients on the boundary data can
be expressed as

As
ω




as
ω

bs
ω

cs
ω

ds
ω


=




w̃0

ũ1

ṽ0

ṽ1


 ,

where (w̃0, ũ1, ṽ0, ṽ1)T are Fourier-Laplace transformations of the boundary
data and As

ω is a four by four matrix, depending on ω and s. For wellposedness
of the Fourier-Laplace transformed system of DAE, we need a uniform bound
on the matrix As

ω and uniform boundedness away from zero for the determi-
nant det(As

ω) for all ω and s. This will render boundedness of the undeter-
mined coefficients (as

ω,bs
ω,cs

ω,ds
ω). If in addition the functions fi are uniformly

bounded, we can derive an estimate of the solution (ũ, ṽ, p̃)T (s,x,ω) in terms
of the boundary data. By Parseval’s identity, a corresponding estimate follows
for (u,v, p).

The main result for the continuous problem is the following.
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Conjecture 1. Assume that the boundary data w0, u1, v0, v1 are 2π-periodic in
y and

∫ 2π
0 w0(t,y)dy = 0, but otherwise arbitrary. Then the system (2.3) with

boundary conditions (2.4) and zero initial conditions has a unique solution,
and there is an estimate
∫ ∞

0
e−2ηt‖v(t, ·, ·)‖2 dt ≤ const

(∫ ∞

0
e−2ηt (‖q0(t)‖2 +‖vB(t, ·)‖2) dt

)
,

∫ ∞

0
e−2ηt‖p(t, ·, ·)‖2 dt ≤ const

(∫ ∞

0
e−2ηt

(
‖q0(t)‖2 +‖vB(t, ·)‖2

+
∥∥∥∥∂vB

∂y
(t, ·)

∥∥∥∥
2

+
∥∥∥∥∂vB

∂t
(t, ·)

∥∥∥∥
2)

dt

)
,

∀η > 0 .

Here, v = (u,v)T and vB = (w0,u1,v0,v1)T .

In the proof, we numerically establish the boundedness away from zero of
the determinant of the matrix As

ω. Together with the boundedness of the matrix
elements and the functions fi, we obtain an estimate of the solution in Fourier-
Laplace space.

We now turn to the discretization of (2.3) and (2.4). To discretize the prob-
lem, a second order finite difference scheme on a staggered grid in space is
used together with a semi-implicit version of the BDF2 scheme in time. The
study of a second order scheme serves as a basis for the fourth order scheme
used later on. The reason for using a semi-implicit discretization in time is that
when later considering the fully nonlinear Navier-Stokes equations, it is prac-
tical to treat the nonlinear terms explicitly in time, whereas the linear terms
can be treated implicitly. The integrals in (2.4) are replaced by summation and
w0 is chosen such that ∑ j w0(t,y j) = 0. In order to obtain stability estimates
for the discrete solution, we follow the procedure for the continuous problem.
We find an estimate of the discrete solution in terms of the boundary data, now
using a discrete Fourier transform in the y-direction and a discrete Laplace
transform (z transform) in time.

Numerical experiments performed on a rectangular domain verify the sec-
ond order accuracy of the scheme. In the experiments, problems with periodic
solutions in y as well as nonperiodic problems are considered. In addition to
problems with constant coefficients, an example with ū and v̄ being functions
of time and space is studied. Also here, second order accuracy is obtained.

2.3 Paper II
The analysis in Paper I has shown that the chosen boundary conditions lead
to wellposed problems both for the continuous linearized Navier-Stokes equa-



2.3. PAPER II 9

−3 −2 −1 0 1 2
−1

−0.5

0

0.5

1

x
y

physical space

−2 −1 0 1 2 3

−0.5

0

0.5

computational space

ξ

η

Figure 2.1: Transformation between the physical and computational space.

tions and a second order discretization. We now use these boundary conditions
for the two-dimensional nonlinear Navier-Stokes equations and a fourth order
discretization in space. A stability analysis for the scheme used here has been
done in [12] for periodic boundary conditions.

As discussed in the introduction, it is desirable to use higher order methods
to decrease the number of necessary grid points for the numerical simulation of
turbulent flow, which is characterized, among other properties, by small scale
structures.

Here, a fourth order Padé type scheme on a curvilinear orthogonal grid is
used. The Padé scheme in its original formulation is applicable to a uniform
equidistant cartesian grid. A discussion of the scheme on an equidistant grid
can be found in [15]. To apply the scheme to an orthogonal curvilinear grid,
we use a transformation from the physical space (x,y) to a uniform equidistant
cartesian grid in the computational space (ξ,η), see Figure 2.1. Formulating
the Navier-Stokes equations in the new coordinate system (ξ,η) will lead to
equations for the pressure and the new velocity components in the ξ and η
direction, respectively. These equations are then solved on a cartesian equidis-
tant grid.

Experimental results for a test problem on a ring shaped domain using polar
coordinates and results for a laminar flow in a constricting channel are pre-
sented. For the experiment on the ring, we add a forcing term to the equations
in order to be able to construct problems with a known exact solution. This
allows us to examine the accuracy of the scheme. For the constricting channel
problem, a numerical solution on a fine grid is used as a reference solution.
The errors for the ring problem are very small and the order of accuracy is four
and partly exceeds four. For the constricting channel problem, the accuracy
order is higher than four for small Reynolds numbers (large viscosity coeffi-
cients ν) and moderately deformed geometries. When increasing the Reynolds
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number and considering sharper corners in the domain, the accuracy is slightly
decreased.



3

Time discretization methods

We now turn to the time discretization of general PDEs. Many methods are
based on the method of lines, i.e., the PDEs are first discretized in space, lead-
ing to a large system of ODEs or DAEs which can then be treated by any
time stepping scheme for ODEs. A large amount of literature is available on
the numerical treatment of ODEs. A survey of currently used methods can be
found in [2]. Standard textbooks for numerical methods for ODEs are [18] and
[19] and a recent textbook is [8]. We are interested in higher order accurate
time discretization. In practice, first and second order accurate schemes are
predominantly used, often due to the simpler form of the schemes or due to
the fact that higher order schemes have a decreasing stability domain, leading
to more severe time-step restrictions. Higher order schemes are, however, of
advantage, especially in long term time integration. In this thesis, we consider
two classes of stable high order schemes, deferred correction schemes and time
compact schemes. They are easy to implement and the work per time-step is
comparable to lower order methods. We first give a brief overview over some
standard time-marching methods. We assume here that the method of lines is
used and that the arising system is a linear system of ODEs, i.e., we consider
a problem of the form

d
dt u(t) = A(t)u(t)+F(t) for t ∈ (0,T ) ,

u(0) = f .
(3.1)

Here, u(t),F(t), f ∈ RN , and A(t) ∈ RN×N . The boundary conditions of the
original PDE are assumed to be incorporated into the linear operator A(t) and
the forcing term F(t). One can discretize (3.1), using any method available
for the time integration of ODEs. One has to be careful, however, to choose
a suitable method, in order to obtain satisfactory results. The resulting system
of ODEs is usually very large. A realistic size of a problem in three space
dimensions can be one million unknowns or more. Another matter is the sta-
bility of the scheme. A common way to analyze the stability for systems of
ODEs is to simplify the analysis by considering a scalar ODE. If A(t) is uni-
formly diagonalizable, the system of equations can be decomposed into a set of

11
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scalar equations. One obtains a stability bound in terms of the spectral radius
of A(t). For nondiagonalizable matrices the simplification to scalar problems
is not possible. The scalar stability analysis will, however, give a very good
indication of the stability properties of the method even for systems of ODEs.
In [24], a different definition of stability is considered for hyperbolic problems
based on locally stable schemes and the resolvent condition from the stability
theory for continuous PDEs. In [26], stability of some Runge-Kutta schemes
is established by the energy method for systems with a coercive matrix. In the
last four papers, we consider a stability analysis based on the energy method
for semibounded matrices. From the stability analysis, one will usually obtain
a condition on the maximal time-step depending on the spatial grid size. This
is called the CFL condition. When using a small space-step, we have to match
this with an often unnecessarily small time-step. This results in an enormous
increase in work to solve the problem. In some cases it is of course neces-
sary from accuracy considerations to choose the time-step in a certain way.
However, the CFL condition will often give a very severe restriction that is
not justified by the accuracy requirements. One way to avoid this problem is
to use A-stable methods, which are stable independent of the size of the time-
step. There are several theoretical results about A-stable methods, the most
famous ones are probably the results by Dahlquist from 1963, see [6], stat-
ing that the order of an A-stable linear multistep method cannot exceed two
(Second Dahlquist Barrier) and that an explicit linear multistep method cannot
be A-stable.

Two classes of standard time discretization methods are linear multistep
methods and Runge-Kutta schemes. The results by Dahlquist exclude lin-
ear multistep methods when requiring a high order A-stable method, leaving
only implicit Runge-Kutta methods, and multistep Runge-Kutta methods. The
Daniel-Moore Conjecture, see [7], [41], states that one can indeed construct
A-stable Runge-Kutta methods of arbitrary order. The highest possible order
of an A-stable j-stage Runge-Kutta multistep method is 2 j. A fully implicit
j-stage Runge-Kutta method involves the solution of an (N · j)× (N · j) sys-
tem per time-step. This can be extremely costly for large N. There are spe-
cial classes of Runge-Kutta methods, diagonally implicit Runge-Kutta (DIRK)
schemes, yielding a block lower triangular system to be solved, i.e., only the
solution of j N ×N systems is required. The highest possible order of DIRK
schemes is usually j. In order to obtain a method of order 2 j, we need to solve
2 j N ×N systems for each time-step.

Another way of obtaining high order A-stable methods is Richardson ex-
trapolation. This is based on combining the results of a lower order scheme
on different meshes to a higher order approximation by cancelling terms in the
global error expansion. To obtain a 2 j-th order method, j solutions on differ-
ent meshes are required when considering a symmetric second order accurate



13

base scheme.
In this thesis, we consider the deferred correction approach to obtain high

order accurate stable schemes. We obtain a 2 j-th order accurate scheme that
will require the solution of j N×N systems per time-step. Deferred correction
has first been introduced by Fox [10] and a lot of work has been done by
Pereyra in a series of papers starting with [33].

The deferred correction principle for general partial differential equations
is as follows. Consider the general differential equation

Lu = f in Ω ,

Bu = g on ∂Ω .

The operator L is a linear differential operator and B includes initial and
boundary conditions. We consider an r-th order accurate discretization,

Lhuh = f in Ωh ,

Bhuh = g on ∂Ωh .

Assume for now that the initial and boundary conditions are fulfilled exactly,
i.e., Bh = B|∂Ωh

. Calculating an asymptotic expansion of the local truncation
error, we obtain

Lh(u|Ωh)− f =
2r−1

∑
i=r

hi(Diu)|Ωh +O(h2r) ,

where Diu are higher order differential operators. One now discretizes Di by
difference operators Dih. The deferred correction scheme is as follows
• Step 1: Solve Lhuh = f with Bhuh = g.
• Step 2: Solve Lhũh = −∑2r−1

i=r hiDihuh + f with Bhũh = g.
Under the assumption that Di are approximated to order r by Dih, the scheme
will formally be of order 2r. The process can be repeated to iteratively obtain
arbitrarily high order approximations, gaining r orders of accuracy in each
iteration step.

Different from Richardson extrapolation, only one mesh is needed for all
intermediate solutions. Richardson extrapolation is based on an asymptotic
expansion of the global error. In some cases, it is difficult to prove the existence
of such an expansion, whereas we can directly calculate the local truncation
error used in the deferred correction scheme.

When comparing the deferred correction to high order implicit Runge-Kutta
schemes, the computational complexity is lower for the deferred correction —
the solution of an (N · j)× (N · j) system per time-step for the Runge-Kutta
scheme versus the solution of j N × N systems for the deferred correction
scheme.
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3.1 Paper III

The deferred correction principle has mainly been used to obtain high order
accurate schemes in space. We here use it to obtain high order accurate time
integration schemes.

In Paper III, we consider problem (3.1) for constant matrices A. The treat-
ment of time-dependent A = A(t) is similar, although the stability analysis will
become a bit more technical. The time-dependent case is treated in Papers IV
and V. We use the concept of deferred correction to obtain high order accurate,
stable schemes. As an underlying scheme, the implicit midpoint rule (IMR)1

is used. It is second order accurate and A-stable. We introduce the notation

D+un = D−un+1 =
un+1 −un

∆t
,

E+un =
un+1 +un

2
.

The procedure described in the previous section can be used to obtain solutions
of increasing order of accuracy, gaining two orders of accuracy in each step.
The sixth order deferred correction scheme is as follows.

• Step 1: Solve

D+u2,n = AE+u2,n +F(tn+1/2) , n = 0, . . . ,

u2,0 = f .

• Step 2: Solve

D+u4,n = AE+u4,n +F(tn+1/2)

+
∆t2

24
D+(D+D−)u2,n

−∆t2

8
AE+(D+D−)u2,n , n = 0, . . . ,

u4,0 = f .

The value of u2,−1 is calculated by high order extrapolation from u2,n, n≥ 0.

1In Paper III, the scheme is referred to as the trapezoidal rule, which is usually defined
slightly differently. The notation has been changed to implicit midpoint rule in the following
papers.
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• Step 3: Solve

D+u6,n = AE+u6,n +F(tn+1/2)

+
∆t2

24
D+(D+D−)u4,n

−∆t2

8
AE+(D+D−)u4,n

−3∆t4

640
D+(D+D−)2u4,n

+
3∆t4

128
AE+(D+D−)2u4,n , n = 0, . . . ,

u6,0 = f .

The values of u4,−1,u4,−2 are calculated by high order extrapolation from
u4,n, n ≥ 0.

Numerical test examples show a significant decrease of the error norms and
the expected order of accuracy for a hyperbolic and a parabolic problem with
periodic boundary conditions in space, Tables 3.1 and 3.2. There, up denotes
the p-th order deferred correction solution, u∗ denotes the exact solution, and
the norm ‖ · ‖h denotes the l2-norm over space and time.

Table 3.1: Error for a parabolic equation.

M 20 40 80 order of accuracy

‖u2 −u∗‖h 2.4e-3 6.0e-4 1.5e-4 2.0

‖u4 −u∗‖h 1.0e-5 6.4e-7 4.0e-8 4.0

‖u6 −u∗‖h 1.0e-7 1.9e-9 3.2e-11 5.8

Table 3.2: Error for a hyperbolic equation.

M 20 40 80 order of accuracy

‖u2 −u∗‖h 1.8e-4 4.3e-5 1.1e-5 2.0

‖u4 −u∗‖h 2.6e-7 1.5e-8 9.3e-10 4.1

‖u6 −u∗‖h 1.5e-8 2.4e-10 3.6e-12 6.0
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3.2 Paper IV
As stated above, we are interested in schemes with no stability limitations on
the time-step. We establish the unconditional stability of the deferred correc-
tion scheme under certain smoothness restrictions. We now consider time-
dependent A(t). The stability estimate is obtained by using the energy method
under the assumption that the matrix functions A(t) are semibounded, i.e.,

(u,A(t)u) ≤ 0 ∀u ∈ RN , where (u,v) =
1
N

N

∑
j=1

u jv j .

The main stability result is

Theorem 1. Assume that A(tn) are semibounded matrices that commute with
each other for all tn = n∆t. Then the p-th order solution up,n ≈ u(tn) of the
deferred correction algorithm satisfies the estimate

‖up,n‖ ≤ const
(

max
0≤µi≤n−1+p(p−2)/8

j≤p/2−1

∥∥∥∥∥
(

j

∏
i=1

A(tµi+1/2)

)
f

∥∥∥∥∥
+ max

0≤µi,ν≤n−1+p(p−2)/8
j≤p/2−1

∥∥∥∥∥
(

j

∏
i=1

A(tµi+1/2)

)
Fν+1/2

∥∥∥∥∥
)

.

Here, the constant depends on p and on tn but not on A(t).

More general time-dependent A(t) are considered in Paper V. In the stabil-
ity estimate, terms of the form A j f and A jF are present. This is different from
the usual definition of stability, where the solution only depends on the initial
data and the forcing terms. The interpretation of the above stability estimate
for systems arising from PDEs is that if A is a discretized spatial operator, the
action of A corresponds to a derivative in space, i.e., the estimate includes ap-
proximate spatial derivatives of the data. This is true for periodic problems.
For problems which include boundary conditions, however, a deeper investi-
gation has to be made. It turns out that the original boundary conditions will
cause Au to be unbounded even for vectors u that are approximating smooth
functions. When applying the deferred correction scheme to initial boundary
value problems, oscillations occur at the boundary. There is, however, a way
of formulating the boundary conditions to avoid these problems. In Paper V, a
more thorough investigation is made.

Note that error bounds derived directly from this stability estimated by con-
sidering the difference equation for the error e2 j,n = u2 j,n − u(tn) do not lead
to higher order accuracy. The direct application of Theorem 1 on the error will
actually only lead to second order accuracy results. To rigorously determine
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the order of accuracy of the scheme, a more elaborate analysis is necessary,
which follows in Paper V.

Numerical experiments are performed for a hyperbolic, nonperiodic prob-
lem with time-dependent coefficients. Modified boundary conditions are used
to ensure boundedness of the terms in the stability estimate. In addition, a
system of parabolic PDEs with periodic boundary conditions is considered.
Again, low errors and high order of accuracy are achieved.

3.3 Paper V

In the two previous papers, the deferred correction scheme has been applied to
the implicit midpoint rule. Another second order A-stable scheme that can be
used is the implicit second order backward differentiation formula (BDF2),

3
2

D+un − 1
2

D−un = Aun+1 +Fn+1 .

The BDF2 scheme is dissipative. This will decrease the oscillations occurring
at the boundary, when the original formulation of the boundary conditions are
used. In addition, it turns out that the theoretical smoothness requirements can
be relaxed by one power of A. The last property is due to the fact that no
approximation of the right hand side of equation (3.1) is made. The matrix A
does not appear in the local truncation error. However, lower error constants
of the IMR scheme speak for the use of the IMR based scheme for most of the
numerical examples that we have considered.

As mentioned above, the stability estimates alone are not enough to prove
the high order accuracy of the deferred correction scheme. In order to rig-
orously determine the order of accuracy, the smoothness of the lower order
accurate intermediate solutions needs to be further investigated. In the local
truncation error, high order time derivatives are present. These are replaced by
high order difference quotients of the lower order accurate solutions. The error
made by replacing the derivatives of the exact solution by a difference quotient
of the approximate solution needs to be of sufficiently high accuracy. As a
consequence, stability estimates are required also for the difference quotients
of the intermediate solutions. This is done both for the IMR and the BDF2
based scheme. The estimates are formulated for constant matrices A and a
generalization to time-dependent A(t) is indicated. The main error estimate
for the IMR based scheme is

Theorem 2. Let u2 j,n be the 2 j-th order solution to the deferred correction
method based on the implicit midpoint rule. Then the error e2 j,n = u(tn)−u2 j,n
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satisfies

∥∥Dp
+e2 j,n

∥∥≤ const
(

max
0≤i≤ j−1
i≤k≤ j−1

∥∥∥A3k+p−ie2( j−k),0
∥∥∥∆t2k

+∆t2 j
(
max t

0≤l≤k
1≤k≤ j

∥∥Alu(2 j+p+k−l)(t)
∥∥

+max 0≤s≤tν
0≤i≤ j−1
i≤k≤ j−1

0≤l≤3k+p−i

∥∥Alu(k+p−l+2 j−i)(s)
∥∥))+O(∆t2 j+1) .

(3.2)

Here, tν denotes a small number that depends on the deferred correction step
j but not on tn and the constant depends on tn but not on A.

Here, u(k)(t) denotes the k-th order time derivative of the solution to (3.1).
The order of accuracy is 2 j if the exact solution is sufficiently smooth and the
operator Al acting on the exact solution and its time derivatives results in a
bounded vector, independent of ∆x. Here, we need to consider l ≤ 3( j−1).

As mentioned before, if boundary conditions are incorporated in A, the ac-
tion of A on a smooth vector will not give a bounded term. We present ways
to reformulate the boundary conditions to guarantee boundedness of Alu for
sufficiently high powers l.

For the BDF2 based scheme, another aspect needs to be considered when
investigating the smoothness of the intermediate solutions. The BDF2 scheme
involves three time levels. In order to start the scheme, two initial conditions
are needed. Usually, a one-step scheme is used to obtain the first time-step. For
the deferred correction scheme, smoothness of the intermediate solutions is a
crucial requirement. Using the above described startup procedure will usually
render nonsmooth intermediate solutions. A method to obtain a second ini-
tial condition that guarantees sufficient smoothness in time is given. Another
possible strategy might be a post processing to smoothen the intermediate so-
lutions. In a series of numerical experiments, the results from the analysis are
confirmed. The central issues studied in the experiments are the following:
• the choice of the second initial condition for the BDF2 based scheme,
• the formulation of the boundary conditions,
• behavior for time-dependent A(t) and
• performance for stiff problems.
The last point is important to justify the use of implicit methods. As implicit
schemes are more expensive per time-step, they are only useful for problems,
for which the CFL number for an explicit method is considerably more restric-
tive than the accuracy requirements. These problems are called stiff problems.
We consider two kinds of stiff problems. The first kind is the class of problems
where different timescales are present in the problem and only the slow scale
is of interest. The CFL number is nevertheless dictated by the fast scale. A
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simple example is the scalar ODE

ut = −λu+(−1+λ)e−t λ 
 1 ,

u(0) = 1 . (3.3)

The problem has the solution u(t) = e−t . The time-step restriction of an ex-
plicit scheme is usually of the form λ∆t ≤ const. For large λ, this will require
a very small time-step, whereas the solution is independent of λ. For satisfac-
tory resolution, a moderately small time-step would here be sufficient. Another
group of problems requiring implicit schemes is the class where geometrical
constraints lead to very small spatial step sizes. The CFL condition will usu-
ally give a bound on the time-step in terms of the smallest space-step. This will
again lead to unnecessary small time-steps. The deferred correction schemes
work well for problems where geometrical constraints lead to small space-
steps. For problems like (3.3), the deferred correction scheme will not give
good results. This is due to the fact that a fast scale will appear in the interme-
diate, lower order solutions, even though it is not present in the exact solution.
The schemes are asymptotically of the correct order of accuracy. The error
constants will, however, become very large. A possible way to remedy this
might be the application of a filter to suppress the fast scale in the intermediate
solutions.

3.4 Time compact schemes
Another class of high order accurate time discretization methods that does not
fall under the same category as the methods mentioned so far is the class of
time compact schemes. It is different in that it does not use the method of
lines approach. When formulating a lower order accurate finite difference dis-
cretization of a PDE

∂u
∂t

= Lu , (3.4)

where L is a differential operator in space, one can calculate an expansion of
the local truncation error in time and space. To obtain higher order methods,
one can add discretized approximations of the lower order terms occurring in
the local truncation error to the scheme. This works well for the spatial dis-
cretization. For the approximation of ∂u

∂t , this approach will often result in
unconditionally unstable schemes. To avoid this, another technique can be
used. Instead of discretizing the time derivatives in the local truncation error
directly, one can use the differential equation (3.4), to transfer time derivatives
into spatial derivatives. One then discretizes the higher order spatial deriva-
tives. This will lead to time compact schemes. They are both one-step and
one-stage schemes.
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This approach has been used by Numerov in [31] and [32] and by Tuomela
in [39]. A similar approach has been used by Lax and Wendroff in [25]. A
similar concept is the modified equations approach, see e.g. [5], [36] and [40].
The performance of the time compact scheme based on an explicit second
order scheme applied to the wave equation has been studied in [13] and [17].
In the last part of this thesis, we consider a fourth order accurate time compact
scheme based on an implicit unconditionally stable scheme.

3.5 Paper VI
A problem that requires high order time stepping schemes is the long time in-
tegration of the wave equation. The standard formulation of the wave equation
in one space dimension is

ptt = a(x)(b(x)px)x

for the pressure p. Instead of using the above equation, one can introduce
the velocity u, with ut = bpx and obtain the following first order system for
the pressure and the velocity. To generalize to the inhomogeneous equation,
forcing functions F and G are added.(

p

u

)
t

=

(
0 a(x)

b(x) 0

)(
p

u

)
x

+

(
F

G

)
. (3.5)

To obtain a high order accurate scheme in time and space, we first consider the
implicit midpoint rule together with a second order centered difference scheme
on a staggered mesh in space. To obtain a fourth order accurate scheme, the
local truncation error is expanded in terms of the time and space-step, ∆t and
∆x. The lowest order terms are of order ∆t2 and ∆x2. The time derivatives in
the error are transformed using (3.5) resulting in terms that only include spatial
derivatives and the forcing terms. A discretization of these terms is then added
to the scheme resulting in a fourth order scheme in space and time. The width
of the stencil in time is two time levels and the width in space is five grid
points.

A stability analysis based on the energy method shows that the fourth order
scheme is unconditionally stable. The stability estimate includes derivatives of
the forcing functions.

Some numerical experiments are performed. First, the long term time in-
tegration is compared to the second order scheme. It is seen that the second
order scheme behaves very poorly for some problems, whereas the error of the
fourth order scheme stays very small in all cases. Fourth order accuracy is
achieved.
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We then consider the two-dimensional wave equation. In a similar manner
as for the one dimensional case, one can construct a time compact, fourth order
accurate scheme. The scheme is tested on a problem with discontinuous co-
efficients a and b and nonsmooth initial data. We consider wave propagation
in a domain with two different media with a nonsmooth initial function. Of
course, a reduction of the order of accuracy is expected. As we do not have an
exact solution to the problem, we can only compare the results to the solution
on a very fine grid. Such a solution has been calculated by Gustafsson and
Wahlund [16], based on the time compact explicit scheme discussed in [17].
It will be published in a forthcoming paper. A source of error in the solu-
tion to the discretized problem is the presence of small oscillations due to the
nonsmoothness of the coefficients and initial data. Here, the discontinuous co-
efficients seem to lead to less problems — no visible oscillations are present —
than the nonsmoothness of the initial data, which leads to a visible oscillation
around the discontinuity in the derivate. A local grid refinement is performed.
It leads to smaller oscillations. Here, an advantage of an unconditionally stable
scheme is seen. The very small space-steps in the refined area would require a
significant decrease in the time-step, if an explicit scheme had been used.
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